Graph Grammars: True Concurrency Semantics and Refinement

Leila Ribeiro
Universidade Federal do Rio Grande do Sul
Outline

• Graph Grammars
• Semantics of graph grammars
• Refinements
• Future Work
Graph Grammars (GGs)

- Like Chomsky grammars, using GRAPHS instead of strings
- Data driven
- Visual language
- Few, but powerful concepts
- Rich theory, specially concerning concurrency
GGs: Applications

Biology: Describing plant and cell growth (L-systems)
GG: Applications

Specification of concurrent systems

states: graphs
actions: rules
GG: Applications

- Specification of model refactoring
- Efficient implementation of logic programming (using the graph structure to represent variable sharing)
- Pattern recognition/generation
- ...
GGs: Graph?

- Directed/undirected graphs
- Labeled graphs
- Typed graphs
- Attributed graphs
- Algebras
- More general kinds of graphs...
GGs: Graph?

- Directed/undirected graphs
- Labeled graphs

The algebraic approach to GGs is "relatively" independent on the kind of graph

- Algebras
- More general kinds of graphs...
Type graph

- Graph describing the types of vertices and edges allowed in states
Typed Graph

- Instances of the type graph

(graph morphism)
Rules

- LHS: pattern to be found in a state
- RHS: specified state change
- Relation LHS-RHS: specifies what does not change
Graph Grammar

GGs can be related by suitable (syntactical) morphisms that induce a behavior compatibility (simulation relation)
Rule Application

- Direct derivation or step

![Diagram showing the application of rule L1 and R1 through a pushout process](image)
Semantics

Sequential derivation

$\begin{align*}
L & \xrightarrow{r} R \\
\text{step 1} & \\
\text{INI} & \xrightarrow{} \text{OUT1=IN2}
\end{align*}$

$\begin{align*}
L' & \xrightarrow{r'} R' \\
\text{step 2} & \\
\text{OUT2=IN3} & \xrightarrow{} \text{OUT3=IN4}
\end{align*}$

$\begin{align*}
L'' & \xrightarrow{r''} R'' \\
\text{step 3} & \\
\text{OUT3=IN4} & \xrightarrow{\cdots \cdots}
\end{align*}$
Sequential derivation

\[L \xrightarrow{r} R \]

\[L' \xrightarrow{r'} R' \]

\[L'' \xrightarrow{r''} R'' \]

step 1

step 2

step 3

\[\text{INI} \xrightarrow{} OUT1=IN2 \xrightarrow{} OUT2=IN3 \xrightarrow{} OUT3=IN4 \xrightarrow{} \ldots \ldots \]
The semantics based on sequential derivations makes it difficult to reason about concurrency.
Concurrent Derivations

\[L \xrightarrow{r} R \quad \text{step 1} \quad L' \xrightarrow{r'} R' \quad \text{step 2} \quad L'' \xrightarrow{r''} R'' \quad \text{step 3} \]

\[\text{INIT} \rightarrow \text{OUT1} = \text{IN2} \
ightarrow \text{OUT2} = \text{IN3} \rightarrow \text{OUT3} = \text{IN4} \]
Concurrent Derivations

\[L \xrightarrow{r} R \]
\[L' \xrightarrow{r'} R' \]
\[L'' \xrightarrow{r''} R'' \]

INI → \(OUT1 = IN2 \) → \(OUT2 = IN3 \) → \(OUT3 = IN4 \)

step 1
step 2
step 3
Concurrent Derivations

\[L \xrightarrow{r} R \]

\[L' \xrightarrow{r'} R' \]

\[L'' \xrightarrow{r''} R'' \]

\[\text{INI} \rightarrow \text{OUT1} = \text{IN2} \rightarrow \text{OUT2} = \text{IN3} \rightarrow \text{OUT3} = \text{IN4} \]

Glue
Concurrent Derivations

Total order of steps substituted by a partial order of actions.
True Concurrency Semantics

• A concurrent derivation, also called deterministic process, is a special GG: there is a set of axioms to characterize such GGs, based on the overlappings of the rules in the type graph of the concurrent derivation.

• We can define non-deterministic processes by just dropping one of the axioms.

• The set of all non-deterministic processes of a GG ordered by inclusion has an upper bound, called unfolding, that is an object that describes all possible computations of this GG (but, contrastingly with sequential semantics, the same data element/action is never repeated). The unfolding can also be obtained operationally.

• This is analogous to corresponding construction for Petri nets, that are a special case of GGs.
True Concurrency Semantics

- There is a tight relationship between a GG and its Unfolding, given by an adjunction between the corresponding categories

\[
\text{SPO Graph} \xleftarrow{\perp} \text{Occurrence Grammars} \xrightarrow{\mathcal{U}_s} \text{Grammars}
\]
True Concurrency Semantics

• There is a tight relationship between a GG and its Unfolding, given by an adjunction between the corresponding categories

\[
\begin{align*}
\text{SPO Graph} & \xleftarrow{\bot} \text{Occurrence} \\
\text{Grammars} & \xrightarrow{\mathcal{U}_s} \text{Grammars}
\end{align*}
\]

• We could build a chain of adjunctions relating GGs to Event Structures and Domains, via unfoldings

\[
\begin{align*}
\text{SPO Graph} & \xleftarrow{\bot} \text{Occurrence} \xleftarrow{\mathcal{N}_s} \text{Asymmetric Event Structures} \xleftarrow{\mathcal{P}_a} \text{Domains} \\
\text{Grammars} & \xrightarrow{\mathcal{U}_s} \text{Grammars} \xrightarrow{\mathcal{E}_s} \text{Domains}
\end{align*}
\]

Which kind of refinement are we interested in?
Which kind of refinement are we interested in?

Abstract Behavior \Rightarrow INTERFACE

Concrete implementation \Rightarrow BODY

refinement

???

GTS
Refinement

Each production in the interface describes a complex interaction pattern implemented in the body.

We use abstract representation of computations, abstract representation of interaction patterns, transactions, and dependencies.
A *transactional graph transformation system* is a tuple \(GTS = (T, P, \pi, T_s) \), where

- \(T \) is a graph, called type graph;
- \(P \) is a set of production names;
- \(\pi \) is a function mapping production names to productions over \(T \) (a production is a pair of graph morphisms \(L \xleftarrow{l} K \xrightarrow{r} R \), where \(l \) is an inclusion and \(r \) is injective);
- \(T_s \) is a subgraph of \(T \), called the stable part of \(T \).
A transactional graph transformation system is a tuple $GTS = (T, P, \pi, T_s)$, where

- T is a graph, called type graph;
- P is a set of production names;
- π is a function mapping production names to productions over T (a production is a pair of graph morphisms $L \xleftarrow{l} K \xrightarrow{r} R$, where l is an inclusion and r is injective);
- T_s is a subgraph of T, called the stable part of T.

A notion of observable part of a graph was added.
Example: TGTS

Type graph of a gas station specification
Example: TGTS

Rules of the gas station specification
Transactions

Given a tgt \mathcal{G}, a transaction is a derivation $\rho = G_0 \xrightarrow{q_1,m_1} G_1 \xrightarrow{q_2,m_2} \ldots \xrightarrow{q_n,m_n} G_n$ which satisfies the following properties:

1. G_0 and G_n are stable graphs;

2. any intermediate graph G_i ($i \neq 0, n$) is not stable;

3. the derivation $S(\rho)$ is equivalent to a direct derivation via a proper quotient of the production $q_1 + \ldots + q_n$ and a suitable match m, i.e., $S(G_0) \xrightarrow{PQ(q_1 + \ldots + q_n),m} S(G_n)$ is a derivation in $S(\mathcal{G})$.

4. the match m is an isomorphism.
Transactions

Given a tmts G, a transaction is a derivation $\rho = G_0 \xrightarrow{q_1,m_1} G_1 \xrightarrow{q_2,m_2} \ldots \xrightarrow{q_n,m_n} G_n$
which satisfies the following properties:

1. G_0 and G_n are stable graphs;
 - starts and ends in fully observable states
2. any intermediate graph G_i ($i \neq 0, n$) is not stable;
 - cannot be divided into smaller transactions
3. the derivation $S(\rho)$ is equivalent to a direct derivation via a proper quotient of the production $q_1 + \ldots + q_n$ and a suitable match m, i.e., $S(G_0) \xrightarrow{PQ(q_1 + \ldots + q_n),m} S(G_n)$ is a derivation in $S(G)$.
 - dependencies between steps is based on non-observable items only
4. the match m is an isomorphism.
 - the start graph contains exactly what is needed for the computation
Transactions

Given a tgs \mathcal{G}, a transaction is a derivation $\rho = G_0 \xrightarrow{q_1,m_1} G_1 \xrightarrow{q_2,m_2} \ldots \xrightarrow{q_n,m_n} G_n$ which satisfies the following properties:

1. G_0 and G_n are stable graphs;
 - starts and ends in fully observable states
2. any intermediate graph G_i $(i \neq 0, n)$ is not stable;
 - cannot be divided into smaller transactions
3. the match m is unique and there is a derivation $S(G_0) \xrightarrow{PQ(q_1+\ldots+q_n),m} S(G_n)$ is a derivation in $S(\mathcal{G})$;
 - dependencies between steps is based on non-observable items only
4. the match m is an isomorphism.
 - the start graph contains exactly what is needed for the computation
Example: Transaction
A transaction may “implement” a rule
A transaction may "implement" a rule

But a rule is too abstract to represent a complex interaction pattern
Idea: Add a dependency relation to rules such that

- The relation describes dependencies between elements of left- and right hand sides of a rule
- The dep-rule is "implementable" by a transaction
• Given a dep-rule, we can construct a set of rules that implement it (small step rules) such that the transaction generated by these rules is the original dep-rule.

• Given a dGTS, we can construct a “standard implementation”, that is a TGTS that implements all its rules.

\[\text{dGTS} \rightarrow \text{TGTS} \]

Refinement or Implementation

Corradini, Foss, Ribeiro - WADT 2008
Further work

• How to prove (hopefully automatically) whether, given any TGTS, it is an implementation or refinement of a dGTS?

• How can we guarantee that a TGTS has no processes that do not correspond to (or are prefix of) transactions? No deadlock or divergence within TGTS...

• How to guarantee that an implementation does not add observable behavior (due, for example, to interference between interactions)