Contracts in a State-rich Timed Process Algebra

Kun Wei, Jim Woodcock and Ana Cavalcanti
Department of Computer Science
University of York

February 26, 2013
Outline

- Introduction to *Circus* family
- *Circus Time*
 - Summary
 - Example: simple protocol
 - New *Circus Time* theory: alphabet, healthiness conditions and signature
 - The relation between the new and original theory
- Reactive designs
 - Brief introduction
 - Example: sequential composition
 - Changes for some operators
- Case Study: Miracle, deadlines and interrupts
- Conclusion and future work
Circus family

Circus is a combination of Z, CSP, guarded commands and refinement calculus, and has developed into a family of languages for specification, programming and verification. Its semantics is based on UTP.

- Circus Time and OhCircus (object-orientation)
- synchrony, mobility, Control Law Diagrams, Circus/Ada
- a number of tools but still need efficient tools for both theorem-proving and model-checking

Two major projects:

- hiJaC - formal development of SCJ
- COMPASS - model-based techniques for developing and maintaining Systems of Systems
Summary of *Circus Time*

- A discrete-time model
- Semantics is based on UTP
- $\mathbb{Z}+$Timed CSP+guarded commands
- More time operators than Timed CSP such as (hard) deadlines
- The semantics has not been mechanised, and so no tool support yet
- The original *Circus Time* (Adnan Sherif) is a synthesis of a UTP theory and a framework for transformation and time separation.
Example: simple protocol
Example: simple protocol

channel \textit{in, out, send} : \mathbb{Z}; \textit{enable, disable}

process \textit{Breqs} \triangleq \textup{begin}

state \textit{APState} == [col : \mathbb{P} \text{ char}]

\textit{init} == [\textit{APState}' | col' = \emptyset]

\textit{insert} == [\triangle \textit{APState}; \textit{x}? : \text{char} | col' = col \cup \{\textit{x}\}]

\textit{InsS(w)} \triangleq (\text{wait } 0..w; \text{ Insert}) \circ (\text{send}!(\#\textit{col})@t \rightarrow \text{InsS}(w - t))

\textit{BReq1} \triangleq ((\text{in}?\textit{x}@t \rightarrow \text{InsS}(100 - t)) \circ (\text{send}!(\#\textit{col}) \rightarrow \text{Skip}); \textit{BReq1})

\textit{BReq2} \triangleq \textit{out} \rightarrow \text{enable} \rightarrow \text{send}?\textit{x} \rightarrow \textit{BReq2}

\textit{BReq3} \triangleq \text{send}?\textit{x} \rightarrow \text{disable} \rightarrow \textit{BReq3}

\bullet \text{ wait } 0..3; \text{ Init}; (\textit{BReq1}[\{\text{col}\} | \{\} \text{ send } | \{\}](\textit{BReq2}[][\{\} \text{ send } | \{\}])\textit{BReq3}))

\textup{end}

process \textit{TReqs} \triangleq \textup{begin}

\textit{TReq1} \triangleq ((\text{in}?\textit{x} \rightarrow \text{Skip}) \triangleright 5 || \text{ wait } 100); \textit{TReq1}

\textit{TReq2} \triangleq \textit{out} \rightarrow \text{wait } 0..7; \text{ enable} \rightarrow (\text{disable} \rightarrow \text{Skip}) \triangleright 15; \textit{TReq2}

\textup{end}

system \textit{AProtocol} \triangleq \textit{Breqs}[][\{\text{in, out, enable, disable}\} \textit{TReqs}]
A new *Circus Time* theory

- **Alphabet** is a set of variable names for observation.
 - ok, ok', wait, wait': *boolean*
 - tr, tr': $\text{seq}_1(\text{seq Event})$, e.g., $tr' = \langle \langle a \rangle, \langle b, c \rangle, \langle d \rangle, \langle e, f \rangle, \ldots \rangle$
 - ref, ref': $\text{seq}_1(\mathcal{P} \text{Event})$, e.g., $ref' = \langle r_1, r_2, r_3, r_4, \ldots \rangle$
 - state, state': $\mathcal{N} \rightarrow \text{value}$

- **Healthiness conditions** identify properties that characterise the theory.

- **Signature** gives a set of operators and atomic components of the programming theory.

- This theory only focuses on the CSP constructs since the others are the same as those in *Circus*.
Healthiness conditions in *Circus Time*

- $R_{1ct}(X) \triangleq X \land RT$
- $R_{2ct}(X(tr, tr')) \triangleq X(\langle\langle\rangle\rangle, \text{diff}(tr', tr))$
- $R_{3ct}(X) \triangleq \Pi_{ct} \triangleleft \text{wait} \triangleright X$
- $R_{ct} = R_{1ct} \circ R_{2ct} \circ R_{3ct}$
- $CSP_{1ct}(X) \triangleq X \lor (\neg ok \land RT)$
- $CSP_{2ct}(X) \triangleq X ; J$
- $CSP_{3ct}(X) \triangleq \text{Skip} ; X$
- $CSP_{4ct}(X) \triangleq X ; \text{Skip}$
- $CSP_{5ct}(X) \triangleq X \parallel \text{Skip}$

$RT \triangleq tr \preceq tr' \land \text{front}(\text{ref}) \leq \text{ref}' \land \#\text{diff}(tr', tr) = \#(\text{ref}' - \text{front}(\text{ref}))$

$\Pi \triangleq ok' = ok \land \text{wait}' = \text{wait} \land tr' = tr \land \text{ref}' = \text{ref} \land \text{state}' = \text{state}$

$\Pi_{ct} \triangleq (\neg ok \land RT) \lor (ok' \land \Pi)$

$J \triangleq (ok \Rightarrow ok') \land \Pi \neg ok$

Healthiness conditions in the original and new theories are isomorphic except for R_{2ct}
CSP constructs in *Circus Time*

\[
\text{Skip} \mid \text{Stop} \mid \text{Chaos} \mid N := e \mid c.e \rightarrow P \mid P \mid Q \mid P \triangleright b \triangleright Q \mid b&P \mid P \Box Q \\
\mid P
\triangleright Q \mid P \mid [s_1 \mid \{ CS \} \mid s_2] \mid Q \mid P \setminus CS \mid \text{Wait } d \mid \mu N \bullet P \mid P \triangleright \{d\} Q \\
\mid \text{Miracle} \mid \text{Wait } d_1..d_2 \mid P \triangleright d \mid d \leftarrow P \mid c.e@t \rightarrow P \mid P \triangleright Q \mid P \triangleright_c Q \mid P \triangleright_d Q
\]

- **Miracle**
- **P \triangleright d:** \(P\) **must** terminate within \(d\)
- **d \leftarrow P:** observable events in \(P\) **must** happen within \(d\)
- **c.e@t \rightarrow P:** \(t\) records the relative time of the occurrence of \(c.e\)
- **P \triangleright_c Q:** event-driven timeout
- **P \triangleright_d Q:** time-driven timeout

Prefix, external choice and parallelism are changed for capturing behaviours of actions more precisely.
The relation between the new and original Circus Times.

Predicates

New Circus Time

Original Circus Time

Predicates constructed by *original Circus Time* signature

Predicates constructed by *new Circus Time* signature
Reactive designs

- The theory of relations
 - a predicate with an alphabet for initial and final observations

- The theory of designs
 - $P \vdash Q \triangleq ok \land P \Rightarrow ok' \land Q$
 - $H1(P) = ok \Rightarrow P$, $H2(P) = [P[false/ok'] \Rightarrow P[true/ok']]$
 - $true; P = true$, not $true; P = P$

- The theory of reactive processes
 - ok and ok', $wait$ and $wait'$, tr and tr', ref and ref'
 - $R1(P) = P \land tr \leq tr'$, $R2(P(tr, tr')) = P(\langle \rangle, tr' - tr)$,
 $R3(P) = \Pi_R \triangleleft wait \triangleright P$

- The theory of CSP
 - $CSP1(P) = P \lor (\neg ok \land tr \leq tr')$, $CSP2(P) = P; J$

- Reactive designs for CSP processes
 - $P = R_{ct}(\neg P^f_f \vdash P^t_f)$ where $P^a_b \triangleq P[a, b/ok', wait]$
Reactive design for sequential composition

Original

\[P ; Q \equiv \exists \text{obs}_0 \cdot P[\text{obs}_0/\text{obs}'] \land Q[\text{obs}_0/\text{obs}] \]

Reactive design

\[P ; Q = R_{ct} \left(\neg (R_{1_{ct}}(P^f_f) ; R_{1_{ct}}(true)) \land \neg (R_{1_{ct}}(P^t_f) ; R_{1_{ct}}(\neg \text{wait} \land R_{2_{ct}}(Q^f_f))) \right) \]

\[\vdash R_{1_{ct}}(P^t_f) ; R_{1_{ct}}(\exists \text{wait} \triangleright R_{2_{ct}}(Q^i_f)) \]

For example,

\[(c.e \to \text{Skip}); \text{Miracle} = R_{ct}(true \vdash \text{wait}' \land \triangleright/\text{tr}' = \triangleright/\text{tr} \land \text{possible}(\text{tr}, \text{tr}', c)) \]
Non prefix-closed traces

- Original prefix

\[
\begin{align*}
 \text{wait}_\text{com}(c) & \lor \text{term}_\text{com}(c) \lor (\text{wait}_\text{com}(c); \text{term}_\text{com}(c)) \\
 \text{wait}_\text{com}(c) & \equiv \text{wait}' \land \text{possible}(\text{ref}, \text{ref}', c) \land \sim/\text{tr}' = \sim/\text{tr} \\
 \text{term}_\text{com}(c) & \equiv \neg \text{wait}' \land \text{diff}(\text{tr}', \text{tr}) = \langle\langle c\rangle\rangle
\end{align*}
\]

which, at termination, allows refusals and local state to be arbitrary, and requires prefix-closed traces. E.g., \(\langle\langle\rangle, \langle c\rangle\rangle \in T(P) \Rightarrow \langle\langle\rangle, \langle\rangle\rangle \in T(P)\). But \(\text{Wait } 1; (c \rightarrow \text{Skip} \square \text{Miracle})\) violates this assumption.

- New prefix

\[
\begin{align*}
 \text{wait}_\text{com}(c) & \lor \text{term}_\text{now}_\text{com}(c) \lor (\text{wait}_\text{com}(c); \text{term}_\text{next}_\text{com}(c)) \\
 \text{wait}_\text{com}(c) & \equiv \text{wait}' \land \text{possible}(\text{ref}, \text{ref}', c) \land \sim/\text{tr}' = \sim/\text{tr} \land \text{state}'=\text{state} \\
 \text{term}_\text{now}_\text{com}(c) & \equiv \left(\neg \text{wait}' \land \text{diff}(\text{tr}', \text{tr}) = \langle\langle c\rangle\rangle \land \text{front}(\text{ref}') = \text{front}(\text{ref}) \land \text{state}'=\text{state} \right) \\
 \text{term}_\text{next}_\text{com}(c) & \equiv \neg \text{wait} \land \text{tr}' - \text{tr} = \langle\langle c\rangle\rangle \land \text{front}(\text{ref}') = \text{ref} \land \text{state}'=\text{state}
\end{align*}
\]
Divergences are important

- External choice is the most important operator in Circus Time that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original Circus Time
 - the precondition, \(\neg P_f \land \neg Q_f \), in \(P \square Q \)
 - counterexamples, e.g., Wait 3; Chaos \(\square \) Wait2
- Divergences are comprehensively considered in the new theory.

\[P \square Q \equiv R_{ct} \]

\[
\neg (((P_f^t \lor Q_f^t) \land tr' = tr) ; R_{ct}(true)) \land \\
\neg ((P_f^t \land ((Q_f \land \searrow tr' = \searrow tr \land wait')); tr' - tr = \langle \langle \rangle \rangle) ; R_{ct}(true)) \land \\
\neg ((Q_f^t \land ((P_f \land \searrow tr' = \searrow tr \land wait')); tr' - tr = \langle \langle \rangle \rangle) ; R_{ct}(true)) \land \\
\neg (P_f^t \land ((Q_f \land \searrow tr' = \searrow tr \land wait')); head(tr' - tr) \neq \langle \rangle) \land \\
\neg (Q_f^t \land ((P_f \land \searrow tr' = \searrow tr \land wait')); head(tr' - tr) \neq \langle \rangle) \land \\
\neg ((P_f^t \lor Q_f^t) \land head(diff(tr', tr)) \neq \langle \rangle) \\
\neg (P_f^t \land Q_f^t \land wait' \land \searrow tr' = \searrow tr) \lor (Diff(P_f^t, Q_f^t) \land (P_f^t \lor Q_f^t))
\]

- This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in Circus Time that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original Circus Time
 - the precondition, \(\neg P^f \wedge \neg Q^f \), in \(P \square Q \)
 - counterexamples, e.g., Wait 3; Chaos \(\square \) Wait2
- Divergences are comprehensively considered in the new theory.

\[
P \square Q \cong R_{ct} \begin{cases}
\neg \left(((P^f \lor Q^f) \wedge tr' = tr) ; R_{ct}(\text{true}) \right) \land \\
\neg \left((P^f \land ((Q^f \land \neg tr' = \neg tr \wedge wait')); tr' - tr = \langle \langle \rangle \rangle) ; R_{ct}(\text{true}) \right) \land \\
\neg \left((Q^f \land ((P^f \land \neg tr' = \neg tr \wedge wait')); tr' - tr = \langle \langle \rangle \rangle) ; R_{ct}(\text{true}) \right) \land \\
\neg \left((P^f \land ((Q^f \land \neg tr' = \neg tr \wedge wait')); head(tr' - tr) \neq \langle \rangle) \right) \land \\
\neg \left((Q^f \land ((P^f \land \neg tr' = \neg tr \wedge wait')); head(tr' - tr) \neq \langle \rangle) \right) \land \\
\neg ((P^t \lor Q^t) \land head(diff(tr', tr)) \neq \langle \rangle) \\
\vdash (P^t \land Q^t \land wait' \land \neg tr' = \neg tr) \lor (Diff(P^t, Q^t) \land (P^t \lor Q^t))
\end{cases}
\]

- This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in *Circus Time* that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original *Circus Time*
 - the precondition, $\neg P_f^t \land \neg Q_f^t$, in $P \Box Q$
 - counterexamples, e.g., *Wait 3; Chaos* \Box *Wait2*
- Divergences are comprehensively considered in the new theory.

\[
\begin{align*}
P \Box Q & \cong R_{ct} \\

\neg (((P_f^t \lor Q_f^t) \land tr' = tr) ; R_{ct}(\text{true})) \land \\
\neg ((P_f^t \land ((Q_f^t \land \neg \text{tr}' = \neg \text{tr} \land \text{wait}'); tr' - tr = \langle \rangle)); R_{ct}(\text{true})) \land \\
\neg ((Q_f^t \land ((P_f^t \land \neg \text{tr}' = \neg \text{tr} \land \text{wait}'); tr' - tr = \langle \rangle)); R_{ct}(\text{true})) \land \\
\neg (P_f^t \land ((Q_f^t \land \neg \text{tr}' = \neg \text{tr} \land \text{wait}'); head(tr' - tr) \neq \langle \rangle)) \land \\
\neg (Q_f^t \land ((P_f^t \land \neg \text{tr}' = \neg \text{tr} \land \text{wait}'); head(tr' - tr) \neq \langle \rangle)) \land \\
\neg ((P_f^t \lor Q_f^t) \land head(diff(\text{tr}', \text{tr})) \neq \langle \rangle) \\
\neg (P_f^t \land Q_f^t \land \text{wait}' \land \neg \text{tr}' = \neg \text{tr}) \lor (Diff(P_f^t, Q_f^t) \land (P_f^t \lor Q_f^t))
\end{align*}
\]

- This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in Circus Time that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original Circus Time
 - the precondition, $\neg P^f \land \neg Q^f$, in $P \square Q$
 - counterexamples, e.g., Wait 3; Chaos \square Wait2
- Divergences are comprehensively considered in the new theory.

$$P \square Q \cong R_{ct}$$

This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in \textit{Circus Time} that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original \textit{Circus Time}
 - the precondition, \(\neg P_f \land \neg Q_f \), in \(P \Box Q \)
 - counterexamples, e.g., \(\text{Wait} ~ 3; \text{Chaos} \Box \text{Wait2} \)
- Divergences are comprehensively considered in the new theory.

\[
P \Box Q \cong R_{ct}
\]

\[
\begin{align*}
\neg (((P_f^t \lor Q_f^t) \land tr' = tr) ; R_{ct}(\text{true})) \land \\
\neg ((P_f^f \land ((Q_f^f \land \lnot tr' = \lnot tr \land \text{wait}'); tr' - tr = \langle\rangle)); R_{ct}(\text{true})) \land \\
\neg ((Q_f^f \land ((P_f^f \land \lnot tr' = \lnot tr \land \text{wait}'); tr' - tr = \langle\rangle)); R_{ct}(\text{true})) \land \\
\neg (P_f^f \land ((Q_f^f \land \lnot tr' = \lnot tr \land \text{wait}'); \text{head}(tr' - tr) \neq \langle\rangle)) \land \\
\neg (Q_f^f \land ((P_f^f \land \lnot tr' = \lnot tr \land \text{wait}'); \text{head}(tr' - tr) \neq \langle\rangle)) \land \\
\neg ((P_f^t \lor Q_f^t) \land \text{head}(\text{diff}(tr', tr)) \neq \langle\rangle) \\
\neg (P_f^t \land Q_f^t \land \text{wait}'; \land \lnot tr' = \lnot tr) \lor (\text{Diff}(P_f^t, Q_f^t) \land (P_f^t \lor Q_f^t))
\end{align*}
\]

- This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in *Circus Time* that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original *Circus Time*
 - the precondition, $\neg P^f_f \land \neg Q^f_f$, in $P \Box Q$
 - counterexamples, e.g., *Wait 3; Chaos* \Box *Wait2*

Divergences are comprehensively considered in the new theory.

This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in *Circus Time* that can define other operators such as timeout and deadline.

- Very 'loose' definition for divergences in original *Circus Time*
 - the precondition, $\neg P_f^t \land \neg Q_f^t$, in $P \square Q$
 - counterexamples, e.g., *Wait 3; Chaos \square Wait2*

- Divergences are comprehensively considered in the new theory.

This reactive design looks complex but intuitive.
Divergences are important

- External choice is the most important operator in *Circus Time* that can define other operators such as timeout and deadline.
- Very 'loose' definition for divergences in original *Circus Time*;
 - the precondition, $\neg P_f \land \neg Q_f$, in $P \Box Q$
 - counterexamples, e.g., *Wait* 3; *Chaos* \Box *Wait*2
- Divergences are comprehensively considered in the new theory.

\[
P \Box Q \cong R_{ct} \left\{ \begin{array}{l} \neg ((P_f^t \lor Q_f^t) \land tr' = tr); R_{ct}(\text{true}) \land \\
\neg ((P_f^t \land (Q_f^t \land \neg tr' = \neg tr \land wait')); (tr' - tr = \langle\rangle); R_{ct}(\text{true}) \land \\
\neg ((Q_f^t \land (P_f^t \land \neg tr' = \neg tr \land wait')); (tr' - tr = \langle\rangle); R_{ct}(\text{true}) \land \\
\neg (P_f^t \land ((Q_f^t \land \neg tr' = \neg tr \land wait')); \text{head}(tr' - tr) \neq \langle\rangle) \land \\
\neg (Q_f^t \land ((P_f^t \land \neg tr' = \neg tr \land wait')); \text{head}(tr' - tr) \neq \langle\rangle) \land \\
\neg ((P_f^t \lor Q_f^t) \land \text{head}(\text{diff}(tr', tr)) \neq \langle\rangle) \\
\vdash (P_f^t \land Q_f^t \land wait' \land \neg tr' = \neg tr) \lor (\text{Diff}(P_f^t, Q_f^t) \land (P_f^t \lor Q_f^t)) \end{array} \right. \]

- This reactive design looks complex but intuitive.
Miracle

- \[\text{Miracle} \triangleq R_{ct}(true \vdash false) = R_{1ct}(ok) \lor (ok' \land I \land wait) \]
- Miracle is the top element in the complete lattice by the refinement relation.
- Miracle is an unstarted action that must not be seen during any execution.
- The combination between Miracle and other operators violates some assumptions of the standard CSP.
 - \(a \rightarrow \text{Miracle} \)
 - \(a \rightarrow \text{Skip} \land \square \text{Miracle} \)
 - \(\text{Wait } d; \text{Miracle} \)

- Miracle is used to define a deadline operator
Deadlines

- Deadlines impose requirements on a system's environment.
- Missing a deadline leads to a timestep (infeasibility) in Circus Time.
- Two kinds of deadlines: an action must terminate (▶), or must execute (◀) external events within a deadline.

\[
P ▶ d ≡ R_{ct} \left(\begin{array}{l}
- ((P^f \land tr' = tr) \land R_{1ct}(true)) \\
- ((P^f \land \#tr' - \#tr \leq d) \land R_{1ct}(true)) \\
\quad \vdash (P^t \land \#tr' - \#tr \leq d)
\end{array} \right)
\]

\[
d ◁ P = R_{ct} \left(\begin{array}{l}
- ((P^f \land tr' = tr) \land R_{1ct}(true)) \\
- ((P^f \land \#tr' - \#tr \leq d \land \neg (\neg tr' = tr) \land head(tr' - tr) \neq \langle \rangle)) \\
\quad \vdash (P^t \land head(diff(tr', tr)) \neq \langle \rangle)
\end{array} \right)
\]

\[
(P^t \land (\#tr' - \#tr < d \land \neg (\neg tr' = tr) \lor (P^t \land (((\#tr' - \#tr < d \land \neg tr' = tr \land wait' = tr' \land wait')) \lor (P^t \land (((\#tr' - \#tr < d \land \neg tr' = tr \land wait')) \lor (P^t \land (((\#tr' - \#tr < d \land \neg tr' = tr \land wait') \land term_next) \lor term_now))))
\]

\[
\quad = P \square (Wait d; Miracle)
\]

- E.g., 3 ◁ (a → b → Skip) ▶ 5
Interrupts

- Event-driven: Seminar △ (Wait 1; close → Skip)
- Catastrophe: (Seminar △ (close → Skip)) || {close} || (Wait 1; close → Skip)

\[(P \triangle_c Q) = \]

\[
\begin{align*}
& \neg ((P^f \land possible(ref, ref', c)); R_{ct}(true)) \land \\
& \neg ((P^t \land possible(ref, ref', c)); (wait \land term_now_com(c)); (\neg wait \land Q^f_t)) \\
& \vdash (P^t \land \#tr' = \#tr \land \neg wait') \lor \\
& (P^t \land \#tr' \neq \#tr \land possible(ref, front(ref'), c) \land \neg wait') \lor \\
& ((P^t \land possible(ref, ref', c)); (wait \land wait_com(c))) \lor \\
& ((P^t \land possible(ref, ref', c)); (wait \land term_now_com(c)); (\neg wait \land Q^t_t))
\end{align*}
\]

- Generic interrupt is constructed by parallel-by-merge, but cannot resolve the updating of local state.

- Time-driven: Seminar △₁ Skip

\[
P \triangle_d Q \equiv \begin{align*}
& \neg ((P^f \land \#tr' - \#tr \leq d); R_{ct}(true)) \land \\
& \neg ((P^t \land \#tr' - \#tr = d); (\neg wait \land \neg wait')) \land \\
& \vdash (P^t \land \#tr' - \#tr \leq d) \lor \\
& ((P^t \land \#tr' - \#tr = d); (\neg wait \land \neg wait'))
\end{align*}
\]

Contracts in a State-rich Timed Process Algebra
Conclusion and future work

- We have developed a new *Circus Time* theory that, compared with the original theory, provides a simpler mathematical model, more time operators and more constrained operators.
- Each action is expressed as a reactive design that exposes the pre-postcondition semantics and simplifies proofs.
- Reactive designs give more concise, readable and uniform UTP semantics, and also support contract-based reasoning.

Future work:
- Mechanisation of the semantics of *Circus Time* in a theorem prover.