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Abstract

A common factor of many of the problems in shape recognition and, in extension, in image
interpretation is the large dimensionality of the search space. One way to overcome this situation
is to partition the problem into smaller ones and combine the local solutions towards global inter-
pretations. Using this approach, the system presented in this thesis provides a novel combination
of the descriptional power of symbolic representations of image data, the parallel and distributed
processing model of cellular automata and the speed and robustness of connectionist symbolic

processing.

The aim of the system is to transform initial symbolic descriptions of patterns to the corre-
sponding object level descriptions in order to identify patterns in complex and noisy scenes. The
scene is represented by the configuration of a cellular array. At the initial level, the states of the
cells in the array represent local and elementary features of the objects. At every iteration, these
local features are ‘connected’ together forming higher level features, ultimately forming the object
level description. An associative symbolic processing element is placed in each cell of the array
while the exchange of information and the state transitions that take place are controlled by the
rules of a global pattern description grammar. These rules are produced using a learning algorithm
which is based on a hierarchical structural analysis of the patterns. Efficient management of these
rules in terms of speed and storage capacity is provided by the underlying neural associative sym-
bolic processing engine of the system (AURA) which also facilitates its operation with increased

tolerance in order to overcome problems caused by noise and uncertainty in the data.

In order to present the basic characteristics of the architecture the system is tested in the task
of recognising simple geometric shapes. The behaviour of the learning algorithm and the influence
of various parameters defining the operation of the system are examined in these experimental
sessions and a prominent characteristic is shown to be the robustness to noise. Yet from this
initial stage, the current architecture demonstrates the advantages arising from the combination of
cellular, neural and symbolic processing and also shows how a simple principle can provide an

efficient learning algorithm.
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Chapter 1

| ntroduction

1.1 Motivation

In order to build a powerful and generic image interpretation system a number of issues must
be considered. Commencing from the initial preprocessing of the image up to the interpretation
and management of the world models a variety of problems exist. A common factor of these
problems in most cases is the dimensionality of the search space, whether the latter refers to the
set of possible features in a block of pixels or the set of possible objects given a group of pattern

primitives or measurements [1].

Some of the different issues which have to be addressed refer to factors such as the feature
extraction from image data, the interpretation of these features towards object models, the forms
of representation of the information existing at the various stages of the interpretation, the means
by which the knowledge allowing and guiding this interpretation is obtained and managed and the
level of generality and tolerance to noise and errors that the whole process can provide. Addi-
tionally, the level of both time and space complexity of the tasks involved must be kept as low as

possible.

While a variety of approaches and methodologies exists for dealing with these issues separately
or for combinations of them, the quest is for a system which could unite the positive aspects of
these approaches under a single framework using the simplest possible way. The efficiency of
the operation of the resulting system is the basic motivation for this. Adaptability, transparency,

generality, high speed and error tolerance are the characteristics connected with efficiency in this
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case.

Adaptability, generality, high speed and tolerance are factors usually connected with the oper-
ation of neural networks [2]. Inspired by biological neural networks these computational models
can operate as classifiers and can used for various pattern recognition purposes (e.g character or
speech recognition, blood cell classification, etc), for basic image processing tasks (e.g. noise
removal, edge detection, segmentation, etc) and for optimization problems where a number of
constraints needs to be satisfied. Associative memory is also one function that can emerge from
their operation. In this case, a stimulus is associated with a response so that whenever we have
the same, or a sufficiently close, stimulus at the input the corresponding response is formed at the
output. From the range of neural networks that are specifically designed to serve as associative
memories, the correlation matrix memories can be distinguished for the speed of their operation,

their storage capacity and the ease of their hardware implementation.

Although very successfully applied in many cases, applications based only on neural networks
lack transparency in their operation and the descriptional power to represent complex concepts
[3]. These are both the merits of symbolic representations and handling of information where
rules, symbolic structures and predicate or propositional logic are used. Indeed, the majority of
the approaches for tasks at the higher levels of computer vision are based on the use of symbolic

interpretations of the world [4].

However, the efficient and rich representational ability which is provided lacks the adaptability
and plasticity of neural networks as well as their ability to generalize and be noise and fault tolerant.
Symbolic learning algorithms can have difficulties with scaling due to the combinatorial nature of
the problems. Parsing in these knowledge based systems also suffers from increased levels of

complexity.

One of the reasons that can limit neural networks efficiency when they are used for large scale
applications is that they are faced with problems of high dimensionality and large search spaces.
For example, a neural network which performs well in recognizing small images will need a very
large set of examples and a generous increase in its size in order to cope with large images if dealt

with in a simple way.

In an effort to alleviate this problem, a number of small networks can be cooperatively used
instead of a large one. The cooperation of many basic units in order for a behaviour which is “more

than the sum of its parts” to emerge, apart from being one of the basic characteristics of neural
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networks themselves, brings in mind the example of cellular automata [5].

The basic idea in cellular automata is that a cellular array of relatively simple processing
elements exists and at each time instant the state of each cell is determined by its previous state
and the previous states of its direct neighbours using a common set of simple rules. Although being
a simple model of computation, cellular automata can demonstrate complex behaviour and global
propagation of information [6]. This is due to the local connectivity and distributed processing

model which is used.

Apart from having a parallel and distributed nature, processing in cellular automata also has an
evolutionary and ‘virtual’ multilayered character; although the same processing units are used at
each iteration, the state of each unit is indirectly determined by the states of its neighbouring units
in a neighbourhood the size of which increases with every iteration. When augmented by using
an increased set of states representing information at the different stages of interpretation of low
level features towards world models, cellular automata could be the basis of a distributed symbolic
processing system for image interpretation. The set of complex rules which would otherwise be
needed in order to handle the necessary structural descriptions could be replaced by a set of simple
rules which will guide the decentralized and distributed processing in an array of homogeneous
processors. Although this set would have a larger size, its elements would be easier to be derived

than the elements of a set of more complex rules.

There are two issues to be addressed here. How these relatively simple rules are derived and
how they can be efficiently managed. The system to be described in this thesis is motivated by
the ideas mentioned at the above discussion and it is an attempt and an exploration towards the
unification of different approaches for image interpretation and information processing in general.
These are applied with the idea of constructing a system which, at this stage, is aimed at recognising

binary outlined shapes in applications such as printed document processing.

1.2 The thesis

The proposed architecture is a cellular array of neural associative processors capable of symbolic
processing. This is how the Cellular Associative Neural Networks (CANNS) are derived. Using this
approach the problem of dimensionality is overcome by partitioning the object into segments using

processing nodes which communicate with each other. Exchanging information and following
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a set of state transitions according to the messages they receive, the nodes individually decide
whether or not the segments they hold are parts of the same object. The initial idea of CANNSs has
been reported in [1]. The current architecture is a derivative of that model employing symbolic
processing at a greater level and providing a learning algorithm in order to produce the required

set of state transition rules.

This set of symbolic rules describes the structure of the objects and guides the interpretation
process. Although these rules are relatively simple they can cooperatively describe complex struc-

tures due to the decentralized and distributed model of processing which is followed,

The set of these rules is produced by using a hierarchical approach to learn the structure of
the patterns. The basic idea is that a new rule is produced each time the configuration of the
neighbourhood of each cell is novel. Initially, the configuration of the whole cellular array is
composed from symbols representing basic pattern primitives derived after a feature recognition
stage. Most of the basic rules that describe the state transitions of the cells at the initial stages
of the interpretation process are produced when the first patterns are presented. These rules are
used again when further training the system with more patterns. When a point is reached where no
information exists in the system about a specific configuration new rules are created. These rules

describe these features of the new pattern that differentiate it from the already stored ones.

There are two characteristics that make this system differ from the classical model of cellular
automata. The first is that an increased number of rules and states exists. These states can be
classified as belonging to different levels of hierarchy while the rules for the state transitions are
created ‘on-line’ during the operation of the system. The second is that the operation of each cell
can be augmented by the use of more modules than just a single state determining one. These
modules are responsible for passing information over cells that do not alter their states as well as
for converting the state of a cell according to the direction it will be passed to. The information
which is passed from one cell to the other is composed of symbolic messages about the nature of
distant cells while the conversion of the states allows a possible multiplexing and superimposing

of the messages.

Each of the above modules uses a neural associative memory. More specifically, the AURA [7]
model which allows symbolic processing using CMMs is employed. Thus, an associative processor

is formed and it is the processing element which is placed in each cell of the array.

AURA is the underlying neural symbolic processing engine and it is an indispensable part of
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the system. It can efficiently handle a large number of rules at high speed, it comes with a hardware
implementation and can also provide a relaxed mode of operation which enables CANNS to gen-
eralize and cope with uncertain information, noise and other abnormalities. Using the relaxation
option the system operates at an increased level of tolerance. Thus, cells that have been affected
by noise or by other distortions are assisted to overcome the problem locally thus avoiding its

propagation to other cells of the same or the rest of the “virtual’ layers of processing.

The central idea of the thesis is that when the descriptional power of symbolic representations is
combined with the parallel and distributed processing model of cellular automata and the speed and
robustness of connectionist symbol processing, a hybrid system with a very promising behaviour
can emerge. The learning algorithm which is proposed is an attempt to provide an answer to the

question of how knowledge can be inserted into such a system.

1.3 Overview of the chapters

Chapter 2 provides a general overview of associative memories. This includes both the conven-
tional and the neural approaches for content addressing with an emphasis given on the latter. The
various software and hardware techniques for content based addressing are initially presented and
are followed by a brief introduction to neural networks and a generic overview of neural associa-
tive memories. This is also where the ADAM network which can be used for feature recognition
and the AURA model for symbolic neural associative memory are presented. The chapter con-
cludes with a discussion about the merits of using connectionist associative processing for rules

management.

The model of cellular automata is the subject of chapter 3. After some basic definitions there
is a brief discussion about the different categories and the behaviour of the model. This is followed
by a presentation of a variety of the model’s applications. The purpose of this chapter is to give
an idea about the potential of this model of processing and thus justify why CANNSs follow this
framework. At the end of the chapter the points in which CANNs differ or extend the general

model of cellular automata are presented.

Chapter 4 starts with a brief overview of the general aspects of computer vision. The sources
of visual information are considered and the discussion continues with the processing stages re-

quired in machine vision. This is also where the necessity of parallelism and distributed processing
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is presented. The chapter continues with an overview of some vision architectures based on as-
sociative processor arrays and neural networks. The former are architectures based on arrays of
content addressable processors allowing the data parallelism required in order to provide sufficient
information for object matching or derivation at the highest levels of the architectures. The neural
network based architectures which are presented later in the chapter are systems which, as is the
case of CANNSs, are also trying to integrate neural processing with other techniques for constraint

satisfaction and recognition.

The basic concepts in syntactic and structural pattern recognition are presented in chapter 5. In
these systems symbolic data structures are used for the representation of the patterns while for the
recognition either a matching procedure or a syntactic approach is used. The former tries to match
an unknown pattern with one of a number of prototype patterns while the latter uses the charac-
teristic way with which patterns of a class are formed in order to classify the unknown pattern.
The discussion starts with the symbolic data structures that can be used for pattern representation.
Then, the basic ideas in symbolic matching are presented. The syntactic methods and the basics of
formal language theory are discussed next. The ways in which formal languages are used for pat-
tern recognition and the issue of grammatical inference is also the subject of this discussion. The

summary at the end of the chapter attempts a comparison between these methods and the CANNS.

Chapter 6 is the main chapter where the architectural details of CANNS are presented. Start-
ing with a discussion which summarizes the reasons that motivated this architecture, the chapter
continues with a general description about the operation of the system. Then it goes into more
detail about the nature of the associative processors. This includes sections about the messages
exchanged in the system and the symbolic rules that guide its operation, the connection schemata
which describe the internal structure of the processors and the form of connectivity among them.
A formal description of the system is also given. Then, the learning and the recalling algorithms

are presented and explained.

With the architecture of the CANNS presented in the previous chapter, chapter 7 continues with
a more technical description of the system. The basic subjects of this description are the ways in
which modules and cells are connected using the connection schemata, the information pathways
which are created, the ways in which symbols can be presented to the CMMs and the methods with
which the relaxation parameter is inserted to the operation of the system. Then, the experimental
framework which was used in order to evaluate the behaviour of the system using an initial set of

patterns is presented. This includes the objectives of the experiments, the criteria upon which the
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behaviour is judged, the training and testing set and the tools which were used.

Chapter 8 has the presentation of the experiments that took place and the analysis of the relevant
results. Six experimental sessions investigating various aspects of the operation of CANNSs were
performed. More specifically, experiments were performed in order to analyze the exact behaviour
during learning, to examine the influence of various parameters during recalling, to evaluate differ-
ent internal connection schemata, to study the effects of symbolic noise and scale alterations and
to observe the behaviour when a slightly more complex set of patterns is used. Each experimental
session is presented starting with the initial description for each of the experiments. The results

are stated next and a possible explanation and analysis of them is provided.

Chapter 9 is the last chapter of this dissertation. A review of the issues addressed in the thesis
is provided and a discussion follows about the contribution of this system to the field of image
interpretation and also of hybrid systems. The merits as well as the weak points of the approach
are examined and the chapter ends with a presentation of the ideas for the further development of
the CANNS.

There are four appendices following chapter 9. Appendix A is dedicated to a more detailed
description of CMMs and the issues concerning their performance. Appendix B has a discussion
about how the initial feature extraction can be performed using the ADAM network. Appendix C
contains the part of the results that, due to the analogies observed, were not presented in chapter
8 and appendix D is the list of publications where parts of this research were presented. Due to
the large volume of the obtained results, the most representative are presented in chapter 8 and

appendix C. The complete set of the results can be found in the accompanying technical memo [8].
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Chapter 2

Associative Memory

2.1 Introduction

In writing a chapter about associative memory one has a very easy way to attract the reader’s
interest. This is because the easiest example that we can find is that of our own memory. Imagine
seeing a picture or hearing a melody. Conditions and situations related with them will emerge
directly from the depths of our memory. It is thought that the reason for this is that information
is stored in our memory in forms of associations. People were aware of this from a very early
time. One of the first studies in human associative memory came from Aristotle. His studies
were reported in his essay entitled On memory and reminiscence and his observations were later
compiled as the “Classical Laws of Association” as Kohonen says in [9]. They can be expressed as

follows:

Mental items (ideas, perceptions, sensations or feelings) are connected in memory

under the following conditions:

e If they occur simultaneously.
o |f they occur in close succession.
o [f they are similar.

e If they are contrary.

Seeing these laws from a computational point of view, what they suggest is that there should

be a relation of some kind among the connected items. Indeed, associative memory is ideal for

9
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storage and retrieval of information which could be represented by a relational structure. This

includes representations as complex as semantic networks or as simple as item-attribute relations.

An important aspect of associative handling of information is that knowledge for a complex
structure can be literally built up combining basic observations about the structure. Thus, it is
possible to infer information which was not originally stored but is concluded after combining

relative parts of information [10].

The main difference between an associative memory system and the conventional computer
memory is focused on the fact that the latter relies on a direct addressing mechanism. An address
must be known in order to access a location in memory to store or retrieve data. However, in the
vast majority of the cases this address is completely different to the data itself. Thus, a kind of
look-up table must be maintained in order to have access to data. For example, if we want to know
the value of a variable B, we first have to find out the location in the memory where the value of
B is stored and then access this location in order to read its contents. In an associative memory
we would just have to present B at the input and then get its value at the output. This is because

associative memories rely on a content based rather than an address based accessing mechanism.

There are many ways to implement associative memories. As we saw above what is basically
required is the ability to address data by their content. Software and hardware techniques can be
used for this. Methods using hash coding and B-trees belong to the first category [9, 11]. Hardware
techniques are based on the use of comparators with which the memory contents can be scanned
either bit-wisely or word-wisely or both. Associative memories of this kind are generally referred
as content addressable memories (CAMSs). Another approach to implement associative memories
is by using neural networks. We can notice here that almost all neural network models can be used

as associative memories. However, some models have specifically been designed to serve as such.

Associative memories are used in our system as the basic mechanism for the storage and
retrieval of symbolic rules which are necessary for its operation. The purpose of this chapter is to
provide an overview of associative memories in relevance to their use in the system. A discussion
about the different kinds of associative memories and more details about CAMs are presented in
sections 2.2 and 2.3. Then, the neural techniques are presented in section 2.4 with more attention
focused to the associative memory system which is actually used in our system. The role of
associative memories in rule handling as well as the reason of using associative memories for this

is presented in section 2.5. Finally, a summary of the chapter is given in section 2.6.
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2.2 Classifying associative memories

The idea of associative memory first came in mind after studying human memory. This is the
way nature has chosen to handle information. What is important to understand however is that
associative memory is not a distinguishable functional unit in the brain. It is rather a function than

a separate module.

The first attempts to simulate this operation in computers were based on approaches and meth-
ods which were far from being inspired from the function of the brain. The content addressable
memories which were mentioned above and which we will see in more detail in the next section are
based on conventional ways to attack the problem of content addressing. They provide the mech-
anisms for comparing the memory’s contents within acceptable time limits or converting the input
to the relevant address in the storage device. These attempts simulate the operation of associative
memories without necessarily following nature’s suggestions. A completely different approach to
simulate associative memory is taken by the neural network based methods. An important char-
acteristic of these models is the distributed way in which information is stored. That means that
it is not a single unit that carries the information for an association but it is rather the ensemble
of them that does. Thus, information is distributed in the weights which define the strength of
the connections among the neurons and it is not locally represented or stored. These memories
are called distributed. Most kinds of neural based associative memories are distributed. However,
there are cases of hybrid memories where this characterization does not apply completely. In hy-
brid memories the output is stored at a specific memory location but its address, or a key to the

address, is associated with the input through a distributed memory.

Associative memories can be autoassociative or heteroassociative. The former means that the
input is associated with itself. This is an effective way of removing noise from patterns and for
pattern completion tasks. The second characterization, heteroassociative, means that the output is
different from the input. These associations are usually one to one (1:1) but they can be one to many
(1:M) or many to one (M:1) or many to many (M:N). An important characteristic of associative
memories is whether or not they provide symmetrical associations. This is the case when having
associations of the form A:B we can not only recall B by presenting A but we can also recall A by

the presentation of B.

As we will see in section 2.4, neural based associative memories can be further classified

according to the neural network models used. The two basic categories are the recurrent and the
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feed-forward ones, based on recurrent and feed-forward networks respectively.

2.3 Content Addressable Memories

As we saw earlier, one way to implement associative memory is by using software or hardware

techniques without necessarily having to follow the neural based approach.

One such software technique is the hash coding [9]. This is referring to transforming the input
data to an address on a storing device. Basically, this method is the application of a function to
the input. The output of the function is an address. For example, if the input was a string of
characters a simple function would be to calculate the address based on the ASCII number of each
character in the string. Thus, AB would go to location 65 + 66 = 131. There are of course more
sophisticated hashing methods. However, a usual problem is that of collisions. That is when more
than one inputs are directed to the same address. A way out of this is for the inputs, the keys,
to be known exactly in advance so that the hash function could be constructed in such way to
guarantee unique addresses. Nevertheless, this is not easy in most cases. One more problem with
these methods is that they are vulnerable to noisy inputs and they need their keys to be fully error
free in order to operate correctly. The latter prohibits them from being used for pattern recognition
purposes or generally when there is a level of uncertainty at the inputs. However, they can be
used in conventional data bases as an indexing mechanism when the inputs are well defined and
of a relatively small size [11]. One more software content addressing technique is the use of tree
structures. Apart from the use of a specific data structure to lead to the key’s address, this method
has many resemblances with the hash coding. Although it can be successfully used for small scale

addressing problems it suffers from the same problems as the hashing methods.

Hardware techniques can be based on the use of comparators in order to search for a binary
pattern in the contents of the memory. Based on how the memory is accessed we have four cat-
egories of this kind of memories: (1) bit-serial and word-serial, (2) bit-serial and word-parallel,
(3) bit-parallel and word-serial, and (4) bit-parallel and word-parallel [9, 12]. For example, in a
bit-parallel word-serial memory each word is sequentially accessed but all the bits in the word are
compared in parallel with the input pattern. Content addressable memory chips are used for ad-
dressing purposes in local area networks, in cache memories and in database systems [13, 12]. An
extension of this kind of associative memories are the associative processors [12]. These are CAMs

with the added ability to perform an operation onto the responding words of the memory. Such
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processors are very common in parallel multiprocessor systems where arrays of relatively simple
processors exist. Associative processing using arrays of such processors is extensively applied for
computer vision and problems in artificial intelligence in general. A survey of such systems is
presented in [14] and in [13]. Apart from the systems presented there, we also have the Image
Understanding Architecture (IUA) [15], the Heterogeneous Vision Architecture (HVA) [16] and
the Semantic Network Array Processor (SNAP) [17] which all have in common the use of arrays
of associative processors. They are all hardware solutions for computer vision problems and they

are closely studied in chapter 4.

Hardware implementations of associative memories are a solution when associative processing
of information is needed. However, high cost and limited storage capacity is the main drawback.
An interesting idea in an effort to solve some of the above problems is to combine conventional
RAMs and hardware hashing. One such system is presented in [18] where the input pattern is used
as the initial configuration of a cellular automaton (see chapter 3). The configuration of the cellular
automaton after a number of iterations responds to the address where information connected with
the input pattern is to be found or stored. However, the collision problem exists and needs to be
handled and the effect of noise in the operation of the system is unclear. The next section presents
the alternative way to implement associative memory systems in an effort to overcome the above

mentioned problems.

2.4 The neural approach

This section presents the neural networks based associative memories. It starts with a brief de-
scription of neural networks with an emphasis on the characteristics of the neural network models
which are specifically used for associative memories. Then, the various models are presented and
especially the ADAM and AURA architectures which are binary neural networks based on the use

of correlation matrix memories.

24.1 A brief description

Avrtificial neural networks® are computational models based on the principles of the biological

neural networks. The basic characteristic of the model is the existence of a simple processing unit,

1The term “artificial” is usually omitted when the discussion does not have a biological context.
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called a neuron, with the ability to perform a weighted sum of its inputs, compute its internal state
according to this sum and in the case that the state is above a threshold send an excitatory signal to
its output. The function of the neural network is based on the networking of these basic elements
to form a parallel and distributed processing system. Each connection among the neurons can have
a value determining its strength, or weight. These values are adjusted during the training phase of

the network and it is in these weights where the information is encoded in the neural networks.

The most important factors that can distinguish the various neural network models are the
ways in which the neurons are connected, the values that the units of the network can take (binary,
bipolar, real), the way in which the weights are adjusted upon the presentation of new input patterns

while in learning mode and the way in which the outputs of the networks are formed [19].

A very important characteristic of neural networks is their ability to cluster the n-dimensional
space of the input patterns 2 [19, 2]. This is performed by utilizing the information provided by
the training patterns under the direction of the learning algorithm used. An additional merit is their
ability to generalize. This enables them to classify members of the input patterns set which were

not used for training and also to perform well with noisy versions of the input patterns.

As it was mentioned at the beginning of the section and in section 2.2, information in neural
networks is encoded in their weights. That means that information is literally distributed on the
connections among the neurons and it is not stored locally. Of course, depending on the neural
network model used, there might be variations of this. Thus, there are models (e.g. ART-1 [20],
SOM [21]) where a unique output neuron or a limited neighbourhood of output neurons is devoted
to representing a particular class of patterns. Although this can be seen as a local form of storage,
information is still partially distributed on the weights associated with the relevant neurons and it

is not locally stored at some place.

Whatever the model of the neural network used, what is important is that the encoded informa-
tion is rather reconstructed than recalled. This by no means resembles the ‘file cabinet” approach
of conventional computer storage. However, it highly resembles the way information is handled in
the brain. This characteristic is important for the fault tolerant operation of neural based systems.
Even if one or a number of elements fail, there will be the rest of the network to help recover

normal operation.

A neural network operates in one of the three following ways: autoassociator, heteroassociator,

2n denotes the dimensionality of the input pattern.
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classifier [22]. As already mentioned in section 2.2, what happens in the first two cases is that a
vector (stimulus) is either associated with itself or with another vector (response). In the first
case, autoassociation, presentation of a noisy version of the stimulus will result in recovering the
pattern used for training the network. That is the reason why this mode of operation is important
for noise removal or pattern completion tasks. The Hopfield network [23] is a classical example
of this category. In the second case, heteroassociation, a stimulus vector is associated with a
corresponding response vector. Presentation of a noisy or slightly altered version of the stimulus
will elicit the response vector at the output. Networks of these two categories can be directly used
as associative memories. The third category, classifier, refers to networks which classify their input
vector to one of a number of classes. When the class in which the input vector belongs to is also
presented during training then we have the supervised training networks. We can notice here that
this is a form of heteroassociation [10]. When the network can classify the input vector without the
need of a class pattern during training we have the unsupervised networks. This is the case when a
single neuron (Grossbherg’s ART-1 [20]) or a limited neighbourhood of output neurons (Kohonen’s
SOM [21]) is used to define the class. Networks of this category can be used as the first layer
in hybrid associative memory systems [11]. In such systems the class corresponding to an input

pattern can serve as the address where information related with it is stored.

It was referred in section 2.2 that neural based associative memaories can be further classified
in the recurrent and the feed forward ones [11]. This relates to the way the output is recalled from
the network. For the recurrent models an iterative procedure is used while for the feed forward
ones the output is recalled in one pass through the network. The following two sections provide a

closer insight at these models.

2.4.2 Recurrent models

The most typical example of this category is the Hopfield network named after John Hopfield
who introduced this model [23]. He also gave an extensive analysis and study of the network and
developed the use of an energy function relating the network to other physical systems [2]. The
Hopfield network is a fully connected and symmetric network. That means that each neuron ¢ is
connected to every other neuron j of the network and the weight w;; from neuron 4 to neuron j is
the same as the weight w;; from j to <. There are no separate input and output layers. The input

is presented to all units and the output is the state of the units after a number of iterations. This
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network is designed to operate as an autoassociative memory. The values of the input patterns are
either binary {0,1}, or bipolar {-1,+1}. The network stores the patterns as basins of attraction in
its energy landscape [2, 23]. These ‘hollows’ in the energy landscape are formed in the weights
space of the network during training. At recalling, the input state represents a point at the energy
landscape. Using an iterative procedure this point converges to a basin of attraction representing a

pattern already stored in the network.

An extension of the above model is the Bidirectional Associative Memory (BAM) introduced
by Kosko [24]. It is a network with two layers of neurons and uses forward and backward informa-
tion flow. It can be used for associating a set of bipolar input pairs (A, BM), ...  (A™ B™),
If the dimensionality of vectors A® and B is m and p respectively, then the weights matrix is
an m x p matrix formed by summing the outer products of the input pairs. The basic learning
algorithm can be extended in order to meet a number of optimality criteria such as stability, size
of basins of attraction and minimality of spurious patterns [25]. At the recalling phase an input
pattern is presented at the network and a corresponding output pattern is formed. This is then
fedback in order to produce a more accurate version of the input. This procedure is repeated until
a stable state for both input and output is reached. This system can also be used as autoassociative

memory when A(®) = B for all ;.

Another model of recurrent associative memory is the Brain-state-in-a-box (BSB) system pro-
posed by Anderson et al in [26]. It can operate as an autoassociative memory using a symmetric
weight matrix. Again, the stable equilibrium points of the model represent the stored patterns. An
extension of this model is the generalized BSB. On-line learning and forgetting of patterns for this

model have been proposed by Zak et al in [27].

A recurrent neural network which can be also used as an associative memory is the Cellular
Neural Network (CNN) introduced by Chua in [28]. A CNN follows a local connectivity fashion
where each neuron can communicate only with a number of neighbouring units. The behaviour of
the system is specified by the proper weight matrices (feedback and control templates) which define
the level of interaction among the neighbouring units and the state of each unit according to the
states of its neighbours at the previous time instant. This system can be used as autoassociative or
heteroassociative memory by calculating the weight matrices according to the input set of patterns

in a way such that to assure converging of the system to unique equilibrium points [29].

The above systems are typical examples of recurrent associative memories. They have the
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ability to generalize and can perform accurate recall even under noisy conditions. Their limitations
are focused either to limited capacity or difficulties in hardware implementation or lack of on-line
learning (i.e learning of new associations without disturbing the ones stored) or in combinations

of these factors.

2.4.3 Feed forward models

This category includes neural models in which the output corresponding to the stimulus pattern
is formed in a single pass through the network. Networks belonging to this category have, in
general, better capacity than recurrent models [30] and they can be distinguished in one stage and
two stage models [11]. It has to be mentioned here that the term stage refers to the general layer
of processing and does not have to coincide with a layer of weights. The latter can be defined as
the set of the direct links connecting units of successive layers of neurons. Thus, we can have two
stage networks where the input is associated with an intermediate vector and this vector with the

output and the operation in each stage is performed using one or more layers of weights.

However, in the one stage approach what we basically have is a network with a single layer of
weights. The training algorithm for such a system can be based either in the Widrow-Hoff method
used in perceptrons [31] or in the pseudo-inverse method or in a Hebbian like outer product method
[32, 33]. The latter is the case at the correlation matrix memory (CMM) [33, 34]. A typical problem
with such systems is that they do not work well with linearly dependable input patterns [11, 30].
The Ho-Kashyap (HK) system seems to overcome this problem as suggested in [30] but needs and
iterative and more complex training method. Another problem occurs when recovering the output
pattern. Having a matrix M where the associations are stored and presenting an input pattern x, a
threshold must be applied to the resulting output vector y of the product XM in order to retrieve the
corresponding output pattern. Setting this threshold is a problem since noise or alterations in the
input pattern may vary the number of bits set in that. A possible solution to this is to use the L-max
encoding [30, 35] where the output pattern is binary and has exactly L bits set to one. Then, no

fixed threshold is needed but the L highest elements of y are set to ones and the rest to zeroes.

In the two stage approaches the input is not directly related to the responding output but there
is an intervening level. This can be seen as a classification or as a preliminary ‘addressing’ where
the presentation of the input evokes one or a number of possible ‘addresses’ which are then used in

order to retrieve the output pattern. It is not necessary for both stages to use neural networks. This
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is the case with hybrid systems where a conventional memory system is used for the second stage.
Using a connectionist architecture for the first stage, a noisy or distorted input can still recall one
or a number of addresses where the corresponding outputs have been locally stored. An example
of such a system is presented in [36]. The problem is that the address pattern must be as large as
the number of the associations to be stored. Otherwise, if the address is encoded using more than

one bits in the class pattern, the operation of the system might be problematic [11].

When both the two stages are connectionist architectures then we have a more flexible model
which is more robust to noise and distortions at the input and still uses less memory than a conven-
tional system. A typical example is a network of two (or more) layers of weights ( Multi Layered
Perceptron, MLP) using backpropagation learning [31]. The hidden layer of neurons in that case
can be seen as the “addressing’ layer of the network and the ‘addresses’ are formed during learn-
ing. Although achieving very good generalization and robust noise performance, the problem with

MLPs is that they are slow in training and have problematic hardware implementation [37].

Two networks that allow fast training and belong to this category are the Sparse Distributed
Memory (SDM) [38] and the Advanced Distributed Associative Memory (ADAM) [35]. In SDM
the first layer is used as an address decoder. An input pattern with n bits is interpreted as an
address. Since we cannot have 2™ locations, m locations sparsely distributed in the {0, 1}" space
are used. The input address is mapped to some of these m addresses within a Hamming distance
of h. Each of the m locations consists of a set of k& counters, where & is the dimensionality of the
output pattern. These counters are updated according to the output pattern to be stored. During
recalling, the contents of each of the corresponding & counters are added and the output pattern is

retrieved after applying a threshold function.

The ADAM system also uses a two stage approach but since it is based on binary CMMs it is
easy to implement in hardware [39, 40]. This system and its derivative, the Advanced Uncertain
Reasoning Architecture (AURA), are presented in more detail in the next section. These are also

the associative memory models used in the system presented in this thesis.
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244 ADAM and AURA
ADAM

The ADAM network uses two binary CMMs in order to learn and recall associations between
input and output patterns [41, 35]. An example of a CMM is depicted in figure 2.1. As we can see
in figure 2.1a, a CMM uses a Hebbian like training method where the strength of the connection

between two simultaneously active units is increased.

pattern B
0101 1000 0 1
1 1
0 0
0 0
P P
a1 a1
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(a) 10 41 47470 1 70 1 4
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Figure 2.1: (a) Storing and (b) recalling in a binary correlation matrix memory. We can see in (a)

that a connection between two simultaneously active units is set to 1..

For the case of a binary CMM this procedure is described as:

k
M=\/ AO"BO 2.1)
=1

where,

M is a n x m binary matrix, \/ represents the OR function, A(® is the i-th input binary row
vector with n elements, B(®) is the i-th output binary row vector with m elements and & is the
number of input-output pairs.

To recall a pattern from a CMM a matrix multiplication is performed between the input pattern

and the matrix M (fig. 2.1b). In order to retrieve the corresponding binary pattern from the resulting
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array of integers a threshold function must be applied. This can be performed either by setting the
sums above a value N to 1s and the rest to Os (V-threshold or Willshaw’s threshold method) or by
setting the L greatest sums to 1s and the rest to 0s. Deciding for the value of IV is tricky when the
input pattern is distorted or noisy. However, if the output pattern has a constant number of bits set

then we can use the latter approach (Z-max method).

The input-output pairs in ADAM are not associated directly. Instead, a sparse class pattern
which is unique for every pair, has a constant number of bits set to one and is smaller than both the
input and output patterns is used. Then, the input pattern is associated with the class pattern at the

first CMM and the class pattern is associated with the output pattern at the second CMM.

During recalling the input pattern is presented to the first CMM and one, or more, noise free
class patterns are retrieved using the L-max method. Applying the class pattern(s) to the second
CMM the corresponding output pattern(s) is(are) retrieved setting as threshold the number of bits
set at the class vector. The case of multiple class patterns corresponds to the case when two or

more input patterns are superimposed. Then, the corresponding output patterns are to be recalled.

An important feature of ADAM is the pre-processing applied at the input pattern. This is
performed using the n-tuple method where the input pattern is divided into groups of n bits and
only one out of 2™ bits is set to 1 at the pattern after the pre-processing. The pre-processed
pattern is thus larger in size but has a constant number of bits set to 1 and these bits are more
sparsely distributed. This affects at (a) classifying linearly inseparable patterns, (b) preventing fast
saturation of the CMM and (c) facilitating the prediction of the performance of the system [41].
The use of binary CMMs and the n-tuple method classify ADAM as a RAM-based neural network
[37]. These networks are based on conventional digital hardware for their implementation and are
generally characterized by speed both in training and recalling modes. ADAM is image processing
oriented and is used in a variety of applications such as analyzing aerial photographs [42], feature
and texture recognition [42] and, more recently, document image analysis [43, 44]. ADAM can

also be used for grey level images by generalizing the n-tuple technique [45].

AURA

The AURA [7] model derives from the ADAM network and is primarily oriented for symbolic
processing. AURA is actually a set of methods for integrating neural and symbolic processing. An

example of a possible configuration of the model as used by the system in this thesis is depicted in
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figure 2.2.
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Figure 2.2: The Advanced Uncertain Reasoning Architecture, AURA, model.

AURA can handle symbolic rules of the form preconditions — postcondition. By precon-
ditions we mean a set of variable : value pairs connected either with the logical AND or OR

functions. An example of a symbolic rule is:

A:True N B: Blue - X

The method which is used for converting the symbolic preconditions to a vector of input values
is similar to the one used in [46]. However, binary instead of continuous vectors are used. The
approach is based on tensor products production between binary vectors representing the variables
and the values used. For example, if the variables and values used at the above symbolic rule are

represented by the following vectors:

A=1[1000]
B = (000 1]
True = [1 00 0 1]
Blue = [0 101 0]

then the final input is formed after superimposing the products A” x True and BT x Blue and it

is:
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As we will see, the form of the logical connection between the preconditions is achieved by
setting the proper threshold value while the commutativity of the input arguments is supported by

superimposing the produced tensor products [47].

After the final input vector is formed it is associated with a separator pattern at the CMM
corresponding to the number of preconditions. This number is called the arity of the rule. The
separator pattern has a role similar to the class pattern in ADAM. It is unique for every rule and it
is a sparse binary pattern. During recalling, one or more separator patterns are retrieved using the
L-max method. These patterns can be superimposed in the vector retrieved. After an identifying
process which gives a list of valid separators, these are then used as indexes to a database mech-
anism in order to retrieve the relevant postcondition(s). The database mechanism is based on the
middle bit indexing (MBI) approach [48].

Depending on the number of bits set in each tensor product and on the form of the logical con-
nection between the preconditions, a confidence test can be performed to the array of the summed
values prior to the application of the threshold function. If a sufficient number of bits can be set
then a vector containing one or more valid separators can be retrieved after the threshold process.
More specifically, if the arity of a rule is ar, the number of bits set at each tensor product is ¢, and
the number of bits set at the separator patterns is s, then, if the operator AND is used there must
be at least s, sums with value greater or equal to ar x t; in order to have a successful match of a
rule. In the case of the OR operator this value is ¢; instead of ar x t;. It must be noted however
that the above values are the maximum expected. When inputs are superimposed there might be
bits set to one sharing the same places. Thus, the values for the confidence measure could be less
than the above ones. In order to handle this situation an option is provided in AURA where a line
in the CMMs can be counted once or as many times as the number of bits which are superimposed

in that place of the input pattern.

The reason for using more than one CMMs at the first level is that handling of rules with

different arity would be problematic otherwise [47]. For example if the rules

A:True N B : Blue - X
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B:Blue —Y

were stored using only one CMM and we wanted to find the relevant postcondition having only
B : Blue as input it would be impossible since both X and Y would be recalled. Thus, using a

different CMM for every arity we ensure that only the desired rules will be recalled.

The AURA system provides partial match capability by altering the confidence threshold used
and by accessing more than one CMMSs. The way that this is applied in our case is described with
more detail in section 7.2.4. Thus a postcondition, or a number of postconditions, can be recalled
even if not all the necessary preconditions exist. This is a very important feature of the system
and makes it a powerful and very fast search engine for uncertain reasoning and combinatorial

matching problems.

Both ADAM and AURA share a number of similar characteristics. The ability to operate in
parallel on the data is one of them [49]. That means that simultaneous presentation of n input
conditions will result in recalling all the corresponding outputs. Additionally, the use of binary
CMMs provides speed both at training and at recalling, enables the systems to perform on-line
learning of associations and facilitates their simple implementation in hardware with C-NNAP [39]
and PRESENCE [40] being the earlier and latest versions of the dedicated hardware platforms. It
also provides generalization and noise handling abilities by allowing a flexible mode of operation
depending on the threshold values and methods used. A more technical description of CMMs
including both the cases when integer or binary weights are used is given in appendix A. Issues

regarding the capacity and performance of CMMs are also referred.

2.5 Associating rules

It was mentioned at the beginning of the chapter that associative memory is ideal for storage and
retrieval of information represented by a relational structure [10]. This is because there is no need
for complex indexing mechanisms and data constructions in order to handle the elements of the
structure. Additionally, the use of associative information processing allows direct combinations

of the existing knowledge and facilitates the inferring procedures.

As we saw at the previous sections, connectionist models are able to provide powerful asso-
ciative memory systems. Their noise and fault tolerance, the learning and generalization abilities

and the distributed and parallel form of processing are the basic reasons for this.
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Combining these two facts and given the enhanced representational abilities of symbolic struc-
tures used in Al systems we come to the conclusion that we need a way to apply connectionist
architectures for symbolic information processing. We are not the first to come to this conclu-
sion. Combining connectionist systems with symbolic computation and design systems to support

reasoning based on associations is an active field of research [46, 50, 3].

The basic approach that we are following in our system is that of the tensor product production
[46]. This is applied at the basic symbolic processing level of the system which is performed by
AURA. As we saw in section 2.4.4, the basic principle of this method is that variables and values

are represented by vectors and their binding is represented by the outer products of these vectors.

Using associative memories to handle symbolic information has a number of advantages com-
pared to the use of conventional databases. The ability to handle efficiently a large amount of data
is one of them. Traditional database systems do not scale well and have problems with large input
queries and missing data. Slow operation and the increased amount of storage space needed are
two examples. Moreover, noise at the inputs can make their operation problematic. The use of con-
nectionist associative memories offers an alternative which overcomes these obstacles. However,
slow training times, limited capacity, difficulties in hardware implementations and the problem
of representing symbolic information in them were a source of scepticism. The AURA model
described earlier offers a solution which is used in our pattern recognition system. Providing a
fast and robust search engine, it offers at the same time partial matching abilities, parallel opera-
tion on inputs and on-line learning. These factors enable it to cope with the symbolic processing

requirements of the system presented in this thesis.

2.6 Summary

The aim of the chapter was to present the basic issues and models of associative memory, to
concentrate in the model which is used in our system and explain why it is beneficial to use

associative memories as the basic rule handling mechanism.

An overview of the traditional software and hardware techniques for simulating content ad-
dressing and a brief survey of the neural network based methods for associative memory were
given. As we saw, the use of connectionist associative models has advantages over the use of

conventional methods. Ability to scale with the problem, fault and noise tolerance, generaliza-
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tion, speed of operation, parallel and distributed processing and representation are some of them.
However, connectionist models may have limitations as well. Slow training, difficult and complex
hardware implementation, costly operation and modest capacity are the usual problems. Using the
AURA model of associative memory is a way to overcome these limitations and come up with a

powerful connectionist solution for symbolic processing.
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Chapter 3

Cellular Automata

3.1 Introduction

The generic model of a cellular automata system is probably one of the simplest models existing.
A number of similar systems are arranged in a predefined space and each of these systems interacts
with its direct neighbours following a set of rules. Although simple, this model can simulate many

natural systems.

In general, a cellular automata system consists of the cellular space and the automaton placed
in each cell. The geometry of the cellular space defines the way in which the cells, or sites, are
arranged and the kind of neighbourhoods that we can have. At any time instant the state of the
automaton in each cell, or simply the state of each cell, is determined by its state and the states of

the neighbouring cells at the previous time instant.

Working on models of machines which would be capable of self-reproduction, John Von Neu-
mann was one of the first people who introduced this term in the early 1950s [51]. Initially working
on the design of a machine which would be able to reconstruct itself, he eventually came up with
a model of self-reproduction using an array of computing elements. Each computing element was
an automaton capable of being in one of twenty nine discrete states and they were all arranged in
a rectangular cellular space in which they could interact with their direct neighbours in the four
directions. Combining a number of these elements, more complex automata could be constructed
and placed in regions of the cellular space. Providing a way to simulate a Turing machine, this cel-

lular automata system was able to construct any automaton given its description. Consequently, it

27
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was possible to have automata-constructors able to reconstruct themselves or any other automaton

in different regions of the cellular space.

Probably the most well known example of a cellular automata system is Conway’s game of
Life [52]. In that, there are two possible states that a cell can be in, dead or alive. A small number
of simple rules specifies when the cells change from one state to the other and the system evolves

in time starting at different initial configurations.

Cellular automata are capable of complex behaviour and can be a model for several physical
systems containing many discrete elements with local interactions [53]. Being sufficiently simple
for detailed mathematical analysis they are also sufficiently complex to exhibit a wide variety of
complicated phenomena. Using a synchronous and uniform updating model, i.e. application of
the same rule set at the same time for all cells, under a simple direct connectivity regime they are

indeed a paradigm for parallel and distributed processing.

This chapter is a brief introduction and presentation of the model of cellular automata. The def-
initions of the terms used, a discussion about the different categories of cellular automata according
to state and rules characteristics and the behaviour that the model is capable of and applications of
systems with cellular structures, especially for image processing, is the main subject. At the end,
a summary follows where having presented the basic ideas behind cellular automata we point out

the enhancements at the general model which are introduced by our system.

3.2 Basic definitions

One important notion in cellular automata is that of the neighbourhood. For each cell in the cellular
space, the states of the cells belonging in its neighbourhood determine its next state. Usually the
term refers only to the surrounding cells while the term kernel is used when the central cell itself
is also included. In one dimensional cellular automata we speak of neighbourhoods of radius r
composed from the cells on the left and the right of a cell. By convention, the sites at the edges of
the cellular space have ‘virtual neighbours’ with value 0 or any other ‘neutral’ value depending on
the state set used. Alternatively, they can be joined together giving a folded or cyclic form to the

cellular space.

In two dimensions, the most referred neighbourhoods are named after their initial proposer

and thus we have Von Neumann’s, Moore’s and Golay’s neighbourhoods as depicted in figure
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3.1 Of course, it is possible for a neighbourhood to have variable size and shape depending on
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Figure 3.1: Three well known neighbourhoods in 2-D cellular spaces. a) Von Neumann’s, b)
Moore’s and c) Golay’s or hexagonal. The central site is denoted with C and N,S,.. are used for

denoting the site at the ‘north’, ‘south’, etc.

the requirements of the application. Following the above examples, neighbourhoods in higher

dimensional cellular spaces can also be specified.

Having a neighbourhood defined, the state of each cell is decided according to a transition
function or rule or transform. This function is applied synchronously in the ensemble of the sites

in the cellular automaton. More formally,

Sc(t+1) = f(sc(t)a Scl(t)a 362(t)a = Scn(t)) (31)

s, the state of site s, at time instant ¢,
c € N? the coordinates of site s, in the N¢ space,
N the set of all non negative integers,
d the dimension of the cellular space,
¢; € N, the coordinates of the sth neighbour of site s..
N, C N4 is the set of the coordinates of all the sites belonging to the
neighbourhood of s,

n the number of elements in N...

The function f which is applied locally for every cell in the cellular automaton is a mapping

from S™*! to S, where S is the set of the possible states each cell can be in. That is,

f:8" 58 (3.2)
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This local transition function leads to a global mapping:

F:¥ % (3.3)

where 33 is the set of all the possible configurations for the cellular automaton.

In general, the operation in a cellular automata system is isotropic which means that the op-
eration of the local transition function is not influenced by the location of the cell in the cellular

space as long as the configuration of its neighbourhood remains the same.

The number of rules in a cellular automata system is in direct connection with the size of the
neighbourhood and the size of the states set. By applying a number of restrictions the number of
rules can be reduced. The remaining rules are ‘legal’ as mentioned by Wolfram in [53]. One restric-
tion is the quiescence condition stating that an initial configuration consisting solely of 0s, or the
corresponding ‘neutral’ value, should remain unchanged. Another restriction is that rules should
be reflection symmetric imposing that symmetric neighbourhoods should yield the same next state.
The above two restrictions were applied in Wolfram’s one dimensional cellular automaton in [53]
and [6].

3.3 Classifying cellular automata

A brief presentation of the various categories of cellular automata according to cell characteristics

(i.e. states and rules) and the behaviour of the model in general is given in this section.

3.3.1 Cdl characteristics

The states of a cell in a cellular automata system can be represented either with binary, continuous
or discrete values. Binary values usually consist of one bit but in some cases they can use more
bits. Of course in that case we can also talk about discrete states. However, the latter is used
more for expressing states of a symbolic form. An example of this case is Neumann’s twenty nine
states automaton. The states can also belong to a finite input alphabet set as is the case in [54]
where cellular automata are used for language recognition. On the other hand, when the bits in the

state are used as flags denoting the existance or not of an event we can talk about binary states.
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An example of such states we have in the lattice gas arrays [55] where we have sites arranged in a
lattice and each site communicating directly with its neighbours in six directions. In these systems,
which are used for modeling the flow of fluids, each of the six bits expressing the state of a site

declares the existance or not of a unit mass and speed particle moving in the relevant direction.

As expected, continuous values as states are used when the information in the system is rather
of a numeric nature. The coupled map arrays are an example in this case [56]. These systems,
also called reaction-diffusion systems, are constructed in such a way as to correspond qualitatively
to the solutions of the partial differential equations representing patterns growing under the action
of repulsive and attractive forces (e.g turbulence, convection, etc). Image processing with cellular

automata is also one case where we can meet continuous valued states for the cells.

As far as the rules are concerned we have a number of categories which can sometimes coexist.
Thus, rules can be totalistic meaning that the next state depends solely on the sum of the values
of the neighbours. Conway’s game of Life is a typical example of a totalistic cellular automaton.
Another classification for rules is as peripheral. This means that the state of a cell depends only

on the values of the neighbours at the previous time step but not on the cell’s own previous state.

The rules can be also deterministic or non deterministic. A deterministic rule yields a unique
next state for each cell. Thus, using a deterministic transition function, a given configuration of a
cellular automaton will have exactly one successor although it may have more than one predeces-
sors. The non deterministic cellular automata, or indeterministic as mentioned by Burks in [51],
are characterized by the fact that same neighbourhood configurations may correspond to more than
one possible next states for a cell. A kind of indeterministic cellular automata are the probabilistic
ones where each possible next state has a probability value assigned to it. The lattice gas automata
and the coupled map arrays are two examples where probabilistic rules are used. Thus, a set of
possible next states for a given neighbourhood configuration may exist and they are assigned var-
ious probabilities. Rules can also be fuzzy where the AND, OR and NOT functions which can
be possibly used to describe the rules in a cellular automaton are replaced by their fuzzy versions

(x+y, xy and 1-x respectively).

Usually, cellular automata are characterized by irreversibility which means that the previous
configuration of a cellular automaton cannot be found by considering the current one. However,
when the global transition function is ‘injective’ the cellular automaton is reversible [57]. Mar-

golus, in [58], gives the form that the transition function should have in order to calculate any
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preceding or any succeeding configuration knowing just the current and the previous configura-
tion. Thus, knowing C; and C;_ one could figure out C;; or C;_o, where C; is the configuration
of the cellular automaton at time ¢. Margolus also introduced the idea of block based or partitioned
cellular automata [58]. In these, rule processors examine the contents of a block and then the entire
block is updated according to the proper block rule. There are two different partitionings of the
cellular space into blocks of the same size and the one or the other partitioning are used succes-
sively. This partitioning scheme is called the Margolus neighbourhood and using the proper block
rules, or mappings, the evolution of the cellular automaton can be reversible. A system which is
able to operate in this way is the CART which is a hardware implemented cellular array developed

at the university of York [59].

An existing problem in cellular automata is the difficulty which characterizes the derivation of
the proper set of rules for describing a set of observed behaviours (configurations). This is the so
called backward problem or inverse problem. In a system which simulates patterns produced by
chemical processes [60] a solution is applied using a genetic algorithm based search in the rule

space. However, this is also one of the few cases that a rule production process is applied.

3.3.2 Behaviour

Working with one dimensional cellular automata which had a kernel of three cells and two states
per cell, Wolfram classified the behaviour of the corresponding rule space into four categories [61].

Cellular automata of these categories could:

e End up in a spatially homogeneous state (i.e. all 1s or all 0s) regardless their initial config-

uration (class 1).
e Form a sequence of simple stable or periodic structures (class I1).
e Demonstrate a disordered and aperiodic behaviour (class Il1).

¢ Yield complex localized structures showing a form of propagation (class 1V).

The alterations at the initial configuration as a result of the evolution of the cellular automaton
and the effects that small changes at the initial configurations had at the evolution of the system
suggested that “information” associated with the initial pattern propagated only a finite distance

in classes | and Il and could propagate an infinite distance in classes Il and IV [6]. Cellular
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automata of class IV were conjectured to be capable of supporting universal computation having
the appropriate initial conditions [6, 62]. The game of Life was shown to be capable of universal
computation [52] as well as the reversible cellular automaton suggested by Margolus in [58]. Self-
organization and the generation of self-similar patterns was also found to be a characteristic of
complex cellular automata evolving from random or simple initial states respectively [53]. A more
refined classification of the rule space of one and two dimensional cellular automata of various
neighbourhoods and states per cell is found in [63] by Li et al. Statistical quantities such as entropy,
mutual information and spreading rate of difference patterns were used for the classification of the
rule space into regions of similar behaviour. The parameter used was the percentage of non-zero

rules in the cellular automaton rule table.

The evolution of cellular automata demonstrates that a small set of local rules applied repet-
itively on a large array of similar elements can result in a system with very complex behaviour.
Most of the time the model of behaviour of a cellular automata system emerges as a result of its
evolution and cannot be predicted due to the complexity involved. In a rather optimistic observa-
tion, Victor in [64] notes that Von Neumann’s twenty nine state cellular automaton suggests that an
organ with behaviour as complex as the brain’s can be specified from limited genetic information.
This suggestion is similar to Garis’s ideas about the construction of an artificial brain based on
neural networks which will be ‘grown’ inside special cellular automata hardware under the control
of a genetic algorithm [65, 66]. Either an exaggeration or a vision of things to come, these ideas

demonstrate the potentiality of cellular automata to model complex behaviour.

3.4 Applications

Due to their inherent parallel and distributed processing nature and the ability to demonstrate
complex behaviour cellular automata have been used as models of physical systems. At the same

time, their structure has made them suitable for image processing applications.

34.1 Moddling nature

The initial motivation for the construction of the cellular automata model by J.V.Neumann was to
find a way to simulate nature. Indeed, his twenty nine state model was capable of self-reproduction,

in terms of producing a replica of itself in the cellular space. Later, Conway’s game of Life was
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an inspiration for many people to start thinking that complex behaviour could emerge by locally
applying a number of simple rules. Being dynamical systems they can be used for modelling
other dynamical systems with emergent behaviour. As Toffoli states in his thesis, “the importance
of cellular automata lies in their connection with the physical world” [67]. Assuming that our
world is computationally reversible, i.e. having all knowledge we can calculate what happened at
a previous instant, cellular automata should be capable of demonstrating reversibility if they were
to be considered as a model of the physical world. After proving that cellular automata could be

reversible [67], Toffoli managed to remove that barrier.

An example of using cellular automata to model and reconstruct patterns produced by chem-
ical processes is given in [60]. As we mentioned earlier, a learning algorithm to extract cellular
automata rules directly from the experimental data using a genetic algorithm to search in the rule
space for those rules that represent the data best is also given. The emulation of snowflakes [68],
the simulation of the motion of a flock of birds [69] and the modelling of flame patterns [70] are
also some other examples in modelling nature with cellular automata. The lattice gas arrays and the
coupled map lattices also belong to this category. More examples and studies of cellular automata
exist in volumes 10 and 45 of Physica D. In all these cases, cellular automata always prove their
place as a model of artificial life [71]. A model capable of reproducing some of nature’s acts on a

computer’s screen.

3.4.2 Image processing

Applications in image processing include a wide variety of transformations either local or global
propagating. Transformations of both categories performed in the cellular logic machine CLIP4
are described in [72]. Edge finding, noise removal, image shifting, shrinking and expanding belong
to the first category. An example of an edge finding local rule applied locally and synchronously
for every pixel in a binary image could be stated as: “only black pixels with white neighbours will
remain black at the transformed image”. Shifting could be easily done by each pixel propagating its
value in the given direction while shrinking and expanding are two complementary tasks performed

by removing or adding pixels at the outer layers of the objects.

Other spatial operations such as high-pass (enhance sudden changes) or low-pass (remove
sudden changes) filtering could also be performed using the proper templates [4]. The templates

can be considered as weight matrices where each site’s new value is calculated by multiplying the
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values of the neighbours with the corresponding weights and summing the products. The template
based approach is also used in Cellular Neural Networks (CNNSs), introduced by Chua in [28].
CNNs are systems combining cellular automata with ideas from neural networks and are also

primarily used for low and medium computer vision.

Global propagating transforms are based on the fact that separate connected sets exist within
an image. Thus, propagation initiated at a point or points on a connected set passes throughout the
connected set to its borders allowing transforms to be applied to these sets as a whole. Being more
complex and using more than one copy of the image, these transforms can perform labelling and

counting of the objects in an image.

A set of cellular algorithms for medium level vision problems such as gap filling, segment
detection and template matching were also proposed by Pierre and Milgram in [73]. These algo-
rithms have in common the notion of distance transformation where the values of the pixels are

replaced by the distance from this pixel to the closest edge pixel.

3.4.3 Cdlular machines

Based in the idea of cellular arrays of processors a series of cellular logic machines were con-
structed starting from the early 1960s. CELLSCAN, GLOPR (Golay Logic Processor) and BIP
(Binary Image Processor) were the first. They were primarily used for the application of basic
image processing tasks (i.e. skeletonization, geometric transformations, etc) to binary images [5].
The next generation in 1970s and 1980s had machines with an increased number of processors
controlled by a supervisor computer. The series includes machines such as the ILLIAC IV of the
University of Illinois, the CLIP (Cellular Logic Image Processing) series at the University College
London with CLIP4 having a 96 x 96 array of processors, the 64 x 64 DAP (Distributed Aray
Processor), the 128 x 128 MPP (Massively Parallel Processor) and the CAM (Cellular Automata
Machine) [5, 74, 75].

Low level image processing operations, numerical and logical operations on two-dimensional
arrays of data for solving problems in meteorology and operation research, computation of image
statistics and two-dimensional discrete transformations are examples of the applications these ma-
chines were used for [5, 76]. Having a more flexible architecture, CAM by M.I.T was capable of
implementing various cellular automata systems and it was designed so that each cell could have

2,4,8 or 16 states and up to 12 neighbours. The latest version of the machine, CAMS, is used in
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the “artificial brain’ project [65, 66].

3.5 Summary

Either used for modelling physical systems or for image processing or just as a game, cellular
automata always demonstrate their potentiality. They indeed show that a system composed of lo-
cally connected basic processing elements capable of applying a number of, relatively simple, rules
synchronously in each site can demonstrate complex behaviour and have the ability for universal
computation. Although having a local neighbourhood based communication, we can see examples
of global propagation of information. Being a dynamic model they are also a paradigm of parallel
and distributed processing. However, there are some limitations for the systems that follow this
model. These are mainly focused at the difficulties to handle a large number of states and rules

and the lack of an efficient learning algorithm to produce these rules.

The system presented in this thesis has a cellular automata like architecture. Thus, the cellular
space, the basic processing elements and the synchronous and local application of the same rule
set are present. However, there are some differences from the basic model. These can be focused
on the nature of the information being processed, the existence of an increased number of rules
and states, the internal structure of the processors in each cell, the use of associative memories as
search engines for the application of the rules and the existence of a simple but effective learning
mechanism for producing the rules. These differences extend the capability of the classical cellular
model of processing by introducing states belonging to different levels of hierarchy, a mechanism
to produce the rules for the state transitions and the means by which the increased number of states

and rules can be handled.

The information in the system is of a symbolic rather than an arithmetic nature. The initial
configuration comes from the initial labelling of the image, having symbols to represent geometric
features. Although the global propagation of the information is inherent to the system due to its
structure, it is assisted and refined by special modules of the processors. The rules are deterministic
in their initial form but non-determinism can be inserted into the system during its evolution.
However, this is handled by the associative memories and, as we will see later in the thesis, serves

in aid of the purpose of recognition.

Using the cellular architecture for our system except from having already the parallel and
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distributed nature of processing we also gain from the model’s evolutionary operation. Being a
dynamic and evolutionary system, it manages to have a ‘virtual’ multilayred character. That is, in
every iteration of the system the information therein is not only propagated but also represents the
objects at different levels of abstraction. At the same time, the problem of recognizing an object
has been reduced to recognizing small parts of it and connect the parts in every iteration until a

complete description is available.
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Chapter 4

Computer Vision Architectures

4.1 Introduction

Computer vision is associated with the computation tasks required in order to automatically obtain
explicit descriptions of the physical world representations existing in images. Although vision is a
task which is effortlessly performed by humans, the complexity and the vast amount of the required

computations was soon revealed at the first steps in this research field.

Being a cognitive process, vision is not a separated task but it is strongly related with other high
level functions such as memory, recognition, learning, information encoding and representation,
and reasoning. It is of no surprise then that, although being the subject of intensive research for the
last decades, a complete understanding of the biological vision systems is still missing. With many
anatomical and physiological parameters identified, the exact functions and connectivity of the
modules involved are yet unspecified although a number of theories and models exist. However,
among the facts which are already accepted are the existence of different levels of processing,
the parallel nature of the operations involved and the existence of multiple communication paths
[77, 78].

In an effort to understand and apply the mechanisms of human vision in order to build com-
petent machine vision systems, research in computer vision has interdisciplinary links with psy-
chology, neurophysiology and philosophy [79]. Being a vast area of research itself, it incorporates

image processing, pattern recognition and artificial intelligence technologies.

This chapter provides a very brief overview of the general aspects of computer vision in order

39
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to discuss and analyze a number of computer vision architectures. This is in order to present some
of the key ideas and approaches in the field and help deploying these factors that motivated our

research.

4.2 Reasoning from visual information

The information contained in visual representations of the world is multimodal. Of course, judging
from our own perception of vision, this is not easily realized because when we are faced with this
kind of information we can easily infer and extract the data and the information we are interested
in without being aware of the underlying tasks that are taking place. For example, a simple glance
at a road that we are about to cross suffices in order to decide our next move. The existence or
not of vehicles coming within some distance limits is the main thing that we are interested in. The
number of the cars, if any, their colour, their license numbers, the colour of the sky, the shape of
clouds, the number of trees, other people or animals around, etc, all these are extra information
existing in the image reflected in our retina. However, these are details that we usually do not

remember or have completely ignored after a successful crossing of the road.

In order to be able to reason from visual information a number of computational tasks at
different levels is required. Their exact nature depends on the kind of information we need to
extract from the visual stimuli. The above mentioned examples of the details that we can extract
from a road scene are the results of the intermediate to higher levels of processing. Of course,
the necessary input to derive these conclusions comes from the lower levels of processing. It is

nothing more than natural then, that computer vision also employs different stages of processing.

421 Sourcesof visual information

Before expanding in the processing stages we could spare some time discussing the sources of
visual information and their relation with the data contained therein. A static image is one source.
As defined in computer vision terms [80], an image is a spatial representation of an object, a 2D
or 3D scene, or another image. It can be thought of as a continuous function I of two variables
defined on a bounded and usually rectangular area of a plane. The value of the image at spatial
coordinates (z,y) is denoted by I(x,y) and is determined by the response of a sensor sensitive at

a small area around (z, y). An image can be captured using photographic or video techniques and
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its digitization is necessary for its further processing. The digitized image is a two dimensional
array of pixels (picture elements) and the value of each pixel responds to the light intensity in that

location of the image.

An image can be either coloured or grey scaled or black and white. Under normal lighting and
physiology conditions, the images perceived by the human vision system are coloured ones. Of
course, the colours depend on the kind of radiation which is fallen on and reflected by the objects.
The human eye is only capable of perceiving a well defined spectrum of electromagnetic radiation
which is defined as the visible wavelengths of light. However, using the proper equipment an
extended range of radiation (e.g. X-ray, infrared, etc) can be used for capturing images. These
reveal information inaccessible otherwise, e.g. skeleton pictures, heat emitted from objects etc.
As it is natural, the amount of information contained in coloured images will be greater than the
amount contained in grey scaled ones and these, in turn, will be a richer source than the black and
white images. Of course, the amount of processing required and the storage space needed is in

direct relation with the amount of information in an image.

Depending on the lighting conditions and the clarity of the image, the information contained
therein regards the shape and number of the objects, their nature and their relevant positions. Of
course, this is only at a high level of abstraction. The term ‘nature’ is a very general one and
can have many different interpretations varying from facial expressions to suggestions about the
texture of objects. However, there are some kinds of information than cannot be always deduced
without prior or extra knowledge. For example, the absolute dimensions of an object are not always
deducible without a means of comparison. The latter can be the existence of another object with
specified size in the same image. The same holds for the distance of the objects from the point
which the image was taken from 2. If the same unknown object is the only content of two images
then it is possible to tell in which image the object was closer. However, it will not be possible to
reason about the distance and the size of the unknown object if this is the only entity contained in

one image.

As mentioned, images can represent 2D or 3D scenes and objects. In the three dimensional
case a complete description of the scene would require depth data about the objects. These are
not always easy to deduce from a single image. Shading and texture are two factors that can be
used to generate three dimensional descriptions from single images. Another option is to extend

the source of the visual information and combine data from more than one image. These images

1Of course, we suppose that the adjustment of the lenses remains constant.
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would refer to the same scene or object as viewed from a different angle. This is the basic idea in
stereo vision [81] where a matching process between the features of the one and the other image

is initially required.

Another source of visual information apart from the static images and the combinations of
them is the image sequences. These are a series of frames grabbed at regular time intervals and
they allow the study of the motion parameters related with the objects in the scene i.e how objects
are moving in relation to other objects and the image capturing point. Depth and shape information

can also be extracted from these images.

4.2.2 Processing stages

Three stages of processing are usually involved in any machine vision system. The low, the inter-
mediate and the high. The input to the low level is the actual viewer centered image which is what
the image capturing device sees. The output of the high level is a world model which is based
on the objects in the image and their relations. In order to proceed from the viewer to the world
model a data reduction and compression process through abstraction is required. For example, a
512 x 512 grey scale picture of a car would have 262, 144 pixels each one having 256 possible
values. Having this input of 256 Kbytes, the output would be the type and other information about

the car probably occupying less than 50 or 100 bytes.

Processing at the low level is pixel centered and the basic tasks performed are filtering op-
erations such as noise and background removal and edge detection. The grouping of the edges
identified at this stage and the formation of a higher level description whose basic elements are
not at pixel but at a feature level is the responsibility of the intermediate level. At this stage a
segmentation of the image is performed and regions existing in the image are identified. Edges
are unified to form the boundaries of the objects and characteristics of other features, e.g length
of lines, curvature, position, etc, are identified. This information is the input to the world model
processing stage and the translation of these data to an object centered description is required.
Knowledge about the world must be used in order to come up with a high level description from
these data. Depending on how the world knowledge is represented, the object model has either to
be derived or be the result of a successful match. In the first case knowledge exists as a set of rules,
or productions, which have to be satisfied. In the second case, a set of expected world models

exist and the task of the high level stage is to match the data provided from the previous stages of
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processing with one of these models.

We can see now why computer vision combines image processing, pattern recognition and
artificial intelligence. Commencing with image processing tasks, techniques from pattern recogni-
tion and notions from artificial intelligence must be employed in order to produce a result. As it is
natural, a variety of approaches exist for each of the computational tasks at each stage. Of course,
the exact nature of the processes and the kind of data that are used depend on the requirements of

the problem domain.

The boundaries between these processing stages are not strictly defined. Especially between
the intermediate and the high level since it is often the case that the same or a similar idea is used
but the kind of data which are processed defines the processing stage. Relaxation is an example.
The aim of this technique is to derive an optimal interpretation of a set of data according to ex-
isting constraints. This technique, and its variations, can be used for segmentation (e.g grouping
edges, defining boundaries and regions), labelling of lines in order to facilitate 3D descriptions,
or, at a higher level, graph matching. The Hough Transform and its generalized form is another
example. This method which is based on the transformation of the image data to a parameter space
with the parameters defining characteristics of objects, can be used either for iconic to symbolic
transformations [82] where basic features such as lines, curves, circles etc are identified or as the
underlying methodology for high level object recognition [44]. Template matching, probably the
most computational expensive method, is one more example. In this method the basic task is to
match the input data with a template representing a known object. Either performed at a pixel level
or using features of a higher level this method generally suffers from the very large search space

which has to be examined.

The large search space which was last mentioned is apparently one of the basic problems in
intermediate and high level vision where tasks are of a pattern recognition nature. Either following
a bottom up (data driven) approach where the basic features themselves suggest the possible world
models or a top down (model driven) method where certain model hypotheses are validated on the
basis of the existence or absence of the required low level features, the problem remains the same.
Thus, the data reduction and compression process needs also to be augmented by the insertion of
a dimensionality reducing factor in all the stages of the processing. Partitioning of the problem is
the most intuitive approach. This is because it is easier to deal with many small scaled problems
than with a larger one. Allowing parallel functioning towards a general solution care must be taken

in order to benefit from the reduced dimensionality offered by the locality of the approach while
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preserving global intercommunication and exchange of information. This is necessary in order to

guarantee that the local solutions will build up the way to the global one.

The above idea of parallelism and hierarchical processing is the general one. Parallelism can
be applied in all levels from down the lower one to up the higher one. However, its nature will be
different. As we will see at the next section, data parallelism is applied at the image processing
level where the same operations can be performed in all the pixels at the same time. At the higher
stages the problems are more of a classification and hypothesis creation and validation nature.
Thus, a kind of parallel search to sets of models or rules will have to be performed. This will need
the parallel operation of different tasks either on the same or in different data. Hence, this kind of

parallelism is more complex than the previously mentioned one.

The knowledge acquisition and handling is another parameter in computer vision systems. As
it was indicated earlier, knowledge exists either as sets of rules that have to be satisfied or sets
of world model instances. The use of rules implies a constraint satisfaction process which leads
to consistent characterizations while the use of model instances involves a template matching
approach. Knowledge has either to be inserted to the system by means of programming or be
the product of a learning session. Of course, the latter approach is preferred as it leads to more
flexible architectures compared to the more transparent but not easily adaptable systems of the

former approach.

The systems that are presented next are examples of architectures for image and scene under-
standing and object recognition. All of them are characterized by parallel and distributed process-
ing either by means of arrays of processors or using connectionist architectures. The conventional
parallel architectures offer generic and programmable hardware solutions to machine vision prob-
lems. At the same time neural networks provide their learning and self organizing abilities either

to directly perform classification tasks or in aid, and enhancement, of classical methods.

4.3 Vision architectures

4.3.1 Associative processor arrays

The use of arrays of associative processors, i.e content addressable processors, is a characteristic
approach in most parallel vision architectures. These are SIMD arrays of simple processors which

means that the same process is performed over a large set of data in parallel. The use of these arrays
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is usually focused at the low or intermediate vision tasks and the high level control is provided by
more complex processors or a host machine. This control regards the nature of the tasks that have
to be performed at the low levels in order to provide sufficient information for object matching or

derivation using the knowledge about the world models which is available in some form.

Image Understanding Architecture

The Image Understanding Architecture (IUA) by Weems et al [15] is a paradigm of a multilayered
vision architecture. It consists of three levels of parallel processors where each level is distinctly
different from the other two. Communication between levels is achieved via parallel data and
control paths while the processing elements at each level can also communicate with each other in

parallel.

The first level of IUA is the Content Addressable Array Parallel Processor (CAAPP) which
is a 512 x 512 array of 1-bit associative processors intended to perform low level operations.
The idea is to have one processor for each pixel of the image thus following the data parallelism
approach. Operations performed at this level are edge detection, histogram formations, labelling
of connected components, average and maximum values of pixels etc. The second level of IlUA
is the Intermediate Communications Associative Processor (ICAP) which is a 64 x 64 array of
16-bit Digital Signal Processors. This is used for passing data and commands through the levels
and also handles tokens (symbolic descriptions of image events) and supports data base functions
that allow access to them. The highest level of IUA is the Symbolic Array Processor (SPA) which
is an array of 16 x 16 processors each capable of running LISP. A blackboard system is used for
the communication between the processes. The operations at this level include knowledge based
inference and manipulation of object models while the lower layers serve as knowledge sources at

different levels of abstraction.

IUA is a knowledge based parallel architecture for computer vision. The existence of three
processing layers is in accordance with the processing stages described at the previous section.
Image processing algorithms can run in parallel at the first layer with intermediate control provided
by the second layer. The higher level is used for knowledge based inference using a blackboard
mechanism to allow communication and cooperation between the symbolic processors. Having the
advantage of speed that the dedicated and parallel hardware provides, IUA tries to solve computer

vision problems using typical approaches augmented by high speed processing. However, no self



46 CHAPTER 4. COMPUTER VISION ARCHITECTURES

adaptive ability is provided and object models and constraints must be programmed in order for
specific tasks to be performed. Additionally, the ability of the system to generalize depends on the

provisions made at the programming stage and is not an inherent characteristic.

Connection Machine

Another example of a parallel architecture which can be used for computer vision tasks is the
Connection Machine (CM). The Connection Machine provides up to 64K physical processing
elements and millions of virtual processing elements and has the ability for multipurpose, recon-
figurable communications networks. In contrast with IUA, this architecture is not dedicated for
machine vision only but has also applications in other areas where data parallelism is useful [83].
Neural net simulation, protein-sequence matching, particle simulation, geophysics and computer
graphics are some of the application areas. As far as computer vision is concerned, CM has ap-
plications in image processing, stereo matching and object recognition. One way that CM can
be used for object recognition is described in [83] where object databases containing hundreds of
models and parallel searching in each scene are used. In this scheme, image features in the scene
serve as events and features of each model serve as expectations. Object hypotheses arise when
ever an event satisfies an expectation. When a hypothesis is created a hypothetical instance of the
corresponding model object is created and projected into the image plane. After that, a hypothesis
clustering scheme is applied to order the suggestions by using support from mutually supporting
hypotheses. Then, CM has to accept or reject thousands of hypotheses in parallel using a template-
like verification step where those having strong support for their expected features are accepted
over those with little support. The method followed for object recognition in the CM is mainly a
top down approach with influence from template matching. Initial evidence from the image is used
and then a long scale search is performed. Although some effort exist to reduce the search space
the number of potential matches is still large and the performance of the scheme relies on the fast

parallel processing by the general purpose CM which has to be specifically programmed for that.

Heterogeneous Vision Architecture

Having a layered structure similar to IUA, the Heterogeneous Vision Architecture (HVA) [16]
is another computer vision architecture. However, instead of the fixed topology of IUA, HVA

comprises four different types of modules that can be configured in a more flexible way according
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to the set of the vision tasks required. A layered structure is applied again providing parallelism in
three different forms. The first module uses DSPs for linear filtering (convolutions). The second
module is a 1D SIMD associative processor array for non linear filtering, morphological and other
region based operations. A network of transputers is used for manipulating model databases and
directing the operation of the other modules and the fourth module is a programmable frame store
which intervenes between the above modules and is used for buffering the image data. Each
module contains at least one transputer which directs the communication with the other modules.
An example application of vehicle license plates recognition using HVA is discussed in [16]. In
that, the associative array is used for a number of tasks. These are: adaptive threshold of the
grey level image to a binary one, removal of small objects and smoothing, segmentation by region
growing, determination of the bounding rectangles of the black objects in the image, acceptance of
those objects having a suitable size and aspect ratio, resizing of the selected blocks to the same size
as the reference characters, and, identification of the characters. The latter is performed using two
different techniques. Either counting the number of holes and then comparing (template matching)
the object with candidate reference characters or modeling a single layered neural network trained
previously on the reference character set. All the above tasks are performed at the associative array

processor under the control of the transputer network.

Semantic Network Array Processor

The use of associative processors is also found in the Semantic Network Array Processor (SNAP)
[84]. SNAP is designed to deal with a number of artificial intelligence problems using semantic
networks and markers for knowledge processing. With the nodes of the semantic network rep-
resenting objects or concepts and the arcs representing their relations, markers are flags that can
travel in the knowledge network following a number of propagation rules in order to group ideas
and concepts. The application of SNAP to the problems of scene labelling and edge interpretation
using discrete relaxation and stereo matching using dynamic programming is discussed in [17].
In that, the labeling problem is described by a semantic network and each cell in the associative
processor array is allocated to each node of the network. First, the relations corresponding to initial
labellings of the cells according to the set of constraints are stored in each cell’s content address-
able memory. Then, the system tries to converge to the greatest consistent labelling by successively

removing inconsistent interpretations.
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SNAP is a parallel architecture designed to cope with problems in knowledge processing. Mes-
sage passing and cellular processing are employed and semantic networks are used for knowledge
representation. However, the architecture is intended to cope with the highest level of the problems

leaving the preceding stages of processing to other sources.

4.3.2 Neural Networks

As we saw in section 2.4, apart from being an example for parallel and distributed processing, neu-
ral networks also provide learning and self-organizing abilities. Various kinds of neural networks
are broadly used with significant success for image processing and pattern recognition purposes
[19, 85]. However, in most of the cases the neural networks are faced with problems of high dimen-
sionality and large search spaces. This emanates from the fact that whole patterns or images are
presented to them and they are expected to reach the correct conclusions. This results in the need
for large sets of training samples and large networks as well. A possible way out of this situation
is to employ alternative approaches and the systems we are about to see are some efforts in this
direction. The first one regards the combination of two different neural architectures together and
the next models are trying to integrate neural networks with other techniques such as relaxation
and generalized Hough Transform (GHT). Moving within this framework are also the hierarchical
feature extraction neural nets such as Fukushima’s Neocognitron [86] and Le Cun’s LeNet [87]

which are also presented next.

Cooperating Neural Networks

The cooperation of two different neural network models is the main idea in [88]. The first one
is a variation of the MLP network and it is a layered model having successive feature extracting
and averaging stages while backpropagation learning is used. The other network is a variation of
Kohonen’s Self Organizing Map. In the derived model training is performed using vectors which
include both the patterns and their association targets. After the clustering of the feature map during
training, the units in the map are used to activate the correct output pattern. These two modules can
be trained either separately or cooperatively or in stages. In the first case each module is trained
separately, in the second case they are trained simultaneously and in the third case each module is

partially trained and then they are combined and further trained.
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The combination of the two networks was based on the fact that they have different character-
istics and thus their operation is based on different aspects. Hence, the first module incorporates
local feature extraction and the second performs global template matching. The two modules are
operating in parallel and their responses are either compared or, more effectively, form the input
to a MLP network. In both cases the performance is better than the best achieved by one model
only. However, combined training is difficult due to the difference in the conversion rates of the

modules and geometrical invariance is not sufficiently resolved.

Relaxation with Hopfield net

The use of a Hopfield like neural network for the constraint satisfaction problem of image labelling
is suggested in [89]. The approach is based on the idea of relaxation and a methodology similar
to the one followed for the Travelling Salesman Problem (TSP) by Hopfield and Tank is applied.
Having a problem of n objects and m labels, a network of n x m units is created. The energy
function for the network follows the principles of the energy function for the TSP problem with
the added influence of the set of constraints specified as binary and unary relations. The binary
relations specify the adjacency or not of the objects in the segmented image as well as the compat-
ibility of pairs of labellings for related objects. The unary relations specify characteristics of the
objects such as “higher’, ‘moving’, etc and the compatibility of the labels for this kind of objects.
The Hopfield net was selected because of its ability to converge to stable solutions. Indeed, follow-
ing a weights modification algorithm with respect to the energy function, the network manages to
reach low energy configurations corresponding to correct solutions. The problem is that in order to
specify the set of the parameters effecting this procedure an ad hoc approach is needed and small

alterations in these parameters can lead to incorrect solutions.

Although the problem of ‘tuning’ exists, this approach is encouraging in the idea of applying
neural networks for high level problems. However, it is only the self organizing and not the learning
ability of neural networks that it is exploited. The set of constraints has to be externally generated
and then provided to the network which in turn will perform the relaxation labelling as part of its
converging procedure. At the same time, each image is a different case and needs a different set of

constraints to be loaded without any reference to the previous images.

A slightly different approach is suggested in [90] by Shipman. In that system, interconnected

Hopfield nets are used to store the sets of constraints. In a simulation using only binary relations
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between the nodes, where a node represents an object, their adjacency is represented by connecting
them using a Hopfield net operating as a symmetrical associative memory. For example, having
three nodes n1,no and ng where nq is connected with ny and no with ng, two symmetrical as-
sociative memories will be used and these memories will share the part for no. Starting with an
initial labelling of the objects, the labels are trying to reinforce each other in order to converge to a
consistent solution. This system is an interesting approach including the ability to learn consistent
labellings by storing the constraints in the local associative memories. The problem is that the set
of objects to be labelled do not always have the same connectivity model and since they represent
high level objects (e.g car, sky, grass, road, etc) a different network is required each time. For
example, if the object represented by node n3 was also adjacent to n a different arrangement
would be needed. Additionally, as it was indicated in chapter 2, the Hopfield net has limited ca-
pacity and problematic hardware implementation due to the full connectivity between the neurons.
Although having the above problems, this approach is still a very interesting idea for combining
neural networks with other techniques. As we will see in chapter 6, our system also uses the idea
of interconnected associative memories, however, under a framework which overcomes the above

problems.

Correlation Matrix Memories

The previous approaches were three examples of how neural networks can be used for computer
vision tasks. The first case is the most usual way in which neural networks are used. We referred
to this system because of the combination of two models of neural networks for the same task.
The other two approaches were trying to offer solutions to image labelling problems using the
method of relaxation. Apart from handling problems at different stages only, the use of the above
types of networks usually suffers from complex hardware implementation which is also necessary
if the complete system is to be considered as a practical solution to computer vision problems. The
systems that we examine next are trying to provide more complete solutions combining processing
at more than one stage. The first one uses a GHT like method while the second one uses a relaxation
approach. Moreover, they both employ Correlation Matrix Memories and specifically the ADAM
and AURA models that were examined in chapter 2. Thus, they have already solved the problems

of long training, capacity and hardware implementation.

The methodology of the first approach refers to the combination of the ADAM network and



4.3. VISION ARCHITECTURES 51

the GHT for document analysis. In O’Keefe’s system [44], ADAM is used as a feature recognizer
associating blocks of pixels with data structures containing the label of the object and the distance
from the centroid of the object. Thus, objects are characterized by their set of features and the
relative positions of them. During training, sets of features and relevant data structures are stored
in ADAM. In the recognition mode, features are extracted from the image and the information
from the associated data structures determines the object and its centroid’s relevant position. The
relevant positions are used so that the labels are placed at the proper places in an accumulator
array. After the feature extraction has taken place the labels stored at the accumulator array de-
termine which objects exist where in the image. The object labels are binary and represented by
vectors of n bits of which only [ are set. These vectors are added at each other at the locations of
the accumulator array and the dominant label is determined after the application of the [ — max
threshold function. In a way, the operation at the accumulator array is similar to the second part
of the Sparse Distributed Memory that we saw in chapter 2. The operation of the model as de-
scribed above makes use of ADAM’s noise robustness and ability for generalization when a lower
threshold is used. However, since features are directly related with objects and have no information
about what their neighbours should be, the problem of excess false positives arises. In order to
deal with that the operation of the system was extended so that features are identified by taking
account of their neighbouring features as well. Moreover, in order to secure that locally consistent
objects would also be consistent at a global scale, the feedback factor was introduced. This is
because feedback allows the communication of information over a wider area than that of the local

neighbourhood.

In the feedback version of the above system each feature is associated with a set of triples
{position, feature,object} in its neighbourhood. The position is the relative distance to the
other feature, feature is the kind of that feature and object is the class of the object that feature
belongs to. Additionally, each feature of an object stores the number of its neighbours using
another CMM. During recognition, two accumulator arrays are formed. One for the features and
one for the object labels. Then, an L — max threshold is applied to the accumulated data returning
the dominant feature(s) and object(s) at each position. In order to determine whether each feature
has received enough evidence the number of the neighbouring units that it should have is recalled
from the CMM and used as a threshold. If the accumulated evidence is the expected one, or a
fraction of it, the feature remains in the features array. In the case that the new array differs from

the previous one the above steps are repeated using the existing features as the new input. This



52 CHAPTER 4. COMPUTER VISION ARCHITECTURES

procedure stops when there is no alteration at the feature array. Effectively, the feedback model
applies the relaxation algorithm in order to obtain a consistent labelling of the image. The set of
the constraints are created and stored in the second CMM of the ADAM during the training stage.
Pursuing a consistent labelling of the features, the introduction of feedback manages to reduce the
number of false positives and offers better performance than the feedforward model when clutter

exists.

Alwis’ approach is somewhat different [91]. This system, intended for trademark image re-
trieval, combines classical preprocessing methods with graph matching using relaxation and asso-
ciative memories. Initially an edge detection and segmentation phase is performed using the Sobel
filter and contour decomposition. This initial feature extraction produces a list of straight line and
arc segments along with their properties. This information is then used to obtain the perceptual
relationships between the segments. The next step is to produce the Gestalt images where co-linear
segments are replaced by continuous lines and co-curvilinear segments by continuous curve seg-
ments. Perceptual relationships are also extracted from the Gestalt images as well as characteristics
of the closed figures from both the raw and the Gestalt images. Thus, a set of graphs is created
from each image representing the relations of the features in the raw and the Gestalt image and
relations of the closed figures in both cases. Information for each node of these graphs is stored in

databases and the compatibility between the nodes of these graphs is stored in CMMs.

When a new image is presented, the above process takes place again and the set of graphs
corresponding to the new image is created. Each node is labeled with all the possible labels it
can have according to the data existing in the database. However, the consistency of the labellings
is not challenged yet. In order for a consistent labelling to be derived the information stored in
the CMMs is used. This is performed with a way similar to the one used in [92]. Thus, the set
of labels for each node is presented to the CMM which holds information about the specific kind
of graph. The output is the set of node labels that the current labelling is compatible with. This
set of labels is used as a mask in order to remove the inconsistent labels of the nodes which are
connected with the node under investigation. The same happens for all nodes in all graphs. The
derived labelling is consistent but not always unambiguous. Thus, more than one label may exist
for a node. In the case that an unambiguous labelling is pursued the above step can be repeated
and a higher threshold can be used for the output of the CMMs in order to limit the output set
of labels. However, this added pressure to the process may sometimes result in loss of correct

labellings while the convergence to an unambiguous labelling is not guaranteed [91]. Thus, the
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initial consistent labelling is usually preferred.

Hierarchical feature extraction

The two systems presented earlier are based on the combination of the use of correlation matrix
memories together with an evidence accumulation model such as the GHT or a relaxation based
method. They both provide complete solutions in the sense that they start from the pixel level and
continue all the way up to an interpretation of the image. Moreover, the use of CMMs facilitates
their implementation using low cost dedicated hardware [40]. However, the first system has only
two levels of labels (i.e. feature or object) and the second relies on an initial feature extraction
process entirely with classical methods. The two systems which are presented next are examples
of neural architectures based on the idea of hierarchical feature extraction starting from initial

features and following the various stages of the hierarchy up to the complete objects.

The first example is that of the Neocognitron [86, 93]. This model has a multilayered structure
where the initial layer is the input one, the last layer is the recognition layer with cells correspond-
ing to different objects and the intermediate layers are combinations of two sublayers of neurons
called Us and U,. The first sublayer consists of groups of neurons which can detect different fea-
tures. All the neurons in one group can detect the same feature, however, in different places of the
input image. Thus, each neuron in these groups has a local receptive field and neurons of the same
group have the same spatial distribution on their inputs with the only difference that the receptive
field is shifted according to the position of the neuron in the group. As far as the second sublayer
is concerned its aim is to allow for positional errors in the input features. The same organization
in groups exists and each neuron in a group receives signals from a group of feature extracting
neurons which belong to the same category. A unit in these groups is activated if at least one of
the feature extracting units is active. In the whole network there can be many alternate sublayers
of feature extraction and positional shift toleration units and during this process local features are
gradually integrated into more global features. The network follows a competition learning ap-
proach and its training is unsupervised in all the stages. As referred, the last layer is a collection

of ‘grandmother’ cells each one corresponding to a specific pattern.

The basic model of Neocognitron was initially having feedforward only communication paths
but it was later augmented so as to incorporate backward paths as well [93]. That was in order

to provide the function of “selective attention’ allowing automatic segmentation and recognition
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of individual patterns presented simultaneously. Additionally, the model could then also restore

imperfect patterns and eliminate noise.

The second example, Le Cun’s LeNet [87], is somewhat similar. Again, layers consisting of
sublayers of groups of neurons exist and the first sublayer in each layer is devoted to feature ex-
traction. Local receptive fields also exist and an operation equivalent to a convolution with a small
size kernel is performed by each neuron. Having the same weights for their input connections, the
only difference for neurons extracting the same feature is the location of their receptive field. The
second sublayer this time performs an averaging function and reduces the resolution of the first
sublayer. Thus, weights from the first to the second sublayer are fixed and are all equal. A series
of alternate feature extracting and averaging sublayers exist and apart from the first feature extrac-
tion layer different connectivity models may be used between the averaging sublayer units and the
units of the next feature extraction sublayer. The output layer is again a set of units where each
unit corresponds to a different object. The basic difference with the neocognitron model however

is that error backpropagation and supervised learning is used.

The above two systems utilize an important approach which is the hierarchical feature extrac-
tion and pattern formation process where more than two levels of features can exist and provide
adaptive solutions for all stages of the process. However, they suffer from long training times, their
operation is not trasparent to an external observer and they have a prefixed structure in the sense
that always the same number of levels of hierarchy must be followed from a specific instance of

their model.

4.4  Summary

This chapter provided a very brief overview of the general aspects of computer vision and a pre-
sentation of a number of parallel architectures for image understanding and object recognition.
As we saw, parallelism is necessary in order to deal with the computational load occurring in vi-
sion problems at all levels. Two kinds of parallel architectures were presented. The first one is
based on arrays of content addressable processors at the lower stages. Higher level control is pro-
vided by programms running on more complex processors which supervise the arrays. These are
knowledge based systems which can be programmed to perform various computer vision tasks.

Providing complete solutions in some cases, the main problem with these systems is that they lack
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the ability to self adapt to their environment, their generalization ability is questionable and can be

vulnerable to noise and errors.

A different kind of parallelism is provided by the other architectures. Based on connection-
ist models, these models have simpler processing units forming networks with learning and self
organizing abilities. Although having these characteristics, neural network models offer problem
specific solutions and are usually faced with problems of high dimensionality which require large

training sets.

A solution in order to exploit the learning and self organizing abilities of neural networks while
building a more general object recognition system is to integrate neural networks with classical
techniques or follow alternative approaches in order to reduce the dimensionality of the problem.
The last systems which were presented were steps towards this direction. Following the same
notions, the system presented in this thesis attempts to provide an adaptive solution for shape
recognition which uses neural networks at all stages and combines cellular information processing

with ideas from structural pattern recognition.
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Chapter 5

Rules and Structurefor Pattern

Recognition

5.1 Introduction

There are two main approaches for pattern recognition. The decision-theoretic and the syntactic
and structural approach. Decision-theoretic methods classify patterns according to a set of mea-
surements of one or more characteristic attributes of the patterns. On the other hand, syntactic and
structural methods rely on the structure of the patterns in order to classify them. The main hypoth-
esis is that patterns consist of sub-patterns and formations of basic, primitive, elements. There is
a hierarchy which is followed for each pattern. The complete pattern itself is at the top rank and
the pattern primitives are at the bottom. In the space between, there are sub-patterns of higher or

lower complexity depending on their place in this tree-like structure.

The use of the structure of the patterns for their classification, requires that they are represented
in a corresponding way. The main data structures allowing this representation are strings, graphs,
trees, webs and arrays. The idea behind the use of these structures is that any information about

the structure of the pattern and the relations among its subpatterns must be preserved.

Thus a pattern is represented using a symbolic structure. Ideas from the formal language theory
can be used for the classification, or, the methodology can be extended and other techniques can be
used as well. Syntactic methods refer to the first case while structural methods refer to the second.

String matching using string distance and nearest neighbour classification is one technique which

57
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belongs to the structural methods. Graph matching, and the problem of graph isomorphism, is an
extension of these techniques to higher dimensional structures while Hidden Markov models can

also be used.

The idea is whether we will try to match a pattern with one of a number of prototype patterns
or if we will try to use the characteristic way with which patterns of a class are formed in order
to classify the unknown pattern. Syntactic methods are following the second way. Patterns can be
thought of as words in a language. These words consist of symbols representing pattern primitives.
For each class of patterns, there is a set of rules defining their structure. Thus there is a grammar
for each class of patterns and consequently the members of that class belong to the language which

this grammar creates. An unknown pattern is classified according to the language it belongs to.

The advantage of structural and syntactic methods over the decision theoretic ones is that a
description and classification of patterns in terms of their structure is achieved. That results in
more complete understanding of the patterns by utilizing the relations among their basic compo-
nents. However, decision theoretic methods have better behaviour in classifying noisy and distorted
patterns and their algorithms are computationally inexpensive when compared with the ones for
syntactic and structural methods [94]. Emanating from these facts is an endeavour for combining
and unifying the two main approaches for pattern recognition. This results in the incorporation
of attributes describing pattern primitives and their relations and the use of statistic methods and

probabilities as an attempt to enhance structural based methods with error handling capabilities.

As the system presented in this thesis follows the guidelines of the structural and syntactic sys-
tems for pattern recognition, this chapter presents the basic notions and ideas behind these meth-
ods. These are presented at an introductory level providing the basic background for discussing
the similarities and the differences between this system and other syntactic and structural based

systems.

First the data structures which can be used for the symbolic representation of patterns are
presented. Then, the basic tools and ideas for structural systems based on symbolic matching
are introduced. After that, an introduction to the syntactic methods follows. Finally the chapter
ends with a summary where a comparison between the presented methods and our architecture is

attempted.
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5.2 Symbolic data structures for pattern representation

As mentioned earlier, the idea of using symbolic data structures in order to represent the patterns
is due to the fact that the information about the structure of the patterns must be preserved. Strings
are the simplest data structure that can be used for the symbolic representation of patterns. A
string is a word of arbitrary size composed by symbols of an alphabet. In the case of syntactic
and structural pattern recognition this alphabet is the set of all the symbols representing the pattern
primitives which are used for composing the patterns we are interested in. An example of a string

representation of a pattern can be seen in fig. 5.1

S VAVAVEEEE A

Figure 5.1: A symbolic representation of a pattern using a string of symbols. The pattern can be

represented as abecbbecbbecba.

Having the alphabet of symbols, ¥, the patterns can be considered as possible words over 3.
The set of all possible words over X is represented with 33*. There are subsets of ¥* where all their
members are following a number of rules. For example, the set of all strings having the structure
a(beeb)™a. These rules are specified by a grammar, G, and the corresponding subset of ¥* is
called a language produced by G, L(G). Although more details can be found in section 5.4 it is
easy to imagine that a class of patterns sharing similar structural characteristics can be described

by a grammar and represented by the corresponding language.

Thus, in a perfect world, all that somebody has to do in order to classify an unknown pattern
having its symbolic representation is to find out which language it belongs to. Another way is to
compare the unknown pattern with a number of prototype patterns in order to classify it. This form
of comparison can be performed using a kind of distance metric and it is called nearest neighbour
classification. Other methods for symbolic matching, e.g search for isomorphisms, can be applied

as well.

Whatever way is used for the classification of patterns having their symbolic representations,
when strings are involved the algorithms are the simplest compared with other symbolic data struc-
tures. However, strings are inherently one dimensional and thus there are limits in their descriptive
power. The relations between the pattern primitives represented by symbols in a string are usually
confined to the type of ‘followed by’ or ‘precedes’. Of course, and as K.S.Fu notes in [95], there

is an interplay between the complexities of the pattern primitives and the descriptive power of the
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symbolic structures with an extension to the complexity of the relevant pattern grammars. Thus,
using more sophisticated pattern primitives we can increase the descriptive power of the symbolic

structure. But then we need a more ‘expensive’ system for producing these representations.

Another way to increase the descriptive power of strings is to use the Picture Description Lan-
guage (PDL) [96]. In that, four binary and two unary operators are introduced. Pattern primitives
now have two connecting points, a head and a tail, and by using these operators more complex pat-
terns can be described. An example of using this method is the system in [97]. Extending this idea
to more concatenation points at the primitives we have the plex structures and the plex grammars
[98].

A more powerful method for representing structural information is by using graphs. Relations
between pattern elements, existing in two or higher dimensional space can be directly represented
using this structure. A graph consists of a set of nodes and edges connecting these nodes. Usually,
the nodes represent the components of a pattern and the edges represent the kind of relations
existing between those components. The nodes in a graph are usually labelled. A name that can be
found in the literature for this kind of graphs is webs. When the edges in a graph have directions

then we have a directed graph.

Using graphs more complex patterns and scenes can be symbolically represented. In a direct
analogy with strings, graph grammars and methods for classifying graphs using graph distance
exist. When there is a direct mapping between the nodes and the edges of one graph with the

nodes and the edges of another graph there is an isomorphism between the two graphs.

The trade off for the descriptive power of graphs is that they are computationally expensive. A
structure less complex than graphs and yet more powerful than strings is the trees. By analogy to
trees found in nature, a tree has (1) a root, (2) a number of intermediate nodes and (3) a number of
terminal nodes, leaves. The root has only outgoing links, the intermediate nodes have exactly one
incoming link and a number of outgoing links while leaves have only one incoming link. Trees
can be used for hierarchically describing a pattern having the complete pattern as the root and
the pattern primitives as the leaves. The intermediate nodes represent sub-patterns which can be
formations of pattern primitives or simpler sub-patterns. A study of matching tree structures is

given by Sanfeliu in [99].

Another data structure that can be used is that of arrays. In an array, a placement of nodes

into rows and columns is followed. Thus, following either a four-neighbourhood or an eight-
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neighbourhood approach, a node is directly related with its four or eight neighbours in all direc-
tions. Hexagonal arrays can also be found where a slightly different approach is followed and each
node is directly connected to six other nodes. Arrays can be thought of as the direct extension
of strings to two dimensions. Again, array grammars and array matching methods exist for the
classification of array represented patterns. An example of using arrays to represent patterns is the

system presented in this thesis.

The common characteristic of the above data structures is that they all describe relations be-
tween the primitive parts of patterns. Moreover, strings, arrays and trees can be thought of as
special cases of graphs. Actually, a graph is itself a special case of a relational description [100]
where there are only binary relations among the basic parts of the entity which is described. To
make things simple, if we consider a set % of the symbols representing the parts of an entity, then

any subset R of the Cartesian product X" = ¥ x ... x X is called an n-ary relation over ¥. An
[ —

n
n-tuple in an n-ary relation R over 3 represents a relationship of some kind among the elements
of the n-tuple. A relational description , D, of an entity is a set of relations R; over the set 3 of
the parts of the entity. Thus, D = {R1, Ry, ... ,R;},k € N.

The descriptive power of relational structures can be augmented by the use of vectors of char-
acteristic measurements, or attributes, describing the pattern primitives or/and their relations. For
example, the description of a basic pattern primitive, e.g. a line segment, can be augmented by
using information as length, declination, etc. This results in having attributed symbolic represen-

tations which can provide enhanced descriptions of the patterns.

5.3 Symbolic matching

The structural methods classify a pattern comparing its symbolic representation with a number
of prototypes. As it is referred in [94], structural methods are more preferable than the syntactic
ones when the number of prototypes is relatively small, the knowledge about their structure is not

complete and the patterns of each class are not characterized by specific structural similarities.

A metric which is widely used in structural methods is that of the distance between symbolic
representations of patterns. In the case of strings, the distance between two strings x and y, with z
and y € X*, is defined in terms of the transformations required to derive y from z [101, 95]. The

transformations, or edit operations, are basically substitutions, insertions and deletions of symbols
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in the strings.

Usually, there can be more than one way to transform zx into y with a different sequence of
transformations followed each time. By assigning weights to each edit operation, each of these
sequences is characterized with a cost. The minimum cost of all the sequences to transform z into

y is defined as the distance d(x, y) between z and .

Based on string distance the classification of patterns can be achieved using the nearest-
neighbour (NN) method or the K nearest neighbours (K-NN) method. A threshold can also be
added for the classification. Thus, having the class C; with patterns {p1, ps, ..., p, } and class C»

with patterns {q1, g2, --., ¢ } and defining D1 (z) and Do (z) as

Di(z) = min(d(z,p;)|i=1,...,n)

Dy(z) = min(d(z,q)|i=1,...,m)

we have that

xe{ Ci, if Di(z) < Do(z) }

Cy, otherwise

When a threshold is added the distance must be also less or equal to that threshold otherwise
the unknown pattern is rejected. In the case of K neighbours, the distance from a class is taken as

the average of the distances of the K closest to x elements of that class.

The basic method which is used for computing the distance between two strings is a dynamic
programming algorithm proposed by Wagner and Fischer [102]. This algorithm calculates the
weighted Levenshtein distance as it is known and has a space and time complexity of O(nm) where
n and m are the sizes of the strings. The sequence of the edit operations needed is also produced
by this algorithm. Improved versions of the algorithm with reduced time and space complexity can
be found in the literature [103, 104, 105]. A different approach using the Hamming distance has
recently been proposed in [106]. It encodes the strings as binary patterns and produces a distance

which is equal to the corresponding Levenshtein distance.

String distance can be used as a tool for clustering the pattern space. In the pattern classes
produced, the maximum distance between a pattern and others belonging to the same class must be
less than the minimum distance between this pattern and patterns of another class. An extension to

classical string matching is the elastic string matching where n appearances of the same symbol can
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be ‘compressed’ to one and vice versa. Some applications of string matching include recognition
of 2-D shapes [107, 108], seismic pattern recognition [109], handwriting recognition [110, 111],

combinatorial pattern discovery in protein databases [112] and phonetic string matching [113].

The use of string distance is a basic tool for structural pattern recognition. When more complex
data structures are involved (trees, graphs, arrays) the notion of distance can be extended. This is
achieved by the use of more complex edit operations which include substitutions, insertions and
deletions not only of nodes but of edges as well. An overview of how the notion of distance is

applied for tree matching can be found in [99].

Another method for structural matching is by using the notion of isomorphism. Graphs and
trees are the data structures which are mainly used in that case. Informally, a graph is isomorphic
with another graph when there is a direct mapping between the nodes and the edges of the one with
the nodes and the edges of the other. When a graph g1 is isomorphic with a subgraph of another

graph go there is a subgraph isomorphism between g1 and g». The same also applies for trees.

Having a graph g; with n; nodes and a graph go with 7o nodes, a first attack to the problem is
to construct a search tree trying to find mappings between the nodes of the graphs. The problem is
that this method has a computational time complexity of O(n7?) [101]. Using Ullman’s rule [114]
the size of the search tree can be reduced. This rule says that if node = of graph g, is mapped to
node y of graph g and there is a relation between nodes z and z’ of gy, then, if node 3’ of gs is
a possible mapping of z’ there should be the same kind of relation between nodes y and 3’ in go.
In this approach, a future error table, FET, is created having a row for each node of graph g1 and
a column for each node of graph go. The table has binary values and FET(z,y) = 1 means that
node z of g; can be mapped to node y of go. After the initialization of the table and after the first
possible mapping of nodes, FET is updated and the search continues for the remaining nodes of
g1. An incoherent mapping (a, b) will make the updating of FET impossible so the next possible
mapping for node a is checked. If an isomorphism between g; and go exists, the procedure will
end when all nodes of g; have been successfully mapped to nodes of go. If it is necessary, the

algorithm can be continued until all possible mappings for all nodes have been checked.

Actually, the above algorithm is an application of discrete relaxation where both possible in-
terpretations of parts and constraints are set using Ullman’s rule. Shapiro and Haralick refer to it

in [100] as backtracking tree search with forward checking.

An approach based on the idea of graph and subgraph isomorphism and having as a tool the
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graph distance metric is that of inexact graph matching. In that, one graph is considered as a dis-
torted version of the other and the level of similarity is expressed by the number of edit operations
needed for obtaining a mapping of the elements of one graph to elements of the other. Combining
the above approach with the use of attributed graphs is the system in [115]. In that system the
calculation of the distance between the graphs is based on their decomposition in basic graphs and
the use of a dynamic programming technique [116]. Another method for error-correcting subgraph
isomorphism detection is based on a network representation of the graphs while incorporating edit
operations [117] .In that, identical subgraphs of the model graphs are represented only once and

the necessary number of steps to detect exact and inexact subgraph isomorphisms is reduced.

The main disadvantage of subgraph isomorphism detection and inexact graph matching is
that it is a NP-complete problem and has an exponential time complexity. As a possible way to
overcome this, a number of stochastic optimization methods including probabilistic relaxation,
simulated annealing and genetic algorithms have been applied [118]. They have a polynomial time
complexity but the optimum solution is not guaranteed. On the other hand, combinatorial search

methods need to be augmented by heuristics restricting the search space.

5.4 Syntactic methods

As we saw in the previous section, the structural based methods use a ‘one to one’ comparison
between the unknown pattern and the prototypes. However, when the number of the prototypes
is not small this comparison could be a drawback. Additionally, there might be the case where
structural similarities exist among the patterns of each class. The most appropriate method to be
followed in that case is to, somehow, ‘store’ the structure of the patterns of each class in some form

and then search which form the unknown pattern is coherent with.

One approach is to use Hidden Markov Networks [101, 119]. Then, one representative model
is generated for each class and probability distributions are used in order to handle the varia-
tions among the patterns belonging to the same class. Another approach is to use the notions of
grammars and languages from formal language theory. In that, structural information is encoded
as rules, or productions, of a grammar and each class has its own grammar representation. The
latter approach is the basis of the syntactic pattern recognition. In the following paragraphs ba-
sic concepts from formal language theory are briefly introduced and their application for pattern

recognition is presented.
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5.4.1 Basicformal languagetheory

As it was mentioned in section 5.2, having a set, or alphabet, of symbols, 3, the set of all possible
sentences over X is represented with X*. This set is called a closure over X and also contains the
empty string, ¢, which is a sentence with no symbols. The set represented with X7 is called a

positive closure over 3 and it is ©* = £* — {e}. Any subset of * is called a language over 3.

A grammar, as is defined in formal language theory [120], is a four-tuple G = {N, T, P, S}
where,
N is afinite set of non-terminals,
T s afinite set of terminals,
P s afinite set of productions of the form o — £,
S isastarting symbol, S € N.

The intersection of sets V and 7" is the null set while their union is represented with V. That
is, NNT =@ and NUT = V. Any production p € P is of the form a — 3 where « € V*NV*
and 8 € V*. The productions represent ways of rewriting sentences of V' ,where at least one
non-terminal exists, to sentences in V*. There are no rules for rewriting combinations of terminal
symbols only. Thus, starting from symbol S and following the set of productions in P, after a
number of rewritings we end up with sentences containing only symbols from T'. The derivation

of y starting from x and following a series of productions is represented as x = y.

The subset of T containing sentences over T' which are created according to the productions

in P is called a language created by grammar G and is represented as L(G). Thus,

LG) = {z|zeT"S=z}

Grammars can be classified to four categories according to their productions. When there are
no restrictions to the form of the productions in P the grammar is called unrestricted. When the
productions are of type zAy — zzy where A € N, z,y € V*and z € VT the grammar is
called context sensitive. This is due to the contextual prerequisites which exist in order for the
productions to be applied. A context free grammar has all its productions in the form A — =z
with A € N,z € V. Finally, a grammar is called regular when the productions are of the
form A — aBor A — a where A,B € N and a € T. The above classification is known as
the Chomsky hierarchy. It must be noted that regular grammars are a special case of context free

grammars, context free are a special case of context sensitive and context sensitive are a special
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case of unrestricted grammars. Grammars are also called as of type 0,1,2,3 from unrestricted to
regular respectively. This type of classification is also used for the languages according to the most
restricted grammar which can create them. The type of grammars mostly used in syntactic pattern

recognition are the context-free and the regular ones [101].

The above definitions are presented in a string oriented manner. However, they can be extended
for higher dimensional data structures like trees, arrays and graphs. The additional requirement
is that productions should now be enhanced with specific descriptions for their application. For
example, in a graph grammar where rewriting rules may exist for replacing a subgraph g, with
another subgraph g-, the relevant production should also specify how the nodes of g5 should be

connected with the nodes adjacent to g .

One more concept in formal language theory is that of the automaton. An automaton can be
thought of as a mathematical model of a computation machine [121]. In its general form it is a state
machine and it is characterized by a set of states, a set of input symbols, a set of output symbols
and a set of mappings between combinations of input symbols and states to output symbols and
states. One aspect of automata which has special interest to syntactic pattern recognition is that
they can act as recognizers of languages. That is, having as input a sequence of symbols they can
decide, in general, whether that input belongs to a specific language or not. Among the different
types of automata we can distinguish the finite state and the push-down automata for their ability

to recognize regular and context-free languages respectively.

A more direct way to decide whether a sentence of symbols belongs to a specific language
or not, is to attempt to construct its derivation tree according to the productions of the relevant
grammar. If the attempt is successful then the sentence belongs to the language. A derivation tree
is a tree having as root the starting symbol, nodes from the set of non-terminals and leaves from
the set of terminals. For each node and its offspring(s) in such a tree there should be a production
having the node as the left hand part and the offspring(s) as the right hand part. The procedure of
constructing the derivation tree, and effectively finding the productions sequence to be followed
for the construction of a sentence z, is called parsing of z according to grammar G. Parsing
can follow either a bottom-up or top-down fashion. The former starts from the actual sentence of
terminals and proceeds by reverse applying the productions trying to reach the starting symbol.
The latter starts from the starting symbol and proceeds by applying the productions aiming to the

reconstruction of the input sentence.
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Depending on the options available at each stage of the rewriting process, a grammar can be
classified as deterministic, non-deterministic or stochastic. In a deterministic grammar there is
only one option available at each step. That is, there are not two, or more, productions having
the same left part and different right part. Thus, rewriting proceeds with well determined steps
at each time. In a non-deterministic language, there might be more than one possible steps to be
followed when applying the rewriting rules. Whether one or an other production will be applied
depends at the specific case. Thus, the decision to apply a specific rule could be right at one case
and wrong at another. At the latter case, when the wrong rule is applied, backtracking might be
necessary. A similar situation, more than one available productions, exist in a stochastic grammar.
However, each production in that case has a probability value assigned to it. This value represents
the frequency with which the rule is used when deriving the sentences of the relevant language. In
the case of a stochastic grammar each derivation is characterized by the product of the probability
values of each production used. It must be noted at this point that it is possible for a sentence to
be derived with more than one sequence of productions. This is characteristic of an ambiguous

grammar.

5.4.2 Syntactic recognition

For the application of formal languages theory to pattern recognition the set of terminals corre-
sponds to the pattern primitives, patterns are symbolically represented by means of a relational
structure and a grammar is associated with each class. Non-terminals represent more complex
formations of pattern primitives or repetitive structures in the patterns. However, as Tanaka notes

in [122], their meaning can be more abstract or indirect.

Parsing

In order for an unknown pattern to be classified as belonging to class C; it must be possible for it
to be parsed according to the underlying grammar G;. Some well known string parsing methods
are the Earley’s [123], the CYK [124], and the direct parsing [125]. The first one is a top-down
method using lists and the second is a bottom-up approach using triangular tables. In both of them,
a successful parsing is characterized by the existence of a node or a cell containing a specific value
after an iterative procedure. As the name suggests, direct parsing is following a different approach

trying to construct the derivation tree directly. This method includes backtracking when necessary.
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Since most patterns are not presented in a perfect and noise free form, the parsers should
include error handling capabilities. In Earley’s method this is implemented by the use of the
covering grammar [101]. This is the basic grammar model augmented with productions necessary
for the error correcting transformations, i.e. substitution, insertion, deletion. Using the covering
grammar the parser always ends up with a solution. Moreover, a number is also produced as
a result of the transformations that need to be applied to the input pattern in order for it to be
accepted from the original model. Nevertheless, the use of the covering grammar, which is more
extended than the original one, has a negative effect in the time and space needed for parsing. A
different extension of the Earley’s algorithm for error correcting parsing without the use of the
covering grammar along with other string parsing and error correcting parsing methods, which are
more or less variations of the basic ones, are presented in [126]. Some ideas for parallel parsing
and VLSI implementation of extensions of the basic model of the Earley’s method are presented
in [127].

Combining the error correcting parsing methods and the notion of the distance between pat-

terns, as referred in section 5.3, the distance between a pattern and a language can be introduced

and used for the classification of the input patterns.

When a more extended representation ability is required strings are not always adequate. Thus
the use of higher dimensional structures is necessary. Trees can be used as a first step. An example
of a fingerprint recognition system using tree grammars and automata is presented in [120, 128].
Graphs are the next generalization. Due to their extensive description power, they have been widely
used for pattern representation. However, the parsing of graph structures using graph grammars
has not been an easy problem [129, 130]. That is one of the reasons that the use of plex structures
and picture description languages were preferred [131]. One case where graphs can be applied for
syntactic pattern recognition is when some restrictions are imposed to the general graph grammar
model. Then, algorithms can be constructed for parsing and error correcting parsing the resulting

grammars. Such an approach is presented in [130] and is tested in industrial robot control systems.

A variation of the conventional graph grammar model is presented in [129]. The model is
extended by controlling the application order of the productions and augmenting the nodes and
edges with attributes. Additionally, instead of parsing the input graph a transformation of it to an
output interpretation takes place. The transformation is guided by the productions of the grammar
when applied according to a specified sequence provided by a control diagram. If an output inter-

pretation of the input graph is not possible then the input is rejected. Thus, instead of constructing
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a hierarchical description of the input pattern this is transformed to its highest level representation.
An application of this model to circuit diagram and flow chart recognition is also presented in
[129].

Grammatical inference

A very important issue in syntactic pattern recognition is that of grammatical inference. That is
the derivation of a grammar given an example set of patterns. The example patterns belonging to
the language that the unknown grammar should generate are called positive examples. Examples

not belonging to this language are called negative.

A basic theoretical aspect in grammatical inference and a criterion for the successful learning of
a language is that of the identification in the limit [132]. Simply stated, identification in the limit of
a language L given a set of positive, ST, and negative examples, S—, is finding a grammar G such
that L(G) = L, St C L(G), and, S~ N L(G) = 0. Moreover, for grammars G; corresponding
to sample sets of increased size, it is L(G;) = L(G). According to Gold in [132] we have two
fundamental results. The first one is that for every grammar G; in an admissible class of grammars,
C, G; is identifiable in the limit by a structurally complete sample of both positive and negative
examples. Two necessary definitions are the following: (1) A class C of grammars G; is called
admissible when it is denumerable and for every z in T* it is decidable whether z € L(G;) or
not for any G; in C while (2) a positive sample ST is called structurally complete when () its
vocabulary (set of terminals used) is the same as the one of the unknown grammar G and (i7)
each production in G is used at least once for the derivation of the patterns in the sample. The
second result is relatively negative in nature and says that for an admissible class C' of grammars
G; generating finite languages L(G;), if C has at least one grammar G, s generating an infinite

language L(Gny) then L(Gy, ) is not identifiable in the limit through positive examples only.

The majority of the grammatical inference methods refer to regular grammars. This is justifi-
able by the fact that although regular grammars have the least description power compared to the
other grammars of the Chomsky hierarchy, they are the easiest to operate with. The notions of
canonical grammar/automaton and of the derived grammar are common place in regular inference.
A canonical grammar G, produced by sample set ST is the one for which L(G.) = S*. Any
grammar G, derived from a canonical grammar G by partitioning the set of non-terminals into

equivalence classes is called a derived grammar and it is L(G.) C L(Gg4). The set of the derived
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grammars defines the set of potential solutions we are looking for and focus moves to finding the
optimal one. The problem is that the number of derived grammars of a canonical grammar G is
in analogy with the number of symbols in the alphabet of the complete sample set used for cre-
ating G.. We limit ourselves in saying that this number is 105 and 10'® for 10 and 20 symbols
respectively [133]. A formal discussion about the search space of the regular inference is given
in [134]. The basic methods for regular inferencing are described in [135, 136, 120, 133]. Most
of them are based on inferencing a canonical automaton from the sample set and then minimizing
the derived regular grammar. The identification of regularities in the sample set and the use of
k-tails® are amongst the basic techniques used. The use of recurrent neural networks (RNNSs) in
order to learn regular grammars using positive and negative samples has also been reported [137]
and hybrid systems combining neural processing with symbolic representation and processing ex-
ist [138]. Some problems connected with this case include the possibility of bad generalization,

failure due to local minima and insufficient control of the induction process [139].

Context free grammars have better description power than the regular ones and are more com-
plex. Unfortunately, so is the problem of their inference. The majority of the methods are referring
to subclasses of context free grammars and some of them are extensions of the methods for the reg-
ular grammars. The inference with a help of a ‘teacher’ answering queries for discovering nesting
or recursive structures in the positive sample, the use of precedence relationships on the elements
of the sample and constructions such as the pivot grammars are the most referred techniques and
heuristics [135, 120, 133]. Lately, the augmentation of the words of the sample with their unla-
belled derivation trees has also been suggested and used for inferencing context free grammars
consistent with the samples [140, 141, 142].

Moving to higher dimensional grammars we find methods for inferring tree and array gram-
mars. The basic principles for grammatical inferencing and similar heuristics are again followed.
However, they are extended to meet the higher complexity of the multi-dimensional structures
[143, 133, 120]. An attempt to construct a mathematical basis for the tree inference methods is

presented in [144] while a method for inferring context free array grammars is presented in [145].

In the case of stochastic grammars the assigning of probability values to the productions of
the inferred grammar is also required [133, 120, 143]. One way to estimate these probabilities is
to calculate the relative frequency by which each production is applied to generate the example

patterns. Of course, this method requires that the productions themselves are already known and

The k-tail of 2 with respect to the set of patterns A is the set (2, A, k) = {u | zu € A, |u| < k}
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the derivation tree for each example pattern can be constructed. Another approach is the extension
of the k-tails method for the inference of stochastic finite automata from sample sets augmented
with the probabilities for each example pattern. Prefix tree acceptors (PTAs,[134]) can also be used
for the inference of stochastic regular grammars and an algorithm is presented in [146]. The use of

probability estimation methods applied in Hidden Markov Networks is also considered [147, 148].

A system for the analysis of seismic data using finite state grammars inferred from the training
samples and error correcting parsers is presented in [109]. In the same reference, string distance
is also used as an alternative approach. Some other applications of syntactic pattern recognition
systems include recognition of handwritten mathematical formulas [149], analysis of skeletal data
from X-rays [150], analysis of EEGs and ECGs [151, 152] and [153, 154], hand line drawings
interpretation [155, 97] and recognition of vehicle identification numbers [156]. Of course, the list
of applications is not limited to the ones mentioned above, [157], and also includes approaches for

speech recognition and language modelling.

Although these methods have been successfully applied in a number of cases, they have their
drawbacks such as the computational complexity of the algorithms, sensitivity to noise and errors

in the patterns and the lack of generality and robust learning abilities [158].

5.5 Summary

The basic notions and ideas of the syntactic and structural methods for pattern recognition were
presented in this chapter. These methods are based on information about the structure of the
patterns and are not relying solely on the representation of the patterns as vectors of attributes in
order to classify them. The data structures which are used for the representation of the patterns

were also presented.

As we saw, structural methods rely on a prototype matching approach comparing the unknown
pattern with a set of models. Syntactic methods on the other hand are following ideas from formal

language theory aiming to represent each class of patterns with a corresponding grammar.

While achieving a more complete understanding of the patterns in terms of their structure,
these methods have their drawbacks. As already mentioned, the computation complexity of their
algorithms, the sensitivity to noise and errors at the input patterns and the lack of robust learning

capabilities are some of them [158]. The lack of generality and the ad hoc approaches to problems
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also characterizes these methods. An attempt to overcome some of these drawbacks is the incor-
poration of ideas from statistical pattern recognition. This results in having attributes for pattern
primitives and relations and assignment of probabilities to the productions of the the grammars.
Although a step towards the right direction there are still some problems left. Referring to syntac-
tical systems the problem of grammatical inference and the complexity and sensitivity of parsing

are important obstacles.

The system presented in this thesis is an attempt to overcome these difficulties. It uses a bottom-
up approach with characteristics reminiscent of the system in [129] where a programmed graph
grammar is used and a transformation of the input pattern to its output representation takes place.
However, a message propagation process is applied in our case. Thus, constraints and information
can be exchanged and have the potential to guide the recognition process. The messages are
exchanged between processing elements which are aligned in a cellular array and their places

correspond to the ones of the pattern primitives.

From the point of view of a syntactic system, rules are inferenced for every training pattern.
However, the notion of class is not as strictly defined and these rules are added above the existing
ones without having different grammars. This ‘universality’ of rules is essential for the parsing
mechanism which transforms the input to a corresponding characterization or nearest character-
ization(s). Of course, such an approach requires speed for the management of the rules, high
storage capacity and error tolerant operation. These criteria are met by the use of the AURA type

associative memories as the underlying processing engines of the system.



Chapter 6

Cellular Associative Neural Networks

6.1 Introduction

In the chapter about computer vision architectures we had a general view of the issues related
to image interpretation. A number of systems for various image understanding tasks and the
methods applied were discussed. Parallelism, one of the main requirements for such a system, was
provided either using conventional approaches or connectionist suggestions. As we noticed, the
latter case needs to be integrated with other techniques in order to offer more generic solutions
which will still benefit from the self adapting abilities of neural networks. Relaxation labelling
is one such technique. However, a significant amount of preprocessing was needed before this
technique was ready to be applied and in some cases different models of connectivity were required.
Nevertheless, the idea of employing relaxation labelling was still very interesting by itself. After
all, it is primarily a constraint satisfaction problem what we are faced with. The question is how
simple preprocessing, automatic constraints generation, problem independent connectivity and

high descriptional power can be combined all together.

The idea of syntactic and structural pattern recognition was presented in the previous chapter.
As we saw this is the most appropriate approach when the patterns to be recognized are charac-
terized by complex structural relationships. However, the problems with these methods were also
presented at the previous chapter. What is needed is a different approach which will provide more
generality, simplify the grammatical inference, tolerate noise and errors at the inputs and counter

the computational complexity by parallel and distributed processing.

73
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Having a cellular architecture and employing connectionist symbolic processing, the proposed

system attempts to offer solutions to all the above mentioned problems.

6.2 The emergence of the architecture

When faced with a large problem, the most intuitive approach is to partition it into smaller ones. As
we saw in chapter 4, this is the general idea followed by most image interpretation architectures.
The partitioning starts from the initial division of the whole task into stages where information at
different levels of abstraction is handled. The introduction of parallelism at these stages is the next
step. Parallelism can be provided in various forms. The use of arrays of complex processors which
operate as inference and control engines handling arrays of simpler processors which perform low
level tasks is the form provided by most of the knowledge based systems. However, we saw that
the solutions offered by these systems lack learning and self adaptivity options. At the same time
they handle information using conventional methods which can be slow and not easily scalable.
On the other hand, the parallelism offered by the connectionist models is not by itself sufficient
in order to offer a generic image understanding system. The solutions offered by neural networks
are generally problem specific because they lack the descriptional power required otherwise. The
large size of the network and the very wide set of training samples which would be needed in such

a case is usually a prohibiting factor.

A positive step towards the application of neural networks for more generic and high level
vision problems is their integration with other techniques. Relaxation labelling and generalized
Hough transform are two examples. In the relaxation labelling approach the idea is to start with
initial labellings for the objects existing in a segmented image and then converge to a solution
which is consistent with a set of constraints. The segmented image is represented as a graph with
the nodes being the regions to be labelled. The neural networks offer their ability for convergence to
a ‘low energy’ configuration or, additionally, their ability to operate as associative memories where
items can be associated and content based recalling can be performed. As we saw in the sections
describing these approaches, the same set of labels were used at all the stages of the relaxation
processing. Of course, this is a characteristic of relaxation labelling in general. Inconsistent labels
for objects are removed during the process. However, the use of one set of labels implies that they
should be the object level ones. This results in two facts. The first is that the requirements for the

preprocessing stage are increased because the segmentation should be as accurate and complete
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as possible. The second is that due to the various connectivity patterns among the nodes of the
graphs, a stable connectivity pattern among the neural network modules themselves cannot be
applied. When the neural network modules should be interconnected in order to operate and each
module handles only a subset of constraints concerning the nodes it corresponds to, limitations are
imposed on the approach leading to ad hoc directions. A more subtle way to handle this problem
is to store the entire set of the constraints into the associative memory modules. In that case an
increased capacity from the network is required. We saw on the previous chapters that the use of
Correlation Matrix Memories offers a solution to this problem by allowing a small probability of

recalling error.

The set of the constraints which are needed for the relaxation are obtained from instances of
proper labellings. Learning is achieved as simple as that. Sets of compatible combinations of labels
existing in training images are stored into the associative memories. A level of generalization is
inserted in the operation of these systems by exploiting the neural networks ability to generalize
and produce answers with “sufficiently close’ inputs. When the current labellings are used as
inputs the neural network responds with the set of labels which are compatible. Applying this
procedure at all the nodes and using the answers as masks which are used in order to refine the
previous labellings allows the system to converge to consistent solutions. The new labellings can

be reapplied if more accurate configurations are sought.

The need of laborious and detailed feature extraction does not occur when a combination of
neural networks and GHT is applied [44]. CMMs are used again in that case and their task is to
associate small blocks of pixels with the sets of data required for the evidence accumulation task.
Generalization here is inserted in the feature extraction process where similar features return the
same data set. In search for a more effective solution to the problems of clutter and false positives,
local neighbourhood information is employed and feedback is introduced resulting in a relaxation
like approach. The initial responses from the feature recognizers are filtered and only consistent
features are allowed to contribute to the final evidence accumulation. The use of simple features
which results in simpler preprocessing is among the merits of this approach where parameter space
transformation is required in order to identify the objects in the image. Two Kkinds of labels are
used in this system and they either represent features or objects. Although providing a powerful
image understanding architecture, certain questions regarding the complexity of the objects that
can be handled might arise. Since evidence is interpreted in a two stages approach, more complex

rules defining the formation of objects may elude.
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The indications that we have so far are that a connectionist system based on CMMs can be
effectively used for relaxation labelling, connectivity of modules and preprocessing matters are
related with the nature of the labels involved and that the use of more than two levels of labels is

necessary should more complex questions about the structure of the objects need to be addressed.

The idea of describing patterns using notions from formal language theory is used in the syn-
tactic and structural pattern recognition and offers a solution as long as the labels are concerned.
As we saw in the previous chapter, three sets of labels can be used. The initial one is still referring
to basic features which can be easily extracted as O’Keefe’s system demonstrated. The set of the
object level labels is also still there. The additional set, the set of intermediate labels, would be
used for describing the formation of complete patterns from pattern primitives in the same way as

the set of non-terminals is used in formal languages.

The idea of using a syntactic like approach is very interesting because it provides an elegant
way to describe the patterns. At the same time, the description starts from the level of basic
features, pattern primitives, and complex preprocessing is not required because the main effort
for the recognition is carried out from the syntactic processing. However, the question is how
we can apply this idea without inheriting its problems. These problems were discussed in the
previous chapter and the more important were the grammatical inference, the lack of generality
and tolerance and the computational complexity. The computational complexity refers both to
grammar inference and parsing. In the recognition process, the syntactical systems apply the
productions specified by a grammar in order to reach one specific state, starting symbol, or starting
from this to reconstruct the pattern under question. In a way, they see the entire pattern as a whole
and they are trying to handle it as such. But this leads to the dimensionality problem. Of a different
kind of course since the process is divided into different layers of abstraction but still a complex
grammar is required. Here is where the problem starts. The higher the level of complexity of the
grammar the richer its repertoire of patterns but, unfortunately, the more difficult its inference and
parsing.

It is now when the notion of cellular automata can provide the missing link. Visited in the third
chapter, cellular automata present a model for parallel and distributed processing based on simple
processing units and local neighbourhood connectivity. The basic idea is that a cellular array of
relatively simple processing elements exists and at each time instant the state of each processor is
determined by its previous state and the previous states of its direct neighbours. The same set of

rules is applied from every processing element in the cellular array and although the simplicity of
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the model and of the rule sets, complex behaviour can be demonstrated. This behaviour emerges
from the cooperation of the simple processing elements and is due to the local connectivity and
distributed processing framework which is followed. Albeit having a local neighbourhood based
communication, examples of global propagation of information exist. From the examples of ap-
plications of cellular automata presented in chapter 3 we see that information of numeric nature
is generally processed. Of course, this is not a restriction imposed by the model. Indeed, we see
that Von Neumann’s twenty nine states and four neighbours connectivity automaton was capable
of simulating a Turing machine ! The use of numeric information relates more to the requirements
of these applications and to the relative difficulty which arises when symbolic messages and not

values only should be handled.

Things are starting to get clearer at this point. Cellular automata can provide the model of
processing. One of an evolutionary and ‘virtual” multilayered character as well as of a parallel and
distributed nature. Syntactic pattern recognition offers the idea of patterns composed from subpat-
terns and formations of basic elements and of the existence of rules to describe this process at every
stage. CMMs, and specifically the AURA model, contribute the powerful connectionist symbolic
processing engine required in order to handle efficiently a large number of rules. Relaxation can
offer the idea of constraints that have to be satisfied in order to derive a consistent labelling and
also an indication about how these constrains could be obtained. However, a product of the idea

of relaxation would be rather used as we also have the existence of different levels of labels.

It is interesting now to see what would happen to the previously mentioned problems should
such a combination existed. Complex preprocessing would not be necessary as the extraction of
basic features only would suffice. Since basic features would be extracted in a grid based manner,
a constant connectivity model for the neural modules could be applied. That of the cellular array.
Every basic feature would receive symbolic information about the state of its neighbours and it
would be gradually transformed to parts of a more and more complete subpattern until the object
level was reached. At that point, all the processing elements initially having as labels the features
belonging to an object would obtain a label indicating that object. This is how the problem of
parsing would be solved. Instead of a global gathering and centered based approach, each unit
would be left alone to apply the set of rules dictating its next state. The problem of dimensionality
would be countered by partitioning the object into units which could communicate and locate each
other and individually decide whether or not they are parts of the same object. Generality and

tolerance of errors at the input would be offered by the neural networks ability to generalize and
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handle uncertainty at their inputs. This would be both at the feature extraction level as well as at

the symbolic processing one.

However, several questions need to be answered. The most important is how the set of con-
straints, interpreted as a set of rules, would be derived. How would the rules describing the forma-
tion of complete objects starting from pattern primitives be produced ? How could this process be

performed automatically ?

Another question regards the states of the processing elements and the propagation of mes-
sages. How should the states be represented in order to allow existence of multiple evidence lead-
ing to more than one objects at the initial stages ? What should be the form of the messages and
what kind of information should they provide ? Should empty cells change their state ? What are
the benefits and what the disadvantages from that ? How could messages be propagated through

empty cells if they did not change their state ?

The handling of noise and abnormalities at the patterns is also another source of queries. How
would it be achieved ? How would the use of connectionist associative memories for handling the

rules help ?

One more question is about the form of the processing units. Would one associative memory
module only be enough ? By what means is the form of the processing units connected with the

propagation and error handling abilities required by the architecture ?

The next section starts the description of an architecture in accordance with what has been

mentioned earlier and possible answers to the above questions are presented and discussed.

6.3 The derived model

Motivated by the quest to combine the parallel and distributed processing model of cellular au-
tomata with the descriptional power of symbolic representations and syntactic processing in order
to provide a robust system for object recognition which would beneficially employ neural process-

ing, the Cellular Associative Neural Networks (CANNSs) are derived.

In this model, the recognition of the patterns is achieved through the operation of a cellular
network of simple and homogeneous symbolic processing units. Each processing unit is able to
perform a set of symbolic rules defining its state and the messages to be passed to neighbouring

units. The initial configuration is a symbolic image produced after the initial labelling stage and
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each iteration corresponds to a higher level of abstraction. Messages are exchanged between the
processors and after every iteration each cell is aware of the state of more distant cells. This is
reflected in their state and when cells receive sufficient information about their neighbours they
can have states representing complete patterns. The basic concept for the operation of the model

is demonstrated with the help of a one dimensional CANN in figure 6.1
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Figure 6.1: The basic concept of the function of the CANNSs during recognition. Six consecutive
configurations of the process for the recognition of object O which consists of features f1 and fo
are depicted. The operation starts with feature level labels f; and f, assigned at the appropriate
cells after the initial labelling process and these cells notifying their neighbours of their content.
At the next step, time 1, the state of these cells is ¢, (1) and ¢,(1) respectively, where ¢, (™ represents
the transitional state of a cell at time n when the initial state of the cell was fj. At the same time,
the messages have been propagated one cell further. Each message is a symbol representing which
feature it has been initiated from, the distance it has travelled so far and what other states it has met
on the way. Thus, when the cell with state ¢;(*) receives the message initiated from f», it becomes
aware of the fact that f2 is 6 cells away and nothing intervenes on the way. This is the condition
for it to change its state to one representing that it is part of object O. The same is happening at

the other cell at the same time.

The series of configurations in figure 6.1 is a simple example illustrating a basic concept in
how recognition is achieved in a CANN. For simplicity, only the initial messages are shown. In
reality, a message is transmitted from all the non empty cells at all times. Each cell is called an

associative processor and it employs connectionist symbolic processing in order to perform its
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tasks. Since each cell has to decide about its next state and must also propagate messages, the need
for two modules, one for each task, arises. An additional module is also provided in the case that
an alternative method to achieve communication and state decision is sought. The existence of two
modules at least is necessary in order that propagation of messages can take place without the need
for empty cells to alter their states as the latter case would increase the size of the rules and labels
sets, thus posing an extra load at the associative memories. This will be examined in more detail
in the next section which refers to the exact form of the associative processor, the connectivity

patterns, the messages and the rules.

The operation in CANN follows a different kind of relaxation labelling than what we saw in the
systems presented earlier. Starting with initial labellings representing the nature of the underlying
features, the cells are progressively altering their state towards higher levels of abstraction. A
simple feature which could exist in all possible objects that could be recognized by a CANN
would indicate that that cell could end up with all possible object level labels. As messages from
neighbours arrive, the cell is forced to alter its state to a new one which represents a feature
formation that could be found at a reduced number of possible objects. This process is repeated
and leads to an ever decreasing number of possible objects that the cell could belong to. Thus, a
constraint satisfaction and propagation process is performed but it starts at a very basic level with

all the benefits that escort this approach.

Alternatively, the operation can be seen as a very subtle and quick form of template matching
exploiting parallelism at its best. All the possible objects that can be recognized by a CANN are
checked each time a cell updates its state. Since objects are not represented by templates but by a
set of rules, searching in the sets of rules for the best match could be in analogy with checking if a
template “fits’ at a specific cell. The rule searching is inexpensively performed in parallel for all the
possible objects since associative neural processing is employed. Additionally, the rule searching
can be performed with varying levels of tolerance allowing the handling of uncertainty at the
inputs and thus providing generalization and error handling abilities. This parallel operation of the
units also relieves the model of the complexity which is associated with parsing. A decentralized
approach is followed where the aim is for each cell to ‘build’ its derivation tree in a bottom-up
manner obeying at the same time at the orders set by its neighbours. Thus, a ‘pruning’ method for

building the derivation tree upwards is performed.

Two different kinds of parallelism exist in two different levels at this architecture. It is both at

a processing unit level and at the same time at a processing in the unit level. CANNSs are composed
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of processing units, the associative processors, which can operate in parallel but the operations
inside each associative processor are also performed in parallel since the neural processing scheme
is employed. Apart the positive effect which this has on the speed of the system, the partitioning
of the problems at this level allows errors to be handled little by little and having only a local kind
of effect which can be easily overcome by introducing a small amount of tolerance at the operation

of the associative memories.

Up to this point we have not mentioned how learning is achieved in CANNSs. By learning we
mean the process of producing the set of rules which define how the objects are formed. What
we need is to perform this task automatically using a set of samples called the training set. We
saw earlier that learning by example is performed in systems following the relaxation labelling
approach by just ‘recording’ the combinations of labels existing at the correct labellings provided
by the training patterns. In the case of the CANNSs we need a different method because we have
three levels of labels. We need the rule sets which would define the state transitions required in
order to reach the object levels. These state transitions should represent the structural constraints
existing in the various patterns. Had the problem been one of defining the set of rules for the state
transitions of a cellular automaton in order for it to simulate a physical process and thus having a
predefined set of successive configurations, we could follow a method similar to the one suggested
by Richards in [60] where a search on the rule space is performed using a genetic algorithm to
determine the rules with the best ‘fitness’ parameters. The problem in our case is different because
although having a cellular system we do not have the series of configurations that we want to
simulate. On the contrary, we have to build these configurations by ourselves. We also need
learning to have a hierarchical approach; existing knowledge in the CANN should be reused in
order to build more complex descriptions based on the already ‘taught’ ones. The approach that
can be followed to this end is presented later in this chapter. The basic idea is to produce new rules
and transition labels whenever a new state transition is required. As we will see, the use of the
CMMs to handle the rules makes this scheme feasible and effective. Questions arise about when

it is the time to stop creating new transitional states and use the object level labels provided.

The initial idea of CANNS has been reported in [1]. The current architecture is a derivative of
that model employing symbolic processing at a greater level and providing a learning algorithm in

order to produce the required set of state transition rules.
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6.4 Associative processors

Associative processors are the basic processing units in a CANN. Their task is to exchange mes-
sages and to decide about their new state. Each message has encoded information about the states
of the processors that it has travelled through since its initiation. The state of each processor is
decided according to this information. All the processors have the same structure and they all per-
form the same set of symbolic rules. Thus, their operation is location invariant while the operation

of the system can be fully decentralized.

Each associative processor consists of a number of modules. As mentioned in the previous
section the existence of two modules at least is necessary in order to facilitate the propagation of
messages over empty cells when these do not alter their state. One module will decide for the new
state of the processor and the other propagates the messages. Provision for an extra module exists

and provides alternative approaches for communication.

Thus, the three modules which can be used for building up an associative processor are the

following:

Spreader. It converts the input to a form suitable for spreading in each direction. Thus, the re-
sulting output has information about what the input was and which direction it was coming

from.

Passer. It combines incoming messages from neighbours with information to be passed to neigh-
bours. It operates as a symbolic ‘gate’ or “filter’ which will only allow propagation of a

message if certain rules are satisfied.

Combiner. It combines all the incoming information to the processor in order to decide for the
new state. This is the main module of the processor and its output represents the new state
of the processor. At every iteration, this state represents the awareness of the initial state of

more distant processors.

Each module uses the AURA model of associative memory. An example associative processor
is depicted in figure 6.2. The processing unit shown is an example of how the above mentioned
modules can be connected to form a two dimensional associative processor communicating with
four of its neighbours. The role of the modules is clearly depicted in this example. As we will see

next, there can be different ways of connecting the modules and the processors. However, all of
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Figure 6.2: An example of a two dimensional associative processor communicating with four
neighbouring units. The input signal, IN, forms one of the inputs to the passer modules. It can be
either altered using the spreader module or not. In the latter case one passer for each direction is
required. The incoming messages form the other input to the passers and they are also directed
to the combiner module. There, they can be either combined with the input signal or not. The
processor shown does not use the spreader module and combines the incoming messages with the

current state of the processor, IN, in order to decide for the new one, OUT.
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them will be variations of the one shown in figure 6.2 performing the basic tasks of state-altering

and communication.

The spreader module comes from the initial ideas about the form of communicating associa-
tive processors when the passer modules had more simple tasks such as just superimposing their
inputs. The interpretation of passers as symbolic gates and the existence of more than one way
to present the inputs to the associative memories have provided an alternative form of associative
processor which could operate without using the spreaders. However, the spreader module would

be necessary in order to allow a possible multiplexing and superimposing of the messages.

6.4.1 States, messagesand rules

The information in a CANN is represented by the states of the processors and the messages ex-
changed between them. Both the states and the messages® consist of one or more symbols be-
longing to three sets, or alphabets. The first one is the input alphabet and it is the set of symbols
representing primitive patterns. This can be thought of as the set of terminals in a grammar system
[159]. The second is the set of the transition symbols used during the evolution process of the
CANN. These symbols correspond to the non-terminals in a grammar system. They either repre-
sent various combinations of symbols or subpatterns or formations of subpatterns. The third set is
the output alphabet and can be thought of as the set of the starting symbols in a grammar system.
Symbols of this alphabet represent complete patterns and they are the object level symbols of the

system.

The semantics of the messages are directly related with the symbols they are composed from.
Thus, they can represent information at different levels of hierarchy. The initial level is that of
the pattern primitives which the patterns in the input image are composed from. At the top of the
pyramid, the final level, there are the complete patterns existing in the image. The intermediate

levels are used for the transformation from the initial to the final level.

As we saw earlier, the output of the combiner module is the state of the processor. The initial
state is represented using symbols from the input alphabet while symbols from the other two
alphabets (i.e. the transitional and the output) can be used at the later stages. The output of
modules spreader and passer consists only of transition symbols. It was mentioned above that

these symbols can represent either various combinations of symbols or subpatterns or formations

YFor convenience, except when a distinction is necessary, we will refer to both messages and states as messages.
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of subpatterns. A transition symbol used as the output of the spreader or passer modules represents
combinations of symbols and carries information about the states of the processors the message
has travelled through. A transition symbol used as the output of a combiner module represents the
subpattern existing in the area which has its center at the processor and its radius is in relation with
the current iteration number. As we will see in the next section, the shape of this area depends on

the external connection schema.

Each module of the associative processor has its own set of symbolic rules. However, these
sets are the same for modules of the same type. Thus, the operation is location independent. The
rules are of the form input_conditions — output where input_conditions are combinations of
messages and output is either a transition symbol or a symbol from the output alphabet. As we will
see later, these rules are produced during the learning session and they represent the knowledge of
the system about the structure of the training patterns. In an analogy with a grammar system the

rules can be thought of as the productions.

6.4.2 Connection schemata

The connection schemata determine the pattern of connectivity which is followed, both internally
(intra-processor) and externally (inter-processor). These schemata are uniformly applied for all the

processors.

The external connection schema is a set of relative coordinates which specify the coordinates of
the neighbours according to the central cell. The internal connection schema is a set of commands
directing the input and the output of the modules. These commands are defined with the use of two
identical memory maps representing the current and the next conditions within a processor and its
neighbours. Details about how different patterns of connectivity are implemented are given at the

next chapter.

Internal

For the intra-processor case the connection schema defines which messages form the input to a
module and where the output of a module is directed. As mentioned earlier, there can be different
forms of connections using different types of modules and numbers of them. Equivalent or slightly
different behaviour can be exhibited from the different connection patterns. This is because the

main principle of state-alteration according to the states of the neighbours is always followed. The
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variations which can be introduced refer to how the propagation of messages can be performed

more easily and how obstacles met on the way can be overcome.

As we saw at the description of the modules, the basic state-determining module is the com-
biner. This is where information from all directions arrives and according to this the new state of
the processor is decided. There are a number of factors specifying the behaviour of this module.
The way in which the inputs are presented is one of them. Although the technical details of this
factor are examined in the next chapter it is useful to have an initial idea. Thus, the forms of in-
put presentation that relate to the behaviour of the processor are the ordered and the superimposed
presentation. In the first case the order of the inputs is preserved; messages coming from one direc-
tion are only applied to one specific location at the input of the associative memory and different
directions relate to different locations. For example, assuming that the input to the associative
memory consists of four parts, or locations, when message « is applied to location L this will
mean that o comes from the direction which is assigned to location L. If the same message is
applied to location Ljg this will mean that o comes from a different direction; the one assigned to
location L3. Thus, messages do not have to be altered to carry information about their source since
this can be specified from the location they are applied at. With superimposed presentation things
are different. There are no different locations where messages can be applied to and they are all
superimposed when presented to the associative memory. In that case, if messages are not altered
in order to directly carry information about their source, this information will be lost. There might
be cases in which the source of a message does not matter or we specifically want to ignore this

information. We will examine such a case in the last chapter.

Another factor which can influence the behaviour of the combiner module is the direct feedback
of its previous state. That is whether or not the previous state participates in the decision for the new
state of the processor. Even if direct feedback is not used the state of the processor at a previous
time instant will have an effect in its future states. This is because of the connectivity model which
is used. Receiving the messages from its neighbours the processor becomes aware of their states
and decides for its new one. However, the states of its neighbours have been influenced by its own
previous states. Thus, we have a ‘give and take’ interaction between the processors. Messages are
forwarded one step towards each direction, they are integrated with states from other units and then
they are directed back to their source. Then, the process is repeated again. This leads to an indirect
self-awareness of the previous states for each processor. When direct feedback is used we have

a direct self-awareness of the previous state. Although this might seem a redundancy it can help



6.4. ASSOCIATIVE PROCESSORS 87

to avoid mis-interpretations and also creates an abundance of information. The latter can be very
important when operation in uncertain conditions is required. The use of direct feedback provides
a richer source of information which can also lead to a reduced number of false positives. This is
because the current state of the processor may be a necessary part of the data in order to decide if
the cell is part of object A or B which are similar. If this information is not used the next state will
lead both to objects A and B. Of course, after some iterations the mis-interpretation will be cleared
out. However, if the current state is immediately used, the next state will be the one towards either
A or B2

The communication task of the processor has been undertaken by the spreader and the passer
modules. Of course, the processor could as well operate using only the combiner modules. In such
a case, cells would just pass their states to their neighbours and the model would be much alike the
classical model of cellular automata as long as communication is concernced. However, imagine
that the processors have only a combiner module. A first problem in such a case would be that there
would be no way to alter messages to carry information about their source. We saw however that
using the ordered presentation, where the ordered of the inputs is related to their source (i.e. the
first precondition is the message coming from the left, the second from the right, etc), we can deal
with this situation. A second problem with processors having only a combiner module would be
that the communication between the processors would directly rely on them changing their states.
If a state is not altered communication would block at that point. Thus, in order for messages
to propagate at long distances, all the processors on the way should alter their states. However,
this comes in contrast with the way we want the system to operate. We want cells initially having
feature labels to end up with the corresponding object labels. Empty spaces, either due to noise or
due to the structure of the object itself should not change their states. This is because if initially
empty states were to alter their states, a problem that we have already mentioned would arise. This
is the fast saturation of the associative memories. With many of the cells being empty in a typical
scene where a number of patterns is depicted, if empty cells were to alter their states, the excess
number of symbols and rules which would need to be produced would cause the memories to
saturate at an early stage. This is why a different module dedicated to communication is required.

The main module to perform this task is the passer as we saw at the previous section.

As mentioned at the previous section, the passer combines incoming messages with informa-

2This is demonstrated clearly in experiment 014 which we will see in chapter 8. The reader could also refer to figure
8.25 in page 178.



88 CHAPTER 6. CELLULARASSOCIATIVE NEURAL NETWORKS

tion to be passed to the neighbours. It thus establishes an information pathway as it is described
with more detail at the next chapter. Messages can be propagated in that and using the passer
modules they can be altered so as to carry information about the distance travelled and the states
of the cells that they met on their way. When one passer is used for each direction the output of
this module will specify the source of the message. For example, if the state of a processor is
represented with symbol s, and the messages coming from left and right are the same and repre-
sented with m then the new messages to be forwarded to the right and the left of the processor if
one passer module for each direction is used will be m i and my, respectively. That is, although
having the same inputs we have two different outputs since two different passer modules are used.
Thus we do not need to use the spreader modules to alter the messages. Since messages already
have destination information when using one passer for each direction, we also do not need to
use ordered presentation. However, its use facilitates the confidence measure of the outputs of the

CMMs as we will also see at the next chapter.

When do we need the function of the spreader modules then ? The answer to that question can
easily derive from the things mentioned earlier. When only one passer exists in the processor and
superimposed presentation is used at the combiners. This scheme provides an alternative way to
perform the same tasks. In such a case we would need a way to ensure that the information about

the source of the messages would not be lost.

External

The external connection schema is the one which specifies the exact form of the ‘neighbourhood’
of each processor. Processors are usually connected directly to their immediate neighbours but this
does not have to be always the case. Two examples of external connectivity patterns are depicted

in figure 6.3.

In this figure, the black cell existing in time O is the center of the neighbourhood whose form
is defined by the connection schema used. At time 1 the central cell is aware of the initial states of
the other black coloured cells. We see that these cells form the shapes of the external connection
schemata. At time 2 the central cell becomes aware of the initial state of more distant cells. This
is happening indirectly through the cells which are directly connected with it. This process is
repeated and at every iteration the central cell is aware of the states of more and more distant cells.

We can notice from figure 6.3 that at time ¢ the central cell is aware of the states of all cells within
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Figure 6.3: Examples of two external connection schemata.
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distance ¢ with the distance measured according to the valid routes provided by the schema used.
In the examples shown, the valid routes of schema A are horizontal and vertical moves of one cell
each time. The valid moves of schema B are less regular, however the distance is still in accordance
with the number of the iteration. The area covered within a number of iterations is in direct relation
with the form of the external connection schema. As we see, the use of a more compact connection
schema results in more compact and solid areas while the use of a more distributed schema would
result in covering larger areas and having a more sparsely distributed collection of evidence. For

the current stage of the development of the system, we are using regular neighbourhoods only.

When cells are connected only to their immediate neighbours the number of the connections
varies from one to eight. As we can imagine from the schema A of figure 6.3, when all 8 neighbours
are used a wider area will be completely covered sooner and, more important, with a larger variety
of routes for the messages. Thus more complex patterns could be handled at the same time and the

effect of noise could be more easily encountered.

6.4.3 Formal description

We can formally define a 2D CANN as a construct A,

A= (EaTa N7 O,?’LT,?’LC,P, Cez‘a Czn)

by is the set of all the symbols
TCX is the input alphabet
NCX is the set of the transition symbols

OckX is the output alphabet

Ty The are the number of rows and columns of the cellular array
P is the set of the rules for the modules of the processors
Cex is a set defining the neighbourhood of each processor
Cin is a set of commands defining the internal connection schema

ItisTUNUO =X and TN NN O = {A} where X is the empty symbol.
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P = {s1,...,Sk,p1,--- ,01,C} IS the set of the sets of rules for the modules. The number of
the spreader and passer modules in the processor is k and [ respectively. If k& > 0 then sets s; have
rules of the form £ — N and if { > 0 sets p; have rules of the form £? — N. Set ¢ has rules of
the form » — N U O where A is also defined in Cj, and is the number of inputs in the combiner

module. The only case that A can be the output of a rule is when all input conditions are .

C., defines the neighbourhood of the processor using relative coordinates and k,7 and h are

defined in C;, along with the connection commands.

6.5 Learning

The requirements

The aim of the learning session is to extract as much information as possible about the structure
of the input patterns. This information makes up the knowledge of the system which is expressed
in the form of the rules in P. We saw at the beginning of the chapter that because we are using
more than one level of symbols we cannot create the constraints directly from the initial labellings
of the training patterns. As it was indicated, we have to create the set of the state transitions
required in order to transit from the initial level of the pattern primitives to the final level of the
object labels. Additionally, we need to create a ‘global’ grammar. Only one set of rules must be
stored in each module and these rules must describe all the patterns presented during training. This
implies that the description of the patterns should follow a hierarchical approach. Rules produced
at early stages should be used again and only when new information is presented new rules should
be created. Rules dictating the state transitions at the lower levels of labels (pattern primitives and
the initial layers of the transition symbols) are created once and used for almost all the patterns.
As we move to higher level state transitions, which are closer to the object level labels, the rules

should be more specific about the kind of the objects.

The basic idea

In order to be able to produce the set of rules which will support the general framework in which
we want the system to operate, the basic idea which is followed is to create new rules whenever a
new state transition is required. Such an approach is feasible and effective due to the connectionist

symbolic processing engine which is used. Moreover, due to its simplicity, this method allows fast
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and parallel processing because no central control is required for the largest part of the operation.
The roles of the modules in the associative processor were presented earlier. During learning we
ask the modules to operate in this way. If at some point no rule exists in a module to produce an

output, the module is allowed to create a new rule.

Thus, during the learning session the system operates as specified earlier in this chapter. The
difference is that at the same time it creates the rules which are needed. Hence, at the first iteration
each cell is aware only of the underlying pattern primitive in that particular location of the cellular
array. At the second iteration, information about the state of the neighbouring units arrives. If the
rules which were required for this propagation of data did not exist, the system was free to create
them. At this time, each cell is aware not only of its initial state but also of the initial states of its
direct neighbouring units. This ‘extended’ pattern primitive is represented by the new state of the
cell. Following this procedure the pattern is eventually ‘divided” into its constituent parts after the

necessary number of iterations.

The proper time to stop

It is interesting to consider about the most appropriate time to cease the exchange of information
at the cells and assign the object level labels. We are interested in ‘recording’ the structure of the
pattern without being too specific about it since we also want the system to be able to generalize. If
we assign object level labels after the first iteration then we will end up with a large generalization
set. This is because there will be only one level of distinction among the patterns of the training set;
the direct neighbouring unit. Without any doubt, the majority of the patterns will be similar at this
level. If we leave the cells exchanging messages until the most distant cells have acknowledged
each other’s existence then the generalization set of each pattern will include only one pattern;
itself. In that case we will have ended up with a ‘photographic’ system recognizing only the

patterns it has been presented with. Although a good behaviour, it is not exactly what we desire.

The decision about the correct time should take note about the size of the pattern while at the
same time it should give priority to the ability for generalization rather than a specific description
of the pattern. Simplicity is also a key point in order to maintain high speed in the operation. The
approach that we have followed for this problem is based on the idea of the ‘unique’ parts. With
this, the exchanging of information stops at the first iteration in which the pattern is divided into

unique (non repeated) parts. At this stage, each cell has its own identity and represents a different
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subpattern. An example of the method can be seen in figure 6.4.

"ilr
o

(b)

(a)

| (c)
i |

Figure 6.4: Example of how a pattern is divided into unique subpatterns. The initial pattern as

placed in the cellular array is shown in (a). The subpatterns produced after the first and the sec-
ond iteration are shown in (b) and (c) respectively. We can notice that the subpatterns in (c) are

‘unique’.

Such a condition is easily identified by a controller overlooking the successive configurations
of the array. Additionally, there is no need to keep track of the number of occurrences of different
subpatterns or computing the number of iterations beforehand. Also, this condition offers a pattern
oriented solution without being too specific. For each pattern, the maximum number of iterations is
equal to the distance of the most distant cells, provided that an information pathway exists between
them. This happens because at this iteration every cell is aware of the initial states of all the other
cells which were used to represent the training pattern. Thus, an image of the complete pattern
exists at each cell and is represented by the cell’s state. However, this image is shifted according
to the location of each cell. Since the locations are all different so the shifted images will be.
Usually, the number of iterations required is less than the maximum one. Care must be taken in
order to guarantee that information pathways will always exist in training. This is because there

might be cases in which due to a communication blockage cells may never obtain unique states
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Step 1 Place the symbols representing the initial state of the processor to the input
channels of its neighbours.
Step 2 For all modules:
Check if the input or the combination of inputs is recognizable.
If recognizable
Retrieve the answer and place it at the location for the output
of the module.
else
Assign a new transition symbol to represent this input or combination of inputs,
store the new association to the module and
place the new symbol at the location for the output of the module.
Step 3  If all states are unique goto step 4 else goto step 2.
Step 4  Associate the current inputs to the combiner module with the object level label

provided and store the association to the module.

Figure 6.5: The algorithm used in the learning session. It is reminded that the spreader module

takes only one input whereas the passer and the combiner modules have more than one input.

although they would have receive all the information available. This will happen for example if
the same training pattern exists more than once in the initial configuration of the CANN and no
information path exists between the two copies. In that case, the corresponding cells at the two
patterns will follow the same set of state transitions but although they will be unique in each pattern

the existence of their “twin’ will trouble the decision for the uniqueness of the states.

The algorithm more formally

The algorithm which was described above and is followed for every processor in the cellular array
when the processor has a non null initial state is depicted in figure 6.5. Initially, a preliminary stage
(step 1) prepares the system for operation by placing the state of each processor at the input points
of its neighbours. Then, the main part of the algorithm begins and it is applied for all the modules
in all the processors. At the end of each iteration a controller checks for the uniqueness condition.
If similar states exist the process is repeated. If all states are unique it is time to assign the object

level labels to the cells. This is achieved by using the combiner module only and creating a new
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rule which transforms the unique state of the cell to the object level label. The existing messages

at the cell are the rest of the preconditions of this final rule.
In order to present more formally the above ideas we can use the following notation:

The state for each non empty cell attime ¢ + 1,¢ > 0, is:

Si_']_-l = fc(sg’j, mtl;z’,ja - ,mtk;i,j)
where f. is the mapping performed by the combiner, % is the total number of neighbours and

mfz;i,j is the message coming to cell (4, j) from direction n at time ¢.

This message itself is:
t t—1 t—1
Mnsig = ou(fsn (SN(i,j;n))’mn;N(i,j;n))

where f,,, and f,, are the mappings performed by the passer and spreader modules for direction
n and N (4, j; n) returns the coordinates of the neighbour of cell (4, j) for direction n. Fort = 0
we have a special case for the messages and itis mJ; ; = s?\,(i,jm).

The spreader and the passer modules do not generally alter the actual flow of information but
their use is more focused on filtering the messages. Of course, the use of information pathways
using empty cells as mentioned above can change this fact but for simplicity suppose that no such

information pathways exist. Then, without loss of generality we can say that:

t t—1 t—1 t—1
Sij = fC(sz’,j VSN (igi1) ’SN(i,j;k))
Then, fort =1 itis:
s 0 1 _ 0 0 0
Vij si; # AN = si = felsishagay - SNGgi)

Thus, the state of each cell (4, 5) represents the initial configuration of an area within an array
where the area is defined by the external connection schema used and both the area and the array
are centered on cell (¢, 7). In the case that schema A of figure 6.3 is used then is area is within a

3 x 3 array centered on the cell.

Similarly, for ¢t = 2 it is:

Vi, j 3?,3- # {)\} = 312,9' = fc(szl,jas}v(i,j;l)a cee ’S}V(i,j;k))
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But each s! state defines the configuration of a 3 x 3 area using initial labels. Thus, each s?’j
recursively expresses the initial configuration of an area within a 5 x 5 array centered on (i, ).
However, in order for a s' state to be further analyzed it should be non empty. Otherwise there is
no information in the s state about the area which is supposed to covered by the specific s*. In
that case, although the size of the array centered on the cell is according to the iteration number,

the area of which the cell is aware of is bounded by the non empty cells.

For t = d, where d is the distance between the most distant non empty cells for which a valid
(i.e. containing only non empty cells) path exists according to the external connection schema

used, it is:

) d _ d—1 _d—1 d—1
Vi,j s, #{\} = 8§, = fc(sz-,j s SNGg) ’SN(i,j;k))

and each cell (7, 7) represents the initial configuration of an area within a 2d + 1 x 2d + 1 array
(when external schema A is used) where the area contains the complete pattern (or at least the part
of it which is connected) and both the area and the array are centered on (4, 5). Thus, for each cell
(1, 7) its state will represent the configuration of a 2d + 1 x 2d + 1 array using initial labels and

the pattern placed as if cell (i, 7), which belongs to the pattern, was in the centre of the array.

If we suppose that two states s;{j and sg,l are equal then we should have two arrays which
contain the same pattern, a different part of it is in the centre of the array and these arrays are
exactly the same. It is easy to envisage that this is impossible for the case that only one pattern
exists in the initial array. However, it can be possible if the pattern consists of two (or more)
parts which are exactly the same and are not connected with each other. Then, the propagation
of information for the cells in each subpattern will cease at the empty space between them. Thus,
cells corresponding to the same places in the two (or more) subpatterns will follow exactly the
same state transitions but although they will be eventually unique in each subpattern they will have
their ‘twin(s)’ in the whole pattern. Of course, this can be avoided using the option of creating
information pathways using even the empty cells. However, the rules which will be produced in
this case will refer to the complete pattern and not only to its parts. If this not in our intention then
the only way to produce the complete set of rules describing the subpatterns (which are the same)

is to present only one of them.
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Other issues and an example

In order to avoid the creation of a large number of rules, processors having null states do not follow
this algorithm unless they are part of an information pathway in which case they can use, and train,
their passer modules to propagate incoming messages to the same direction or they can just copy
the message to the relevant output channel. A processor with a null state is part of an information
pathway when a message exists at any of its input channels. More details about this are given at

the next chapter.

During the training procedure, rules produced and stored at each module are shared between
all the similar modules. Thus, the operation of each processor is location independent as it has

been already mentioned.

A number of variations of the training algorithm existed prior to this version. The main idea of
‘test and set” was followed at all times with the difference laying in the way the unique states were
treated when not all of the states were yet unique. We will see some variations and the relevant

problems in chapter 8.

It is important to refer once more to the fact that rules produced at the early iterations are
used again and again for all the patterns. This is because these rules express the formation of
simple subpatterns existing in many training patterns. As the size of these subpatterns increases
according to the iteration number, less of them have been already met in the training patterns
presented previously and new rules have to be created for them. However, these rules specify
the complete pattern itself and its special characteristics compared with the other training patterns.
Thus, after the initial creation of the basic rules, the number of rules produced with the presentation
of a new training pattern either remains constant or is decreased. This is one of the advantages of
using a hierarchical method to describe the patterns. When enough number of patterns have been
presented to the system, only the extra information which distinguishes the new pattern will be

extracted/learned.

An example of the learning algorithm is demonstrated in figure 6.6 using a 1D pattern and
no passer or spreader modules. In this case, the aim is to assign object level label P1 to pattern
abceceeb. The unique pattern subformations are shown in brackets while the indexed symbols are
the transition symbols representing these formations. We can see that at each iteration each cell is
aware of the states of more distant neighbours and that only two iterations are required in order for

this initial pattern to be divided into unique subpatterns.
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P1

P1

P1

Qut put
Soa S22 Se3 Soa Sos Soe Se7 | nt er nedi at e
(.abc)(.abcc)(abccc) beceec) ceceeb) ceeb. )(ccb.) | evel 2
S11 S12 Si13 Si4 S14 Sis Si6 | nt er mredi at e
(.ab) (abc) (bcc) (ccc) (ccc) (ccb) (cb.) | evel 1
a b c c c c b I nput

Figure 6.6: Example of learning in a 1-D CANN with no spreader and passer modules. Object
level label P1 is assigned to pattern abccech. The empty symbol, A, is represented by a dot {.}
while the indexed symbols are the transition symbols used. In brackets, the pattern subformations

are shown. The first rule produced is [.ab — S11] and the last one is [S2¢Sa7. — P1].

6.6 Recalling

In the recalling session a symbolic image is presented to the CANN. This initiates a series of iter-
ations where the rules in P are used to determine the messages exchanged and the state transitions
at the cells. As in the learning session, a bottom-up approach is followed. A ‘parsing’ using a
universal grammar is performed and the aim is to transform the input to the corresponding charac-
terization or nearest characterization(s). If a pattern used for training is presented then the system
ends up having the corresponding object level symbols as the states of the cells. If there are similar

patterns stored, the corresponding object level symbols also appear at the common areas.

When an unknown pattern is presented, the system tries to label those formations of pattern
primitives which are recognized. However, it is not always possible for the sites to end up with
object level labels. To allow generalization, a relaxation parameter is inserted. In that case, if a
postcondition for a combination of inputs cannot be found then the constraints are relaxed and
responses with incomplete precondition matching are accepted (the system has an increased toler-
ance). The way to achieve this is explained in detail at the next chapter. In brief, we can say that it
is achieved by accessing more than one CMM in the relevant AURA associative memory and by

reducing the threshold used for determining whether a valid separator can be retrieved from the
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CMM’s output or not. That gives an extra impetus and assistance for convergence to a solution by
allowing the uninterrupted flow of information among the processors even if uncertainties caused
by distortions or noise exist. Relaxing the combiners has as an effect the production of states
for the units even if some messages are missing while relaxing the passers enables messages to
overcome obstacles such as empty spaces and erroneous conditions. Due to partial matching it is
possible to have more than one symbol as the output from the modules. This is why messages and

states consist of one or more symbols.

The decision for the increased tolerance is taken either when none of the cells can alter their
state (global) or each cell can independently decide for itself when an output cannot be produced
(local). We will see at the next chapter that in the second case we have a completely decentralized

operation.

The algorithm more formally

The algorithm which is followed during the recalling stage is depicted in figure 6.7. Again, this
holds for processors with non null states only. As it was briefly mentioned in the previous section,
processors initially having null states follow a slightly different mode of operation depending
on whether they are part of an information pathway or not. In the case that they are part of an
information pathway and they use their passer modules then the corresponding part of the recall
algorithm applies. The algorithm in figure 6.7 refers to all modules. However, since the spreader
modules have only one input by definition we cannot extend the search in a different CMM if
relaxation is needed. We can only continue the thresholding of the retrieved vector until a valid
separator is found.2 The recalling session stops when there are no alterations to the configuration

of the system, or the alterations are less than a threshold or a preset maximum number is exceeded.
Similarly with the case during learning, in a more formal description of the above we have:

The state for each non empty cell attime ¢ + 1, ¢ > 0, is:

t+1 t [ to
Sigj = fc(si,jam Lig,gs == o k;z,])

3The relaxation of the operation of the spreader modules will be very rarely required and only when spreaders
are faced with an unknown symbol from the initial alphabet (i.e. an unknown pattern primitive.). For the rest of the
operation of the system they would be faced with the output of the combiner modules and in all cases they should be

able to recognize this output from their training.
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Step 1 Place the symbols representing the initial state of the processor to the input
channels of its neighbours.
Step 2 For all modules:
Check if the combination of inputs is recognizable.
If recognizable
Retrieve the answer and place it at the location for the output
of the module.
else
If relaxation is allowed
Increase the tolerance of the system and try again.
Repeat until limit of tolerance reached or answer retrieved
If an answer was retrieved
Place the new message at the location for the output of the module
else
Do not alter the existing contents at the output of the module
Step 3  If there was no change at the configuration of the array OR
state alterations less than a threshold value OR
maximum number of iterations reached
Stop the operation
else

Goto step 2

Figure 6.7: The algorithm used at the recalling stage.
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and for the messages m,.; ; it is again:

Miig = fon Fon (S5 Gjim))s M i im)
Normally, in order to hold that m/, ; ; # {A} it must be that S?\?&j'n) # {A}. However, when
the information pathways using empty cells option is used it is enough that mf;;,(ij_n) #{A}. In

that case, when passers are used m! . . is as defined above and when copying is used then

(]

t i1
Mg = MniN(i,gim)

It is reminded that it is always mp; ; = s, 5.0y.

As mentioned, for every module the rules which were produced during learning are applied.
If an answer cannot be recalled then increased tolerance is used. For the case of the combiners
when tolerance is used then the new state (if any) may consist of more than one symbols each one
defining a configuration the similarity of which with the current configuration depends on the level
of the tolerance used. For the passer modules, the increase in the tolerance may produce more than
one symbols each one ignoring the state of the cell which the message is coming from or ignoring
the message which had previously come to this cell. Thus, the current state of mfw‘,j may ignore

t—1 t—1

either SN(igin) O ™n;N iygisn)®

The operation as described above stops when one of the following holds:
i) Vi, j sg,j = 3531
i) c¢<T,wherec= #sf’j : sf,j # sfgl ie{l,.,n.},7 €{1,..,n}
and T, is a preset threshold value

iii) ¢ > tner Where t,,4, is an upper limit for the time ¢

We can notice that the first condition is an instance of the second one for ¢ = 0. If no tolerance
is permitted in the operation of the CANN and we do not have erroneous recallings due to saturation
of the CMMs then it is always the first condition which is activated. However, either when tolerance
is permitted or when the level of saturation is high we cannot preclude the possibility of small
fluctuations in the configuration of the array after the best possible one (i.e. closest to object
level) has been reached. Thus, there can be states that can take one or more of a small set of
values alternatively. In that case the operation enters a periodic mode and the configuration is

repeated with a period of a few (usually 1 or 2) iterations. The only exceptions from this model
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of operation exist in cases where the conditions which are created in one or more neighbourhoods
in the array after the best possible configuration for the array is reached are significantly different
with the previous conditions in the neighbourhood(s). This can happen either due to an extremely
tolerant recall from the CMMs where many answers are accepted or when the preconditions for
the state transitions are not filtered through the passers. These two cases are presented in two of
the experiments in chapter 8. To make sure that the operation will stop in all cases we have put the

second and third condition.

Other issues

We saw in section 4.2.2 that there are two ways to present the messages to the CMMs; ordered and
superimposed. When the messages consist of more than one symbol there is one more selection
that we have to make. This refers to the way by which the symbols in the messages will be
presented to the CMMs. There are two options; consecutive or simultaneous presentation. These
are also presented in detail in the next chapter. Briefly, the first presents inputs one by one and
trades speed for size of the CMMs while the second presents the inputs superimposed and is faster
but needs larger CMMs to prevent storage problems. As we will see in the next chapter, using the
consecutive approach the number of times that the CMMs are accessed depends on the number of
symbols existing as preconditions while the simultaneous method accesses the CMMs only once.
Having the advantage of speed, the latter method needs larger CMMs since the superimposing of

the inputs may result in saturation of the input patterns.

6.7 Summary

The architecture of the CANNSs was presented in this chapter. The motivation for the design of this
system and the structure of the associative processors was described along with the form of the
states they can have and the messages exchanged between them. A brief formal description was

also given and the learning and recalling methods were presented.

As we saw, the basic characteristics of the system are the cellular architecture and the use of
connectionist symbolic information processing in order to handle the structural relationships ex-
isting in the patterns. Thus, we have a cellular network of simple and homogeneous symbolic pro-

cessing units. This can operate in a parallel and distributed manner without the need for centralized
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control. Each processing unit is responsible for recognizing parts of the pattern and exchanging
this information with its neighbouring units in the form of symbolic messages. The rules control-
ling the behaviour of the processors are common for all units and they compose a global pattern
description grammar. These rules are extracted during the learning session where rules previously
produced are also used for the description of new patterns. These rules are then used during the

recalling session in order to transform symbolic images to their object level descriptions.

A very essential part of the system is its rule handling mechanism. As it has been mentioned
earlier, this is based on the AURA model of associative memory which is able to provide the
speed and the flexibility required. Details about how the AURA model is used in this system are
presented in the next chapter together with discussions and descriptions about other options and

parameters regarding the methodology of the operation of the system.
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Chapter 7

M ethodology of Operation and

Experimental Framework

7.1 Introduction

The previous chapter was the place where the architecture of the CANNSs was introduced. The
operational details were only briefly mentioned in that description in order to allow a more general
outlook. This chapter continues the presentation of the CANNs and its aim is twofold. First, a
technical description of the CANNSs towards a more complete understanding of their operation
is given. Then, the experimental framework including the criteria which form the basis for the

evaluation of the system are presented.

The technical description includes details about the use of the AURA model in the system and
the ways in which the information channels are created both inside and among the cells. These
channels indicate the desired flow of information and once they are defined the remaining detail
relates to the ways in which the AURA model is used and also the ways in which the inputs are
applied. As it has been already mentioned earlier, the use of this model of associative memory
allows the insertion of the relaxation option; partial matching and operation with incomplete data.

The method with which this is achieved is also presented in this chapter.

Having the operational parameters set we also need to set an experimental framework in order
to monitor the behaviour of the system. The training and testing patterns used and the factors on

which we judge the function of the system are presented later in this chapter.

105
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7.2 Looking inside a CANN

The basic components of a CANN are the associative processors. As we have seen they all have
the same structure and they consist of a number of modules which process symbolic rules using
associative memories. In order for the system to be able to operate, information channels defining
the flow of information must be created. This is performed using the instructions provided by the

connection schemata.

Once the data flow is defined the next thing is to set the details regarding the use of the asso-
ciative memories. The basic parameter in that case is the way in which the input messages, which
form the preconditions of the rules, are presented to the associative memories. As we saw in para-
graph 6.4.2, this can be a decisive factor for the level of interaction between modules. Moreover,
it is also an important factor influencing such parameters as the speed of the system, the size of
CMMs needed in relation with the accuracy of the recalls, and, the predictability of the number of

operations required.

The next option to be set regards the relaxation characteristics of the system and is the maxi-
mum tolerance permitted when uncertain conditions exist as well as the decision about when this
can be applied. This facility is provided by the use of the AURA model which allows recalls using

a flexible threshold and CMM accessing scheme.

7.2.1 Theway to connect modulesand cells

As mentioned in section 6.4.2, the pattern of connectivity which is followed when connecting
the cells and the associative modules is determined by the connection schemata. The external
connection schema defines the neighbourhood of each cell while the internal one defines the flow

of information inside the processor and how the modules are connected.

The external connection schema is a set of relative coordinates. The same set is used for every

cell. It is,

Cezg =A{z1,... , 2} T €Z"

where m is the number of neighbouring units, Z is the set of integers and n is the dimension

of the CANN. For example, the C,. in a two dimensional CANN where each cell communicates
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with its four direct neighbouring cells in the horizontal and vertical direction will be: C¢, =
{(=1,0),(1,0),(0,1), (0, =1)}.

The internal connection schema is a set of commands. These commands are defined with
the use of two identical memory maps representing the current and the next conditions within a
processor and its neighbours. An example memory map along with a reminder for the directions

of the messages can be seen in figure 7.1.

| D G
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Figure 7.1: The memory map used for defining the internal connection schema. Location 0 in each
cell stores the state of the processor. Two identical memory maps are used in order to implement

a double buffering technique.

With this memory map the connection schema for interaction with up to eight neighbours can
be described. There are 17 locations in each cell, 0 — 16, and messages can be stored in each one
of them. Location 0 is devoted to the state of the cell while locations 1 to 16 are used in pairs for
the communication. For example, locations 1 and 3 are used for messages coming from the left
and going to the right of the processor. Thus, the internal connection schema depicted in figure
6.2 (page 83), without the spreader modules, is implemented with the set of commands depicted

in figure 7.2

The initial commands are performed only once. This is before the 1st iteration of the cellular
array in order to initiate the propagation of messages. After the execution of the initial set of
commands, each cell has its state at location 0 and information about the form of its neighbours at

the corresponding locations in the cell. After that, only the main commands are executed.
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Priority Locations on MMs Action specifier

Initial commands

0 A0—B4 COPY
0 A0—C3 COPY
0 A0—D7 COPY
0 A0—ES8 COPY

Main commands
1 A0+A3—C'3 Pa_AM[1]
1 A0+A4—B'4 Pa_AM[2]
1 AO0+A7—D'7  Pa_AMI[3]
1 AO+A8—E’8 Pa_AM[4]
1 A0+A3+A4+A7+A8— A0 Co AM

Figure 7.2: Example of a set of commands defining an internal connection schema.

The priorities are in place in order to facilitate asynchronous operation of the modules if
needed. The accented letters in the above commands represent the corresponding places in the
other memory map (i.e. where the new message/state should be placed) and symbol + is used
in order to declare which places will compose the inputs to the associative memories. Specifiers
Sp_AM, Pa_AM and Co_AM are used to refer to the associative memories for the spreader, passer
and combiner modules and COPY just copies the contents of one location to another one. Let-
ter A always refers to the central, current, cell and its relevant coordinates are all zeroes. The
coordinates assigned to the other letters are the ones appearing in C.,. Thus, for the neighbour-
hood mentioned earlier the coordinates of A,B,C,D and E will be (0,0), (—1,0), (1,0), (0,1) and
(0, —1) respectively.

In the associative processor described with the above commands, four passers and one com-
biner module are used. The current state of the cell (AQ0) contributes to the decision for its new

state (A’0), thus direct feedback is used.

The structure of a node is common over the whole array, as too is the rule sets for the corre-
sponding modules. The associative memories used by each module can be either shared between
the processors or groups of them or a “1:1” correspondence can exist. The latter permits a fully

parallel operation of the system. During training, if more than one associative memory is used
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for the operation of modules of the same kind, then, only one memory is used for storing and
recalling associations. Then, at the end of the learning session, its contents are copied to the other
associative memories (i.e AURA models) . This is an easy method to ensure that the contents of
the associative memories are the same for all modules of the same type. Otherwise, when a new
rule was created for some module it should be also copied to all other memories for the same type

of module.

7.22 Thepathtothecdls

After the external and internal connection has been established a decision has to be made about
the behaviour of the empty cells. Normally, cells with null states (empty spaces) are not allowed
to alter their state in the training or the recalling session. As we have already mentioned, this is
in order to keep the number of symbols which are used to represent the states of the cells as small
as possible. Since the null state appears in high percentages in the majority of the images, the
associative memories would soon saturate if rules emanating from null states were to be produced.
On the other hand we do not always know if an empty space in an image is due to noise or it
serves a specific task i.e. separating objects. The approach which is followed is to allow the
propagation of messages from empty cells without these cells changing their states. That means
that we allow empty cells to participate in the ‘information pathways’ of the system where an
information pathway is a valid path that messages can be propagated through. Of course we can
always prohibit this and leave the messages find alternative routes to reach other, non empty, cells.
In such a case the alternative routes are specified by the valid moves permitted by the external

connection schema and the non empty cells in the array.

When the propagation is allowed we can either use the passer modules of the empty cells or
we can just copy the messages to the relevant output locations. In the first case, if this option was
used during training the relevant rules will have been created for the passers and they will be used?.
Otherwise, i.e. if propagation of messages through the passers of the empty cells was not permitted
during training, in order for these passers be able to propagate the messages their tolerance, as we
will see in section 7.2.4, must be increased. The second case, copy input to output, is a different
approach but although it allows messages to cross empty spaces it does not allow them to carry

extra information about the distance travelled.

That is, rules responding to the case where a message is combined with a null state.



110 CHAPTER 7. METHODOLOGY AND EXPERIMENTAL FRAMEWORK

If the propagation is not allowed messages will have to be propagated via non empty cells. This
increases the time needed in order for distant cells to acknowledge each other’s existence and also
increases the number of symbolic rules produced as more iterations are needed. However, the use
of the propagation option during training creates additional constraints which may be not easily

satisfied during the operation of the system with images affected by noise or other distortions.

Another fact to influence the decision about whether or not to allow propagation via empty
cells is the existence of patterns which consist of more than one non connected part. In this case,
using the propagation option during training will trouble the recall session if parts only of these
patterns are presented. This is because these parts, especially the units at the edges of the parts,
will be soon aware of the absence of the other parts which the training pattern consisted of. Thus, if
all the parts of the patterns are required in order for a match to be successful information pathways
should be established. If not, a more ‘isolated” mode of operation by not using this option will be

preferable.

7.2.3 Presenting symbols

We have seen in the section describing AURA (page 20) that this model of associative memory can
handle rules of the form preconditions — postcondition where by precondition we mean a set
of variable : value pairs. Each variable and value are represented by a different binary vector
and their binding is performed using the tensor product method. The input to the CMMs is formed

by superimposing these products.

The messages which compose the preconditions of the symbolic rules can be presented to the
associative memories in more than one way. As it was briefly mentioned in the previous chapter,
depending on whether the ordering of the preconditions is preserved or not we have the ordered or
the superimposed presentation of the messages. Additionally, judging from the way in which the
symbols which exist in the messages are presented we can have the simultaneous or the consecutive

presentation. These methods are described next in this section and an example follows.

Order in inputs

Ordering is necessary when the order of the inputs is important. The order of an input may represent
the direction which the relevant message is coming from. Since messages can represent pattern

formations the direction related information can be decisive. For example, the combination upper
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left corner and upper right corner (") is different from the combination upper right corner and
upper left corner (7™) and only by using ordering they can be distinguished when presented to the
associative memories. An alternative could be to include this information in the message itself
and this can be achieved by using the spreader modules or by having one passer module for each

neighbour (section 6.4).

The ordering of the inputs is related with the variable parts of the preconditions. When
ordering is required this is achieved by setting the proper binary vectors for these parts. The binary
vectors used for representing the variables guarantee that the values of these variables are not
mixed. If n preconditions exist then these binary vectors will be n-dimensional with only one bit
set to one and the rest to zeroes. The position of the set bit will be the place of the message in the

set of preconditions?.

Thus, having n preconditions and each message represented by the m-dimensional binary

vectors M; with ¢ = 1,... ,n, then each one of the n binary vectors V; representing the variables
will be:

Vi =100 .. 0]

Vo = [010 ... 0]

Vo = [000 ... 1]

The input to the CMMs will be formed after superimposing the corresponding outer products.
That is,

My ] [ o ] o] [ my ]
n 0 MQ 0 M2
F=Uvim=| V| vy =
1=
o | [0 M. | | M,

where F is the formed input, O is an m-dimensional binary row vector with all bits set to zeroes

and V/ is the OR operator.

2\We can notice here that it is not necessary for the binary vectors which represent the variables to have this form
only. As long as these vectors are different and orthogonal the order of the messages will be preserved. However, when
they have this form the implementation of the technique is more simple and this enables the operation to be faster.

Additionally, since the values are, effectively, not mixed the operation is more transparent to a human observer.
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When ordering is not required F is just produced by the superposition of the binary vectors

M.;. In that case it is V; = I' for all 4 and 1" is the one-dimensional identity matrix.

Apart from preserving the order of the inputs, the use of the ordered presentation facilitates the
confidence test of the output of the CMMs since the expected summed value for the output nodes
can be more easily estimated. This is because when inputs are superimposed there might be bits
set to one sharing the same places thus making the estimation of an expected response difficult.
On the contrary, when inputs are ordered the locations of the final input vector are not shared and
thus no two bits can share the same position. The only occasion where input bits can share the
same position in ordered presentation is when simultaneous presentation is also used. This form
of presentation is discussed next while the confidence test was briefly mentioned in section 2.4.4

and it is described in more detail in section 7.2.4.

Simultaneous and consecutive presentation

These refer to the way in which the value parts of the preconditions are formed. These parts are
related with the messages and they are their binary representations. The reason for having two ways
of forming these vectors is that messages can consist of one or more symbols. When a message is
composed from a single symbol things are easy because we just use the binary representation for
this symbol. However, when this is not the case we have to choose between two options. Either we
superimpose the binary representations of all the symbols in one vector or we apply all different
combinations of symbols and then gather the results in one output message. These two options are

the simultaneous and the consecutive presentation respectively.

That is, if we have n messages and the sets S1, So, ... , S, have the symbols for each message

then:

e In simultaneous presentation we need only one operation to apply these messages to the
CMMs. The binary vectors M; are created by superimposing the binary representations of

the symbols in S;.

e In consecutive presentation we need to create the set .S of all the possible combinations of
symbols from the sets S;. The number of operations needed to present all the combinations
of single symbols to the CMMs will be |S|. Itis: |S| = |S1| x |S2| X ... x |Sp| and S =
{(a1,a2,... ,an)|a; € S; and Vbj,b, € S,j # k < b; # by }. For each combination
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in S, the binary vectors M; will be the binary representations of the corresponding symbols.
It is possible for one, or more, of the sets S; to be empty. In that case we assume that it

contains the empty symbol, A, and it is |.S;| = 1 where S; is the set which was empty 3,

The use of the simultaneous presentation is made feasible due to the characteristics of the
connectionist associative recalling and more specifically of the associative memory model used.
AURA allows parallel operation on inputs and it is possible to recall all the corresponding outputs

when applying more than one input at the same time [49]

The use of this method has the advantage that only one operation is needed per set of precondi-
tions. All inputs are applied and all answers are collected in one step. Apart from the advantage of
speed at the operation of the system, this characteristic enables us to have a very precise approxima-
tion of the number of operations needed. However, this comes at a cost. Superimposing the binary
representations may cause saturation at the final input. This, in turn, can cause mis-recallings;
either less or many more answers will be recalled depending on the threshold mechanism. This
side effect can be only overcome by increasing the size of the binary vectors used. However,
this increases the size of the CMMs used and, effectively, the size of the memory required by the

system.

The alternative approach is to use the consecutive presentation. This method requires binary
patterns of a modest size and increases the likelihood that all possible answers will be recalled.
This is because a more “clear’ input is presented to the CMMs. However, the number of operations
required will not be easily predictable as it will depend on the number of symbols each message
consists of. At the same time, this method has a negative effect on the overall speed of the system

compared with using the simultaneous presentation.

EXAMPLE: Suppose that we have rules of three preconditions and that messages m 1, mq
and mg are used in order to represent them. In order to show the difference between ordered
and superimposed presentation suppose that the messages carry one symbol each, i.e. mi =

{A}, my = {B} and mg = {C'}, and that the following binary vectors are used:

3As we will see at the next section this condition affects the arity of the set of the preconditions.
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A=[0o1000010]
B=1[10010000]
c=[00101000]
D =1[00000101]
Vi = [10 0]
V2=[010]

Vs = [0 0 1]
t= ]

Then, if ordered presentation is used the input, F, to the CMMs will be:

F = ViA+ViB+ViC
010 0

S O o o o ©
o o o o o ©
L e e N e R e
S O ©o o o ©
F
S R O O = O
o O R O O ©
_ o o © © ©
S Rk OO O = O
_ o o © o ©
o o o © o o
o O R O O ©
o o o © o ©

0 0
0 0
0 0
0 0
1 1

o O O o O

On the other hand, if superimposed presentation is used, F will be:

F = I"A+1'B+1lC
(1111101 0]

In order to show the difference between simultaneous and consecutive presentation suppose
that message mg carries one more symbol, i.e. m; = {A},my = {B,D} and m3 = {C}.
If the order of the messages is preserved (i.e. ordered presentation is used) then, in the case of

simultaneous presentation we will have:

F = VIA+VI(B+D)+Vic
01000010
= 110010101
00101000
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In the case of consecutive presentation we have to create the set of all possible combinations of
single symbols. Using m1,m2 and ms, this setis S = {ABC, ADC'}. Then, we need to present
the members of this set one by one and thus we will need as many operations as the size of S.
Consequently, for the current S it will be:

F = VIA+VIB+VIC for the first time, and
F = VIA+VID+VIC forthe second time.
If the order of the messages is not preserved (i.e. superimposed presentation) then, using the

simultaneous method we have:
F = tA+1Y(B+D)+I1C
= [t11111 1 1]
whereas using the consecutive method we will need two steps and the inputs at each step will be:

F = HA+1I!B+11C and
F LA+ 1D+ 1C

724 Timetoreax

The input which is created as we saw above is applied to the relevant CMM of the AURA model
according to the number of the preconditions. As we saw in section 2.4.4 this number is called
arity. In our case, the existence of rules of different arity is caused by the existence of empty
messages. Thus, the arity of a rule will be the number of the non empty preconditions. Spreader

modules can only have rules of arity 1 by definition.

As mentioned in section 2.4.4, when the input is applied, a confidence test must be performed to
the output of the corresponding CMM in order to decide whether a valid separator can be produced
or not. This test takes account of the arity of the rule and the form of the logical connection
between the preconditions which in our case is the AND function. More specifically, if F is the
k-dimensional binary row vector which is the input and W is the k& x [ binary matrix which is the

corresponding CMM for this input’s arity, then, the output vector O will be:
O=FW

The output vector O is an [-dimensional row vector with non negative integer values. Using
the L-max thresholding method we can set the L highest values of O to 1s and the rest to 0s. In

that case L is the number of bits set in the binary separator pattern.
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Applying the confidence test we can decide whether a valid separator can be produced or not.
Representing the number of bits set at the input vector F with f.;, the principle of the test is that
at the output pattern there should be at least L integers with values equal to f.e:. In the case of
ordered presentation, fs.; is greater or equal to r x ¢, where r is the arity of the rule and ¢; is the
number of bits set in each binary representation of a symbol 4. If the confidence test is positive
then there are two possible options. Either the CMM has been trained with the current inputs or
the answer is due to a high level of saturation of the CMM. If the number of associations stored
is well within the capacity of the CMM then the first case holds. If there are not enough integers
with values equal to fs¢; at the output vector then we can still apply the L-threshold method and
turn the L highest values of that vector to 1s and the rest to 0s. However, the retrieved separator(s),
and the relevant postcondition(s), would not completely correspond to all the preconditions (i.e.

we will not have an exact match).

When inputs are applied during the training session and the confidence test identifies that a
valid separator cannot be produced then this is the case where a new symbol is assigned to the
current combination of inputs. If we have the same situation in the recall session then it is time to

relax the system (if allowed).

With incomplete data, there are two ways to relax the operation of the AURA model and get
an answer. Either we search at the same CMM using a lower value for the confidence test or we
apply the same input to the rest of the CMMs and perform confidence tests using the relevant arity
for each CMM. Of course, these two ways can be combined and we can also search at different
CMMs with a reduced threshold for the confidence test. The notion of tolerance is connected with
the relaxation option and is the number of preconditions allowed to be missing or not to match.
Using the arity and the tolerance we can decide on the number of preconditions that we want to
match and start searching the CMMs. One decision that we have to take at this point is whether
we will use the arity of the rule or the arity of the CMMs in order to decide about the number of
preconditions that we want to match. The effect of this decision is clearly depicted at table 7.1

where we assume an input set of preconditions with arity 3.

As we see from the table, if the decision is based on the arity of the rule the search is expanded
to other CMM s only if the tolerance is increased. With zero tolerance we require 3 antecedents to

match and we can only find them by searching in CMM with arity 3. Thus, using zero tolerance

“More precisely, it is fsez = rt, when ordered consecutive presentation is used and it can be fs.+ > 7t only with

ordered and simultaneous presentation.
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Arity of CMM | Tolerance | Preconditions to match

3 0 3

Decision based 3 1
on the arity 2 1 2
of the rule 3 2 1
2 2 1
1 2 1
3 0 3
Decision based 2 0 2
on the arity 1 0 1
of the CMM 3 1 2
2 1 1
3 2 1

Table 7.1: The search plan according to tolerance and arity.

and the arity of the rule, only answers with all preconditions in place are accepted. The search is
performed in the CMM which corresponds to the arity of the set of preconditions and it can only
be expanded to other CMMs of the AURA model if the tolerance is increased. The search in the
initial CMM using an increased tolerance may produce answers where a number of preconditions
(equal to the tolerance) will not match. For example, having A, B, C as input and searching the
arity 3 CMM using tolerance 1 we may recall a postcondition corresponding to a, B,C or A, o, C
or A, B, where o € ¥ is a symbol different from A, B or C respectively. However, the answers
will still correspond to rules with the same arity. Only that some preconditions will be different.
The increased tolerance will also allow search in CMMs corresponding to rules of different arity.
In that case, an empty precondition may replace the non matching one or an empty precondition
might be replaced by a non empty one. The former happens when searching CMMs of lower arity

and the latter for CMMs of higher arity.

On the other hand, if the decision is based on the arity of the CMM, the search is expanded
to other CMMs even with zero tolerance. In this case, the number of preconditions that need to
match equals to the arity of the current CMM. Thus, the system looks for an answer which will not

violate the conditions set by the CMM in which the answer is sought. If an answer is not found in
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all CMMs then the tolerance is increased and the searching is repeated.

By having these two options for tolerance we can control whether the system will favour
responses of the same arity, in which a non empty precondition will be replaced by another non
empty one, or answers having some preconditions missing will be recalled if an exact match cannot
be found. Thus, if the preconditions are A, B, C' and no matching rule exist in the system, an
answer responding to a rule of the form A, B,a — X with o € X will be preferred in the first
case and an answer responding to rules with preconditions —, B,C' or A, —,C or A, B, — will be

preferred in the second case. An example of this behaviour can be seen in figure 7.3.

Notice from this example that even when no tolerance is allowed we can recall an answer if
the search is extended to the other CMMs. The error which is allowed in each case is of a different
kind. In the case of the extended search we recall rules where a precondition is missing but it
is not replaced by something else. If we continue searching at the same CMM by dropping the
confidence level then we recall rules where the unmatching precondition in the input is replaced
with a different one from the ones stored at the CMM. The effect of these two cases of error
allowance depends on the current situation and the pattern to be recognized and is not easy to say
which one is to be preferred. However, in the second case the system is more relaxed even with

zero tolerance although it is more biased to interpret non matching messages as empty ones.

As we saw in section 6.6 there is another option concerning the relaxation. This concerns the
time at which the decision for the increase of tolerance should be taken. There are two options.
The first handles the system from a global point of view while the second is a more local approach.
Using the global option the tolerance of the system is only increased when none of the cells can
alter their state. This option assumes the existence of an external controller which will make
the decision for the relaxation. The local option allows a more decentralized operation as each
processor can individually decide to increase its tolerance when a recalling cannot be made. As
the results will show, the local option behaves better. This is because when cells remain inactive
for long periods there are information gaps and lack of continuity of the messages. Thus, when
relaxation is finally allowed the messages which are recalled are not as useful for the operation of

the system as they would be if they were recalled earlier.
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Figure 7.3: Example of relaxation of the constraints (increase of tolerance) when searching with

the AURA model. The input is composed from the symbols A,B and C in ordered presentation.

We can see that when the tolerance refers to the rule, rules with the same number of preconditions

are recalled first with a non zero tolerance. When the tolerance refers to the CMM, rules which

are subsets of the presented conditions are recalled first. For simplicity we suppose that only

three rules are stored in each CMM. For example, arity 3 CMM has the following rules stored:

ABE — s1,ABD — s2and BAC — s3.
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7.3 Experimental framework

The experimental framework which was set in order to evaluate and tune the behaviour of the
system is presented in this section. First, the objectives of the experiments and the criteria on
which the performance was judged are introduced. Then, the presentation of the training and the

testing sets and the set of tools which were used follows.

7.3.1 Objectives

The recognition of objects in multi-object noisy scenes and the creation of a multipurpose pattern
recognition system is the long term aim of this research. The theoretical framework for the oper-
ation of the CANNSs was presented in the previous chapter and earlier in this chapter. The main
objective of the experiments was to test whether the actual behaviour of a system built upon this
framework is as expected. Experimenting with a kind of ‘toy problems’, the aim at this stage was
not to provide a sound evaluation of the system when faced with real world problems but to reveal

and help us understand the characteristics of the architecture; either expected or hidden ones.

The following list provides a more analytical description of the objectives of the experiments:

1. Evaluation of the behaviour of the learning and the recalling algorithms. The aim of these
experiments was to test if the behaviour of these algorithms using a simple set of patterns
were the expected one. Normally, the system should learn and recall successfully all the
training patterns and the creation of the rules should be subject to the principle of hierarchi-

cal learning.

2. Checking of the performance with combined patterns. At this stage of the experiments one
degree of difficulty was added to the tasks that the CANNSs should perform. That was to
recognize combinations of the training patterns. The objective of these experiments was
to test the ability of the system to recognize the patterns used for training when they were
presented under different conditions and thus messages would have to be mixed. This is

where the relaxation parameters would be tested as well.

3. Checking of the operation of the associative memaories. The different modes of presentation

of the inputs to the associative memories and the characteristics of each case were also
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among the experimental objectives. The most effective way to use the associative memories

considering the resources available at each time was sought.

4. Observation of the role of the modules through different connection schemata. The roles
of the modules were discussed in the previous chapter. Once a ‘working model’ of the
associative processor was established, this series of experiments with different connection

schemata was performed in order to verify and clarify these roles.

5. Observation of the function of the various information pathways. We saw that messages can
be propagated either through non empty cells or by using empty cells when this option is
set. A series of experiments with ‘open’ patterns and with patterns consisting of more than

one part were conducted for this aim.

6. Checking of the performance with noise affected patterns. After forming a clearer idea
about the behaviour of the learning and recalling algorithms and parameters it was time to
test this behaviour when noise at different levels was inserted at the training patterns. These
experiments would help refine the understanding of the operation of the system under more
stressed conditions. Normally, the system should have the ability to cope with noise or be

adjusted to cope with noise.

7. Checking of the performance with scaled patterns. Although scale and rotation invariance
was not part of the expected behaviour, this set of experiments was set in order to observe
what would be the problems faced with scaled patterns and how could they be possibly

encountered using the available options.

7.3.2 Criteria

In order to be able to evaluate the behaviour of the system and compare the results of the experi-
ments a number of criteria had to be specified. These would indicate the level at which the system

had accomplished its tasks and would also characterize the observed performance.

These criteria could be either relate to the learning or the recalling session or both. Thus, the

performance of the CANN at each case was characterized by the following:

e Learning
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1. Number of rules produced for each module. As it was indicated, the number of rules

produced is in direct relation with the size of the pattern and the level of similarity with
the already presented training patterns. The number of rules also specifies the number

of intermediate symbols used.

. Saturation of the CMMs. The level of saturation of each of the CMMs of the AURA

models used by the modules of the associative processors is in direct relation with the

number of rules produced, their arity and the parameters of the CMM.

e Recalling

1. Number of cells altering their states. This is a measurement of the ‘activity’ of the

CANNs and thus the computational load. This number is affected by the tolerance of
the system and the similarity of the patterns within the presented symbolic image with

the ones of the training set.

. Percentage of cells with object level symbols. This is the basic criterion for the eval-

uation of the behaviour of the system. This number refers to the possibility of each

training pattern in the presented image.

e Both sessions

1. Number of iterations. This number is related with the size of the patterns, their struc-

ture and the valid routes for the propagation of messages. When this information is
combined with the number of rules produced, the length of the messages and the form
of the presentation of the messages (simultaneous or consecutive) the total number of
CMM operations for the learning or the recalling session can be derived. Thus, based
on the performance characteristics of the CMMs in each hardware platform, the time

required for the operation of the system can be estimated.

. Length of messages in symbols. As it is possible for each message to consist of more

than one symbol, this measurement helps indicating cases where ambiguity exists since
this is the main reason for having more than one symbol. The recalling of more than
one answer is caused by the existence of either ambiguous input conditions or input

messages with more than one symbol or high levels of saturation at the CMMs.
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7.3.3 Thetraining set

Two sets of training patterns were used. The first was used for the majority of the experiments
and the second was used only in a few experiments. The difference is that the first set has closed
patterns consisting of one part and the second has open patterns consisting either of one or two

parts. The shapes of these patterns are depicted in figures 7.4 and 7.5.

The six patterns of the first training set can be thought of as forming two ‘pattern families’.
The horizontal and the vertical one. Although the patterns within each family have a high level of

similarity there are some locally focused structural differences.

Each family of patterns is the rotated version of the other. As rotation invariance was not part
of the expected behaviour of the system at its current stage of development, we were interested
to observe the way in which this ‘relation’ between the two pattern families would be handled by
the system and thus investigate the possible ways in which this characteristic can be added to the

expected behaviour.

R2 RS R6

R3

R4

R1

Figure 7.4: The first training set.

The names of the patterns in the first training set were R1 to R6 and the names of the patterns
in the second set were 01 to 08. In figure 7.5, a small grid is placed in pattern 06 in order to give
an idea about the dimensions of these patterns. Each window in the grid is the area corresponding
to a symbol. Thus for example, R1 is 12 x 6 symbols and the vertical part of 06 consists of 9
symbols. The total number of symbols in each of these patterns is depicted in table 7.2 and the
initial symbols used for the description of the patterns are shown in figure 7.6 together with an

example of how pattern R1 is represented.
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Figure 7.5: The second training set. The grid placed in part of pattern 06 gives an example of the

areas corresponding to the symbols of the set of pattern primitives.

*A *B *C *D *E *F *G *H *l *J
e B B S L

pattern Rl

Figure 7.6: The initial symbols used and the symbolic representation of pattern R1. Character

“*” is part of the name of each initial symbol and is used to distinguish these symbols from the

symbols of the two other sets (i.e. transition and object level) .
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R1 | R2 | R3|R4|R5|R6|01|02 |03 |04 |05]|06]|07]|08

32 |32 |36 |38 |36 |36 28|28 |18 |18 |27 |27 |22 |18

Table 7.2: Total number of symbols in training patterns

7.3.4 Thetesting set

The testing sets were formed using patterns R1 to R6. Three categories of testing patterns were
created. The first category had the combined patterns, the second had patterns affected by noise

and the third had scaled versions of patterns R1 to R®6.

Combined Patterns

The first set had 10 combinations of patterns R1 and R2. The names of the patterns in this set were
T1 to T10 while variations of these patterns were also created and had the names T1a to T10a. We

can see patterns T1 to T10 in figure 7.7 while an example of pattern T3a is given in figure 7.8.

We can see in figure 7.7 that pattern T8 has 4 horizontal instead of 4 vertical pattern primitives
at its right hand side. Thus, instead of symbol *F the symbol *E exists. This variation was
not intentional but it was rather a mistake made by the author while creating pattern T8. As
it was discovered only after a number of experiments where the behaviour with pattern T8 was
significantly different from the expected one, it was decided that T8 should be kept that way and
considered as a pattern affected by noise although a whole series of patterns affected by noise was
created later. A similar situation happened with pattern T10 in which the R1 component had 2
symbols less in its horizontal parts. Thus, instead of having 12 symbols at each of these parts it
had 10.

The T1a-T10a series is exactly the same as the T1-T10 one apart from the fact that at the
crossing points between patterns R1 and R2, more initial symbols exist. Actually, they are all ® the
symbols that could match with the pattern primitive created by the combination of the two patterns.
This was in order to compare and observe the influence of small variations in the number of the

initial symbols caused by different adjustments at the initial labelling stage.

Thus, while the four crossing points in pattern T3a in figure 7.8 are represented with
{*A*B,*C,*D,*E,*F} {*A,*B,*C,*D,*E,*F}, { *B,*D,*E} and { *B,*D,*E} the same cross-

5The “a’ which is added in the names comes from the word ‘all’
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T1 T2 T3

T4

]
|

T8
T7 19

T10
Figure 7.7: The combined patterns T1 to T10.
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Figure 7.8: Pattern T3a.

ing points in T3 are represented with {*E,*F}, {*E,*F},{*D,*E} and { *B,*E}. With the addition
of extra symbols being a form of additive noise as we will see next, this series had pattern T8a

‘repaired’.

Noise

Random symbolic noise which affects individual cells can be inserted into the input image during
the initial labelling process. If symbol A should be at position (z,y) of a symbolic image then

there are three categories of noise:

e Absence of symbol A from (z,y),
e Replacement of A by one or more different symbols,

¢ Addition of one or more symbols at (z, ).

Each of these categories has a probability of occurrence depending on a number of factors.

Symbol A is one of these factors and usually the additive noise is more likely to happen. For the
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testing purposes, random noise was injected at patterns R1 to R6 at various levels according to
predefined values for P(z/«) which is the probability of having noise of type = when symbol «,

a € T, should be present and given that noise exists in that position.

Ideally, the values for P(x/«a) should be calculated after experimenting with the initial la-
belling system. However, these frequencies were assigned empirically for the purposes of the

noise injecting program due to the pressure of time. These values can be seen in table 7.3.

Pattern primitive - Label

r L B - - |

<null>|*A|*B | *C | *D | *E | *F

Absence 0.0 020202020404
Replacement 1.0 03(03]03|03|01(01
Addition 0.0 0505|0505 |05|05

Table 7.3: Symbolic noise forms in relation to the initial labels. Additive noise is more likely to
occur and this is represented by the high values in the third row. A pattern primitive with many
pixels set is more likely to be misinterpreted for another primitive than to be missed from the initial

labelling stage and vice versa. This fact is represented with the values in the first two rows.

The representation of the empty space, <nul | >, was included in the above table because
we cannot preclude the possibility of having a symbol recalled at an empty space under noisy
conditions. However, we assume that the more distant the empty space is from the actual object
the less it is probable to have problems with it. This is how that case is treated in the noise injection

program.

Relation of symbols

Symbolic noise is due to recalling a different symbol instead of the correct one. However, there
must be a relation between the pattern primitive represented by the recalled symbol and the correct
one. This relation should be based on their resemblance. For example, an upper right corner is

more likely to be mis-interpreted as a horizontal or a vertical line, or both, than as a diagonal line.

Thus, an x n ‘resemblance matrix’ can be constructed, where n is the number of symbols used

for representing pattern primitives. At each cell of this matrix there is a number from 0 to 1 stating
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the resemblance between the two pattern primitives. As with the noise forms, the proper way of
filling this matrix is to experiment with the initial labelling system and find the relative frequencies
of mis-interpretations. This matrix can then be used from the noise injection program. Currently

this matrix was also completed empirically. Its form can be seen in table 7.4.

Pattern primitive - Label
r L T Ny - |
<null>| *A | *B | *C | *D | *E *F
<nul | > - 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02
*AT 0.01 - 05|05 |02 |07 |07
*BL 0.01 0.5 - 02 [ 05| 07 | 07
*C™ 0.01 05 | 0.2 - 05 | 07 | 0.7
*D 4 0.01 02 | 05 | 05 - 07 | 0.7
*E - 0.02 07 | 0.7 | 0.7 | 0.7 - 0.1
*F | 0.02 07 | 07 | 07 | 07 | 01 -

Table 7.4: Resemblance of pattern primitives. The values are set according to the similarity of the
pattern primitives. For example, an upper right corner is more likely to be misinterpreted for a

horizontal or vertical line than for a bottom left corner.

Raw noise injection

The above guidelines were used in order to inject noise in the symbolic test images. Thus, having
the percentage of noise to be inserted, a program generated random numbers uniformly distributed
in the range 0...99. If the random number divided by the distance of the cell from a non empty
cell® was above a threshold specified from the percentage of noise to be injected, then this cell
would be affected by noise. Table 7.3 was then used. For each of the cell’s contents, a random
integer between 0 and 99 was produced. From this number it was decided the form of the noise
which would be inserted. If more symbols needed to be produced, their count was a random

number between 1 and 6. Then, the proper symbols were selected using table 7.4.

Ten versions for each of the noise levels from 5 to 50% in steps of 5% were created for patterns

R1 to R6. Each version for the same noise level for the same pattern differs in the *seed” number

5Non empty cells have distance 1
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which was used for the random numbers generation. An example of pattern R4 affected by 35%

noise can be seen in figure 7.9
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Figure 7.9: Pattern R4 with 35% of noise.

In figure 7.9, shadowed cells denote the existence of one or more symbols therein and the
number of the symbols is printed on the cell. The obvious effects are the replacement of the
contents of 4 cells with the null state (represented with a dot). In cells with a number different
than 1 we have either replacement or addition and in cells with the number 1 printed on them
either no noise exists or the proper symbol is replaced by one other symbol. The contents of cells
(5,4),(9,6) and (12,11)7 are also depicted in the same figure.

Scale Variations

Patterns R1 to R6 were altered in scale as well. Five different versions of each pattern were created

with dimensions 10% to 50% larger than the normal one. As an example, the shapes of the different

"The upper left corner of the symbolic image has coordinates (0, 0)
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versions of pattern R3 are depicted in figure 7.10.

R3 R3 120 R3 140

R3 110 R3_130 R3 150

Figure 7.10: Pattern R3 and five scaled versions of it.

7.3.5 Thetools

A software simulation of the AURA model running on Silicon Graphics workstations was used
for the experiments. Using a package, called the AURA library, the functions required for the
operation of the AURA model (creation of CMMs, storage, recalling, etc) are implemented and its

use permits also the direct portability to the dedicated hardware platform [40].

In order to permit the creation and operation of CANNSs with various parameters, a program
using the AURA library was written and a graphical user interface was also created in order to
facilitate the viewing and the analysis of the results from the operation of the CANNSs. A snapshot

from the the viewer is depicted in figure 7.9.

7.4 Summary

The technical details for the methodology of the operation and the experimental framework were
presented in this chapter. The presentation included details about the use of the AURA model in
the system and the ways in which the information channels are created both inside and among the
cells. The methods for the presentation of the inputs to the CMMs were analyzed and the relaxation
option provided by the use of the AURA model was described. Then, the experimental framework

which was followed for the experiments, which are presented at the next chapter, was introduced.
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Chapter 8

Experimental Resultsand Analysis

8.1 Introduction

This is the chapter where the experiments are described and analyzed. The experimental frame-
work which was followed was introduced in section 7.3. In this framework the objectives and
the purpose of the experiments were discussed and we saw the metrics used for the evaluation of
the performance of the CANNSs in each case. Additionally, the training and testing sets were also
introduced. The next section provides a general overview of the experiments and also presents
the method which will be followed for the description. Then, the experiments themselves are

presented.

8.2 Overview of the experiments

The series of the experiments were performed according to the objectives presented earlier in
section 7.3.1. A total of 20 experiments were performed and each experiment had a three digit
number as an identification and in case of slight variations letters were added to this number. A

brief introduction to these experiments prior to their detailed presentation is as follows:

The first experiments, 001 and 002, were focused to the operation of the learning algorithm.
As it was mentioned in section 6.5, a number of variations of the learning algorithm existed prior
to the version presented there. Although following the same idea of ‘test and set’, the alternatives

were following different approaches at the final stages of the operation regarding the handling of

133
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the unique states. Once the learning algorithm was ‘stabilized’ and the training patterns could
be totally recalled, the next series of experiments was initiated. Experiments 003 — 011 were
performed in order to test the influence of various options such as the form of relaxation (local,
global), the form of the presentation of inputs to the CMMs (simultaneous, consecutive) 1, the
information pathways, small alterations at the operation during recalling and variations at the size
of the CMMs. The training set used was consisted of patterns R1 to R6 and tests were performed
using patterns T1-T10 and T1a-T10a. The third series of experiments, 012,014 and 015, tested
various internal connection schemata in order to better analyze the roles of the modules while
experiment 013 was a continuation of the previous series in order to test a new idea for recalling.
The fourth series, experiments 016,016a, were the tests with noise while experiments 017,017a
were performed in order to test recalling of scaled versions of patterns R1-R6. The last three
experiments, 018,019 and 020 used a new training set which had ‘open’ patterns and some of them
consisting of more than one part (01 to 08). These experiments demonstrated the characteristics of
the use of information pathways and helped identifying an interesting behaviour from the recalling

session.

The above description is summarized in table 8.1. The following sections have the detailed
descriptions of the experiments in each of the above six series. Each section starts with a descrip-
tion of the experiments and their characteristics and a presentation of the experimental set up. The
options which were used are referred along with the values of various parameters and also the
training and the testing sets. Then, the results obtained from the experiments at each session are
presented and the section ends with a discussion where an analysis of the results is given. Due to
their large volume, the results which are discussed in this chapter are the most representative ones
and are presented either within the chapter or in appendix C. The complete set of the obtained

results can be found in the technical memo which accompanies this thesis [8].

L1t is reminded that these two options are not related with the ordering of the preconditions (messages) but refer to

the case when the messages consist of more than one symbol.
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Experiments Basic subject Description

. Variations at the final stages of the
001, 002 Learning

learning algorithm.

Observation of the influence of factors such as

. the relaxation options, the ways of presenting inputs
003 — 011,013 | Recalling
to the CMMs, information pathways, alterations at

recalling and variations at the size of the CMMs

012,014,015 Internal connections | Tests with different internal connection schemata
) Evaluation of the behaviour of the system
016 Noise
when noise is injected to the symbolic images
Observation of the behaviour when scaled
017 Scale
patterns are presented
. Tests with different training patterns. Open shapes
018 — 020 Propagations
and more than one part in each pattern.
Table 8.1: The experimental sessions.
8.3 Learning

8.3.1 Description

Four experiments were performed in the first session whose main subject was the learning be-
haviour and the development of the final form of the learning algorithm. The experiments were
called 001a,001b,001c and 002. The initial ideas about the form of the learning algorithm were
tested in practice and according to their performance the algorithm was fine tuned in order to cor-
respond to the expected behaviour. As it was mentioned, the main idea for the operation of the
algorithm was the same in all cases and the differences were focused to the operation towards the
end of the learning session. The conditions for each experiment are described next while their
connection and the complete explanations for these alterations are discussed after the presentation

of their results.
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001a: freeze unique states

In this version, as soon as a cell acquired a unique state it would keep it unchanged until all
the states become unique. Then, the final rules leading to the object level symbols would be
created. This “freezing’ of the state of the processor was connected with the operation of the
combiner modules and had no relation with the operation of the passer modules which would keep

propagating the incoming messages and create new message passing rules.

001b: freeze unique states and global relaxation

The difference in this version is in the recall stage where each processor was only allowed to
increase its tolerance when none of the processors could alter its state. Actually, that was the first

occasion where the global relaxation was used.

001c: object labels as soon as unique state

The learning algorithm in this version assigns the object level label at the cell as soon as its state
become unique. Sites with object level labels are no longer altering their states. The operation
stops when all cells have either an object level or a unique state. Then, for those cells that still have

not an object level label, the final rules are created. Recalling is performed as in 0015.

002: keep altering until all unique

The version of the learning algorithm in this experiment has its final form which was described in

section 6.5. Thus, states kept altering until the moment in which all of them are unique.

General parameters

The training set for all the above experiments was consisted of the patterns R1 to R6. The CMM

parameters which were used are shown in table 8.2.

These parameters, in the order shown in table 8.2, are the size (in bits) of the input pattern 2,

the number of bits set in that and the maximum number of common bits allowed between any two

21t must be noted that the input pattern here refers to the binary representation of each symbol. Since ordered
presentation is used the actual number of lines of the CMMs corresponds to the size of each input pattern multiplied by

the maximum number of preconditions.
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001 002
COMBINER | PASSER | COMBINER | PASSER

Input size 80 80 200 150
Bits set in input 3 3 5 3
Common bits allowed 1 1 2 1
Separator size 100 100 150 150
Bits set in separator 4 4 4 4
Common bits in separator

Shared positions counted T T T T

Table 8.2: The CMM parameters for experiments 001 and 002.

input patterns. The same parameters are also set for the separators. The last parameter is a logical
value and specifies whether bits sharing the same place at the input pattern will be counted once

or individually (see section 2.4.4).

The values for experiment 001 were set according to preliminary estimations about the number
of rules. Using Austin’s method for the estimation of the capacity of a CMM?3 [41], the expected
capacity with the values for experiment 001 is of the order of 800 associations for the arity 5
CMM of the AURA used from the combiner module 4. As we will see later, in experiment 002
an increased number of rules were produced. This caused a saturation in the process of creating
binary patterns to represent the symbols and the separators. Thus, the new parameters depicted in

table 8.2 were used.

8.3.2 Results
00la: freeze unique states

The number of iterations required and the number of rules, for each arity, produced for the different
modules of the associative processor after the presentation of each of the patterns R1 to R6 during

the learning session are shown in table 8.3 (page 138). The total saturation levels of each CMM

3see appendix A.
“This is for the arity 5 CMM when ordered presentation is used. The values used for the estimation at this case are:

5x80, 5x3, 100, 4.
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Rules produced
Pattern | Iterations Combiner Passer 1 — | Passer 2 +— | Passer31 | Passer4 |
12| 3 |4]|5]| 1 2 1 2 1 2 1 2
R1 5 69 14 59 14 59 25 38 25 | 38
R2 5 47 11 12 11 12 33 33
R3 5 63 6 39 6 39 19 24 19 | 24
R4 5 62 12 37 12 37 12 42 12 | 42
RS 5 55 13 22 13 22 4 31 4 31
R6 5 45 8 2 9 1 30 1] 31
Total 341 64 171 65 | 170 | 60 198 | 61 | 199
Saturation (%) 254 448 | 21.73 | 459 | 21.8 | 4.28 | 2542 | 4.4 | 24.6

Table 8.3: Iterations, saturation and rules produced for CMMs of different arity for each module

in experiment 001a.

are also shown in this table. Passers 1, 2, 3 and 4 are used for the directions —, <, 1 and |
respectively. The order by which the patterns were presented is also shown (i.e. R1 first and R6
last).

The recognition percentages when patterns R1 to R6 are used as testing patterns are depicted
in figures 8.1 and C.1. For each pattern, the recall percentages for all the patterns are displayed.
The recall percentage for each pattern is the fraction of the number of cells with an object label
corresponding to this pattern by the total number of non empty cells. During recognition, the
number of iterations needed for the formation of the object level characterization of a pattern is
related to the number of iterations needed for its training. In practice, one more iteration than what
was used for the training is needed. After that, only small fluctuations at the percentages of the
object labels may exist and this is due to misrecallings. The graphs at the figures have the recall
percentages of the patterns on this iteration or, when the operation did not stop due to fluctuations,

the average percentages.

001b: freeze unique states and global relaxation

As mentioned, the difference between this experiment and 001a was at the recall stage only. Thus,

the rules produced for 001a were used. The recognition percentages for this experiment are de-
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001a: Recalling percentages, Combiner Tolerance =0
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Figure 8.1: Recognition percentages for experiment 001a with combiner tolerance = 0.

picted in figures 8.2 and C.2. Patterns R1 to R6 were again used for testing.

001c: object labels as soon as unique state

The data collected from the learning session for this experiment are depicted in table 8.4 (page

141). The recognition performance of 001c¢ is depicted in figure 8.3.

002: keep altering until all unique

As mentioned, in experiment 002 states were keep altering until all of them were unique. After
that, the final session for the production of the rules leading to object level labels was performed.
The performance of the learning session is given in table 8.5 (page 142) while the recognition

behaviour is depicted in figure 8.4.

8.3.3 Discussion

propagation of information and states
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001b: Recalling percentages, Combiner Tolerance = 1
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Figure 8.2: Recognition percentages for experiment 001b with combiner tolerance = 1.

001c: Recalling percentages, Combiner Tolerance = 0
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Figure 8.3: Recognition percentages for experiment 001c. Combiner tolerance = 0.
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Rules produced
Pattern | Iterations Combiner Passer 1 — | Passer2 <+ | Passer 31 Passer 4 |
1]2 3 415 1 2 1 2 1 2 1 2
R1 5 69 15 55 15 56 26 38 26 38
R2 5 47 12 22 12 22 1 40 1 40
R3 5 39 5 30 5 30 11 30 11 30
R4 5 30 5 15 5 13 6 12 6 15
R5 5 38 8 23 8 25 5 16 5 17
R6 5 29 4 19 4 18 1 14 1 16
Total 252 49 164 49 164 50 | 150 | 50 156
Saturation (%) 19.86 3.56 | 20.06 | 3.53 | 20.19 | 3.63 | 18.6 | 3.61 | 19.33

Table 8.4: Iterations, saturation and rules produced for CMMs of different arity for each module

in experiment 001c.

In the above series of experiments we can see the connection between the states of the cells
and the propagation of information in a CANN. In the first experiment, 001a, when a cell reaches
a unique state it stops altering. The cells to be unique first are the cells which need the less
information from their neighbours in order to represent a distinct subpattern of the input pattern.
Observation of the successive configurations of the system showed that in R1 this is happening for
the cells in the corners of the object. The cells which become unique last are the cells that need
more information in order to differentiate themselves. For example, in R1 this happens for the

cells in the middle of the horizontal parts of the pattern.

For all patterns, five iterations are enough in order for all the cells to acquire a unique state.
As we can see from table 8.3, only rules of arity 3 are produced for the combiner module. This is
because all cells have two non empty neighbours and they are also using their previous states in
order to form the preconditions. From the number of rules produced in each case, a subset with
size equal to the perimeter of the pattern relates to the final rules towards the object level labels.
For example, 69 rules are produced in total for the combiner module when pattern R1 is presented
and 32 of them are of the form < pre_conditions >— R1°. The rules which are produced for

the passers can be either of arity 1 or 2. Passer rules of arity 1 are produced for cells that have at

51n this case, 32 is the number of cells in the perimeter of pattern R1.
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Rules produced
Pattern | Iterations Combiner Passer 1 — | Passer 2 < | Passer 31 | Passer4 |
1]2 3 |45 1 2 1 2 1 2 1 2
R1 5 153 40 65 40 65 55 44 55 44
R2 5 103 27 18 27 18 12 39 12 39
R3 5 89 15 27 15 27 21 18 23 16
R4 5 98 17 30 17 30 24 22 26 20
RS 5 89 21 18 23 16 15 27 15 27
R6 5 82 24 8 26 6 5 31 5 31
Total 614 144 | 166 | 148 | 162 | 132 | 181 | 136 | 177
Saturation (%) 21.09 3.68 | 8.43 | 3.78 | 8.16 | 3.37 | 9.12 | 3.50 | 8.91

Table 8.5: Iterations, saturation and rules produced for CMMs of different arity for each module

in experiment 002.

least one empty cell with which they communicate directly according to the external connection

schema. Passer rules of arity 2 are produced when two non empty cells are directly connected.
freezing creates ‘impatient’ states

In order for learning to be successful it should lead to a successful recall. Although the results in
figure 8.1 (page 139) demonstrate that the correct answer has the majority of occurrences of object
level labels for patterns R3 to R6, the responses are not very high. At the same time, patterns R1
and R2 are not correct. Observing the results in this figure we can notice that the responses for
R4 and R6 play a ‘dominant’ role when recalling patterns R1, R3,R4 and R2,R5,R6 respectively.
The reason for this lies in the learning session. The existence in pairs in patterns R3 and R4 of
formations that are unique in pattern R1 (the four corners), forces the state which was created to
represent a corner in R1 to proceed in more state transitions in order to receive more information
and differentiate itself. Thus, if the succession of states in order for a cell initially having symbol

*B, which represents a bottom-left corner, to reach object symbol R1 was

*B—b - R1

then, after patterns R3 and R4 are taught this succession gets
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002: Recalling percentages, Combiner Tolerance = 0
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Figure 8.4: Recognition percentages for experiment 002 with combiner tolerance = 0.

*B— b = by > R3R4

simply because b; was not unique when patterns R3 and R4 were presented. From the observation
of the configuration of the system it was found out that once b, was recalled, the conditions that
would change b; to R1 needed 4 more iterations in order to be formed. The conditions that change
b1 to by are created at the next iteration. Thus, when presenting pattern R1, the object label R1
will never be the end state when starting from *B. For the same reason, segments of patterns R1,
R3 and R4 will only have label R4 because the conditions that lead to R4 are created sooner. An
example of this is depicted in figure 8.5 where we see the ending states when presenting pattern
R1. Of course, the same is happening for patterns R1,R5 and R6 and the result after training the

system with all of them is the creation of *areas of domination’ of patterns R4 and R6.

Relaxing the system by increasing the tolerance of the combiner module to 1/5 and 2/5° we
see that more object level states appear at the end of the recalling sessions and pattern R2 achieves
a better recalling performance (figures C.1b and C.1c on page 240). Although the relaxation of the
constraints enables cells to follow alternative state transition routes which end up to object level

states, there still remains the tendency of patterns R4 and R6 to dominate and their responses are

5That is, 1 out of 5 preconditions is allowed not to match at the first case and 2 out of 5 at the second.
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Figure 8.5: The ending states when presenting pattern R1 and following the rules created by the
learning session in experiment 001a. These results correspond to the ones for R1 in figure 8.1
(page 139). The shadowed area ‘belongs’ to R4 as is explained in the text. R1 exists only in two
cells at the top and two cells at the bottom of the pattern. The cells with a dense 1 printed on them
have not ended up in an object level state. This is because they are part of the R6 ‘area’ of the
patterns and the conditions existed in this case did not permit neither R6 nor any other object label

to appear.
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still the highest. The problem which was created now was that cells would not remain at a specified
state until the conditions for them to change were formed but they would take advantage of the
increased tolerance and alter their states prematurely. However, this had a negative effect on other
cells which were depending on them following the proper state transitions in order to receive the

proper messages.
even global waiting is not enough

The recall algorithm used in experiment 0015 was designed in order to alleviate this problem.
Thus, although relaxation would be permitted, it could not be used unless all the processors needed
it in order to alter their states. This is the global relaxation as mentioned in the previous chapter.
The reason for this was that, if the proper conditions existed but their formation would take time,
cells should wait for this instead of using the relaxation option and thus making difficult for other
cells to change their states afterwards. The results with this experiment (figures 8.2 and C.2)
indicate that indeed it had a positive effect. Thus, although the results with no tolerance are exactly
the same as in 001a, when tolerance is used the number of false responses is getting less while the
number of correct responses is getting higher. However, patterns R1 and R2 are still not recalled

successfully.
early connection with objects causes identity problems

The algorithm which was tested with experiment 001¢ was an effort to avoid the problem of
creating states transitions that could never be followed. With this, as soon as a cell acquired a
unique state the next move was to create a rule which would lead to an object level label using
the existing conditions. Thus, in the example mentioned earlier, b; would not have to wait four
iterations in order to become R1 but it would become R1 at the next iteration. Following this
algorithm, the pattern was gradually filled with object labels. The cells to become unique before
an object label could be retrieved for them would be assigned the current object label. For example,

if the following succession of states existed:

a— a1 —as — R1

and when presenting pattern R3 the symbol a4 was now unique over the whole array, a new rule

for the state transition ao — R3 would be created and the previous sequence would be:

a— a; — as — R1,R3
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In the case where a5 Was not unique when presenting R3, then, if the proper conditions existed,

the state transition a; — R1 would be used and the cell would acquire the object state R1.

Using this algorithm, some parts of the pattern are characterized according to patterns which
have already been presented. New rules are created for the rest of the parts which are characterized
using the current object label. Indeed, this can be observed comparing the rules for the combiner
module in tables 8.3 and 8.4 where we see that the rules produced for patterns R3-R6 using this
algorithm are less than the corresponding rules produced with experiment 001a. However, the
problem in that case was that when recalling a pattern, not all of its parts would be characterized
with the correct label. Instead, they would acquire object labels corresponding to similar patterns

presented earlier. Thus, as we see from the graph in 8.3, it was difficult to identify the pattern.

At this point we can see that using the algorithm in 001a we created the rules for the state
transitions which would alter every single symbol of a pattern to an object label, but, some of these
state transitions became useless since the presentation of new patterns was creating ‘obligatory
diversions’ to the route a state could follow. On the other hand, using the algorithm in 001c, no
useless state transitions were created but some parts of a pattern could only be characterized with
a ‘generic’ object label thus inducing difficulties at the exact identification of the pattern. The
real problem with both algorithms was that since the state of a cell represents its ‘awareness’ of
the environment which surrounds it, leaving this state unchanged, either by ‘freezing’ it or by

assigning the object level labels at an early stage, we limit the area that a cell is aware of.
back to basics: leave all cells altering states

The problems found above stem from an effort to modify the operation of the CANN in order to
create the smallest number of rules possible. However, the operation was getting complicated and
the behaviour was not the desired one. The way out of these problems was to operate the CANN
exactly as a cellular automaton. Thus, the states of the cells would alter when the conditions in
their neighbourhood were also altering and only when all of them had become unique would then
the object labels be assigned. This ‘back to basics’ approach was tested with experiment 002.
From table 8.5 (page 142) we see that a larger number of rules is created compared to the previous
experiments. However, as with the previous experiments, the number of rules to be created for
each pattern also has a decreasing tendency which is due to the ‘re-use’ or rules determining state
transitions at the early iterations. Thus, new rules are only created for the parts of the new patterns

that are different from the already presented. Due to the increased number of rules created, it was
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necessary to increase the size of the CMMs using the parameters shown in table 8.2 in page 137.
From the recalling behaviour depicted in figure 8.4 we see that operation now is as it should be.
The correct pattern achieves a 100% recognition percentage with the similar patterns following at
lower rates. Labels corresponding to patterns that are not similar to the one presented do not occur.
This version of the learning algorithm was the one used in the next series of experiments and, as

mentioned earlier, is described in detail in section 6.5.

8.4 Recalling

8.4.1 Description

Ten experiments were performed in this session. As it was mentioned in the overview of the
experiments, the objective of this session was to test the behaviour of the system when presented
with combinations of the training patterns. More specifically, the two relaxation options (global-
local), the two input presentation options (simultaneous-consecutive) and variations of the recalling
algorithm were tested. Additionally, an initial experiment with the use of the information pathways
was performed along with tests using CMMs of larger dimensions. The perfect behaviour would be
for the system to recognize the underlying patterns in all the combinations. According to this, the
results were evaluated and the system was fine-tuned towards the right direction. A summarized
description of the conditions for each of the experiments is given in table 8.6. In order to facilitate
the explanation of the progression from one experiment to the other, the results are accompanied

by the relevant discussion.

8.4.2 Resultsand discussion
003 and 005: Global vs local relaxation

Experiment 003 was the first test with patterns T1-T10. The rules produced from experiment
002 were used and simultaneous presentation and global relaxation were applied for recall. The
percentages of the object label occurrences in the area for pattern R1’ of each of the patterns
T1-T10 are depicted in figure 8.68.

"It is reminded that patterns T1-T10 and T1a-T10a are composed from patterns R1 and R2.
8The percentages of the object labels in this graph, and also at the rest of the graphs, are the ones existing at the first

iteration where object labels occurred. As mentioned in the previous section, the number of iterations required for the
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Exp. | Characteristics Learning data Test patterns
003 | Simultaneous presentation and global relaxation. | The rules from 002 | T1-T10

Information pathways created with empty cells
Rules produced
004 | copying incoming messages to their output. _ T6
using R1-R6.
Simultaneous presentation and global relaxation.
005 | Simultaneous presentation and local relaxation | The rules from 002 | T1-T10
Increased CMM dimensions for combiner Rules produced
006 T1-T10
Simultaneous presentation and local relaxation using R1-R6.
007 | Consecutive presentation and local relaxation The rules from 006 | T1-T10
008 | Consecutive presentation and local relaxation The rules from 006 | Tla-T10a
009 | Consecutive presentation and global relaxation The rules from 006 | T1a-T10a
Augmented relaxation for passer modules at
010 | the first iteration. The rules from 006 | T1
Consecutive presentation and local relaxation
011 | Simultaneous presentation and local relaxation The rules from 006 | Tla-T10a
Variation at recalling algorithm.
All CMMs of arity less or equal to the one
T1-T10
013 | of the preconditions are accessed. The rules from 006
Tla-T10a
(decision based on the arity of the CMM)
Consecutive presentation and local relaxation

Table 8.6: The experiments of the second series.
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003: Recalling Percentages, Area for R1, Combiner Tolerance = 0
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Figure 8.6: Experiment 003: Object labels percentages for the R1 area of patterns T1-T10 using

combiner tolerance 0/5.

recognition of superimposed patterns requires relaxation

The correct behaviour in this case is for all the cells in the R1 (R2) area to end up having
object label R1 (R2). Thus, the object labels percentages for R1 (R2) should reach 100%. As
we see, although object label R1 has the highest percentages for all the test patterns, these hardly
reach 60% in the best case. This is because the combination of patterns R1 and R2 produces
input preconditions of arity 4 (i.e. the state of the cell and the messages from three non empty
neighbouring cells). As no rules of arity 4 have been produced from the learning session it is
impossible for an answer to be recalled for such preconditions. Thus, from the very first iteration
some cells do not change their states and this has as an effect that the cells surrounding them will
miss the proper messages in order to follow the state transitions towards a state represented by
an object label. This is clearly depicted in figure 8.7 where we see that only the cells which are
sufficiently away from the crossings of the two patterns have managed to end up with object labels.
Although it is not apparent from the figure, the labels of the non shadowed cells represent states

either towards the end of the state transitions leading to an object level state or at the start of the

characterization was one more than the number of iterations needed for training. When fluctuations existed, the average

recognition percentage and the standard error (o /+/n)is depicted.
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Figure 8.7: The ending configuration of the CANN when presenting pattern T1 without allowing
any tolerance for the combiner in experiment 003. Since no tolerance is allowed, the cells at the
two crossing points could not alter their states. Thus they did not produce the proper messages in
order for their neighbouring cells to end up with object labels. The shadowed cells were sufficiently
away in order not to be effected from the missing information and thus they have obtained an object

level state.
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route. This depends on which cell they are closer. Thus, the cells right next to the shadowed ones
have states which are one step before an object label and the cells directly connected with the two
crossing points have states which are only one iteration away from the initial labels. The crossing

points themselves have remained unchanged and still have their initial labels.
global relaxation causes information gaps

In order to escape from this problem the tolerance of the system should be increased. The
results obtained for the R1 area of the patterns for experiment 003 when using tolerance 1/5 is
depicted in figure 8.8.

003: Recalling Percentages, Area for R1, Combiner Tolerance = 1
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Figure 8.8: Experiment 003: Object labels percentages for the R1 area of patterns T1-T10 using

combiner tolerance 1/5.

We can see from thes figure that the recognition percentages are improved. However, the
change is not a dramatic one as the highest percentages are still of the order of 60%. In order to
explain this behaviour we have to think how global relaxation works. In global relaxation a cell
is only allowed to increase its tolerance when none of the cells can alter its state. This method
for relaxation was introduced in experiment 0015 and the reasons were explained in the relevant
section. In the case of experiment 003, we saw that it is the cells at the crossings that are causing
the problems. However, since the rest of the cells can still follow their state transitions the tolerance

at the cells that have the problem is not increased. The tolerance is only increased after all the other
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cells have either reached the end of their state transitions route or they are stack somewhere on the
way. When the tolerance is increased the only cells that really benefit are those with a state which
is one step before the object level. For the rest of the cells the increase of the tolerance does not
make a big difference as they are missing a number of messages which they should have received a
number of iterations ago. Thus, even though the increase of the tolerance allows an enhanced flow

of information in the system, this arrives at the wrong time for many cells and cannot help much.
local relaxation performs better

That was the reason why local relaxation was brought back on stage with experiment 005.
Having exactly the same results as 003 when no tolerance is used, the real difference is only shown
by increasing the tolerance of the system. We can see the results for the R1 area of the patterns
using tolerance 1/5 and 2/5 in figure 8.9. We can see now that the percentages for R1 are of the
order of 60%-80% which is a great improvement when compared with the 20%-60% of experiment
003. This is due to the local relaxation which solves the problem discussed earlier. Thus, as soon
as a cell cannot alter its state it can increase its tolerance immediately and try again. By this way
the creation of ‘information gaps’ is avoided and messages are produced and arrive in time except

at the cases of misrecallings.

The difference in the behaviour of global and local relaxation is also depicted in the graphs
in figure 8.10 where the percentage of the cells with object level labels and the number of cells
altering their states are depicted for every iteration of the system. We can notice in figure 8.10a
that when global relaxation is used the number of sites altering their states must be dropped to zero
before any tolerance, indicated by the ‘peaks’ on the number of sites altered, is allowed. On the
other hand, the number of sites altered when local relaxation is used (graphs b in the figure) does
not have these sudden fluctuations and follows a more ‘normal’ route towards a steady value. We
also notice that the percentage of object level labels while using local relaxation is always higher

than when using global relaxation.
increased tolerance can cause fluctuations

Considering the results of experiment 005, when the tolerance of the combiner is increased to
1, we allow preconditions with arity 4 to match with a rule of arity 3. This is why the cells at the
crossing points are able to continue their state transitions. However, there are crossing points where
preconditions of arity 5 are formed (i.e. the cell and messages from four non empty neighbours).

Pattern T9 is an example where only crossings of arity 5 exist. This is when tolerance 2 is required.
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005: Recalling Percentages, Area for R1, Combiner Tolerance = 1
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Figure 8.9: Experiment 005: Object labels percentages for the R1 area of patterns T1-T10 using

combiner tolerance 1/5 and 2/5 (graphs a and b respectively). The bars refer to the standard error.
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Pattern T2, combiner tolerance = 1, Global Relaxation
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Figure 8.10: Comparing the behaviour of global (exp.003, graph a) and local (exp.005, graph b)

relaxation. The percentages of sites altered and of sites with object level states are depicted for

each iteration during recalling with pattern T2. The data are collected from both areas (R1 and

R2) and the combiner tolerance is 1/5.
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Normally, the results with tolerance 2 should be as good as with tolerance 1 if not better. This is
because the tolerance is increased to 2 if and only if nothing can be found having the value 1. Thus,
if a set of preconditions produces the right response when tolerance 1 is used, then, if tolerance 2
is allowed, the same response will be recalled because the system will be satisfied with tolerance
1 and will not make use of the extra tolerance allowed. But this is not always the case. If we look
closer at the graphs in figure 8.9b we will see that the results for the R1 area of pattern T5 are
better when tolerance 1 is used. More specifically, the percentages for R1 are 89.6% for tolerance
1 and 83.2% for tolerance 2. The reason for this is that when tolerance 2 is allowed, the system
will usually reach the same configuration as with tolerance 1 but there is the case that it will not
stop there. This is happening with pattern T5 in experiment 005 and we can see it in the graphs in
figure 8.11 where we can observe that after reaching a similar configuration as with tolerance 1,
the system uses the extra tolerance allowed and continues furthermore. Thus, while the operation
of the system when tolerance 1 is used ceases when the ‘correct’ configuration is reached, when
tolerance 2 is used the operation continues and using the increased tolerance the system enters a
periodic stage. In that, labels R2,R5 and R6 are erroneously recalled and the percentage for R1
drops. This is why the results with tolerance 2 could demonstrate a behaviour which might not be

as good as with tolerance 1.

004: Copying messages

In the previous experiments the empty cells did not participate in the message propagating process.
Experiment 004 was performed in order to test the behaviour that the system would have when
information pathways were created using copying as the method to propagate messages through
empty cells®. Thus, as soon as an empty cell had an incoming message to some of its input channels
it would copy it to the relevant output channel of the same direction (which in turn was the input
channel for its neighbouring unit in this direction). A training session using the same option and

patterns R1-R6 preceded the tests with patterns T1-T10.

This experiment was performed as an alternative to 003 where more information would be
distributed in the array since more information pathways would exist. Since global relaxation was
used, the results, which are presented in appendix C, follow the ones of 003 although at most of the

times the recalling behaviour would not even level with the one of 003. This is because the use of

%1t is reminded that empty cells can participate in the message propagating process either by using their passers or

by just copying the input messages to the relevant output.
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005: Pattern T5, combiner tolerance = 1 (simultaneous + local)
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Figure 8.11: The recognition percentages for each object label in the R1 area when recalling with
pattern T5 in experiment 005. In (a) the combiner tolerance has the value 1 and the operation stops
on the 8th iteration because no alteration happened from the previous configuration. However, in
(b), the combiner tolerance has value 2 and once a correct configuration is reached the operation
does not stop there but using the increased tolerance it obtains a periodic behaviour in which object

labels R2,R5 and R6 appear and the percentage for R1 drops.
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the extra messages, which were propagated through the empty cells, created an increased number
of conditions which needed to be satisfied in order for the proper state transitions to take place.
Due to the special formations created from the mixing of the patterns and due to the use of the

global relaxation, these conditions were not created at most of the cells in the combined patterns.

This experiment was the first to be performed for testing the behaviour of the system when
empty cells are participating in the information pathways. This behaviour was more closely exam-

ined in the last series of experiments.

006 and 007: Simultaneous vs consecutive presentation

trying to retrieve all possible postconditions

After observing the configurations obtained from experiment 005 it was realized that misre-
callings was an important factor for the behaviour during the recognition stage. Thus in some cells,
and especially in the cells close or on the crossing points, not all of the possible postconditions
would be recalled given the input preconditions. For example, in some crossing points between
patterns R1 and R2 the cell would not obtain two states in order to follow two state transitions con-
currently but only one would be recalled instead. Thus, it was decided that the size of the combiner
CMMs would be increased and experiment 006 was performed using simultaneous presentation
and local relaxation. The new values for these CMMs can be seen in table 8.7 where the values

used in 002 are also placed for comparison. Again, 614 rules of arity 3 for the combiner module

Input Pattern Separator Shared Positions
size | bits set | common bits | size | bits set | common bits counted
002 | 200 5 2 150 4 2 T
006 | 250 4 1 150 4 1 T

Table 8.7: Combiner CMMs values for experiments 006 and 002.

were produced while the saturation of the arity 3 CMM was 14.23% instead of 21.09% in 002.

Indeed, the increase in the size of the CMMs solved some of the misrecalling problems and
this can be noticed in figures 8.12 and C.6a where the recognition percentages for the R1 and R2
area respectively are depicted. Both graphs are the results obtained with tolerance 2. Comparing

the graph in figure 8.12 with the graph in figure 8.9b (page 153) where the corresponding results
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006: Recalling Percentages, Area for R1, Combiner Tolerance = 2
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Figure 8.12: Recalling percentages for the R1 area of patterns T1-T10 with experiment 006. The
combiner tolerance is 2/5 and simultaneous presentation and local relaxation is used. The bars

refer to the standard error.

for 005 are shown, we can notice the improvement brought by the enlargement of the CMMs. It
became apparent that, if we could guarantee that all the possible postconditions would be recalled
from a set of preconditions, then the state transitions specified by the set of rules could be followed

and both patterns could end up with the corresponding object labels in all the cells.
using N-threshold needs extra care

One way to achieve this was to use the N-threshold method (see section 2.4.4) in order to obtain
the superimposed separators from the CMMs. That would ensure that all possible postconditions
would be retrieved. The problem was that when more than one symbol is presented simultaneously
the input pattern could get easily saturated. Thus, selecting a proper value for N would be a tricky
job. In the variation of experiment 006 where N-threshold was used, the value of N was specified
according to the tolerance permitted, the arity of the set of preconditions and the number of bits

set in each input pattern. That is:
N = (arity — tolerance) x (bits_in_input)

However, as we can see from the graphs in figure 8.13, the average number of symbols

used to represent the state of a cell is increased very fast after a solution is found in iteration
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Figure 8.13: The average number of symbols which are used to represent the state of a cell in each
iteration for the L-max and N-threshold versions of experiment 006. Combiner tolerance of 1/5

and 2/5 is used in graphs (a) and (b) respectively.
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Figure 8.14: The number of object labels per iteration for the R1 area of pattern T7 for experiment

006. The L-max method is used in (a) while the N-threshold method is used in (b). The upper limit
of iterations for the N-threshold method was 15 iterations as they were enough to demonstrate the

behaviour of the system.
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6. Thus the system is becoming unstable, as we can see in figure 8.14, and although the best
possible configuration is initially achieved this is then lost as more and more symbols are used to
represent the state in each cell. A solution to this problem would be either to have a more subtle
way to specify the value of N or to monitor the configurations of the CANN and as soon as the
first “‘object level’ configuration is achieved stop the operation. From these two solutions only the
first one does not force us to use an ad hoc approach but the correct selection of N is not an easy
problem. Another solution was to keep the L-max thresholding and use the consecutive method of

input presentation. This was tested in experiment 007.

As we saw in section 7.2.3 , consecutive presentation increases the likelihood that all possible
answers will be retrieved and at the same time it provides a secure mechanism for the confidence
measurement of the output of the CMM because we know that all preconditions have one symbol
and thus we know in advance what the correct response of the CMM should be. The recalling
percentages for the R1 area of patterns T1-T10 obtained using consecutive presentation, local

relaxation and a tolerance 2/5 for the combiner are depicted in figure 8.15 while the results for the
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Figure 8.15: Recalling percentages for the R1 area of patterns T1-T10 with experiment 007. The
combiner tolerance is 2/5 and consecutive presentation and local relaxation is used. The bars refer

to the standard error.

R2 area are shown in figure C.6b. Comparing the graphs in figures 8.12 and 8.15 we can have an
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idea about the effect that the full recall of the postconditions for every set of preconditions has.

008, 009 and 011: Test patterns T1a-T10a - More initial symbols

The previous experiments in this series helped form an idea about the behaviour of local relaxation
and the influence of the consecutive presentation of the symbols in the messages. The aim of the
following experiments was to extend these observations when the set of testing patterns T1la-T10a
would be used'®. As it was summarized in table 8.6 (page 148), consecutive presentation was
used for both experiments 008 and 009 and their difference was in the relaxation mode. Thus, 008
used local relaxation and 009 global. Local relaxation was also used in experiment 011 but it was
combined with simultaneous presentation. As it was expected, the best behaviour was achieved
with 008 since it was the only one to provide full recalling at the right time. Since this experiment
used exactly the same options as 007 and its behaviour was free from the influence of factors such
as delayed or incomplete recalling, the differences in the behaviour of 007 and 008 were only due to
the initial symbols existing at the crossing points of patterns R1 and R2. The results from 009 and
011 exist in appendix C for reference while the recognition percentages obtained with experiment
008 for the R1 area of patterns T1a-T10a when tolerance 2/5 is allowed for the combiner modules,
are depicted in figure 8.16.The results in this figure can be compared with the ones in figure 8.15
where the corresponding results for experiment 007 are presented. The results for the R2 area are
shown in figure C.7c and they can be directly compared with the relevant results from experiment
007 which exist in graph C.6b. Comparing the graphs with the results for the R1 are R2 areas with
experiments 007 and 008 we can notice that they are very similar, except in the cases of pattern
T5a for the R1 area and pattern T1a for the R2 area. Thus, in general the system can tolerate the
existence of more initial symbols in a cell. Examining more closely the two cases that it does not,
we can see that at the same time there is an increase at the percentages of the other “family’ of
patterns. Thus, when the percentage of R2s drops for the R2 area in pattern T1la, the percentages
of labels R1,R3 and R4 increase and an analogous situation happens in T5a. The explanation of
this event is given below and provides a good insight of the operation in a CANN as well as giving

the reasons why new recalling schemes, tested in experiments 010 and 013, were designed.

the case of T1: relaxation is needed to yield R2 symbols

101t is reminded that patterns T1a-T10a differ from patterns T1-T10 in that more initial labels appear in the crossing

points between patterns R1 and R2 which are the constructing parts of these patterns.
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Figure 8.16: Recalling percentages for the R1 area of patterns T1a-T10a with experiment 008.
The combiner tolerance is 2/5 and consecutive presentation and local relaxation is used. The bars

refer to the standard error.

The shadowed cells in figure 8.17a are the cells containing label R1 when pattern T1 was
presented in experiment 007. All the numbered non shadowed cells contain object label R2. The
same™! holds for part (b) of this figure where the configuration of the CANN at the 7th iteration
for pattern T1a is presented. We can see that object labels R1 now also exist in the lower part of
the R2 area and that the percentage of R2s has dropped in that place. Thus, a sort of ‘diffusion’
has happened for labels R1 in the case of T1a. The reason for this must be traced back to the initial
labels for the cells and the state transitions that took place. For pattern T1, the initial state of cell
(13,13), which is the one of the two crossing cells in this pattern (the other being cell(13,8)), is
represented by the symbols corresponding to the two corners (1.). When this cell tries to update
its state it drops its tolerance because, as we saw earlier, the input preconditions are of arity 4 and
only rules of arity 3 exist for the combiner unit. Thus, it obtains a state which represents the fact
that it can be part of the lower left (1 ) or lower right ( L) corner of a pattern. This state is

represented by two labels, one for each case.

The first signal that this cell sent to its neighbour to the right, cell(14,13), was its initial state

1Except the bottom left which contains labels R1,R2,R3 and R4.
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Figure 8.17: The ending configurations with experiments 007 and 008 when pattern T1 (a) and T1a
(b) are presented. The circles contain the initial pattern primitives for the cells while the squares
indicate the object labels which were obtained. In both (a) and (b) the shadowed cells indicate the
label R2. Only exception is the cell at the bottom right corner of T1a which has both the R1 and

existence of label R1 while all the non shadowed ones (with a number in) indicate the existence of
R2 labels.
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(i.e. Lu). Thus, when cell(14,13) tries to alter its state it searches for a state to represent one, or
both, the formations . — — and . ——. However, only the second one is valid (i.e. it has been seen
from the combiner module before). Hence, the new state of cell(14,13) represents this formation
only. At the same time in which the combiner of cell(13,13) produced its new state, its passer
module for the signals towards right produced the message to be used from cell(14,13) at the next
iteration. This message was produced by the combination of the current state (L) and the message
coming from the left (—). From the combinations —_ and —., only the first one was valid for
this passer. Thus, when the time for the next iteration comes, cell(14,13) tries to alter its state
using its current state (.——) and the messages from the four directions. As we saw, from these
messages, the one coming from the left says that the lower right part of a pattern exists at that side
and that further at the left a horizontal pattern primitive exists (i.e. —.). The combination of all
these messages has not been seen before from the combiner which is thus forced to increase its
tolerance. With the increased tolerance, the message coming from the left (i.e. —.) is ignored and
the new state for cell(14,13) is one which accepts the fact that the cell is connected with a lower
left corner and nothing exists further at the left. This state gradually leads to labels R2,R5 and R6
when the proper messages from the right hand side are received. Thus, the bottom part of R2 in
pattern T1 is labeled as R2 because, using the increased tolerance, it manages to overcome the fact

that the lower left corner is also connected with a horizontal line from the left.
the case of Tla: how the diffusion of R1s happens

However, when pattern T1a is presented a difference situation is created. Starting with 3 initial
labels (LL-), the crossing cell manages to maintain a state which is represented by three symbols;
one for denoting that it is a prolonged left corner, one for a prolonged right corner and one for a
prolonged horizontal line. Using the third ‘view’ of its left neighbour, the cell in location (14,13)
does not have to increase its tolerance in order to obtain new states. However, the new states,
which are obtained without increasing the tolerance of the combiner, lead to the characterization
of the lower part of R2 as a continuation of the horizontal line at the left'?. An analogous situation

is happening with patterns T5 and T5a.

Thus, we see that the problem stems from the fact that the passer in cell(13,13) cannot recall
an output for the combination —. and produces a message which has information only for the

combination — .. However, this message is of no use for cell(14,13) which has already obtained

2Except the lower right cell which obtains the object labels R1,R2,R3 and R4 since the crossing point is sufficient

enough in order not to stop the cell’s state transitions towards all the above labels.
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an initial state acknowledging the fact that a single lower left corner () exists at the left side of
the cell. It is only due to the increase of the tolerance that this cell continues to update its state and
as it started as a cell existing close to a bottom left corner, it continues the state transitions all the
way up until it receives the signal sent from the bottom right corner, cell(18,13), and it is labelled
with R2,R5 and Re6.

At the case of pattern T1a, the passer in cell(13,13) produces a message using three combina-
tions; —., —— and —.. From these, the first two are valid and thus contained in the message that
this passer sends. Moreover, the second combination can be used directly from cell(14,13) which
has a bimodal state representing L.—— and — — —. From these states, the second one can use the
message —— without the need to increase the tolerance. However, the new state which is obtained

by the cell belongs to the states in the state transitions towards objects R1,R3 and R4 only.
how decisive information can be lost

The above description was intentionally more detailed than what it could be in order to explain
the results for T1la and T5a. This is because a similar situation is the reason that the common area
of patterns R1 and R2 is characterized as R2,R5 and R6 only (see figure 8.17) and in order to find

out, and explain, the solution to this problem, an analysis at the above level would be necessary.

The initial contents of cell(13,8) in pattern T1 are the initial symbols representing a vertical
line and an upper right corner (| ™). The first symbol is necessary for the state transitions towards
R2,R5 and R6 and the second is necessary for the transitions to R1,R3 and R4. Even though
cell(13,9) (the one at the bottom of cell(13,8)) is initially informed of the existence of both and
thus it acquires the corresponding states which will lead to all six labels, a similar situation to the
one described for cell(14,13) happens at the next iteration. Thus, the relevant passer in cell(13,8) is
presented with the combinations I and | and it passes only the first one which is valid. Hence, the
next message that arrives in cell(13,9) from upwards does not contain information about the corner
which exist there but only for the vertical line. This information can be directly used from the
combiner in this cell in order to alter its state without the need to increase its tolerance. Indeed, the
tolerance is not increased and whereas the previous state of cell(13,9) were bimodal, the new state
represents only the fact that this cell is part of a prolonged vertical line. Thus, the state transitions
towards labels R1,R3 and R4 cannot be followed furthermore and this has an immediate affect to

all the cells below.

The above discussion highlighted the fact that there might be cases where a more extensive
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search for antecedents is necessary. This is because important information could be lost in a
temporal situation where no tolerance is needed. As an example, we saw that at the case of Tla
this leads to an erroneous characterization of the bottom part of R2 as R1 and in both patterns the
common area of R1 and R2, which should be characterized as such, is only characterized as part
of R2.

010 and 013: Searching for more answers

In experiment 010, a variation of the recalling algorithm in order to alleviate the problem of the
common areas was tested. We saw above that this problem was created from the loss of decisive
information about the existence of specific pattern primitives. This happened at the passer modules
because they would not allow passing of information without all conditions existing. However, in
the example of pattern T1, had the passer been allowed to operate with increased tolerance it would
still not use it because an answer without increasing the tolerance could still be retrieved for the

combination } :
augmented tolerance helps but is not enough

The solution which was tested in 010 was to operate the passer modules with ‘augmented
tolerance’ at the first iteration'®. Here, ‘augmented tolerance’ is a term used to denote that the
module is actually forced to operate with increased tolerance even if a match is found from the
first access to the CMMs. For the above example, the use of this option would allow the propagation
of information about the existence of the corner as well. This is because the passer of cell(13,8)
would successfully recall the symbol corresponding to combination } and then it would be forced
to increase its tolerance in order to find out a match for combination .. However, the only match
for the latter is the one responding to -, where {.} represents the empty space, and actually this
is the one needed from cell(13,9) in order to continue being in a bimodal state leading both to R1
and R2.

Only pattern T1 was tested with experiment 010 in order to observe the influence of this alter-

ation of the recalling algorithm to the specific problem. It was found out that cell(13,13) was now

3The reason that increasing the tolerance in passers was not a generally favoured approach was because when the
passers were operating with high tolerance, messages could be propagated without “filtering” and that had, as we will
also see later, an unstabilizing effect on the system. Moreover, the number of symbols existing at the information

channels of the CANNs was increased in very high levels.
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labelled with all labels from R1 to R6 and this was correct because this cell was both the bottom
left hand side corner for the patterns R1, R2 and R6 and the bottom right hand corner for patterns
R1,R3 and R4. However, cell(13,13) was the only one to be labelled as such. After investigating
the configurations and the messages which were produced, it was found out that cell(13,12) was
lacking the signal which would be generated from the passer in cell(13,8) at the second iteration,
cell(13,11) was lacking the signal which would be produced from the same passer at the third
iteration and so on. Thus, while cell(13,13) was able to receive a message saying that there was a
corner 5 cells upwards, all the other cells were troubled. That was because after receiving the initial
message about the corner, all the other messages coming from upwards would not mention any-
thing about a corner simply because the passer in cell(13,8) was not functioning with augmented

relaxation after the first iteration.
matching decided on the arity of the CMM is a solution

As the solution of operating the passers with augmented relaxation all the time was not practical
because it was producing a very large number of symbols, it was time for another method for
operating with tolerance to be tested. This was the one mentioned in section 7.2.4 where the
search is expanded to CMMs of arity lower than the one of the rule and the confidence test is
performed by taking note of the tolerance and the arity of the current CMM and not the arity of
the rule. For example, having a rule with two preconditions we first search in the CMM of arity
2. Then, without increasing the tolerance, we also apply the inputs to the CMM of arity 1 and the
confidence test there is performed according to the arity of the CMM (which is 1) and not the arity
of the rule (which is 2). Thus, with tolerance 0 we require 1 (1-0) preconditions to match. For
the case mentioned earlier, that means that applying the combination 1 we can retrieve an answer

corresponding to - without increasing the tolerance.

The results from this experiment for the R1 area of patterns T1-T10 and T1a-T10a for combiner
tolerance 0/5 can be seen in figure 8.18. The results for tolerance 1/5 and 2/5 and the corresponding
results for the R2 area are in appendix C. We can see from these results that the correct pattern
is recognized in all the cases*. Moreover, the correct pattern is produced without the need to
increase the tolerance®®. This is happening because in all the cases where increased tolerance was

needed that was due to the existence of extra messages. Thus, in order for answers to be produced,

The exception of pattern T10 is due to the abnormality introduced to the pattern at its creation.
150f course, as we saw in section 7.2.4, the extension of the search to other CMMs permits a more relaxed operation

without the need to increase the tolerance.
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Figure 8.18: Recalling percentages for the R1 area of patterns T1-T10 and T1a-T10a with exper-

iment 013. Combiner tolerance has the value 0/5 for both graphs and consecutive presentation

and local relaxation are combined with the new recalling approach. The bars refer to the standard

error.
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only a subset of the preconditions was required and not the replacement of an erroneous message
with a different one. The total recognition of the underlying patterns (R1 or R2) is due to the
fact that the common area problems have disappeared because the passers are producing all the
possible answers in all iterations. At the same time, they do not allow the overcrowding of the
input and output channels because they do not aim to replace an existing message with something
else but they just search for all the valid subsets of the preconditions. The only case that the ‘hard’
increasing of tolerance is also required is when erroneous messages and distortions at the patterns

need to be overcome.

8.5 Internal connections

8.5.1 Description

This series of experiments tested three different internal connection schemata. That was in order
to check the behaviour of the three modules (spreader, passer, combiner) under various conditions
and also in order to reveal the differences when using alternative ways to connect the modules in

the processor.

Experiments 012,014 and 015 were performed. The first one employed the use of spreaders in
addition to the existing structure of the processor. The alteration at the second experiment, 014, was
that no feedback was used and the third experiment was a test to operate the processors without the
passers but using feedback. Patterns R1-R6 were used for training and patterns T1-T10 for testing.
A summarized description of these experiments exists in table 8.8 and the characteristics refer to
the difference of the current internal connection schema from the one used for all the previous
series of experiments'®. The internal connection schemata for experiments 012,014 and 015 are

depicted in figures 8.19, 8.20 and 8.21 respectively.

One more version for both experiments 014 and 015 was performed and was called 014a and
015a respectively. In 014a the difference was that N-threshold instead of L-max threshold was
used. The variation in 015a was that the connection schema which was used was a more direct

way to connect the combiner modules since only them were used by the processors.

The results in each case are presented next and they are accompanied by the relevant discussion.

This internal connection pattern is referred in section 6.4.
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Figure 8.21: Internal structure of the processor for experiment 015.

Exp. | Characteristics Learning data | Test patterns
Spreaders are employed. Now, one of the
Rules produced
012 | two inputs to the passers is the output of _ T1-T10
using R1-R6.
the corresponding spreader module.
The spreaders are removed as well as the Rules produced
014 ) T1-T10
direct feedback of the state of the processor. | using R1-R6.
Same as 014 but with N-threshold Rules from
014a T1-T10
instead of L-max threshold. 014.
The passers are removed but the state of
Rules produced
015 | the processor is used again. What comes _ T1-T10
using R1-R6.
from the neighbours is their previous state.
Same connection schema as in 015 Rules produced
015a T1-T10

but more “direct” application of it.

using R1-Ré.

Table 8.8: The experiments of the third series.
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8.5.2 Resultsand discussion

012: Inclusion of spreaders

As we saw in section 6.4, the role of the spreader modules is to convert the input to a form suitable
for spreading in each direction. The input to the spreader modules is the current state of the
processor and the output is a message to be passed to each neighbour (either directly or combined

with the passers as in this case).

The parameters of the CMM used by each spreader can be seen in table 8.9. These values were
set according to the guidelines set by the previous experiments’. The number of rules produced
for each of the four spreader modules which were added to the structure of the processor is shown
in table 8.10.

Input Pattern Separator Shared Positions
size | bits set | common bits | size | bits set | common bits counted
150 3 1 150 4 2 T

Table 8.9: Spreader CMM parameters for experiment 012.

The number of iterations required for each pattern is also shown in table 8.10 as well as the
final saturation levels of the relevant CMMs. As far as the other modules are concerned, their
behaviour is just like experiments 002 and 006 (table 8.5 in page 142). We can see from table 8.10
that the number of rules produced at each session reduces as more patterns are presented and this

is also in accordance with the learning behaviour in experiments 002 and 006.

The recall behaviour of experiment 012 with patterns T1-T10 is shown in graphs (a) and (b)
in figure 8.22 for the R1 and R2 area respectively. For these graphs, the tolerance of the combiner

module was 2/5.

As its name suggests, experiment 012 was performed earlier than experiment 013 when the
new recall approach was used. Thus, the results depicted in figure 8.22 should be compared with

the ones for experiment 007 where consecutive presentation and local relaxation was also used.

1t has to be mentioned that at this stage of development our main focus was in the behaviour of the system and not
in the selection of the optimum set of parameters for the CMMs. Of course, the latter is also of great importance and is

discussed in the next chapter.
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Figure 8.22: Recalling percentages for the R1 and R2 area of patterns T1-T10 with experiment

012. Combiner tolerance has the value 2/5 for both graphs. The bars refer to the standard error.
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Rules produced
Pattern | Iterations | Spreader 1 — | Spreader 2 < | Spreader 31 | Spreader 4 ]
R1 5 95 95 95 95
R2 5 39 39 39 39
R3 5 37 37 37 37
R4 5 42 42 42 42
R5 5 37 37 37 37
R6 5 30 30 30 30
Total 280 280 280 280
Saturation (%) 13.83 13.70 13.84 13.97

Table 8.10: The rules and the saturation for the CMMs in each of the four spreaders used in

experiment 012.

Comparing graphs 8.22a with 8.15 (page 161) and 8.22b with C.6b (page 245) we can observe a

similar behaviour. The small variations are due to the different binary tokens used from the CMMs.

This experiment was the first in which spreaders were included in the structure of the processor.
The cases that we would need the use of spreaders were referred in section 6.4.2. For the current
connection schema where both ordered presentation and one passer for each direction is used, the
intervention of spreaders does not affect the actual flow of information; hence the similarity of
the results with the ones of 007. In order to extensively evaluate the behaviour of the spreader
modules the relevant conditions should also exist. Thus, one passer should handle all the messages
and superimposed presentation of inputs should be used. This will be a subject of future tests with

the structure of the processors.

014: No Feedback

The size parameters of the CMMs used in 014 were as in experiment 006. The number of rules
created was also the same as with experiment 006. The only difference was that the combiner
module had four CMMs of four inputs each instead of five/five in 006. After training, the arity 2
CMM of the combiner module had a saturation level of 12.03%. For comparison, the arity 3 CMM

of the combiner in experiment 006 had a final saturation level of 14.23%.
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The recall percentages for the R1 area of patterns T1-T10 can be seen in the graphs in figure
8.23 for combiner tolerance of 0/5 and 1/5. The corresponding results when N-threshold instead of
L-max threshold was used for converting the output of the CMMs to the superimposed separator
pattern can be seen in figure 8.24. As we can see, in 014q there is no need to increase the tolerance

of the system.

It must be noted that increasing the tolerance of the combiner module to 2/4 had no effect at
all at the results since the maximum tolerance that the system could effectively use was 1/4. This
is because when the tolerance is increased to 2/4 then the CMM of arity 2 should be accessed
requiring O (i.e. 2-2) inputs to match. Should this be permitted the response would be all the

postconditions stored at the CMM; something that we do not wish and thus do not allow to happen.
feedback of self state reduces uncertainty

Since the recalling method used in 014 is the one introduced with experiment 013, where the
search is extended to all CMMs even with tolerance 0, the perfect behaviour from this experiment
should be as the one of 013 where recognition levels reach 100%. However, this is not happening
as we can see from the graphs in figure 8.23. Investigating the reasons by analyzing the conditions
existing in each cell which failed to end up with a correct labelling, it was found that in all the

cases this was due to misrecallings. Especially at the early stages.

An example of why this is happening with experiment 014 and did not happen with 013 where
the current state of the processor was used is given with the help of figure 8.25. In both (a) and
(b) of this figure the cell must decide for its new state given the information from its neighbours.
However, in (a) the current state of the cell is not used. Thus, there are six possible new states
for the cell and they represent the six formations shown. If all existing conditions should be
satisfied the next state of the cell must be represented with six symbols. One for each formation.
However, when presented with these inputs, the systems fails to recall all six answers and comes
up only with a subset of them. The L-max threshold method which is used is partly responsible
as it favours the highest responses only. Also, the six answers should be retrieved at once having
equally supporting evidence for all six of them (2 out of 4 inputs support each answer). In figure
8.25b we see what is happening when the current state is used. The size of the set of the valid
outcomes is reduced to 2. Furthermore, there are two accesses at the CMMs since the current state
of the cell is represented with two symbols. In each access, 3 out of 5 inputs support only one

output which is thus successfully recalled.
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Figure 8.23: Recalling percentages for the R1 area of patterns T1-T10 with experiment 014. The

tolerance of the combiner modules is 0/4 in (2) and 1/4 in (b). The bars refer to the standard error.
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014a: Recalling Percentages, Area for R1, Combiner Tolerance = 0
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Figure 8.25: The preconditions in order to decide for the next state. The current state is not directly
used in (a) (exp. 014) but is used in (b) (exp. 013).
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Consequently, the problem was not that the conditions were not there. The problem was that
not all correct answers were recalled. In order to prove it, experiment 014q was performed where
N-threshold was used. Indeed, as demonstrated by the results in figure 8.24, the misrecallings was

the reason.
N-threshold and consecutive presentation improve performance

One would expect the use of N-threshold to cause similar side effects as the ones discussed for
experiment 006 in section 8.4.2. However, as it can be seen from figure 8.26, there is not a dramatic

increase at the number of symbols which are used in order to represent the states of the cells. The

013-014a: Average symbols for state. Combiner Tolerance = 0
26 T T T T T

013 (Feedback) ~o—
014a (No Feefback) +—+—

24

22

18 |

16

14

0.8

W [ —

Itergtion
Figure 8.26: The average number of symbols to represent the state of the cells in each iteration in
experiments 013 (feedback) and 014« (no feedback) where patterns T1-T10 were used for testing.
The tolerance of the combiner modules is 0/5 and 0/4 respectively. The bars refer to the standard

error.

problem with N-threshold was that an ‘explosion’ to the number of symbols would happen just
after the labelling with object labels when tolerance was permitted. In the case of experiment
014a this was not observed for tolerance 1/4 and recalling would terminate on the 7th iteration
for all test patterns except pattern T8 where nine iterations were required. This is happening
because consecutive presentation was used. Thus, the binary input patterns to the CMMs did not

get saturated as was the case with 006 (N-threshold). This beneficial combination of consecutive
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presentation and N-threshold offers suggestions for solutions to the problem of specifying a correct

value for N and it is to be further investigated in future research.

Back to the comparison of 014 and 013, figure 8.26 offers one more clue. That is that when
feedback is not used more symbols are needed in general in order to represent the states, especially
at the first iterations. The example in figure 8.25 can explain again the reason for this. Thus, we see
that, as mentioned in section 6.4.2, when using direct feedback we exploit a potentially decisive

part of data in order to decide for the next state of the processor.

015: No Passers

With reference to figures 7.1 and 7.2 (page 107), the connection schema used for this experiment
(fig. 8.21) was derived by replacing the commands involving the use of passers (e.g. AO+A3 — C'3
Pa_AM[1], etc) with simpler commands (e.g A0 — C’3 COPY, etc). An increased number of rules
was produced with this experiment where no passer or spreader modules were used. Moreover,

more iterations were required. This is depicted in table 8.11. The increased number of rules

Rl1 | R2| R3| R4 | R5 | R6
iterations 9 9 9 9 9 9
rules | 242 | 142 | 134 | 142 | 134 | 118 | 912

Table 8.11: The rules produced for the arity 3 CMM of the combiner module in experiment 015.

which were produced caused a saturation in the process of creating separator patterns. Thus, the
parameters for the separator patterns were altered to the ones shown in table 8.12. The ones for
experiment 006 are also shown for comparison. Only rules of arity 3 were again produced and the

final saturation of the relevant CMM was 8.3%.

Input Pattern Separator Shared Positions
size | bits set | common bits | size | bits set | common bits counted
006 | 250 4 1 150 4 1 T
015 | 250 4 1 200 2 1 T

Table 8.12: Combiner CMMs parameters for experiments 006 and 015.

The results with experiment 015 for the R1 and R2 areas of patterns T1-T10 when a tolerance
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of 0/5 was allowed for the combiner modules are depicted in graphs (a) and (b) in figure 8.27.
The relevant results for tolerance 1/5 are depicted in figure C.14. Graph (a) in figure 8.28 has the

recognition percentages per iteration for the R1 area of pattern T1 when tolerance 2/5 were used.

As mentioned earlier, experiment 015a used a more direct way to connect the combiner mod-
ules thus avoiding the intervening placements of messages in different locations in each cell in
order to be available to the other modules. The only command used in the set of commands de-

scribing the internal operation in each cell was:

A0+B0+C0+D0+E0 — A’0 Co_,AM

Thus, each cell was directly using the current state of the neighbouring cells in order to decide
about its next state. This operation was in exact accordance with the general model of operation in
a cellular automata system. The size parameters of the CMMs were the ones for 015 (table 8.12)
and the number of rules produced were almost the same as for 006 as is shown in table 8.13. The
final saturation of the arity 3 CMM was 5.81% (whereas in 006 the corresponding saturation was
14.23% after storing 614 rules).

R1 | R2 | R3| R4 | R5 | R6
iterations 5 5 5 5 5 5
rules | 153 | 103 | 94 | 100 | 94 | 96 | 630

Table 8.13: The rules produced for the arity 3 CMM of the combiner module in experiment 015a.

The recognition results for experiment 015qa for the R1 and R2 areas of patterns T1-T10 when
tolerance 0/5 was used can be seen in graphs (a) and (b) in figure 8.29 while the recognition
percentages per iteration for the R1 area of pattern T1 when tolerance 2/5 were used can be seen
in graph 8.28b.

direct connectivity improves learning and recall speed

We can see that apart from the fact that more iterations are required for training at the case
of 015 (9 instead of 5) thus producing more rules, the recalling behaviour is similar with that of
013. As mentioned earlier, although the passers where not used in experiment 015, the intervening
placements of the messages was the same as in the case where passers were used. This had as

effect that the states of the cells at time ¢, ¢ > 1, were decided based on their state at time ¢ and the
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015: Recalling Percentages, Area for R1, Combiner Tolerance = 0
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Figure 8.27: Recalling percentages for the R1 and R2 areas of patterns T1-T10 with experiment

015. The tolerance of the combiner modules is 0/5.
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015: Recalling Percentages/Iteration , Pattern T1, Area for R1, Combiner Tol. = 2
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Figure 8.28: Recognition percentages per iteration for the R1 area of pattern T1 for experiments

015 and 015a. The combiner tolerance is 2/5 in both cases.
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015a: Recalling Percentages, Area for R1, Combiner Tolerance = 0
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Figure 8.29: Recalling percentages for the R1 and R2 areas of patterns T1-T10 with experiment

015a. The tolerance of the combiner modules is 0/5 in both cases.
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states of their neighbours at time (¢ — 1)*8. This is why it was taking more time for the necessary

information to arrive at the cells in order for them to be unique.
passers provide an equivalent for direct connectivity

In the case of 015a the intervening placements were not applied and the states of the cells
were decided directly upon their current state and the current state of their neighbours. From the
number of iterations that were required we can observe the equivalence in the propagation speed
of information when passers and intervening placements or no passers but direct use of the current
state of the neighbours are employed. Nevertheless, similar propagation speed does not imply
similar propagation ability since in the case where no passers are used there is ho way to propagate

messages through empty cells apart from them changing their states.
passers function as filters

A common characteristic of both experiments 015 and 015a was their behaviour when a toler-
ance of 2/5 was allowed. We can see from the graphs in figure 8.28 that after reaching the correct
configuration the system does not stay there but continues the alteration of the states. However,
this has as a result that the correct configuration is lost. The reason behind this is the absence of
passers. When passers are used the cells do not propagate messages further when an object level
configuration is reached. This is because the relevant passers are not trained to do so. Thus, when
an object configuration is reached the system ‘freezes’ there and the only change is at the states of
the cells which become object level ones. With the incoming messages unchanged and only the
state changed, the output of the combiner modules at the next iteration when tolerance 2/5 is used
is again the same object level label. Thus, the new state of the cells is the same as the previous one
and the iterations stop. When the passers are not used, the conditions formed at the input of the

combiners at the next iteration after reaching an object level state are different from the previous

8This is because when passers are used the state of each cell at time ¢ + 1 (¢ > 0) is:

t+1 _ ¢ t to
Sii = f(si,j,m Tiisjy e v s Mipsi5)

where f is the mapping performed by the combiner and mi;i,j is the message coming to cell (7, ) from direction n at

time ¢. This message itself is:

+ _ t—1 t—1
Mapi,5 = f"(SN(i,j;n)’ mn;N(i,j;n))

where f, is the mapping performed by the passer for direction n and N (4, j; ») returns the coordinates of the neighbour

of cell (4, 5) for direction n. In experiment 015, where passers were not used, it was mfm,j t> 1 ltis

_ t—1
= SN(ijim)"
reminded that in all cases it is g’; = S?V(i iim)
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ones. Moreover, nothing similar to them is stored at the combiners. Thus, when a high tolerance is
permitted it is likely that the CMMs will produce a false response. This false response may trigger

another false response and so on. This is why the graphs in figure 8.28 have this form.

8.6 Noise

8.6.1 Description

One experiment and its variation were performed in order to evaluate the behaviour of the system
when symbolic noise was present. Experiment 016 and 016a. The internal connection pattern
which was employed was as referred in section 6.4 and the rules produced from experiment 006
were used. The testing patterns were the noisy versions of patterns R1-R6 as presented in section
7.3.4. Consecutive presentation and local relaxation were used. Additionally, the creation of
information pathways using the passer modules at the empty cells was allowed. While only the
tolerance of the combiner modules was altered in experiment 016, the tolerance of the passer
modules was also altered in 016a and had the value of 1/2 (i.e. one precondition out of two was

allowed not to match).

A slight variation in the recall was introduced with these experiments. Thus, searching in the
CMMs starts from the CMM of the highest arity when a level of tolerance is permitted. In the pre-
vious series of experiments only CMMs of arity less or equal to the one of the input preconditions
were checked. Due to the existence of all three forms of noise, and especially of the one of the
absence of symbols, this option was necessary in order to check if the current preconditions are a

subset of the preconditions of an existing rule.

The results obtained from these experiments are presented in the next section and a discussion
follows. Due to the analogies observed for all six patterns, the results of one of them, R4, are

analyzed herel®.

8.6.2 Resaults

Figures 8.30, 8.31 and 8.32 have the results for combiner tolerance 0/5, 1/5 and 2/5 respectively.

These are the average percentages over the 10 different versions of the patterns for each noise

1t is reminded that the complete results can be found in [8]
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level. The standard error (o/+/n) is also presented for pattern R4. Graphs (a) and (b) in each

figure correspond to experiments 016 and 016a in order to make the comparison easier.

The graphs in figure 8.33 have the average number of symbols which are needed in order to
represent the state of each cell® in the two experiments and the graphs in figure 8.34 have the
average number of symbols in the messages exchanged between the processors. These messages

are the output of the passer modules.

8.6.3 Discussion

Examining the results in graph 8.30a we can see that the percentage for pattern R4 is always the
highest one although its value decreases to almost 5% at 50% noise. When tolerance of 1/2 is
allowed for the passers, while keeping the combiner’s one to 0/5, the percentages in graph 8.30b
show that we have an improved recognition of pattern R4. This is because when the passers are
more relaxed, messages can be propagated greater distances and can overcome obstacles such as

empty or erroneous conditions.

The results in graph 8.31a were obtained using a tolerance of 1/5 for the combiner module and
0/2 for the passers. The improvement from relaxing the combiner modules is obvious. The labels
for R4 have increased their percentages in all cases and even with 50% of noise pattern R4 comes
up with almost 42%. A side effect of the increased tolerance is that the percentages of the other

class (R2, R5, R6) have also increased.

Comparing the graphs 8.30b and 8.31a we can see that the behaviour of the system is influenced
at a greater level by the combiner units than by the passer units. This is justified since the combiner
modules are the ones that decide the next state of the processor while the passer modules are only
responsible for passing this information to the neighbours. The effect of the relaxation of the passer
modules is more obvious when comparing graphs 8.31a and 8.31b where we can see that although
the correct behaviour is followed in 8.31a, it needs to be augmented by relaxing the passer modules
as well. This has as effect a “fine tuning’ of the recognition levels. The results when the combiner
tolerance is 2/5 (fig. 8.32) follow the same guidelines; only that the percentages have risen a bit

higher, especially for the rest of the patterns.

improved behaviour at a small cost

2t js reminded that the state of each cell is represented by one or more symbols. In this case, the average number of

symbols in all the non-empty cells for all iterations is taken.
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016: Pattern R4, Combiner Tolerance = 0, Passer Tol. =0
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Figure 8.30: Recognition percentages with the noisy versions of pattern R4 for experiments 016
and 016a. The tolerance of the combiner is 0/5 in both cases. In (a) the tolerance of the passer is

0/2 and in (b) it is 1/2. The bars refer to standard error.



8.6. NOISE

016: Pattern R4, Combiner Tolerance = 1, Passer Tol. =0
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Figure 8.31: Recognition percentages with the noisy versions of pattern R4 for experiments 016
and 016a. The tolerance of the combiner is 1/5 in both cases. In (a) the tolerance of the passer is

0/2 and in (b) it is 1/2. The bars refer to standard error.
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016: Pattern R4, Combiner Tolerance = 2, Passer Tol. =0
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Figure 8.32: Recognition percentages with the noisy versions of pattern R4 for experiments 016
and 016a. The tolerance of the combiner is 2/5 in both cases. In (a) the tolerance of the passer is

0/2 and in (b) it is 1/2. The bars refer to standard error.
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Figure 8.33: The average number of symbols which are used for representing the state of the cells

in experiments 016 and 016a .
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Figure 8.34: The average number of symbols in the messages exchanged between the processors

for all directions in experiments 016 and 016a .
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It is now time to refer to the graphs in figures 8.33 and 8.34. When only the passer modules
are relaxed, the average numbers of symbols which were used to represent the state of each cell
and the average numbers of symbols in the messages exchanged between the cells are depicted in
graphs 8.33a and 8.34a respectively. We can see from the these two graphs that while the increase
of the tolerance of the passer modules is followed by the, expected, increase in the number of the
symbols in their output (graph 8.34a), the number of the state symbols is relatively ‘immune’ to
this relaxation (graph 8.33a). This is because, as mentioned earlier, it is the combiner module that
decides about the state. If this module is not relaxed then it will either produce an output when
all conditions match or it will not produce an output at all. By relaxing the passers we are trying
to increase the likelihood that the correct conditions will exist. However, no matter how many
symbols exist at the incoming messages, if the correct conditions are not formed the combiners

will not produce an output?!,

When the tolerance of the combiner is increased to 1/5, we see that the differences between
the number of symbols in the states and the messages when the passers are and when they are not
relaxed have been reduced. Moreover, when the passer modules are relaxed the states of the cells
tend to be represented with less symbols than when they are not relaxed (see graphs 8.33a and
8.33b). At the same time, we see that while the average number of symbols in the messages is
decreased for the case of passer tolerance 1/2, it is increased for the case of passer tolerance 0/2
(compare graphs 8.34a and 8.34b). When the tolerance of the combiner is increased to 2/5 then,
when the passers are not relaxed the number of state symbols is increased to levels higher than
when the passers are relaxed. Also, the symbols at the messages when passer tolerance is 0/2 are

leveled with those when the passers are relaxed.

Thus, we see that while with combiner tolerance 0/5 it is more computationally expensive to
allow the passer modules to be relaxed??, in the case of 1/5 the difference in the computational cost
is getting less. That means that once it is decided to accept an increase at the computational cost,
the increase in the performance of the system (compare graphs 8.31a and 8.31b) justifies a small
extra increase in the computations. When the tolerance of the combiners is increased more, then it
is actually getting more expensive to operate the passer modules with no tolerance as we can judge

from graphs 8.33c and 8.34c.

2L0f course, this is connected with the fact that consecutive presentation is used.
Z3ince consecutive presentation is used, the number of accesses at the CMMSs depends on the number of symbols in

each of the preconditions. More specifically, it is equal to their product.
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The reason for the above behaviour is that when the combiner module is relaxed, then, when
the passer modules are also relaxed the likelihood that the correct conditions, or something close,
will be formed is higher than when the passers are not relaxed. Thus, the result is that we have a
relaxed combiner with a higher or a lower likelihood of having the correct conditions in its input.
As it is expected, and as is demonstrated from the graphs, the operation in the first case (passer
tolerance 1/2) is less expensive because the combiner does not have to increase its tolerance very
often in order to come up with a new state. In the contrary, at the second case (passer tolerance

0/2) the combiner module is actually ‘unassisted’ and produces more symbols than what is needed.

To summarize, the results obtained with noise and their analysis demonstrate both the capa-
bility of AURA for uncertain reasoning and partial matching and the robustness of the distributed
processing approach where error is locally attacked at each level and at each cell thus reducing its
propagation to higher levels. Moreover, we see how the two modules, combiner and passer, can
assist each other when operating with increased tolerance in order to overcome the effects of noise.
Having said that, it is important to note that even with no relaxation the behaviour of the system is

still good.

8.7 Scale

8.7.1 Description

The experiments in this series were performed in order to observe the behaviour of the system when
scaled variations of the stored patterns were presented. As in the previous series, one experiment,

017, and its variation using increased tolerance for the passer modules were performed.

The initial conditions of the associative memories (size, weights, rules) were these created
in experiment 006 and consecutive presentation and local relaxation were used. No information
pathways using empty cells were created while the patterns used for testing were the ones presented

in section 7.3.4 (page 130).

8.7.2 Resaults

The results for pattern R2 with experiment 017 and the results for pattern R3 with experiments 017

and 017a are presented next. The graphs in figure 8.35 have the recognition percentages for pattern
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R2 when a tolerance of 0/5,1/5 and 2/5 is used for the combiner modules and the graphs (a) and
(b) in figures 8.36,8.37 and C.15 have the results for pattern R3 with experiments 017 and 017a
respectively in order to allow a direct comparison. As mentioned above, an increased tolerance of
1/2 at the passer modules was allowed in 017a The results with patterns R1 and R4, R5, R6 follow

similar guidelines with the ones of patterns R2 and R3 respectively and they can be found in [8]

8.7.3 Discussion

It was mentioned in section 7.3.1 that scale variation was not part of the expected behaviour of
the CANN. This is because a system with such characteristic would require a more complex and
vector like description of the objects in terms of their constituent parts. As it was discussed in
the previous chapters, although the representation of the patterns in this system is based on their
constituent parts as well, this representation starts from a very basic level and the connection of
these subpatterns and the transition towards the higher levels is performed through the exchange
of messages carrying information about the nature and the distances of these parts. Thus, in order
for the proper transitions to be followed, not only the right subpatterns must be in place but they
must also be in the correct distance as well. We will discuss at the next chapter some ideas about
what could be the an alternative form in order to provide scale invariance. At the current stage, the
option that we had was to increase the tolerance of the system and allow messages to be created
and propagated even if not all conditions were in place. Thus, the attempt was to handle scale

alteration as a ‘special’ kind of noise.

As we can see from the graphs in figure 8.35, the system behaves generally well with the
increase of the size of pattern R2 and object label R2 always has the majority of occurrences.
Moreover, the recognition percentage remains relatively unaltered by the further increase of the
size when the relaxation option is used. This is because there are some parts in the patterns that
remain relatively unaltered by the increase at the scale due to the fact that the local conditions
which lead to the object label (R2) are preserved or can be easily recovered with the increase of
the tolerance. We can also see in figure 8.35 that the percentage of R1 follows an ascending route
towards highest levels. This is because the increase of the size of R2 makes some of its parts

similar to those of R1. Namely, the two horizontal edges.

As far as pattern R3 is concerned, and this is also the case for patterns R4, R5 and R6 which are

all characterized by an increased level of complexity compared to R1 and R2, we can see that the
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Figure 8.35: Recognition percentages with experiment 017 for pattern R2. The graphs (a),(b) and

(c) have the results when combiner tolerance of 0/5, 1/5 and 2/5 was used.
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Figure 8.36: Recognition percentages for the scaled versions of pattern R3 with experiments 017
and 017a (graphs (a) and (b) respectively). The combiner tolerance has value 0/5 and the passer
tolerance 0/2 in (a) and 1/2 in (b).
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Figure 8.37: Recognition percentages for the scaled versions of pattern R3 with experiments 017
and 017a (graphs (a) and (b) respectively). The combiner tolerance has value 1/5 and the passer
tolerance 0/2 in (2) and 1/2 in (b).
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system manages to maintain the correct characterization of the pattern with scaling up to 120%.
Starting from this point and for further enlargements at the scale, the underlying pattern is more
difficult to be distinguished. The effect of the relaxation of the constraints at this case is obvious

from the comparison of the results obtained with and without tolerance.

Thus, we see that when no tolerance for the combiner module is used then, although the correct
object label does not have the highest percentage, the class of the pattern (i.e. R1, R3, R4 or R2,
R5, R6) can still be distinguished. When the operation of the passers is relaxed a similar situation
is happening but the recognition percentages have moved to higher levels. Actually, the increase
of the passer’s tolerance in this case is more beneficial for the patterns of the other “family’ (R2,
R5, R6). When a tolerance of 1/5 or 2/5 is permitted, we see that although the percentages of the
correct label (R3) have moved higher the same is happening for the percentages of the other labels

as well. This also holds for the labels of patterns R2, R5 and R6.

Thus, whereas in the case of the symbolic noise the increase at the tolerance allows the system
to maintain a correct and high recognition level for the underlying patterns, in the case of the
enlarged patterns the increase at the tolerance affects the recognition percentages of the other
patterns more than the one of the pattern which is scaled. One reason for this is that with the
increase in the scale some parts of the pattern become similar to parts of other patterns. This is at
such a level so that when the tolerance is increased, the state transitions of the relevant cells follow
the routes towards the other object labels. When no tolerance was allowed, these parts were simply

not labelled.

8.8 Propagations

8.8.1 Description

In this series of experiments a different training and testing set was used. This set had open patterns
consisting of one or two parts, patterns which were a subset of other patterns and patterns that did
not provide continuous pathways but had ‘open edges’. This set, consisting of patterns 01-08, was
described in section 7.3.3 and was created in order to test the behaviour of the system with this
kind of patterns and also in order to better evaluate the role of the information pathways using

empty cells.

Experiments 018, 019 and 020 were performed in this series. In 018 no information pathways
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using the empty cells were created. Thus, messages would have to travel only from non-empty
cells. In 019, this option was used by employing the passers of the empty cells and in 020 a
new option for recalling was tested. The necessity for this option came after observing the results

obtained by the two previous experiments (018 and 019) and is discussed later.

The connection schema which was used was the main schema used in the majority of the ex-
periments (i.e. no spreaders but passers and direct feedback) while consecutive presentation was
employed as well. Using the same parameters for the size of the CMMs as the ones in experiment
006 some problems appeared emanating from saturation at the production of tokens for the pre-
conditions and the separators. Thus, the parameters which are shown in tables 8.14 and 8.15 were

used. In the same tables the relevant parameters for 006 are also presented.

Input Pattern Separator Shared Positions
size | bits set | common bits | size | bits set | common bits counted
006 250 4 1 150 4 1 T
018-019 | 250 4 1 190 4 1 T

Table 8.14: Combiner CMMs parameters for experiments 006 and 018 — 019.

Input Pattern Separator Shared Positions
size | bits set | common bits | size | bits set | common bits counted
006 150 3 1 150 4 2 T
018-019 | 180 3 1 150 3 1 T

Table 8.15: Passers CMMs parameters for experiments 006 and 018 — 019.

The results obtained with these three experiments are presented next along with the relevant

discussions.

8.8.2 Resultsand discussion

018: No propagation through empty cells

The number of rules, the iterations needed and the saturation of the relevant CMMs for the training

session in 018 are depicted in table 8.16. The recalling behaviour with patterns 04, 06 and 08, 07
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is depicted in figures 8.38 and C.16. The results for patterns 03 and o5 are in direct relation with

those for 04 and 06 while results for patterns o1 and 02 follow a more normal behaviour. Again,

all results can be found in [8].

Rules produced

Pattern | Iter. Combiner Passer 1 — | Passer 2 < | Passer 31 | Passer4 |
1] 2 3 4 1 2 1 2 1 2 1 2
ol 7 14 | 165 45 | 90 | 49 | 89 | 86 | 46 | 87 | 45
02 7 7 | 133 29 | 63 | 34 | 62 | 58 | 33 | 57 | 34
03 4 12 53 5 15 22 19 22 20 19 20 19
04 4 9 48 5 20 14 16 14 8 22 12 | 22
05 13 37 | 188 | 24 121 | 88 | 121 | 88 84 | 128 | 95 | 126
06 13 37 | 188 | 24 95 | 126 | 84 | 128 | 120 | 88 | 120 | 88
o7 4 14 39 8 15 12 18 12 9 21 9 21
08 2 8 12 2 2 2
Total 138 | 826 | 68 340 | 415 | 341 | 415 | 385 | 359 | 400 | 357
Saturation (%) 18 | 151 |18 54 129 | 54 | 129 | 6.0 | 11.2 | 6.3 | 111

Table 8.16: Iterations, saturation and rules produced for 018.

019: Empty cells as pathways

In analogy with experiment 018, the rules, iterations and saturation levels are depicted in table 8.17

while the results for patterns 04, 06 and 08,07 are presented in figures 8.39 and C.17.
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Figure 8.38: Recalling behaviour for patterns 04 (a) and 06 (b) in experiment 018.
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Rules produced
Pattern | Iterations Combiner Passer 1 — | Passer 2 +— | Passer 31 | Passer 4 |
1] 2 3 4 5 1 2 1 2 1 2 1 2
ol 5 10 | 94 | 30 88 59 92 59 | 129 | 41 | 132 | 40
02 5 5 | 65 | 30 39 37 44 37 68 | 28 | 65 | 29
03 4 12 | 53 5 35 22 30 22 41 | 19 | 39 | 19
04 4 9 | 48 5 32 14 37 14 21 | 22 | 18 | 22
05 4 8 | 22 | 38 5 23 5 23 17 2 19
06 4 8 | 22 | 38 19 17 2 5 3 5 | 23
o7 2 4 |15 | 25| 4 4 10 1 10 1 6 1 6
08 2 4 8 8 2 2 2
Total 60 | 327 | 179 | 6 | 222 | 165 | 226 | 167 | 282 | 143 | 279 | 141
Saturation (%) 08 63|46 02|36 | 53 |37 | 53 |46 |46 |46 | 46

Table 8.17: Iterations, saturation and rules produced for 019.
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Discussion

empty cells as pathways improve learning speed

Comparing the number of rules produced and the iterations required for experiments 018 and
019 we can see that when the empty cells are used for the propagation of messages less iterations
are required and less rules are produced. This is because the conditions that differentiate the cells
are formed sooner because of the messages arriving from the empty spaces. A characteristic exam-
ple of this is the case of patterns 05 and 06 where 13 iterations are needed at the first experiment
(018) and only 4 are required in the second (019). This is because when messages cannot propagate
from empty spaces, the cells at the two horizontal and vertical parts of these patterns are following
identical state transitions until information from the upper or the left part of the pattern, respec-
tively, arrives. However, when the empty cells are employed the messages which are produced are
not confined to travel only through non empty cells. Thus, at the case of patterns 05 and 06, the
two horizontal and vertical parts are exchanging messages acknowledging each other’s existence

and the cells at these parts obtain unique states in less iterations.

The difference in the number of rules produced for each pattern in both experiments is due to
the existence of patterns in the training set which were partially or totally included in other patterns
of the same set (e.g. 03 in 05, 04 in 06 and 08 in 07). This did not happen using patterns R1-R6
and the observation of the corresponding behaviour during recalling helps revealing some interest

characteristics of the training and recalling algorithms.

An example of this behaviour for experiment 018 can be seen in figures 8.38 and C.16. In
figure 8.38a we can see the recognition percentages at each iteration when starting with pattern
04 at the initial configuration of the CANN. In this graph we can see that at the 3rd iteration a
percentage of the cells is labelled with object label _0823. This is because the right hand part of
pattern 08 ‘fits” in pattern 04 and also because, as we can see from table 8.16, labelling with object
label _o8 can take place after the second iteration. However, the cells which were labelled with 08
did not have only this symbol. They also had the symbols corresponding to the states in the state
transitions towards object label _04. Indeed, at the fifth iteration object label _04 was assigned at
the cells. We can also see that at this iteration a percentage of labels for pattern 07 also exists.
These labels co-exist in the area which was initially labelled with _08s. The behaviour up to this

point was the desired one. However, after this iteration the percentage of the 04 labels drops.

ZLabel < x > is the label representing object < z >.
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Figure 8.39: Recalling behaviour for patterns 04 (a) and 06 (b) in experiment 019.
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This is because a part of pattern 04 is included in pattern 06. Thus, some of the state transitions
which were created when training with pattern 04 are also part of the state transitions leading to
pattern label _06. Hence, some of the cells which were labelled with label 04 have now acquired
a transition symbol leading to label _0o6. However, the conditions for labelling this area with _06s

cannot be formed and this is why the object levels remain as they are.

In graph 8.38b we can see the relevant behaviour when starting with pattern 06. As expected,
a part was initially labelled with _o4s. However, at the next iteration these labels are all gone and
eventually, at the 13th iteration, the pattern is labelled with _06s in every cell. As is shown in figure
C.16, a similar behaviour can be observed for patterns 08 and o7. Patterns 03 and 05 also follow
the same guidelines. Patterns ol and 08 do not have an ‘inclusion’ relationship thus their recalling

does not have the above characteristics.
empty cells as pathways alleviate inclusion problems..

In experiment 019 the passers of the empty cells were employed for propagating messages.
As we saw, less iterations were required in general for training and less rules were produced.
Moreover, patterns with “inclusion’ relations needed the same number of iterations during training.
That means that there were no state transitions of the form <object_label; >— <symbol; > where
<symbol; > represents a state towards object ;5 and object i is partially or totally included in object
j. This is why a behaviour as the one mentioned above is not observed for experiment 019 (figures
8.39 and C.17). However, we can still notice the occurrence of labels for 08 when recalling pattern
04.

..but can cause overloading of messages

From the graphs in figures 8.39 and C.17 we can also notice that the the percentages of the
object labels drop after the correct labelling. Although this is not observed in patterns o1, 02, 03
and o5 it is interesting to examine why it is happening at the rest of the patterns. After investigating
the conditions in the cells that lost their object labels it was found out that this was happening due
to the ‘overloading’ of the array with messages. This was caused by the use of the empty cells
as message propagators. Thus, although the increased amount of information which was reaching
the cells was the reason that less iterations were needed for training, when combined with an
extensive search of more than one CMM even with tolerance 0, the conditions were formed in
some cells in order to continue the state transitions even when the proper labelling was achieved.

We saw however the improvement in the behaviour of the system with these patterns when using
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this option. Additionally, the use or not of this option is decisive if we want the system to be able
to ‘connect’ parts of the same pattern; for example, even if only one part of patterns 07 and 08 was
presented in the system it would be recognized if empty cells were not employed but it would not

if they were used 24,
searching for the ‘golden mean’

From the above discussion about the behaviour with patterns ol to 08 and the use or not of
information pathways with empty cells we can think of three solutions in order to alleviate the

problems which were encountered:

1. Once an object label appears it should remain as one of the symbols which represent the
state of a cell. This would help avoid the case of having some cells loosing their object
level state because the conditions for the cell to be part of another object were temporarily

formed.

2. Co-ordinates should be assigned to the object labels. Thus, not only they will represent an
object but they will represent a particular location in this object. This will help making the
rules that define state transitions of the form <object_label; >—<symbol; > that we saw

earlier more specific.

3. Searching in more CMMs should only be permitted when a correct answer cannot be re-
trieved from the proper CMM. We should notice here that this is not the case of having the
decision based on the arity of the rule (see section 7.2.4 on page 115). This is because the
searching would still expand to other CMMs even with a tolerance equal to zero. However,
this would only happen when the CMM corresponding to the arity of the input preconditions

could not produce an answer.

The evaluation of the effectiveness of the above solutions or of combinations of them to these
problems belongs to the plans for further research with the behaviour of the system using a larger
variety of training and testing patterns. These patterns should have a higher level of structural
complexity and should be produced with the help of the initial labelling stage when using images

of real world objects as input.

To conclude the series of experiments at this stage of development of the architecture and the

methodology of the CANNS, the third solution was tested with experiment 020 for patterns ol to

2\We can connect this fact with the discussion in section 7.2.2 about the use of information pathways.
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08 when information pathways were also used. The corresponding results for patterns 04, 06 and

08, 07 can be seen in figures 8.40 and C.18 respectively.

We can see that the overloading of the information channels was indeed the reason for the
behaviour with experiment 019. However, pattern o8 in graph C.18a still has a problem after its
complete recall. It was found out that the conditions creating this problem would require the help
of solutions 1 and 2 in order to be countered. Nevertheless, the overloading of the system with
information should generally have a positive effect at its behaviour and should not be avoided. This
is mainly the reason for which solutions 1 and 2 were proposed and will be evaluated at the next

stages of development.

8.9 Some other aspects

The above series of experiments was performed in order to test the basic ideas about the operation
of the CANNSs and their behaviour when faced with problems caused by noise, combined patterns,
included patterns and scale alteration. Although rotation and deformation invariance are also in
the list of the desired characteristics they are harder issues not addressed in this thesis. However,
some preliminary ideas about rotation invariance can be found in the next chapter. Having said
that, we have to notice that one extra characteristic of the system which is inherent in its operation

is that it is totally translation invariant as indicated in section 6.4.

8.10 Summary

The experiments in each of the six experimental sessions that took place were presented in this
chapter. The presentation included a description about the initial conditions for each experiment

and a discussion where an analysis of the obtained results were given.

Starting from the first experimental series the main subject of which was the exact behaviour
of the learning algorithm, the presentation continued with the second series which included experi-
ments to test the influence of such parameters as the form of relaxation, the form of the presentation
of the inputs to the CMMs, the information pathways and alterations at the operation during re-
calling as well as variations at the size of the CMMs. Then, the third series of experiments were
presented. The objective of that series was to evaluate different internal connection schemata. Pa-

rameters concerning the internal structure of the associative processor were tested and analyzed in
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Figure 8.40: Recalling behaviour for patterns 04 (a) and 06 (b) in experiment 020.
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the relevant discussion. The study of the effect of symbolic noise to the operation of the CANNs
was the subject of the fourth series. The highly promising results and behaviour were presented
and analyzed in the relevant section. Then, the system was tested with scaled versions of the pat-
terns. Apart from the initial positive indications, these experiments provided ideas about the ways
by which scale invariance can be included in the expected behaviour of the system. A step forward
towards the introduction of the system into a more complex world and a preliminary view and
assess of its behaviour in that was attempted with the experimental series which was performed

last.

The experiments which were performed not only highlighted the merits of the system but also
indicated which parts of it should be included at the plans for further research. New ideas and
options were formed and revealed from the study of the behaviour of the system during these
experiments. These ideas, along with the plans for future development of the architecture and the

methodology of the CANNS is one of the subjects of the next chapter.



Chapter 9

Conclusions and Further Development

When you set out for Ithaca, ask the journey be long.
Full of adventures, full of things to learn.

K. Kavafis part from “Ithaca”

9.1 A general review

An initial exploration into the world of CANNSs was presented in this thesis. As stated at the begin-
ning, the idea behind CANNS is to unify under a single framework the positive aspects of different
approaches for image interpretation and information processing in general. In this effort, the use of
symbolic representations and rules in order to describe the structure of patterns is combined with
the paradigm of evolutionary, parallel and distributed processing provided by cellular automata.
The necessary processing power for the management of the rules defining the state transitions in
the resulting system and the ability to handle uncertainty, noise and other distortions at the data is

then provided by employing the AURA model of symbolic neural associative processing.

The emergence of this architecture was described at the beginning of chapter 6. That was where
the different issues which were the subjects of chapters 2 to 5 were combined in order to explain
and show the steps which were followed in order to design a system with the characteristics of
the CANNs. Originating from the idea of communicating associative memories first reported by
Austin in [1], this framework consists of an ensemble of associative symbolic processing elements
(cells). Starting with an initial state which represents a local and elementary feature of the object

in the image, each processor communicates with its neighbours in order to exchange information

211
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which will allow it to arrive to a conclusion about which object this cell is part of. As it was
indicated in sections 6.2 and 6.3, this approach has similar characteristics with those based in
relaxation labelling and the evidence accumulation in GHT. Evidence for the existence of certain
objects is “accumulated’ in each cell and a set of constraints is applied in order to limit the set of
possible answers to that of the consistent ones. The difference is that a hierarchical and multistage
approach is followed where each cell follows a set of state transitions. The successive states which

are obtained by each cell belong to different levels of hierarchy.

The model of processing which is followed by this system is that of the cellular automata. As
we saw, albeit the homogeneous and simple processing units and the local neighbourhood connec-
tivity, this model can demonstrate examples of complex behaviour and propagation of information.
As mentioned also at the beginning of this section, its additional characteristics are those of the
evolutionary, parallel and distributed processing in a “virtual’” multilayered manner. This model
is augmented in our system by the incorporation of ideas from syntactic and structural pattern
recognition; the states that each cell can be in represent information at the different stages of in-
terpretation of low level features towards world models. Thus, at each iteration the states of the
cells belong to higher levels of abstraction. Effectively, a bottom-up parsing is performed in a
decentralized manner where each cell tries to build its derivation tree upwards obeying at the same
time at the orders set by its neighbours. Thus, the complexity and the high dimensionality of the
search space which is usually connected with this task is overcome by partitioning the problem
into smaller ones; the object is not treated as a whole entity which has to be recognized but the
recognition is based in connecting its components starting from the level of the elementary fea-
tures. The constraints which exist in each level are used in order to limit the set of the possible

higher level states that each cell can acquire.

A second enhancement at the model of cellular automata which is used as the basic infrastruc-
ture of our system is that the operation in each cell is also augmented; instead of having only a state
determining unit, each cell can also have modules which are responsible for passing information
over cells that do not alter their states as well as for converting the state of a cell according to the
direction it will be passed to. As we saw in chapter 6, this way of passing information can operate
as a symbolic “filter” where messages will only be propagated if certain conditions are satisfied.
On the other hand, the conversion of the states allows a possible multiplexing and superimposing

of the messages.

As mentioned earlier, the initial states of the cells represent local and elementary features of the
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objects in the image. An initial feature recognition stage is required for this. The framework under
which this operation is performed in O’keefe’s system in [44] is sufficient for our requirements and
a discussion about how it can be applied for our case can be found in appendix B. The important
thing is that no complex and expensive preprocessing is required in order to prepare the image
for the symbolic processing by the CANNSs. This is because the main effort for the recognition is

carried out by the latter.

Two very important issues of the system described in this thesis were the methods for the
derivation and the efficient management of the rules dictating the state transitions for each cell.
This set of rules represents the knowledge in the system and should be created in a hierarchical
manner; rules describing basic concepts should be reused and form the basis upon which new
rules referring to higher levels of abstraction should be added. Moreover, the presentation of new
patterns should elicit the creation of rules for the description of these parts of the patterns which
make them differ from the already stored ones. The learning algorithm which was presented in
chapter 6 provided a satisfactory solution to the above requirements. As we saw there, the key idea
is to test every combination of states and messages in general and create a new rule for every novel
combination. The operation in the learning mode stops when every initially non empty cell in the
array is characterized with a unique state. This indicates that the object has been “divided’ into its

basic non repeated subpatterns.

The use of the AURA system which is a neural associative memory for symbolic processing
is a very important part of the operation of the CANNs both in learning and recalling mode.
This is because AURA can handle a large number of rules at high speed and also allows a level
of relaxation in its operation in order to cope with missing data. With the existence of a large
number of rules representing the simple state transitions of the cells in our system and with the
necessity to search in the rules space very fast in order to find out whether a rule exists or a new one
should be created, the operation during learning would be problematic if the AURA system was not
used. Moreover, due to the effect of factors such as noise and geometrical distortions, the existing
preconditions in order to decide for the next state of a cell are not always the ones existed during
training; either more of them or less than necessary could be present. Thus, only by allowing
a certain level of relaxation during the rule searching process we could overcome an erroneous
condition. Additionally, due to the possible superposition of the objects in an image it could be
necessary for the cells to be able to follow more than one state transitions in parallel. Again, the

AURA system is capable of handling this situation. Moreover, as it is based in binary CMMs it
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allows for direct and simple hardware implementation. Indeed, the PRESENCE architecture [40]

is the latest version of the hardware platform.

The architecture of the CANNs was described in chapter 6 while the methodology of the
operation and the technical details of the system were the subjects of chapter 7. This technical
description included details about how the information channels, which indicate the desired flow
of information, are created both inside and among the cells. Details about the use of AURA
in the CANNSs were also included. Thus, the possible ways to apply the inputs to the associative
memories were discussed (i.e. ordered or superimposed presentation as far as the preconditions are
concerned and consecutive or simultaneous presentation as far as the symbols in the preconditions
are concerned) as well as the methods for relaxing the operation of the system (i.e. search in more
than one CMM and/or reduce the threshold for successful matching). The experimental framework
which was set in order to evaluate and tune the behaviour of the system was also presented in
chapter 7. That included the objectives of the experiments and the criteria used in order to check
the results as well as the set of the training and testing patterns used. As it has been mentioned,
at this stage the system is aimed at recognising binary outlined shapes and the patterns used for
this first evaluation of the architecture were constructed within this framework. The presentation
and the analysis of the experiments themselves was the subject of chapter 8. In the six series of
experiments which were performed, attention was initially focused on the exact behaviour of the
learning algorithm. The influence of various parameters during recalling was then examined as
well as some different internal connection schemata. In the fourth series, the effects of symbolic
noise were studied and the results indicated a very satisfactory behaviour by the system. Scale
alterations and a slightly more complex set of patterns were tested next. As mentioned at the end
of the previous chapter, these experiments not only highlighted the merits of the architecture but

also provided new ideas and options for its further development which is discussed in section 9.3.

9.2 The contribution of the thesis

The architecture of the CANNS is a novel combination of ideas from parallel and distributed models
of computation and syntactic and structural pattern recognition. It forms a paradigm of a system for
object recognition where the main principle is that there is no central control but the whole process
is based on the intercommunication of simple processing units which are capable of performing

efficiently a relatively large set of simple rules. Recognition takes place in stages; elementary local
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features are initially identified and gradually, in every iteration, they are ‘connected’ together like
the pieces of a puzzle. At every step, a larger part of the objects is identified until complete recog-
nition is achieved. Following this approach, the large dimensionality of the problem of recognition
is eluded simply because the problem is “divided’ into a number of smaller ones which are more
easy to tackle. Effectively, the operation is that of an enhanced cellular automaton capable of sup-
porting more advanced forms of propagation of information and also capable of handling a large
number of state transitions defined by the set of rules describing the structure of the training set of
patterns. In this case, this set of rules is common for all the patterns in the sense that the rules can

describe all the patterns and no separate ‘grammars’ for different patterns exist.

However, in order to be able to operate in that way the architecture had to provide answers
to some crucial questions regarding issues such as learning, efficient management of rules, gen-
erality and tolerance to noise. The learning algorithm which was presented manages to create the
necessary set of rules in order to guide the operation of the system. This is done in a hierarchical
way where new rules are added upon the existing knowledge of the system. As mentioned also
in the previous section, the use of AURA as the underlying symbolic processing engine made the
efficient management of rules feasible. This is because due to its connectionist nature it could pro-
vide the necessary speed, adaptability and flexibility. Thus, searching, recalling and storing rules
without “disturbing’ the already stored ones was permitted at high speed and a relaxation option
was also provided. The latter, together with the fact that problems due to noise and ambiguous data
were locally tackled, allowed for a very satisfactory level of noise tolerance and a sufficient level
of generalization. Additionally, the available hardware implementation of the CMM functions in

AURA makes its use even more advantageous.

Eventually, if we try to focus on the exact contribution of this work we can see that the main

points of this are the following:

e Bringing together cellular, neural and symbolic processing in a single architecture
e Development of a learning algorithm for the above

e The notion of evolution of representation in the array from pixel level towards higher sym-

bolic abstractions

e Analysis of the need for processor functions other than the rule look up table (i.e. spreaders

and passers)
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From their characteristics, CANNS can be classified as a hybrid system where neural and sym-
bolic processing coexists [160]. Actually, the neural processing is embedded in the architecture
and it is used for supporting the symbolic processing part by storing and retrieving rules with high
speed and flexibility. When examined from different points of view, CANNSs can be characterized
either as an enhanced cellular automata like architecture or as a modified structural and syntac-
tic pattern recognition system or as a parallel and distributed multilayered architecture for object
recognition or as a set of communicating associative memories or as a large neural network con-
sisting of smaller ones and supporting symbolic processing. The truth is that by combining all
these characteristics CANNS have the potential to provide an effective solution for many problems

in image interpretation.

9.3 Further development and future directions

It is well known that the design and the development of any system is a continual process. This is
partly because the large variety of available options makes the incorporation and the examination
of them all in a single instance of the system difficult and partly because a ‘feedback’ process also
exists where the system itself, through its operation, indicates new options and brings on surface

new issues.

The system presented in this thesis is an initial prototype and paradigm of the CANNs. Our
examination was focused on the learning issue and once we achieved that we examined various of
the available options for its operation. Our main concern in these experiments was to test if the
behaviour of the system using an initial prototype for the internal and external connection schemata
and the presentation of the inputs to the CMMs would be the expected one. Indeed, a prominent

characteristic of the architecture was proven to be its very good behaviour under noisy conditions.

The points which are presented next indicate those parts of the architecture that could be further
investigated. This list includes both the options that were not extensively examined in order to
permit for a more detailed evaluation of other aspects of the architecture that were more crucial
at this initial stage of development and those options and issues that were revealed through the

operation of the system. Thus:

1. Options regarding the optimum operation of the CMM s as far as space and time as well as

recalling issues are concerned.
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e In our experiments we used solely the ordered form of presentation of messages. Al-
lowing an easier way to examine the validity of the output of the CMMs this method
requires relatively larger CMMs than the superimposed case. Thus, it would be inter-
esting to examine and search for the optimum parameters of the binary representations
of the symbols (i.e. total number of bits, number of bits set, etc) which would allow
superimposed operation without saturation problems. Moreover, the right balance be-
tween the size of the CMMs required in order to efficiently use simultaneous instead of
consecutive presentation of the symbols in the messages could be further investigated

in order to boost the speed of the operation.

e As indicated in section 8.5 for experiment 014a, the combination of consecutive pre-
sentation of the symbols in the messages with the N-threshold method provides an
alternative when full recalling is required without further increase at the size of the
CMMs and without a difficult estimation of the value of IV in order to avoid an ‘ex-
plosion’ in the number of the retrieved answers. Thus, a more extensive use of N-

threshold instead of the L-max threshold could be employed.

e As we saw from the number of rules stored in CMMs of different arity, it is usually
the case that the majority of the rules are stored in one CMM or, in general, are not
uniformly distributed in the available CMMs. However, since the CMMs for different
arities have all the same size parameters, when we increase their dimensions in order to
avoid saturation problems in one CMM at the same time we give more space to other
CMMs although they could as well operate with their initial size. Thus, it would be
interesting if a method could be adopted in order to allow CMMs of different arity to
have different size. As the size of the binary input patterns to the CMMs must be the
same in order to facilitate a global and easy symbol — binary token conversion, our
one option for the reduced size seems to be the use of separator patterns of different
sizes. Of course, a more complex symbol — binary token conversion can always be
introduced where the same symbols would have different representations for CMMs

of different arity.
2. Options concerning the internal as well the external connection schemata.

e Asitwas indicated when the spreader modules were examined, these modules can pro-

vide an alternative method of communication when used under the proper conditions.
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These conditions are formed when not as many passers as neighbouring units exist and
superimposed presentation is also employed. A comparison of the two equivalent but
different internal connection schemata (i.e. the one just mentioned and the one used in

the majority of the experiments) could then be performed.

e A regular external connection schema with four neighbours (north, south, west, east)
was solely used for the experiments. More neighbours as well as more irregular, ar-
bitrary shaped neighbourhoods (see section 6.4.2) could also be tested. This would
allow a different kind of handling of the structure of the patterns and maybe it is more

recommended for patterns with more complex structures.

3. Inastep towards rotation invariance, superimposed presentation could be employed. As the

use of direction dedicated passers could still reveal the direction of a message, only one (or
less than the number of neighbours) passer modules should be used without assistance from
spreader modules. Another option in the direction of rotation invariance is to keep the order
of the messages but store at the same time all their possible relative formations. For example,
a rotated version of the combination of predecedents Aabcd could be the Acdab and both
would recall the same postcondition. However, larger CMMs in order to accommodate the

extra rules would be required.

In the direction of a more robust scheme for scale invariance the following idea could be
tested: Messages would be propagated but one more version of them without having distance
information could coexist. Thus, if the passers cannot decide upon a combination of a
message and a state, then, both the message and its transformed version obtained by relaxing
the passers (if permitted) would be propagated. If a combination is recognizable then the
original message would still be included in the new one. Effectively the cells could ‘wait
longer’ for the correct symbols to arrive. The question is which should be the characteristics
of the states of the cells in order to allow for ‘longer await’. A possible answer to this is to
follow a similar approach as for the passers and keep all the previous states of the cells. Thus,
the state of a cell a time ¢ would be a set containing also its states at time¢ —1,¢—2,... ,0.
It would be interesting however to observe how would this idea of ‘time delayed’ operation
influence the space complexity of the system as, effectively, no previous state or message
would be deleted. A more compromising but cheaper solution could be to keep only the n

previous states. Of course, in this case there would be a relation between n and the level of
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the scale invariance.

5. The above idea of keeping the old states has some similarities with the idea to keep a state
only if it is an object level one. This idea was presented in section 8.8.2 and it was referring
to a similar problem; that of patterns including some other pattern. Effectively, one pattern
is the enlarged (smaller) version and the other is the normal one. One more idea which was
also referred there was that of assigning coordinates at the object level labels in order to
make rules more specific. Thus, not only the object but also the location in that would be
represented by the object level symbol. This was proposed in order to alleviate the problem
which arises when a part of an object of the training set is partially or totally included in

another object of the same set.

6. Last but by no means of least importance is the suggestion, and the necessity, to extend the
evaluation of the system using images of real world objects as inputs. The initial prototype
presented in this thesis was tested and proved capable of a very satisfactory behaviour. When
the experiments were expanded to objects of increased complexity, a number of new issues
were raised and satisfactory answers and solutions could also be devised and provided. This
fact is an initial clue that this architecture can handle and/or be successfully extended in

order to cope with a more complex world.

The above list represents some of the ideas for the further development of the CANNSs from
their initial stage of a prototype model for shape recognition to the stage of a generic tool for image
interpretation. As it was shown by this thesis, CANNS have a great potential and also possess a

sufficient level of flexibility in order to achieve this.
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Appendix A

Per for mance Details of Correlation

Matrix Memories

A brief presentation of performance details of the correlation matrix memories (CMMs) is given
in this appendix. First, a theoretical insight of their operation is provided. This is based in [24],
[161] and [21]. Then, two methods for estimating their capacity and predicting their performance

are presented.

A.1 Basics

A CMM is an n. x m matrix in which pairs of n-dimensional input and m-dimensional output
patterns can be stored. Depending on whether the weights (i.e. the values in the matrix) are integer
or binary we have the weighted or the binary (or weightless) CMM respectively. The elements of
the input and output patterns can be binary {0,1} or bipolar {-1,+1} in the first case and binary in

the second.

A.11 Weighted CMMs

The contents of a weighted CMM are formed by summing the outer products of the training pairs

of patterns. That is:

221
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N
M= AmTpm (A1)

m=1

where M is a weighted n x m CMM, {AWBM . AM BN are the pairs of the n-
dimensional and m-dimensional input and output row vectors respectively and A7 is the transpose

of A. As we can see, a Hebbian like method for storing (learning) the patterns is used.

For the recall of a pattern from the CMM, a matrix multiplication is performed using the input
pattern A and the matrix M. The resulting vector must then be thresholded (by applying a function
I" which will either set the L highest values or the values above a threshold to 1°s) in order for the

pattern to be retrieved. That is:

= I'(AM) (A.2)

If pattern A(®) which was used for training is used as input we get:

B = T(A9M)
N

= 1O} amTpm)
m=1

N
— T(ADUAOTBO 4 3 AT pm)y)

m=1 m;ﬁi

— T(ADAOTBO 4 A0 Z AT plm)y)

m=1,m#i

= T(sBY +n,) (A3)

Thus, the recalling process using pattern A(®) can be separated into a ‘signal’ (sB®) and a
‘noise’ part (ny). Itis s = A®A®" Thus, if bipolar patterns are used then s = n where n is the
dimension of A(®. On the other hand, if binary patterns are used it is s < n. As we see, the matrix
that we get using A(® as input is a version of B(® which is ‘amplified’ and then effected by the
noise parameter. It is obvious that the lower the effect of noise the higher the similarity of B with

B will be.

It is interesting to examine the noise part of equation (A.3) when binary patterns are used. It
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N
n, = AOC 3 AT plm)
m=1,m#i
N
= 3 AW AmT g(m) (A4)
m=1,m##1
If the input patterns are orthogonal then:
N . - N
Z A®) g(m)* glm) _ Z 0B™M =0 (A.5)
m=1,m#i m=1,m#i

Thus, the level of orthogonality among the input patterns determines the amount of noise which

will be added when recalling a pattern.

A.12 Binary CMMs

In a direct analogy with the weighted CMM, the contents of a binary CMM are formed by the

superposition of the outer products of the training pairs of patterns. That is:

N
M=\ AmTpm (A.6)

where M is the binary n xm matrix, \/ represents the OR function and { A B ... AN g(N)}
are the pairs of the n-dimensional and m-dimensional input and output binary row vectors respec-

tively.

For the recalling of a pattern from the CMM, a matrix multiplication is performed using the
input pattern, A, and the binary matrix M. The resulting vector must then be thresholded (as we
saw for the case of the weighted matrix) in order for the output pattern to be retrieved. That is:

B=T(AM) (A7)

If the training pattern A is used for the recalling, we get:
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B = T(4® M)

= P(A(l)(v Alm) B(m)))

m=1

N
— T(ADUAOTBO \/ AT ) _ 40T g)y)

m=1

)T p(

N
= I(A® Al @ 4 A6 VA(m _ A0 g B()

= I'(sB® +m) (A.8)

It can be easily shown that when the same binary patterns are stored in a weighted and a binary
CMM, the level of noise added in the patterns recalled from the binary CMM is always less or

equal to the noise added when a weighted CMM is used.

This is demonstrated by taking the difference of the noise terms for the two cases:

d = ny—n,
N N
= AO((\/ AT gm)y _ 40T )y _ AO(S AT gm) _ 46T g))
m=1
: N T N T
= A0 V Am* glm) _ Z Al pm)) (A.9)
m=1 m=1

We are interested in the signs of the elements of d. Since A(® is binary it cannot influence
these signs. If we set X = \/N_, AT B0 and Y = SN _, A(m” B(m) e can notice that

0 if ;=0
zi; = i i (A.10)
1 af yi;>1

This implies that the elements of X — Y will be either zero or negative. Consequently, the
same will happen with the elements of d. Therefore, it is n, < n,, and the noise when using

binary CMM s is equal or less than the noise when using weighted CMMs.
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A.2 Capacity

Due to the distributed approach which is followed for storing data in a CMM, its capacity is not as
simple to be defined as in the case of conventional memories. Instead, the capacity is defined by

means of the probability of an error occuring during the retrieval process.

The methods which are presented next are based on this fact.

A.21 SingleCMM

Considering the case of associative memories constructed of two binary CMMs, Austin [41] gives
two expressions for the estimation of the capacity of each of the CMMs before the expectation of
an error at a single bit at the output is maximized. More specifically, using the terminology for
the first CMM in the ADAM network, the probability of an error at the output of the CMM after
a number of associations has been stored is estimated according to the number of links set in the

CMM after every association and it is:

rfe b GRTY

where
R is the size of the key pattern
I is the number of bits set to 1 in the key pattern on every association
H is the size of the class pattern
N is the number of bits set to 1 in the class pattern on every association
T is the number of associations stored.

The number of associations that can be stored in the CMM before the expectation of a 1-bit

error between the taught and the recalled pattern becomes maximum is:

In (1— #)
i)

These equations were used for estimating the capacity of the CMMs used in the experiments

T = (A.12)

described in chapter 8.
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A.22 n-layer CMMs

Turner and Austin in [162] provide a probabilistic framework for estimating the matching per-
formance of binary n-layer CMMs acting as hetero-associative memories. Their framework is
applicable to non-recursive, fully connected systems with binary {0,1} weights and hard-limited
threshold (i.e. N-threshold) and handles both full and partial matching of single or multiple data

items.

With the inherent uncertainties in the matching process accomodated through the use of prob-
ability distributions to describe the numbers of correct and incorrect neuron responses during re-
trieval, their framework can be used to predict the performance of the memories when non-sparse

coding methods are employed.

Thus, the probability distribution of the number of neurons firing at the (n + 1)-th neuron array

in accordance with the number of neurons firing at the previous layers is:

Pz = Z ZP 2 =, 2", 2Y a=0,...,""!
(A.13)

where z* is the number of neurons firing at the 4-th array of neurons and I° is the size of this array.
Within the feedforward memory system the number of neurons active at layers m < k — 1 may be
disregarded in the estimation for array k& given that the number of neurons active in array k£ — 1 is

available. As a consequence they write:

P(z"t! = ZP "= alz") Y ZP (22" P (A.14)

2n—1

Provided that the distribution of the bits set at the stimulus patterns P(z!) is known, P(z"+1)

can be found by the application of

P(zF =a) = > P(2F = a|2F 1Y P(2F71) (A.15)

fork=2,... ,n+ 1.
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Supposing that the number of correctly responsive neurons at array k is denoted zF and the
number of neurons active in erron is 2%, it is z¥ = zF + 2*. Using the theorem of total probability

they expand (A.15) over the possible numbers of correct responses. That is:

P(Z* = a|2F) = X:P(zéC =a — af2f = oy, 2PN P(2F = o) (A.16)
ay

Thus, using (A.16) and the models?* for the number of correct and incorrect responses in array
k (i.e. z¥ and 2F respectively) the framework provides a method for estimating the performance of

the memory.

Allowing a small probability of error, the case of CMMs provides speed at operation and con-
siderable savings in storage space over the use of conventional memories [162, 41]. The proba-
bilistic framework by Turner and Austin in [162] provides a way to estimate the trade-off between
memory size and matching performance for binary n-layer CMMs in order to aid the design of

large scale systems [163].

'Due to the complexity and the number of equations involved the reader is directly referred to [162] for a complete

presentation.
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Appendix B

Initial Labelling

As it was indicated in chapter 4, the process of initial labelling and feature extraction can be
classified as belonging to low/ intermediate level computer vision and there is a variety of methods
to extract the required set of measurements from the pixel level data. The level of analysis and
description details extracted from the image during this phase varies depending on the requirements

of the later stages of processing.

From the description of the CANNSs we saw that an initial symbolic array is required as input.
The symbols in this array correspond to pattern primitives in the image. No other information such
as edge points coordinates, contours and regions details and their relative positions is required
since the initial symbolic array provides adequate information to initiate the reasoning process at
the CANN. Thus, a simpler and faster initial labelling stage is allowed since the main complexity

of the whole task is transferred to the symbolic processing level.

The symbols which are placed in each location of the symbolic array must correspond to the
pixel level features existing in the relevant location of the image. Thus, placing a grid over the
image we need a mapping function to convert the pixel blocks to symbols. This function must be
robust to noise and should also have the ability to handle “1:N’ mappings, i.e. one block of pixels
yielding more than one symbols corresponding to superimposed features. Moreover, the mappings
to be performed should be learned by presentation and also the operation should be performed in

high speed in order to allow for real time image analysis.

The ADAM network, presented in section 2.4.4, is an associative memory which is based in

binary neural networks and is capable of fulfilling the above mentioned requirements. It has been
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successfully used to a number of image processing and scene analysis applications [42, 164, 41]
with most recent its use in O’Keefe’s system [44]. As we saw from the overview of this system
in chapter 4, ADAM was used as feature recognizer and blocks of pixels were associated with
information necessary for the latter processing following a GHT like method. In his thesis, O’Keefe
provides a detailed analysis of the different aspects associated with the application of ADAMs for
this task. More specifically, he examines the performance of the feature recognizer in connection
with noise at the pixel level and gives theoretical models for its prediction. Following are some
ideas and facts derived from his work and also a description of how the initial processing would

be performed in our case in order to provide the initial symbolic image.

B.1 Taking n-tuples

We saw in section 2.4.4 that the input to the first CMM in the ADAM network is preprocessed
using the n-tuple method. With that, the input is divided into groups of n-bits. These groups of
n bits are converted to groups of 2™ bits in which only one bit is set. The input to the CMM is
formed by these groups. At the case of binary images, the bits correspond to pixels in the image.
The n pixels for each n-tuple are selected randomly and this mapping has to remain constant. An

example of the formation of n-tuples and of the final input is depicted in figure B.1.

\

Figure B.1: Taking tuples of 3 pixels from the pixel block and the 3 — 23 encoding of each tuple.

As it has been mentioned in the relevant section, this kind of preprocessing helps in classifying
linearly inseparable patterns, prevents fast saturation of the CMM and facilitates the prediction of
the performance of the ADAM network [37, 41]. The n-tuple method has some common charac-

teristics with the GHT methods. As O’Keefe mentions, both methods take a sample from the data,
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transform it in some way, accumulate the transformed data and then apply a threshold function to

the accumulated data in order to detect potential matches.

In the ADAM network, evidence for the existence of specific pixel formations in the image
is accumulated at the output units of the first CMM. The L-max threshold function which is then
applied at the output of this CMM yields a binary pattern corresponding to the class of the pixel
formation at the input. This binary pattern has a constant number of bits set and it is the class

pattern mentioned in section 2.4.4.

In order for a pixel formation to be recognized each of the n-tuples must produce the same
output code as the one in training. This will result in activating the same lines of the CMM as
the ones while training. This, in turn, will accumulate the required evidence at the output units
corresponding to the bits set at the relevant class pattern. A confidence test can be applied at the
output before the L-max threshold method. This is to check whether a match has been achieved or
not. The confidence test is of a similar nature as the one described in section 7.2.4. In this case, if
N n-tuples are extracted out of the pixel blocks and the class patterns have & bits set, there should
be k output units with sums equal to NV if a correct match has been performed. Thus, each tuple

should contribute to the formation of the output pattern.

When an input pixel block is close to the examples presented during training a complete match
may not be achieved but a fraction ¢ of the tuples will produce the correct response. Therefore
at least | Nty | tuples will match [44]. Using a model of random additive noise converting white
pixels to black ones, O’Keefe has examined the probability of a feature being recognized in relation
to the probability of noise affecting the pixels of the image, the probability of a pixel being black

and a fraction only of the tuples producing the correct response. More specifically, he has proven

that:
Y (N
P(recognised|p, r,ty) = Z < )P(no state change|p, 7)™ (1 — P(no state change|p, ))N ™
m:LNth

(B.1)

where P(no state change|p, r) is the probability that a tuple will not change its state, i.e. output
value, given that the probability of noise affecting the pixels is p and the probability of a pixel

being black is r. He defines this probability as:
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P(no state change|p, ) = Xn: (1—-p)* <Z> (1 —r)¥r™ ™ (B.2)

w=0
where n is the size of the tuples.
The graph of equation B.2 for a tuple size n of 4 bits is depicted in figure B.2. From this graph

it can be seen that for every value of p the probability of a tuple not being affected by noise is

greater for higher values of the density r of the pixels.
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Probability of pixel error
Figure B.2: The probability that a tuple will not be affected by random noise as a function of the
probability that a pixel is affected by noise. The probability of a pixel being black, r, has values 5,
10 and 40% while the tuple size is 4.

The effect of accepting that a fraction only of the tuples produces the correct response is
depicted in figure B.3 using equation B.1. We can see that the probability of a feature being
recognized is greatly enhanced when a lower threshold is used. Using the same equation we
can also notice that taking a small number of tuples results in achieving higher probability of

recognition. This is demonstrated in figure B.4.

The above analysis using equations B.1 and B.2 indicates that when additive noise is present
features with a higher density of black pixels are less susceptible and that the probability of correct

recognition of features is higher when small sized blocks of pixels are used.
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Figure B.3: The probability that a feature will be recognized as a function of the probability p that

a pixel will be affected by noise. The probability of a pixel being black, r, is 40% and the tuple
size is 4. The number of tuples, NV, is 16 and the threshold, t, is 0.8, 0.9 and 1.0.
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Figure B.4: The probability that a feature will be recognized as a function of the probability p that

a pixel will be affected by noise. The density is 40%, the tuple size is 4, the threshold is 0.8 and

features have different sizes with N = 16, 36 or 64 tuples (i.e. 8 x 8,12 x 12 and 16 x 16 pixels).
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tuple size 3 4 5 6 7
Resulting | size | 344 | 512 | 832 | 1408 | 2432
input bitsset | 43 | 32 | 26 22 19

Table B.1: Sampling 128 bits with various tuple sizes

B.2 Extracting and labelling features

For the extraction of features from the image a variety of options exist. The basic parameters that
need to be set are the size of the pixel blocks, the size of the n-tuples and the method for searching

for features in the image in order to produce the initial symbolic array.

The typical values that are used for the size of the tuples are from 3 to 7 pixels [42]. There is
an interplay between the size of the tuples, the storage space required, the capacity of the CMM
and the generalization level achieved. Table B.1 gives an example of the resulting input to the
CMM from an image of 128 pixels when it is sampled in various tuple sizes. We can see that
the number of bits at the resulting input to the CMM s greatly increased when the tuple size is
increased. Although the input is getting sparser, effecting in low saturation rate and high capacity,
its size dramatically increases the storage requirements of the CMM. As far as generalization is
concerned, small tuple sizes are related with increased generalization ability since the less the size
of the tuple the higher will be the probability of finding this tuple in other features. Usually a tuple

size of 4 bits will suffice and this also the case in [44].

Given a tuple size and given that we want all pixels to participate in the n-tuple forming process
once, the size of the pixel blocks specifies the number of tuples needed and the number of ADAMs
required should the operation be performed in parallel. While the total storage space will remain
constant if the same tuple size and class pattern size is used, the capacity of each CMM will depend
on the size of its input and the bits set in that. We can see that in table B.2 where we have some

parameters connected with each pixel block size when we are sampling a 512 x 512 pixels image.

Selecting a block of 8 x 8 pixels we notice that we need 4096 ADAM units in order to perform
the initial labelling operation in parallel. On the other hand, selecting a block which is 4 times
larger (16 x 16 pixels) we would need 4 times less ADAM units (1024). In all cases the total
required storage place for the CMMs is the same (16 Mbytes) although the storage capacity of

each CMM differs. Blocks of different size also result in different sizes of the initial symbolic
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Block tuples | ADAMs resulting CMM

size inblock | required | symbolic array | inputsize | bitsset | # of associations | total size

8 x8 16 4096 64 x 64 256 16 1272 4 Kbytes
12 x 12 36 1849 43 x 43 576 36 2119 9 Kbytes
16 x 16 64 1024 32 x 32 1024 64 2678 16 Kbytes

Table B.2: Sampling a 512x512 image with various block sizes and taking tuples of 4 bits each.
The number of associations and total size of CMM were calculated using a class pattern of 128

bits with 2 of them set.

array produced. This also results at initial symbols representing pattern primitives of different

levels of complexity.

One advantage when using small sized blocks is that the number of examples needed to be
presented at the CMMs during training in order to assign the same symbol from the initial alphabet
to shifted versions of the same pixel formations is small. That makes things easier during the
training session of the initial labelling system and, as we will see next, simplifies the method with
which a new image should be scanned for known features. Additionally, as it is shown in figure B.4
small blocks are less susceptible to noise. At the same time however, the capacity of the CMMs
is less than the case of larger blocks, more ADAM units are needed and the resulting symbolic
image would be larger in dimensions. The latter means that more iterations and more rules will be
required at the symbolic processing level by the CANNSs but at the same time we would have more
detail in the initial symbolic image. Using larger blocks we have better capacity CMMs but we
would have more complex pixel formations to be represented by the initial labels. Although this
reduces the processing load of the CANNS, either a more subtle way would be required to extract
these features from the image or a larger set of pixel formations should be associated with the same
initial labels. However, the latter is prone to mapping misinterpretations and overgeneralizations
resulting in the loss of probably essential pieces of evidence about the nature of the underlying
pattern primitives. Thus we see that a middle approach with a slight preference to small blocks
would be necessary in order to balance the positive and negative aspects of each case. Block sizes
of 15 x 15 pixels were used in O’Keefe’s system. In our case, a block size of the order of 12 x 12

pixels would be probably preferable. Of course, this also depends on the resolution of the image.

In order to train the CMMs with the pizel block — initial label mappings, features are se-
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lected from the image and the corresponding labels are provided. Since the associations to be
performed are of a pixels — symbols form, a modified associative memory combining the char-
acteristics of ADAM at the first stage (n-tuples) with that of the AURA model as far as symbolic
storage is concerned (separators and MBI database) would be more effective. Effectively, this
would be a different form of the AURA model with only one CMM and the incorporation of n-
tuple preprocessing. With the new version of the AURA software library which is designed in
order to maximize the benefits of the use of the dedicated hardware platform, the creation of this

modified version would not be a problem.

As mentioned earlier, the size of the pixel blocks is directly related to the method used when
searching for features. In the case of small blocks it is relatively easier, and less susceptible to
misinterpretations, to train a set of pixel blocks representing shifted versions of the same feature
with the same initial label. The small size of the blocks guarantees that these shifted versions will
not be significantly different as far as the structure of the underlying pattern primitive is concerned.
This will allow for the initial labelling to be performed by placing a grid over the image and assign
the corresponding label to the underlying features. Problems caused by misalignments could be
handled due to the fact that the same label would be associated to shifted versions of the same

feature.

In the above case the spacing of the grid is the same as the size of the pixel blocks. This is the
simplest way to extract the features. An alternative, but more complex, method is for the spacing
of the grid to be less than the size of the pixel blocks but keeping the dimensions of the symbolic
array to the ones corresponding to the size of the pixel blocks (e.g. with reference to table B.2,
for an image of 512 x 512 pixels, a block size of 16 x 16 pixels and a grid spacing of 12 pixels
both horizontally and vertically, use a symbolic image with 32 x 32 cells instead of a 43 x 43
one). Using this method, more than one grid location would correspond to the same location of
the symbolic array. Since features are extracted from each grid location, more than one pattern
primitives labels would be assigned to the same place in the symbolic array. Thus, after extracting
features from all the grid locations the resulting symbolic image should be preprocessed in order

to eliminate multiple occurrences of labels corresponding to the same features.

A third method is to have two grids with different sizes. The first one with a very small spacing
and the second with a spacing corresponding to the size of the pixel blocks. Using the first grid
only a small fraction of the image is scanned for features in order to collect indications about the

place where the second grid should be placed. Then, the coordinates of the location with the best
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match would define the alignment of the second grid actually used for the initial labelling.

As we can see, there is a variety of methods to perform the initial labelling as required by
the latter stages of processing by the CANNs. The first method is the simpler and the faster one
but needs relatively small pixel blocks to perform well. Slightly larger blocks can be used at the
second one but an intermediate stage of preprocessing would be required to prepare the initial
symbolic array for the CANNs. The third method could work with slightly larger blocks as well
but a set of initial measurements would be required. Whatever the case, these methods indicate
the feasibility of this approach for the initial labelling of the input image. This is also indicated by
the successful use of the ADAM system to other image processing tasks and especially from its
use at O’Keefe’s system. This thesis is focused at the designing and the operation of the CANNS.
For testing purposes a set of synthetic symbolic images were used as described in section 7.3.
The implementation of the initial labelling task as discussed in this appendix and the consequent
connection with the CANNS is part of the further development of the system towards and integrated

image understanding architecture.
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Appendix C

Results
Rules produced

Pattern | Iterations Combiner Passer 1 — | Passer 2 «— | Passer 31 | Passer4 |
3 4 5 1 2 1 2 1 2 1 2

R1 5 113 | 40 40 65 40 65 | 47 | 53 | 47 53
R2 5 63 40 19 27 19 27 |12 | 39 12 39
R3 5 31 | 66 |12 | 7 49 7 49 | 10 | 39 | 23 30
R4 5 56 | 42 | 4 9 39 9 39 | 16 | 30 | 26 22
R5 5 31 | 66 |12 | 10 | 39 | 23 | 30 | 7 | 59 7 49
R6 5 52 33 4 18 28 26 9 7 37 7 37
Total 346 | 287 | 32 | 103 | 237 | 124 | 219 | 99 | 247 | 122 | 230

Saturation (%) 126 | 13521 |27 | 114 | 3.2 | 108 | 26 | 120 | 3.1 | 11.36

Table C.1: Iterations, saturation and rules produced for CMMs of different arity for each module

in experiment 004.
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Figure C.1: Experiment 001a. Recognition percentages for combiner tolerance = 0/5, 1/5, 2/5

(graphs a, b and c respectively).
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001b: Recalling percentages, Combiner Tolerance =0
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Figure C.2: Experiment 001b. Recognition percentages for combiner tolerance = 0/5, 1/5, 2/5

(graphs a, b and c respectively).
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biner tolerance 0/5, 1/5 and 2/5 (graphs a, b and c respectively).
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004: Recalling Percentages, Area for R2, Combiner Tolerance = 0
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Figure C.4: Exp.: 004: Object labels percentages for the R2 area of patterns T1-T10 using com-
biner tolerance 0/5, 1/5 and 2/5 (graphs a, b and c respectively).
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Figure C.5: Exp.: 005: Object labels percentages for the R2 area of patterns T1-T10 using com-

biner tolerance 1/5 and 2/5 (graphs a and b respectively). The bars refer to the standard error.
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(b)

Figure C.6: Recalling percentages for the R2 area of patterns T1-T10 with experiments 006 and

007. Combiner tolerance has the value 2/5 for both graphs. (a) Percentages with experiment 006

(local-simultaneous). (b) Percentages with experiment 007 (local-consecutive). The bars refer to

the standard error.
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Figure C.7: Exp.: 008: Object labels percentages for the R2 area of patterns T1la-T10a using

combiner tolerance 0/5, 1/5 and 2/5 (graphs a,b and c respectively). The bars refer to the standard

error.
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Figure C.8: Exp.: 009: Object labels percentages for the R1 area of patterns T1a-T10a using

combiner tolerance 0/5, 1/5 and 2/5 (graphs a, b and c respectively). The bars refer to the standard
error.
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Figure C.9: Exp.: 009: Object labels percentages for the R2 area of patterns T1la-T10a using

combiner tolerance 0/5, 1/5 and 2/5 (graphs a, b and ¢ respectively). The bars refer to the standard
error.
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(b)

011: Object labels percentages for the R1 area of patterns T1la-T10a using

combiner tolerance 0/5, 1/5 and 2/5 (graphs a, b and c respectively). The bars refer to the standard

error.



250 APPENDIX C. RESULTS

011: Recalling Percentages, Area for R2, Combiner Tolerance = 0
100 T T T T T T T T
R1 ~o—
R2 ——
R3
R4 <—
R5 +a—
80 - R6 Pt -
60 |- A
+ *
o o /l
S /
40 1, /1
/
/
!
& . : ! /
N B N " ! N /
B / AN / | /
20 | "\ S S : ‘ J
R [ e \*;» . /
kS o IR /
— RS /
e W — -—-—-—- #* /
~ /
. /
=] ~
o - " - " - Y
Tla T2a T3a T4a T5a Téa T7a T8a T9a T10a
Test Pattern (a)
011: Recalling Percentages, Area for R2, Combiner Tolerance = 1
100 T T T T T T T T
R1 ro—
R2 +—
R3 &
R4 B
R5 +&—1
80 [ N R6 Fx—

Tla T2a T3a Tda T5a Téa T7a T8a T9a T10a
Test Pattern (b)
011: Recalling Percentages, Area for R2, Combiner Tolerance = 2
100 T T T T T T T T
R1 ro—
R2 +——
R3 r&—
R4 b
* . R5 ra—
80 R6 rx— |
60

40+

3

20

0 L L L e T = —
Tla T2a T3a T4a T5a Téa T7a T8a T9a T10a

Test Pattern (c)

Figure C.11: Exp.: 011: Object labels percentages for the R2 area of patterns T1a-T10a using

combiner tolerance 0/5, 1/5 and 2/5 (graphs a, b and ¢ respectively). The bars refer to the standard
error.
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Figure C.12: Exp.: 013: Object labels percentages for the R2 area of patterns T1-T10 using

combiner tolerance 0/5, 1/5 and 2/5 (graphs a, b and c respectively). The bars refer to the standard
error.
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Figure C.13: Exp.: 013: Object labels percentages for the R2 area of patterns T1la-T10a using
combiner tolerance 0/5, 1/5 and 2/5 (graphs a, b and ¢ respectively). The bars refer to the standard

error.
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Figure C.14: Recalling percentages for the R1 and R2 areas of patterns T1-T10 with experiment

015. The tolerance of the combiner modules is 1/5.



254 APPENDIX C. RESULTS

017: Pattern R3, Combiner Tolerance = 2, Passer Tol. =0
100 - T T T T

80 R6 % - -

0/‘/” 1 1 1 1

100 110 120 130 140 150 (a)
Scale (%)
017a: Pattern R3, Combiner Tolerance = 2, Passer Tol. = 1
100 & T T T T

X R1 <+—
R2 —+-
R3 -8
R4 -x
R5 -&--

80 R6 —%-- o

0 i 1 1 1 1

100 110 120 130 140 150
Scale (%) (b)

Figure C.15: Recognition percentages for the scaled versions of pattern R3 with xperiments 017
and 017a (graphs (a) and (b) respectively). The combiner tolerance has value 2/5 and the passer
tolerance 0/2 in (a) and 1/2 in (b).
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Figure C.16: Exp.: 018: Recalling behaviour for patterns 08 (a) and o7 (b).
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Figure C.17: Exp.: 019:

Recalling behaviour for patterns 08 (a) and o7 (b).
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Figure C.18: Exp.: 020: Recalling behaviour for patterns 08 (a) and o7 (b).
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