Cross-lingual Predicate Cluster Acquisition to Improve Bilingual Event Extraction by Inductive Learning

Heng Ji
hengji@cs.qc.cuny.edu
Computer Science Department
Queens College and the Graduate Center
City University of New York
June 5, 2009
‘Tricky Word’ Dilemma

This statement is SPECULATING, we’d better remove it.

What did you say? What’s the meaning of ‘SPECULATE’? 😊

I mean the statement is CONJECTURING

What does ‘CONJECTURE’ mean? 😊

I mean the statement is GUESSING

Ah-huh, I know what you mean 😊
Outline

- Task Definition
- Approach Overview
- Cross-lingual Predicate Cluster Acquisition
 - From Bilingual Parallel Corpora
 - From Cross-lingual IE
- Using Predicate Clusters for Bi-lingual Event Extraction
 - Motivation
 - Baseline
 - Inductive Learning
- Experimental Results
- Related Work
- Conclusion and Future Work
Barry Diller on Wednesday **quit** as chief of Vivendi Universal Entertainment.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Quit (a “Personnel/End-Position” event)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role = Person</td>
<td>Barry Diller</td>
</tr>
<tr>
<td>Role = Organization</td>
<td>Vivendi Universal Entertainment</td>
</tr>
<tr>
<td>Role = Position</td>
<td>Chief</td>
</tr>
<tr>
<td>Role = Time-within</td>
<td>Wednesday (2003-03-04)</td>
</tr>
</tbody>
</table>

Target: 33 different types of Automatic Content Extraction (ACE) events
Approach Overview

Cross-lingual Predicate Cluster Acquisition

- Unlabeled Corpora
- Parallel Corpora

Inductive Learning

- Test Events
- Low-confidence Event Replacement
- Background Document
- Background Events
- Baseline Event Extraction

Baseline Event Extraction

Test Document

Improved Test Events
Baseline Bi-lingual Event Extraction System

- **Pattern matching**
 - Build a pattern from each ACE training example of an event
 - British and US forces reported gains in the advance on Baghdad
 - PER report gain in advance on LOC

- **MaxEnt models**
 - **Trigger Labeling**
 - to distinguish event instances from non-events, to classify event instances by type
 - **Argument Identification**
 - to distinguish arguments from non-arguments
 - **Argument Classification**
 - to classify arguments by argument role
 - **Reportable-Event Classifier**
 - to determine whether there is a reportable event instance

(Ji and Grishman, 2008; Chen and Ji, 2009)
Approach Overview

Cross-lingual Predicate Cluster Acquisition

Unlabeled Corpora

Parallel Corpora

Cross-lingual IE

Alignment Based Clustering

Predicate Clusters

Test Document

Baseline Event Extraction

Test Events

Low-confidence Event Replacement

Background Document

Background Events

Baseline Event Extraction

Cross-document Inference

Improved Test Events
Acquisition from Bilingual Parallel Corpora

- **Bootstrapping**
 - Anchor set: 852 Chinese event trigger words in ACE05 training corpora
 - For each Chinese trigger, search its automatically aligned English words from a parallel corpus including 50,000 sentence pairs; In each cluster record the frequency of each unique English word
 - Conduct the same procedure in the other direction to construct Chinese predicate clusters anchored by English triggers

- **Filtering**
 - State-of-the-art Chinese-English word alignment error rate is about 40%
 - Filter the clusters by only keeping those predicates including the original predicate forms in ACE or English/Chinese Propbank
Acquisition from Cross-lingual IE

For any Chinese trigger \textit{ch-trigger}, if it has the same translation \textit{en-trigger} in A and B, add \textit{en-trigger} into the cluster anchored by \textit{ch-trigger} bv

\cite{zens2004}
Derived Cross-lingual Clusters

Example:

Motivation: Improve Rare Trigger Labeling

- Test Sentence:
 Identified as “Conflict-Attack” Event with Confidence=0:
 He told AFP that Israeli intelligence had been dealing with at least 40 tip-offs of impending attacks when the Haifa bus was blown up.

- Trigger Cluster
 炸毁 → { blown up:4 bombing:3 blew:2 destroying:1 destroyed:1 }

- Replaced Sentences
 Identified as “Conflict-Attack” Event with Confidence=0.799:
 He told AFP that Israeli intelligence had been dealing with at least 40 tip-offs of impending attacks when the Haifa bus was destroyed.
 ...

...
Test Sentence:
Identified as “Justice-Release_Parole” Event with Confidence=0:
这名嫌犯因为侵害案件假释出狱却又犯下了重罪。
(This suspect was released because of the violation case but committed a felony again.)

Trigger Cluster
releasing \rightarrow \{假释:4 释放:1 \}

Replaced Sentences
Identified as “Justice-Release_Parole” Event with Confidence=0.964:
这名嫌犯因为侵害案件释放出狱却又犯下了重罪
Test Sentence:
Identified as “Personnel-End_Position” Event with Confidence=0:
Barry Diller on Wednesday step from chief of Vivendi Universal Entertainment, the entertainment unit of French giant Vivendi Universal.

Trigger Cluster
下台 \(\rightarrow\) { resign:6 step:5 quit:3}

Replaced Sentences
Identified as “Personnel-End_Position” Event with Confidence=0.564:
Barry Diller on Wednesday quit from chief of Vivendi Universal Entertainment, the entertainment unit of French giant Vivendi Universal.
Approach Overview

Inductive Learning

- Test Document
 - Baseline Event Extraction
 - Unlabeled Corpora
 - Parallel Corpora
 - Cross-lingual IE
 - Alignment Based Clustering
 - Predicate Clusters
 - Low-confidence Event Replacement
 - Background Document
 - Background Events
 - Baseline Event Extraction
 - Cross-document Inference
 - Improved Test Events

- Test Events
- Improved Test Events
Inductive Learning: Background Document Generation

- For each event mention in a test document, the baseline event tagger produces confidence value:
 \(LConf(trigger, etype) \): The probability of a string \(trigger \) indicating an event mention with type \(etype \) in a context sentence \(S \)

- If \(LConf(trigger, etype) \) is lower than a threshold, and it belongs to a predicate cluster \(C \), for each \(predicate_i \in C \), replace \(trigger \) with \(predicate_i \) in \(S \) to generate new sentence \(S' \), and add \(S' \) into background document
Inductive Learning: Cross-document Inference

- Compose a test document and its background documents as a topically-related set

- Hypotheses
 - One Trigger Sense Per Set
 - One Argument Role Per Set

- Document-wide and Set-wide Cluster Confidence
 - Frequency weighted by local confidence
 - Count frequency of trigger in each cluster with a particular event type
 - For each argument and its coreferred names, count frequency of event type
 - For each argument and its coreferred names, count frequency of event type and role
Cross-document Inference (Cont’)

- Inference Actions
 - Aggregate similar events across documents and conduct statistical global inference
 - Remove triggers and argument annotations with local or cross-document cluster confidence lower than thresholds
 - Propagate highly consistent and frequent triggers and arguments with high global cluster confidence to override other, lower confidence, extraction results
Experiments: Data and Scoring Metric

- **Data:** ACE 2005 training corpora (number of documents)

<table>
<thead>
<tr>
<th>Language</th>
<th>Training Set</th>
<th>Development Set</th>
<th>Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>525</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>Chinese</td>
<td>500</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Scoring**
 - *A trigger is correctly labeled* if its event type and position in the document match a reference trigger.
 - *An argument is correctly identified* if its event type and position in the document match any of the reference argument mentions.
 - *An argument is correctly identified and classified* if its event type, position in the document, and role match any of the reference argument mentions.
Confidence Metric Thresholding on Dev set

![Graph showing the relationship between Inductive Learning Threshold and Trigger Labeling Performance. The graph indicates that as the threshold increases, both Precision and Recall fluctuate, with Precision peaking between 0.0 and 0.1 and Recall showing a higher performance trend starting at 0.0.](image)
Trigger Labeling Performance

<table>
<thead>
<tr>
<th>Language/System</th>
<th>Performance</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Baseline</td>
<td>67.8</td>
<td>53.5</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>After Using Cross-lingual Predicate Clusters</td>
<td>69.2</td>
<td>59.4</td>
<td>63.9</td>
</tr>
<tr>
<td>Chinese</td>
<td>Baseline</td>
<td>58.1</td>
<td>47.2</td>
<td>52.1</td>
</tr>
<tr>
<td></td>
<td>After Using Cross-lingual Predicate Clusters</td>
<td>60.2</td>
<td>52.6</td>
<td>56.1</td>
</tr>
</tbody>
</table>
Argument Labeling Performance

<table>
<thead>
<tr>
<th>Language/System</th>
<th>Performance</th>
<th>Argument Identification</th>
<th>Argument Classification Accuracy</th>
<th>Argument Identification + Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>English</td>
<td>Baseline</td>
<td>49.3</td>
<td>31.4</td>
<td>38.3</td>
</tr>
<tr>
<td></td>
<td>After Using Cross-lingual Predicate Clusters</td>
<td>51.7</td>
<td>32.7</td>
<td>40.1</td>
</tr>
<tr>
<td>Chinese</td>
<td>Baseline</td>
<td>46.2</td>
<td>33.7</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>After Using Cross-lingual Predicate Clusters</td>
<td>46.8</td>
<td>36.7</td>
<td>41.1</td>
</tr>
</tbody>
</table>
Discussion: Alternatives

- Self-training and Bootstrapping
 - Add high-confidence events in the test set back as additional training data and re-train the event tagger → produced 1.7% worse F-measure score for English.
 - Using the test set itself is not enough, need to explore new predicates to serve as background evidence.

- Bootstrapping using relevant unlabeled data
 - Obtained limited improvement – about 1.6% F-measure gain for English.
 - Both self-training and bootstrapping methods require good data selection scheme. But not for any test set we can easily find relevant unlabeled data.
 - Our approach is less expensive – we can automatically generate background data while introducing new evidence.

- Encoding the cluster membership as an additional feature in the supervised-learning procedure of the baseline event tagger
 - Similar to (Miller et al., 2004) and (Lin et al., 2009) on name tagging
 - Requires access the algorithms of the baseline system.
Related Work

- Paraphrase and Word Cluster Discovery
 - From mono-lingual parallel corpora (e.g. Barzilay and McKeown, 2001; Lin and Pantel, 2001; Ibrahim et al., 2003; Pang et al., 2003; Shinyama and Sekine, 2003)
 - From cross-lingual parallel corpora (e.g. Bannard and Callison-Burch, 2005; Callison-Burch, 2008)

- Use Paraphrase and Word Cluster to Improve IE
 - Improve English Name tagging (Miller et al., 2004; Lin et al., 2009)

- Use Cluster for Local Replacement
 - Use local context replacement for pronoun resolution (Ge et al., 1998)
Conclusion and Future Work

- Described two approaches to extract cross-lingual predicate clusters
- Designed a new inductive learning framework to effectively incorporate these clusters for event extraction
- Without using any additional data or changing the baseline algorithms, we demonstrated that this method can significantly enhance the performance of a state-of-the-art bilingual event tagger.

Future Work
- In the future we will attempt incorporating POS tagging results and frequency information for filtering
- Acquire clusters from very large corpora (e.g. google ngram data) (JHU summer workshop09)
- Extract cross-lingual relation and name clusters to improve other IE tasks
- Automatically discover new event types (non-ACE event types) or more fine-grained subtypes/attributes for existing ACE event types from the derived predicate clusters
- Use manually generated clusters such as VerbNet (Kipper et al., 2006)
Thank you