Computation with Dynamics and Attractors

GC7 : Journeys in Non-Classical Computation

Susan Stepney

Non-Standard Computation Group
Department of Computer Science
University of York
phase space and attractors

- discrete trajectories in discrete *state space*
 - the states placed to make the structure explicit
 - attractors are cycles in state space, after any transients have died away
- dynamical systems moving in space
 - discrete state space \rightarrow continuous *phase space*
 - one dimension for each parameter needed to specify the state
 - system trajectory is movement through this space
 - eg, system of N particles as a point moving in a $3N$-dimensional positional space, or in a $6N$-dimensional "position+momentum" space
 - eg, pendulum in a 2D "displacement+velocity" space
random Boolean networks

- Stuart Kauffman
 - RBN as a very simplified model of gene regulatory networks

- network of N binary valued nodes
 - each node takes binary inputs from K randomly chosen nodes
 - inputs combined by a random Boolean function

- effect of K on:
 - cycle length, number of attractors
 - stability
 - does it return to the same attractor after a small transient perturbation
 - reachability
 - how many other attractors reachable after a single small permanent perturbation
dynamic patterns in the brain

• spatio-temporal patterns
 - one attractor while idle
 - move into another when “thinking”

“the strange attractor characteristic of the attention state was replaced by a new, much more ordered attractor related to the recognition process”

--[Solé & Goodwin, 2000]

• attractor structure of the brain enables cognition
 - similar applications for general computation
 - set up a computational system (evolve, grow, learn) with the appropriate attractors
computational trajectories and attractors

- for fully dynamic computation with no halting, the computation emerges as (an observed projection of) the trajectory
 - dynamic associative memories, neural networks, artificial cognitive processes, ...
 - robotics controllers, ...
- the trajectory is governed by the structure of the underlying phase space and its attractors
 - whether discrete or continuous
- particularly important if the phase space itself is dynamic
 - parameters changing due to the environment, etc
open, far-from-equilibrium systems

- open -- constant addition of new resources
 - energy, matter, information flowing into and out of the system
 - new sand added to the pile (Per Bak 1987)

- far-from-equilibrium systems
 - not in a steady state, but at the computational “edge of chaos”
 - avalanches “on all scales”

- tend to form stable structures, patterns, that persist
 - stable, but not static
 - can change readily in response to stimuli, are “poised”
 - these patterns are emergent properties
 - levels of emergence -> hierarchical structures, in space and time

- impossibility of pre-defining the phase space
the proposed journey

- to develop a new computational paradigm expressed in dynamical terms of attractors and trajectories
 - can a computation be expressed as a trajectory amongst various attractors, each changing as the result of some parameter / input?
 - does the state transition analogy hold?
 - can a computation be expressed as movement between the unstable periodic orbits of a strange attractor?
 - how are these orbits selected?
 - how can we reason about “emergent” phase spaces?
 - where the phase space changes as the computation progresses
 - what kinds of algorithms are most suited to this paradigm?
 - what are the programming primitives and higher level languages?