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Abstract

While revisiting a problem in spiking neural networks (Shana-
han, 2008) we discovered an interesting anomaly that we
feel deserves further investigation as it could signify a use-
ful contribution to the field of complex systems analysis. Ro-
bust methods for estimating information-theoretic measures
like the two mutual information estimators in Kraskov et al.
(2004) normally yield similar results, but we have found a
case where they do not. Through extensive testing and the
use of software libraries that are known to be reliable, we are
confident that this seemingly contradictory outcome is not an
error, and that it is a new discovery. We advocate the need
for more thorough testing and benchmarking of estimators,
and warn against the risks of drawing premature conclusions
when using only one test method.

Introduction

The increasing availability of data and computational power

are driving research in complex systems, notably in pioneer-

ing interdisciplinary fields like Artificial Life and Computa-

tional Biology. Therefore the study of complex systems has

become even more vital. Reputable studies strengthen their

claims using statistical analyses yet there is an inherent risk

when using only one test method. This was highlighted beau-

tifully in an Ig-Nobel-winning article that deliberately mea-

sured brain activity in a dead salmon (Bennett et al., 2011).

This vulnerability makes using multiple tests more appeal-

ing; perhaps the more the better. Naturally if the results dif-

fer between methods, this needs explaining. We have found

a discrepancy in the outcome of the two current best-of-

breed non-parametric estimators for information-theoretic

measures introduced by Kraskov, Stögbauer and Grass-

berger (2004). This is interesting because the two estimators,

known here as KSG 1 and 2, are almost equivalent — KSG 1

has higher bias, KSG 2 higher variance — and normally ex-

hibit comparable behaviour (see Figure 1). Unexpectedly,

the left-hand side of Figure 2 shows a peak in one line. This

paper analyses and discusses this anomaly.

Methods

We discovered this anomaly when revisiting the problem of

relating the dynamical complexity to the structural complex-

ity of spiking neural networks (Shanahan, 2008). An in-

triguing property of biological neural networks (brains) is

their impressively rapid and seemingly paradoxical ability to

produce a single coherent response despite small groups of

neurons appearing to act individually in parallel. We there-

fore want to measure the equivalent behaviour in our system

by seeing how it balances local and global information (in

the general sense of the word). Reassuringly, this property

can be measured independently from two diverse perspec-

tives: network connectivity (which components connect to

others) and network activity (how much traffic they send and

receive). For our purposes, network activity equates to dy-

namical complexity and network connectivity to structural

complexity. Understanding our assessment of these charac-

teristics is helped if we first describe our system.

The system is a modular network of spiking neurons con-

sisting of 8 modules of 100 excitatory neurons each. Each

module has strong intra-connectivity and the inter-module

coupling is achieved by adding long-range connections, the

quantity of which is controlled by the parameter p which rep-

resents the fraction of long-range synapses between neurons

in different modules. These 800 neurons are connected to a

common pool of 200 inhibitory neurons so that the 8 clusters

compete in a winner-take-all fashion. The model and param-

eter values for all neurons are from Izhikevich (2003), a well-

established standard in the field. To sustain activity in the

network, we supply every neuron strong Poisson-distributed

current pulses with a rate parameter of 10Hz.

We assess structural complexity using the small-world in-

dex S (Humphries and Gurney, 2008), calculated for the bin-

ary directed network formed by the 800 excitatory neurons.

S quantifies the trade-off between high local clustering and

short path length. We calculate all the relevant structural

complexity measures using the Brain Connectivity Toolbox

by Rubinov and Sporns (2010).

Similarly, we assess dynamical complexity using neural

complexity CN (Tononi et al., 1998). Neural complexity

captures the balance between segregation and integration in

a system by considering how the elements interact at all pos-

sible scales, from the smallest component up to the entire



system. This interaction is measured using mutual informa-

tion, the building block of CN , that in our experiments is

directly estimated with either KSG 1 or 2.

We calculate all relevant information-theoretical mea-

sures using the free open source software package JIDT

(Lizier, 2014). JIDT has been thoroughly validated against

four other open implementations of KSG 1 and 2 so far. We

use Kraskov et al.’s (2004) recommended setting k = 4,

which is the default for JIDT.

We run the simulation for 200 s with a resolution of 1ms.

No measurements are recorded for the first 5 s to eliminate

transient effects. The activity of the network is then recorded

for 200 trials, measuring the firing rate of each cluster over

a moving 50ms window sampled at 20ms intervals.

Results

We calculate S and CN for every trial and show the relation

between the two and the model parameter p in Figures 1–3.

Figure 1 reveals a strong correlation between S and CN ;

therefore we conclude that dynamical complexity as mea-

sured by CN is strongly correlated with structural complex-

ity as measured by S. Figure 3 shows that S has a unique

maximum at an intermediate value of the parameter p, indi-

cating there is an optimal trade-off between high clustering

and low path length. Figure 2 is more interesting to interpret

and is the main focus of this paper.

In the mid- and high-p region, where the modular struc-

ture of the network is less pronounced, both KSG methods

give similar results. This suggests that the neural complexity

is smaller the more disordered the network.

In the low-p region, however, the methods yield qual-

itatively different results. The main difference between

the two is that KSG 2 shows a peak in CN at around

p = 0.05, whereas KSG 1 displays monotonically decreas-

ing behaviour.1

Discussion

In this section we describe the validation process we have

taken and discuss the reasons that lead us to believe this case

represents a genuine discrepancy between the methods and

not an error in our procedure. After extensive searching, we

believe this to be a newly reported discovery.

It is known that the KSG estimators are slightly different,

which becomes more apparent when dealing with smaller

datasets: the smaller the dataset, the more you can expect a

discrepancy, and the larger that discrepancy might be. There-

fore it is vital to check that this difference is not merely a

finite sample size effect. We test the effect of dimension-

ality and sample size by comparing both methods on syn-

thetic data. We generate multivariate normal random sam-

ples of the same covariance, dimensionality and size as the

1Note that p = 0 does not imply a fully disconnected network
— the excitatory clusters still interact via the common inhibitory
pool, despite having no direct excitation between them.
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Figure 1: Neural complexity of the modular network calcu-

lated with both KSG estimators. When plotted against S,

both methods show similar behaviour.
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Figure 2: Neural complexity of the modular network calcu-

lated with both KSG estimators. When plotted against p, the

methods show disagreement in the low-p region.
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Figure 3: Small-world index of the modular network as a

function of the fraction of long-range synapses p.



simulated data and apply both KSG 1 and 2. In this case,

both methods show identical behaviour, with an average dif-

ference below 0.1%. Therefore, dimensionality and sample

size are discarded as an explanation for the anomaly.

One plausible hypothesis is that the discrepancy is a con-

sequence of some unknown bias that affects KSG 1 and 2

differently. To discard this possibility, we use several sur-

rogate data testing methods to correct for different biases.

Nevertheless the difference remains after applying any sur-

rogate data method in our suite (Lucio et al., 2012). In fact,

the results shown in Figures 1 and 2 are corrected using

amplitude-adjusted Fourier transform. We conclude that this

difference is more fundamental; or at least is not one that

conventional surrogate data testing methods can correct for.

Another (unlikely) hypothesis is that these particular sam-

pling choices are somehow pathological, and a different way

of collecting the data would solve the problem. To test this,

we apply different low- and highpass filters on the raw spike

time series by changing the moving window size and step

and by taking up to two time differences of the averaged data.

Again, these procedures preserve the difference between the

outcomes of both methods.

Finally, to verify that this is not an artifact of the fac-

tors that make up CN , we use the same procedure to es-

timate other information-theoretic measures. For example,

the same discrepancy still holds if we estimate simpler quan-

tities — like the mutual information between any bipartition

of the network — or other more involved quantities — like

interaction complexity CI , an approximation of CN also in-

troduced in Tononi et al. (1998).

Conclusions

KSG estimators, although generally accepted and broadly

used in the analysis of complex systems, can yield inconsis-

tent results when applied to more realistic cases that deviate

from commonly used benchmarks.

The estimators produce qualitatively different results on

our spiking neural network data, despite giving almost iden-

tical results when applied to an artificial dataset of the same

size and dimensionality as the data extracted from the net-

work. This difference is consistent and is obtained after both

filtering the data and correcting the results using surrogate

data methods.

This difference is important. An experimenter, Alice, us-

ing only KSG 2 to analyse her data will come to the conclu-

sion that there is a peak of “interestingness” in a point where

the network is not completely disconnected but still retains a

strong modular structure; while her colleague Bob analysing

the exact same data using only KSG 1 will conclude that the

more segregated the network, the more complex behaviour

is obtained. However, since both methods perform equally

accurately in a common benchmark, there is no good reason

to believe one of the two researchers is right while the other

is wrong.

The benchmarks commonly used when testing estimators

are helpful and necessary, but alone they are not sufficient to

guarantee the validity of an estimator in other contexts. Real

data on which the estimators are applied are often much less

well-behaved than the synthetic data used in benchmarks.

It is crucial to develop rigorous methods for testing, under-

standing and comparing estimators.
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