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Abstract

The extent to which an organism’s morphology may shape
its behaviour is increasingly studied, but still not well un-
derstood (McGeer, 1990; Pfeifer and Bongard, 2007; Naka-
jima et al., 2015; Caluwaerts et al., 2012; Zhao et al., 2013).
Hauser et al. (2011, 2012) introduced mass-spring-damper
(MSD) reservoir networks as morphologically computing ab-
stracted bodies. As these networks are abstracted from bi-
ological bodies, the two will share some properties and ca-
pabilities, and studying the former may give us useful clues
about the latter. We have previously applied small MSD
network pairs to the production of reactive behaviour often
referred to as ‘minimally cognitive’ (Johnson et al., 2014,
2015). Here we go on to use similar controllers to solve a
target-seeking problem for a mobile agent in a maze, which
necessitates memory, over a finite but extended period. If
MSD networks with relatively few elements but still high dy-
namic complexity can solve navigation problems requiring
this kind of short term memory, then we may speculate that
simple organisms can also.

MSD networks
In simulated MSD networks, point masses are connected by
links which each consist of a spring and a damper in par-
allel (see Fig. (2)). In a true reservoir computing (RC) ap-
proach, the stiffness and damping coefficients of these el-
ements, respectively, are randomised when the network is
generated and do not change. Networks receive inputs in
the form of forces applied to the point masses. The net-
work forms a kernel, which projects its input streams into
its higher-dimensional, and highly nonlinear, state space. In
keeping with reservoir computing, the output from the net-
work is a linear weighted sum of network states, and only
these weights are trained.

Methods and Results
In an experiment based on that of Blynel and Floreano
(2003), where a CTRNN controller was used, a group of 4
small MSD networks control a simulated ePuck robot which
must navigate a T-maze and locate a target zone which is
placed at the end of either the left or the right corridor (see
Figures 1, 2 and 3). When the target is located, the robot is
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Figure 1: The ePuck and controller configuration. Camera
(unused here) shown in red, on front of robot. Infrared (IR)
distance sensors shown in blue. The rectangles with dashed
outlines show how the sensors are grouped in pairs. Stim-
uli from paired sensors are summed before being input to
the networks, so that the networks receive 5 inputs: 4 IR
and one ground sensor to detect the target zone. The robot’s
wheels are shown as rounded open rectangles. Each of the
robot’s motors is controlled by an antagonistic pair of MSD
networks. The back networks are identical to one another,
but formed into a symmetric pair by connecting their inputs
in reverse orders. In the case of the front networks, they are
paired in the same way as the back ones, but symmetry is
broken as they do not have the same weights as each other
in the linear readout.

moved back to the start position and must navigate directly
to the target zone, without searching other locations. In or-
der to solve this problem, the robot must have memory of
the target location at least until reaching the maze junction.
Evolutionary methods are used to determine valid network
parameters. In a break with the standard RC approach, stiff-
ness and damping coefficients as well as readout weights
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Figure 2: An MSD network from a valid controller. Square
nodes are fixed, and round nodes move freely. Nodes are
connected by links which consist of a parallel combination
of spring and damper (dampers are omitted from this dia-
gram for clarity). Inputs to the network are applied as forces
on a subset of the free nodes. In this case, there are 9 nodes
in total, and only 5 of the free 7 are driven.

Figure 3: The ePuck in the T-maze. The target zone is shown
in dark grey. In half of the evaluation trials, the target is on
the right-hand side, as shown. In the other half it is on the
left-hand side.

are evolved. The evolutionary algorithms and the MSD net-
works are implemented in the MATLAB IDE. The robot is
simulated using the Enki 2D robot simulator C++ libraries
(Magnenat et al., 2013).

Blynel and Floreano (2003) found that their CTRNNs
stored the location of the target zone in the state of a net-
work node. However, due to the ‘fading memory’ property,
the MSD networks used here cannot store information indef-
initely without the addition of a feedback loop (Hauser et al.,
2012). In order to provide the possibility of memory in our
controllers we added a feedback loop to a single network.
Our first main discovery was that successful evolved con-
trollers did not show signs of persistent memory. That being
the case, we also tried evolving controllers without feedback
loops. In both cases, it appears that transients in the network

responses to sensory input are surviving for approximately
45s (and perhaps longer), such that the robot makes the cor-
rect turn when it reaches the maze junction.

Conclusion
Without the addition of a feedback loop (Hauser et al.,
2012), the MSD networks used here are limited by the
‘fading memory’ property. Practically, this means that the
effect of any sensory input to the networks will have fi-
nite duration. To succeed in this target-seeking challenge,
agents must have networks with dynamics rich enough to
encompass quick response to sensors for steering and long-
term transients for memory. The networks used here have
been kept small to illustrate that networks with relatively
simple structures can still exhibit complex dynamics which
can be tuned by evolution to solve non-trivial behavioural
problems. The linear readout of an MSD network can be
interpreted as analogous to a primitive or peripheral ner-
vous system. If these controllers can solve the problem of
target-seeking navigation requiring short-term memory, then
perhaps similarly primitive organisms can perform similar
tasks.
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