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The First International Workshop on Theoretical and Experimental Material Computing
(TEMC 2019) is being held in Tokyo, Japan, as a satellite workshop of the International 
Conference on Unconventional Computation and Natural Computation (UCNC 2019), 3-7 
June 2019.  

Material computing exploits unconventional physical substrates and/or unconventional 
computational models to perform physical computation in a non-silicon and/or non-Turing 
paradigm.

TEMC 2019 encompasses a range of theoretical and experimental approaches to material 
computing.  The aim of the workshop is to bring together researchers from a range of 
connected fields, to inform of latest findings, to engage across the disciplines, to transfer 
discoveries and concepts from one field to another, and to inspire new collaborations and 
new ideas.

After the workshop, there is an open call for a special issue of the International Journal of 
Unconventional Computing on the workshop theme.  

Programme and Organising Committee
Susan Stepney
Matt Dale
Jack Dewhirst
Simon O’Keefe
Angelika Sebald
Martin Trefzer



Programme (3 June 2019)

14:00 Kohei Nakajima, University of Tokyo (keynote speaker)
Physical reservoir computing for soft robots

15:00 [coffee break]

15:30 Jonny Edwards, Temporal computing.   
A Measure of Oscillator Purity for Computing with Time

16:00 Sayed Ahmad Salehi, University of Kentucky.  
DNA-based Machine Learning Using Factorial Coding

16:30 Odd Rune Lykkebø, Johannes H. Jensen, Arthur Penty, Anders Strømberg, Magnus 
Själander, Erik Folven, Gunnar Tufte, NTNU.  
Emergent computation on a magnetic lattice



Physical reservoir computing for soft robots

KKoohheeii NNaakkaajjiimmaa
University of Tokyo

Soft robots are typical underactuated systems that generate diverse body 
dynamics when actuated. In this presentation, a technique to exploit these 
diverse body dynamics directly as an information processing device is 
introduced, which is called Physical Reservoir Computing (PRC). This
technique enables us to take physical dynamics from information processing 
view point. Several physical substrates/platforms for PRC including soft 
materials (e.g., silicone-based soft robotic arm) are presented, and illustrate 
the potentials of the framework through a number of experiments. Our focus 
will particularly be on how dynamical system aspects can provide a novel view 
to soft robotics through the PRC framework, including the relevance of 
chaotic dynamics and input-induced phenomena.



A Measure of Oscillator Purity for Computing
with Time

Jonny Edwards

Temporal Computing

1 Introduction

The purpose of this short abstract is to describe an initial measure (in a sim-
ilar vein to [1]) for the suitability of a medium for computing using clocked
oscillations. We briefly review the scope for computing in this manner, using a
temporally structured unary coding [2]. The key requirement for this approach is
pure oscillation, which can be measured using entropy based spectral methods.

2 Simple Temporal Wave Operations

Temporal compute methods differ from traditional computation in that the sub-
strate is time. In temporal arithmetic, addition is computed using a concatena-
tion, but differs from the digital implementation described in [2] by using the
native oscillation of the signal to clock the output. Multiplication is then the act
of scaling the value against a base frequency. See Figure 1 for a visual expla-
nation. Since the primary substrate is time, the major factors in increasing the
speed and accuracy of computation are the oscillator frequency and purity.

Fig. 1. The addition of 2+3 in a temporal wave context, we use concatenation and
re-parametrisation to perform the arithmetic.

To measure clock correctness (clockness) we perform a simple frequency anal-
ysis using the Fourier transform Z

∫∞
−∞ x(t)e−jwtdt ∈ C, examining the magni-

tude(a) (a =
√
(Re(x)2 + Im(x)2)). For a single oscillation, this process gives



2 Jonny Edwards

the relative presence of that oscillation, which can be easily normalised by the
total power of the spectrum (N(an) = an/

∑maxfreq
i ai). This transforms the

spectrum into a probability mass function, which gives the probability of oscilla-
tion at a specific frequency. To turn this into a measure is then straightforward,
we examine the entropy of the spectrum and a perfect clock will have zero
entropy. The entropy is given by:

H(X) = −
∑

x∈X

p(x) lg p(x) (1)

This is often referred to as spectral entropy, but here we are using it specifi-
cally to characterise clocks. Figure 2 provides some simple examples.

Fig. 2. Some example functions assessed for their clockness, sample rate was 10000
points, with some approximation due to resolution

The above scheme is used to evaluate the specific clock property of an oscillat-
ing medium, to assess suitability of the medium to conduct temporally organised
compute.
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DNA-based Machine Learning Using Factorial Coding 

Sayed Ahmad Salehi 
Electrical and Computer Engineering Department,  

University of Kentucky, Lexington, KY, USA 

The field of synthetic biology has advanced remarkably in the last 20-25 years. The progress in the field 
continues to accelerate at a rate even faster than Moore�s law that refers to doubling in the number of 
transistors on an integrated circuit (IC) chip every 18 months. Due to these advances, biomolecular 
computing, particularly DNA computing, has emerged as a non-conventional computing technology. Just 
as electronic systems implement computation in terms of voltage, biomolecular systems compute in terms 
of chemical concentrations (amount of molecules per unit volume). A broad range of computational 
processes has been considered for molecular implementation. In this presentation, we briefly demonstrate 
the development of molecular systems for performing machine learning algorithms particularly multi-level 
perceptron networks.  

Here, we present molecular machine learning and DNA-based artificial neural networks. Since machine 
learning classifiers have become increasingly ubiquitous in different fields of computational science, their 
physical realization using different technologies has been considered. Accordingly, molecular 
implementations of machine learning classifiers and artificial neural networks have been considered by 
researchers. The goal is to design biomolecular systems that are programmed to learn from their interaction 
with the living cells and decide when and how to act appropriately. For example, genetic logic circuits for 
cell classification can sense features of mRNAs; they can detect their expression patterns and selectively 
respond to specific cell types. Such circuits could enable the production of personalized smart drugs that 
target specific diseases for specific patients. In general, an artificial neural networks consists of one or more 
layers where, in each layer, a neuron computes a weighted sum followed by a nonlinear activation (transfer) 
function. Typically, the activation function corresponds to a sigmoid function.  

We illustrate the implementation of a simple neural network, i.e., single-layer perceptron, presented in prior 
work [1]. The implementation is based on fractional coding proposed by Salehi et al. [2]. Conventional 
coding in molecular computing represents each variable directly by the concentration of a molecular type, 
e.g., for variable  we have  = [] , where [. ] denotes concentration. Fractional coding, however, uses 
the ratio of two molecular concentrations to represent each variable, e.g.,  = []

[0]+[]
. Interestingly, 

fractional coding relates molecular computing to stochastic computing in electronics, where variables are 
represented by random bit streams. Accordingly, computations performed by stochastic computing circuits 
can be mapped to molecular computing structures based on fractional coding. As it is shown in Figure 1 
(a), the first step to implement a perceptron with  inputs is to calculate  × for  = 1,2,� ,. Using 
fractional coding, each multiplication can be implemented by four simple molecular reactions. The second 
step is to calculate the sum of the multiplication results. In molecular implementation, the sum can be 
calculated with no extra cost; if all the reactions calculating the multiplications in the first step, produce the 
same product, the product would represent the desired sum. The last step is the activation function. 
Although prior work on molecular implementation of neural networks has considered either a hard-
threshold or linear transfer function as the activation function, in real-word applications sigmoid function 
is a common activation function. We explain how this function could be approximately computed by 
molecular reactions based on fractional coding. 



Rather than the sum, molecular reactions calculate the scaled sum of the inputs, i.e., 1∑ ( ×)
=1 . 

Where  is a large number, the output is scaled down too much and could lead to a wrong classification 
decision. To address this problem we propose a new multi-layer perceptron neural network. Figure 1(b) 
shows a two-layer version of the proposed network. The network consists of three single-layer perceptron 
units. Obviously, the number of inputs for each unit is less compared to when using only one single-layer 
perceptron unit. The network provides flexibility to adjust the number of inputs for each unit and thus its 
scaling factor. By cascading more perceptron units, the structure can be generalized for multi-layer 
networks with different hidden layers. 

We use chemical reaction networks (CRNs) as the programming language to design our computing 
molecular systems and then map them to DNA reactions based on the DNA strand-displacement  
mechanism. We then validate the DNA implementation of these designs by showing their simulation 
results. 

 [1] Salehi, S.A., Liu, X., Riedel, M.D., Parhi, K.K.: Computing mathematical functions using DNA via 
fractional coding. Sci. Rep. 8(8312), Nature.com, (2018) 

[2] Salehi, S. A., Parhi, K. K. & Riedel, M. D. Chemical Reaction Networks for Computing Polynomials. 
ACS          Synthetic Biology Journal, 6(1), 76-83, Jan. (2017).  

              (a)                                                                                 (b)  

Figure 1. (a): A single-layer perceptron, (b) Proposed multi-layer perceptron. 



Emergent computation on a magnetic lattice

Odd Rune Lykkebø, Johannes H. Jensen, Arthur Penty, Anders Strømberg,
Magnus Själander, Erik Folven and Gunnar Tufte

firstname.lastname@ntnu.no

Norwegian University of Science and Technology (NTNU)

Artificial spin ice (ASI) are systems of coupled nanomagnets with interesting
computational properties. These magnetic systems consist of large numbers of
nonlinear elements arranged on a 2D lattice whose local interactions result in
complex global behaviors. We have demonstrated interesting dynamics in small
arrays of 40 nanomagnets through micromagnetic simulations [2]. Here, we present
results for much larger arrays with thousands of interacting magnets. Large scale
simulations based on dipolar interactions [1] enable us to efficiently study higher
order properties, such as robustness, memory and collective dynamics.

1 Artificial spin ice

In ASI, the shape of the nanomagnets is chosen such that they all have well-
defined magnetization direction, i.e., each magnet has a binary state. A magnet
can switch state if subjected to a sufficiently strong magnetic field, either coming
from neighboring magnets or from an applied external field. The interactions
depend crucially on the geometric arrangement of the lattice, e.g., the spacing
and angles between magnets determine the nature of their interactions.

Figure 1 shows two ASI systems, schematically in black, and their large scale
simulated behaviors in color. The system on the left is a ‘square spin ice’ [6]. The
square geometry results in a system with a high degree of frustration, i.e., where
all competing interactions cannot be satisfied at the same time. Notice the large
demagnetized regions (white) separated by magnetized borders (colored).

By rotating each element by 45◦ around its center, as shown in the right
figure, we get the so-called ‘pinwheel spin ice’ [4]. This small change leads to
qualitatively different behavior. Notice the large magnetically ordered domains
(filled colored regions).

2 Computing in artificial spin ice

Computation and memory is closely coupled in these nanomagnetic systems. The
magnetization of each nanomagnet is essentially a non-volatile memory. Magnetic
dipolar coupling between the magnets results in a network of large numbers of
interacting nonlinear elements.

The system dynamics can be readily tuned by changing parameters such as
spacing between the magnets, the size of magnets, external fields and different
lattice geometries. We find interesting dynamic regimes ranging from fixed points,



Fig. 1: Simulations of 100x100 artificial spin ice. Left : Square spin ice favors
demagnetized regions separated by bands of magnetized borders. Right : Pinwheel
spin ice has long-range magnetic ordering, resulting in large magnetized regions.
Both systems have a total of ∼20k magnets. Each pixel represents the net
magnetization of eight magnets. The color indicates magnetization direction as
shown in the color map, where white represents zero net magnetization.

limit cycles and (very) long trajectories. In the fixed point regime, the system
could be a natural fit for ballistic forms of computation [5]. Long trajectories,
on the other hand, are more suitable for trajectory-based computing paradigms
such as reservoir computing [3].

Because of the bistable nature of each magnet, the system is naturally resilient
to noise [6]. Beyond simulations we have started to manufacture large magnetic
arrays in the lab. Readout of individual magnets is still confined to the lab,
but observing larger regions of magnetization has the potential for a desktop
device. Our simulations show that manufacturing imperfections are useful and
even necessary to obtain interesting dynamics.
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