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Abstract

We analyze the geometry of the species– and genotype-size
distribution in evolving and adapting populations of single-
stranded self-replicating genomes: here programs in the
Avida world. We find that a scale-free distribution (power
law) emerges in complex landscapes that achieve a separation
of two fundamental time scales: the relaxation time (time for
population to return to equilibrium after a perturbation) and
the time between mutations that produce fitter genotypes. The
latter can be dialed by changing the mutation rate. In the scal-
ing regime, we determine the critical exponent of the distribu-
tion of sizes and strengths of avalanches in a system without
coevolution, described by first-order phase transitions in sin-
gle finite niches.

Introduction

Power law distributions in Nature usually signal the absence

of a scale in the region where the scaling is observed, and

sometimes point to critical dynamics. In Self-Organized-

Criticality (SOC) (Bak et al., 1987, 1988), for example,

power law distributions reveal the dynamics of an unstable

critical point, brought about by slow driving and a feed-back

mechanism between order parameter and critical parameter.

The critical dynamics is usually described within the lan-

guage of second-order phase transitions in condensed mat-

ter systems (Sornette et al., 1995), but it can be shown that

SOC-type behavior also occurs within a dual description in

terms of the Landau-Ginzburg equation as first-order tran-

sitions (Gil and Sornette, 1996). Indeed, it was shown that

a power law distribution of epoch-lengths, that is, the time

a particular species dominates the dynamics of an adapt-

ing population, is explained by a self-organized critical sce-

nario (Adami, 1995) that carries the hallmark of first-order

phase transitions. Here, we measure the distribution of abun-

dances of species and genotypes in an artificial chemistry,

(the Avida Artificial Life system Adami and Brown, 1994;

Ofria and Brown, 1998) and show that the distribution is

scale-free under a broad class of circumstances, confirming

the results reported in (Adami, 1995). In the next section, we

discuss the first-order dynamics in more detail and examine

“avalanches of invention” from the point of view of a ther-

modynamics of information. In Section III, we measure the

critical exponent of the power law of genotype abundances

in the limit of infinitesimal driving, i.e., infinitesimal mu-

tation rate, and discuss the role of the fitness landscape in

shaping the distribution. In Section IV, we repeat the analy-

sis for a higher taxonomic level (that of species) and discuss

its relation to the geometric distributions found by Burlando

(1990, 1993). Conclusions about the evolutionary process

drawn from the data obtained in this paper are presented in

Section V.

Self-Organization in Evolution

The idea that the evolutionary process occurs in spurts,

jumps, and bursts rather than gradual, slow and continu-

ous changes has been around for over 75 years (Willis,

1922), but has gained prominence as “punctuated equilib-

rium” through the work of Gould and Eldredge (1977);

Gould and Eldregde (1993). The general idea is that evo-

lutionary innovations are not bestowed upon an existing

species as a whole, gradually, but rather by the emergence

of one better adapted mutant which, by its superiority, serves

as the seed of a new breed that sweeps through an ecolog-

ical niche and supplants the species previously occupying

it. The global dynamics thus has a microscopic origin, as

shown experimentally, e.g., in populations of E. Coli (Elena

et al., 1996).

Such avalanches can be viewed in two apparently contra-

dictory ways. On the one hand we may consider the wave

of extinction touching all species that are connected by their

ecological relations, a process akin to percolation and there-

fore suitably described by the language of second-order crit-

ical phenomena (Bak and Sneppen, 1993). Such a scenario

relies on the coevolution of species (to build their ecologi-

cal relations) and successfully describes power-law distribu-

tions obtained from the fossil record (Solé and Bascompte,

1996; Bak and Paczuski, 1996). There is, on the other hand,

a description in terms of informational avalanches that does

not require coevolution and leads to the same statistics, as

we show here. Rather than contradicting the aforementioned

picture (Newman et al., 1997), we believe it to be comple-

mentary.



In the following, we set up a scenario in which informa-

tion is viewed as the agent of self-organization in evolving

and adapting populations. Information is, in the strict sense

of Shannon theory, a measure of correlation between two en-

sembles: here a population of genomes and the environment

it is adapting to. As described elsewhere (Adami, 1998), this

correlation grows as the population stores more and more

information about the environment via random measure-

ments, implementing a very effective natural Maxwell de-

mon. Any time a stochastic event increases the information

stored in the population, a wave of extinction removes the

less adapted genomes and establishes a new era. Yet, infor-

mation cannot leave the population as a whole, which there-

fore may be thought of as protected by a semi-permeable

membrane for information, the hallmark of the Maxwell de-

mon. Let us consider this dynamics in more detail.

The simple living systems we consider here are popula-

tions of self-replicating strings of instructions, coded in an

alphabet of dimension D with variable string length ℓ. The

total number of possible strings is exponentially large. Here,

we consider the subset of all strings currently in existence in

a finite population of size N , harboring Ng different types,

where Ng ≪ Dℓ. Each genotype (particular sequence of in-

structions) is characterized by its replication rate ǫi, which

depends on the sequence only, while its survival rate is given

by ǫi/〈ǫ〉, in a “stirred-reactor” environment that allows a

mean-field picture. This average replication rate 〈ǫ〉 charac-

terizes the fitness of the population as a whole, and is given

by

〈ǫ〉 =
Ng∑
i

ni

N
ǫi , (1)

where ni is the occupation number, or frequency, of geno-

type i in the population. As Ng is not fixed in time, the

average depends on time also, and is to be taken over all

genotypes currently living. The total abundance, or size, of

a genotype is then

si =

∫
∞

0

ni(t) dt =

∫ Te

Tc

ni(t) dt , (2)

where Tc is the time of creation of this particular genotype,

and Te the moment of extinction. Before we obtain this dis-

tribution in Avida, let us delve further into the statistical de-

scription of the extinction events.

At any point in time, the fate of every string in the pop-

ulation is determined by the craftiness of the best adapted

member of the population, described by ǫbest. In this simple,

finite, world, which does not permit strings to affect other

members of the population except by replacing them, not

being the best reduces a string to an ephemeral existence.

Thus, every string is characterized by a relative fitness, or

inferiority

Ei = ǫbest − ǫi (3)

Figure 1: “Energies” (inferiorities) of strings in a first-order

phase transition with latent heat ∆ǫ.

which plays the role of an energy variable for strings of in-

formation IAL. Naturally, 〈E〉 = 0 characterizes the ground

state, or vacuum, of the population, and strings with Ei > 0
can be viewed as occupying excited states, soon to “decay”

to the ground state (by being replaced by a string with van-

ishing inferiority). Through such processes, the dynamics

of the system tend to minimize the average inferiority of

the population, and the fitness landscape of replication rates

thus provides a Lyapunov function. Consequently, we are

allowed to proceed with our statistical analysis. Imagine a

population in equilibrium, at minimal average inferiority as

allowed by the “temperature”: the rate (or more precisely,

the probability) of mutation. Imagine further that a muta-

tion event produces a new genotype, fitter than the others,

exploiting the environment in novel ways, replicating faster

than all the others. It is thus endowed with a new best repli-

cation rate, ǫnewbest, larger than the old “best” by an amount∆ǫ,
and redefining what it means to be inferior. Indeed, all infe-

riorities must now be renormalized: what passed as a ground

state (E = 0) string before now suddenly finds itself in an

excited state. The seed of a new generation has been sown,

a phase transition must occur. In the picture just described,

this is a first-order phase transition with latent heat ∆ǫ (see

Fig.1), starting at the “nucleation” point, and leading to an

expanding bubble of “new phase”.

This bubble expands with a speed given by the Fisher ve-

locity

v ∼
√
D∆ǫ , (4)

where D is the diffusion coefficient (of information) in this

medium, until the entire population has been converted (Chu

and Adami, 1993). This marks the end of the phase transi-

tion, as the population returns to equilibrium via mutations

acting on the new species, creating new diversity and restor-

ing the entropy of the population to its previous value. This

prepares the stage for a new avalanche, as only an equili-



brated population is vulnerable to even the smallest pertur-

bation. The system has returned to a critical point, driven by

mutations, self-organized by information.

Thus we see how a first-order scenario, without coevo-

lution, can lead to self-organized and critical dynamics. It

takes place within a single, finite, ecological niche, and thus

does not contradict the dynamics taking place for popula-

tions that span many niches. Rather, we must conclude that

the descriptions complement each other, from the single-

niche level to the ecological web. Let us now take a closer

look at the statistics of avalanches in this model, i.e., at the

distribution of genotype sizes.

Exponents and Power Laws

In this particular system avalanche size can be approximated

by the size s of the genotype that gave rise to it, Eq. (2). We

shall measure the distribution of these sizes P (s) in the Ar-

tificial Life system Avida, which implements a population

of self-replicating computer programs written in a simple

machine language-like instruction set of D = 24 instruc-

tions, with programs of varying sequence length. In the

course of self-replication, these programs produce mutant

off-spring because the copy instruction they use is flawed

at a rate R errors per instruction copied, and adapt to an envi-

ronment in which the performance of logical computations

on externally provided numbers is akin to the catalysis of

chemical reactions (Ofria and Brown, 1998). In this artifi-

cial chemistry therefore, successful computations accelerate

the metabolism (i.e., the CPU) of those strings that carry the

gene (code) necessary to perform the trick, and any program

discovering a new trick is the seed of another avalanche.

Avida is not a stirred-reactor environment (although one

can be simulated). Rather, the programs live on a two-

dimensional grid, each program occupying one site. The

size of the grid is finite, and chosen in these experiments to

be small enough that avalanches are generally over before a

new one starts. As is well-known, this is the condition sine

qua non for the observation of SOC behavior, a separation

of time scales which implies that the system is driven at in-

finitesimal rates.

Let τ denote the average duration of an avalanche. Then, a

separation of time scales occurs if the average time between

the production of new seeds of avalanches is much larger

than τ . New seeds, in turn, are produced with a frequency

〈ǫ〉P , where 〈ǫ〉 is again the average replication rate, and

P is the mutation probability (per replication period) for an

average sequence of length ℓ,

P = 1− (1 −R)ℓ . (5)

For small enough R and not too large ℓ (so that the product

Rℓ is smaller than unity) we can approximate P ≈ Rℓ, and

infinitesimal driving occurs in the limit

〈ǫ〉Rℓ ≪ 1

τ
. (6)

Figure 2: Fitness of the dominant genotype in the popula-

tion, ǫbest as a function of time (in updates).

Furthermore

τ ∼ L

v
(7)

with L the diameter of the system and v a typical Fisher

velocity. The fastest waves are those for which the latent

heat is of the order of the new fitness, i.e., ∆ǫ ∼ ǫ, in which

case v ≈ ǫ (because D ∼ ǫ in Eq. (4), Chu and Adami,

1993), and a separation of time scales is assured whenever

1

Rℓ
≫ L , (8)

that is, in the limit of vanishing mutation rate or small pop-

ulation sizes. For the L = 60 system used here, this con-

dition is obeyed (for the fastest waves) only for the smallest

mutation rate tested and sequence lengths of the order of the

ancestor.

In the following, we keep the population size constant (a

60 × 60 grid) and vary the mutation rate. From the pre-

vious arguments, we expect true scale-free dynamics only

to appear in the limit of small mutation rates. As in this

limit avalanches occur less and less frequently, this is also

the limit where data are increasingly difficult to obtain, and

other finite size effects can come into play. We shall try to

isolate the scale-free regime by fitting the distribution to a

power law

P (s) ∼ s−D(R) (9)

and monitor the behavior of D from low to high mutation

rates.

In Fig. 2, we display a typical history of ǫbest, i.e., the

fitness of the dominant genotype.1 Note the “staircase”

1As the replication rate ǫ is exponential in the bonus obtained
for a successful computation, ǫbest increases exponentially with
time.



structure of the curve reflecting the “punctuated” dynam-

ics, where each step reflects a new avalanche and concur-

rently an extinction event. Staircases very much like these

are also observed in adapting populations of E. Coli (Lenski

and Travisano, 1994).

As touched upon earlier, the Avida world represents an

environment replete with information, which we encode by

providing bonuses for performing logical computations on

externally provided (random) numbers. The computations

rewarded usually involve two inputs A and B, are finite in

number and listed in Table 1. At the end of a typical run

(such as Fig. 2) the population of programs is usually pro-

ficient in almost all tasks for which bonuses are given out,

and the genome length has grown to several multiples of the

initial size to accommodate the acquired information.

Name Result Bonus bi Difficulty

Echo I/O 1 –

Not ¬A 2 1

Nand ¬(A ∧B) 2 1

Not Or ¬A ∨B 3 2

And A ∧B 3 2

Or A ∨B 4 3

And Not A ∧ ¬B 4 3

Nor ¬(A ∨B) 5 4

Xor A xor B 6 4

Equals ¬(A xor B) 6 4

Table 1: Logical calculations on random inputs A and B
rewarded, bonuses, and difficulty (in minimum number of

nand instructions required). Bonuses bi increase the speed

of a CPU by a factor νi = 1 + 2bi−3.

Because the amount of information stored in the land-

scape is finite, adaptation, and the associated avalanches,

must stop when the population has exhausted the landscape.

However, we shall see that even a ‘flat’ landscape (on which

evolution is essentially neutral after the sequence has opti-

mized its replicative strategy) gives rise to a power law of

genotype sizes, as long as the programs do not harbor an ex-

cessive amount of “junk” instructions. A typical abundance

distribution (for the run depicted in Fig. 2) is shown in Fig. 3.

As mentioned earlier, we can also turn off all bonuses

listed in Tab. 1, in which case fitness is related to replicative

abilities only. Still, avalanches occur (within the first 50,000

updates monitored) due to minute improvements in fitness,

but the length of the genomes typically stays in the range of

the ancestor, a program of length 31 instructions. We expect

a change of dynamics once the “true” maximum of the local

fitness landscape is reached, however, we did not reach this

regime in the experiments presented here. The distribution

of genotype sizes for the flat landscape is depicted in Fig. 4.

Clearly then, even such landscapes (flat with respect to all

other activities except replication) are not neutral. Indeed,

Figure 3: Distribution of genotypes sizes P (s) fitted to a

power law (solid line) at mutation rate R = 0.004.

Figure 4: Distribution of genotypes sizes P (s) for a land-

scape devoid of the bonuses listed in Tab. 1, at mutation rate

R = 0.003.

it is known that neutral evolution, where the chance for a

genotype to increase or decrease in number is even, leads

to a power law in the abundance distribution with exponent

D = 1.5 (Adami et al., 1995).

In order to test the dependence of the fitted exponent

D(R) [Eq. (9)] on the mutation rate, we conduct a set of ex-

periments at varying copy-mutation rates from 0.5×10−3 to

10× 10−3 and take data for 50,000 updates. Again, a “best”

genotype is not reached after this time, and we must assume

that avalanches were still occurring at the end of these runs.

Furthermore, in some runs we find that a genotype comes

to dominate the population (usually after most ‘genes’ have

been discovered) which carries an unusual amount of junk

instructions. As mentioned earlier, such species produce a

distribution that is exponentially suppressed at large geno-

type sizes (data not shown). To avoid contamination from



Figure 5: Fitted exponent of power law for 34 runs at muta-

tion rates between R = 0.0005 and R = 0.01 copy errors

per instruction copied. The error bars reflect the standard

deviation across the sample of runs taken at each mutation

rate. The solid line is to guide the eye only.

such species, we stop recording genotypes after a plateau

of fitness was reached, i.e., if the population had discov-

ered most of the bonuses. Furthermore, in order to min-

imize finite size effects on the determination of the critical

exponent, we excluded from this fit all genotype abundances

larger than 15, i.e., we only fitted the smallest abundances.

Indeed, at larger mutation rates the higher abundances are

contaminated by a pile-up effect due to the toroidal geom-

etry, while at lower mutation rates a scale appears to enter

which prevents scale-free behavior. We have not, as yet,

been able to determine the origin of this scale.

In the results reported here, we show the dependence of

the fitted exponent D as a function of the mutation rate R
used in the run, which, however, is a good measure of the

mutation probability P only at small R and if the sequence

length is not excessive. As a consequence, data points at

large R, as well as runs where an excessive sequence length

developed, carry a systematic error.
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