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ABSTRACT
Controller Area Network (CAN) is widely used in automo-
tive applications. Policies for message ID and thus priority
assignment have a significant impact on schedulability. In
addition, they also determine extensibility; the scope to add
messages required by future upgrades without compromising
schedulability. In this paper we address message ID assign-
ment, such that the system is extensible. First, we provide
an assessment metric that provides an in-depth view of the
extensibility of a given ID-assignment, tailored for use in au-
tomotive applications. Second, we develop a practical ID-
assignment policy which maximizes extensibility. This pol-
icy provides an upgrade pathway: it is used to provide the
initial ID-assignment, and also used for ID-assignments dur-
ing subsequent upgrades. The policy optimizes extensibility
by maintaining Deadline minus Jitter Monotonic Priority
Ordering, which ensures that it does not compromise either
schedulability or robustness to errors on the bus. Evaluation
using a simple automotive benchmark shows the effective-
ness of the policy over multiple upgrades.

1. INTRODUCTION
Controller Area Network (CAN) [3, 8] is a broadcast com-

munications bus which is widely used in automotive systems.
Each CAN message is uniquely identified by its ID, which
also determines its priority during the bus arbitration phase.
A key aspect of configuring a CAN-based system is to as-
sign an appropriate ID to each message. This must be done
in such a way that the system is schedulable (i.e. all mes-
sages meet their deadlines). Many automotive systems are
developed in an incremental manner, with additional soft-
ware and hardware components added to the system at a
later date (e.g. for vehicle mid-life upgrades). Often it is
not possible due to the costs involved in re-verifying compo-
nents, and the logistics involved in carrying different parts
for different cars, to change existing message IDs on an up-
grade. This means that ID assignment must be done in
such a way that the system is extensible. On an upgrade, it
must be possible to add additional messages to the system
and set their IDs, without changing the IDs of the existing
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messages. Further, the system must remain extensible to
support further enhancements along the upgrade path.

In 2015, Davis et al. [9] presented a method for assigning
IDs to new messages while maintaining the fixed IDs of exist-
ing messages, thus ensuring backwards compatibility. This
addresses the question of how to perform a system upgrade.
However, the second aspect of the problem was not tackled:
how to assign IDs in such a way that future upgrades can be
performed without compromising schedulability? In other
words, how to provide an extensible ID-assignment policy?
In this paper, we aim to answer that question.

From the literature on real-time systems we know that pri-
ority ordering has a significant impact on schedulability in
fixed priority systems [5]. CAN effectively uses fixed priority
non-preemptive scheduling of messages. Audsley’s Optimal
Priority Assignment (OPA) [1, 2] algorithm is known to be
optimal [8] in this case, in the sense that it provides a schedu-
lable priority ordering whenever one exists. In specific cases,
i.e. with all messages of the same length and soft real-time
diagnostic messages at low priorities, Deadline minus Jitter
Monotonic Priority Ordering (DJMPO) [27] has also been
shown to be optimal [9].

When it comes to extensibility, there is an important dif-
ference between priority ordering and ID-assignment. The
former simply provides a logical or relative priority order-
ing between the messages, whereas the latter specifies the
actual IDs used. Thus for a given priority ordering, there
are many possible ID assignments. In contrast, a particular
ID-assignment implies a single specific priority ordering.

The priority ordering chosen for a set of messages has a
significant effect on its schedulability. While all of the ID-
assignments with the same priority ordering have the same
schedulability and robustness to errors on the bus [7], they
can have very different properties in terms of extensibility.
For example if the messages are assigned consecutive IDs,
then there will be no flexibility to interleave new messages
between them and hence schedulability in the event of an
upgrade (i.e. extensibility) may be compromised.

This leads to the following research questions: How to
assess the extensibility of a CAN configuration? How to
assign IDs to CAN messages, such that extensibility is max-
imized at each stage along an upgrade path, without prior
knowledge of the upgrades? Answers to the second ques-
tion depend on the starting point and hence there are two
flavours of the problem: (i) starting from an empty configu-
ration, in other words applying an extensible ID-assignment
policy to determine the first and all subsequent configura-
tions; (ii) starting from a configuration with some arbitrary
fixed ID-assignment. In this paper, we address (i), assuming
that the extensible ID-assignment policy we propose can be
used for the entire life-cycle of a system. We note that, due
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to the re-use of legacy components, the opportunity to start
from scratch is rare in the automotive industry. Addressing
(ii) via an extensible ID-assignment policy that works from
an arbitrary starting point therefore forms the focus of our
ongoing work.

To address the research questions set out above, we ap-
ply the following methodology: After giving a brief insight
into the CAN protocol and schedulability tests, we give a
definition of extensibility relevant to the use of CAN in the
automotive industry. We then provide an assessment metric
that determines the extensibility of a given CAN configu-
ration. We use this metric to examine the performance of
a number of simple message ID-assignment schemes applied
to a well-known automotive case study. This enables us to
evaluate the effectiveness of the metric, and also observe
what the key factors are in improving the extensibility of a
CAN configuration. Based on this insight, we develop an ex-
tensible ID-assignment policy, and evaluate its performance
on a set of consecutive system upgrades to the case study.
Finally, we prove that the extensible ID-assignment policy
is optimal under certain conditions.

This paper makes two main contributions: First, we intro-
duce a metric and assessment method for determining the
degree of extensibility of a CAN configuration. This met-
ric gives detailed insight into where, i.e. at which deadlines
and periods, and by how much, i.e. by how many additional
messages or payload bytes, a CAN configuration can be ex-
tended and yet remain schedulable. Second, we introduce a
practical ID-assignment policy which maximizes extensibil-
ity of CAN configurations, tailored for use in an automotive
context. This ID-assignment policy is applied to derive the
initial configuration, and then again at each upgrade. Thus
the policy provides an extensible upgrade path.

1.1 Related Work
Research on priority assignment for CAN has mainly fo-

cussed on optimal priority assignment policies, with Auds-
ley’s OPA algorithm [1, 2] proved optimal for systems us-
ing priority queues [8], and DJMPO [27] proved optimal
with some common constraints on the sets of messages [9].
Further work has explored the issues that can arise if the
priority-based arbitration mechanism is circumvented, for
example by the use of FIFO queues. In this case, effective
priority assignment can be achieved by grouping messages
that share the same FIFO queue into priority bands and
then applying Audsley’s algorithm or DJMPO at the level
of bands rather than individual messages [10, 11].

In practice, even for well behaved systems with priority
queues, using an optimal priority assignment policy is not
in itself enough. The priority ordering generated could po-
tentially leave the system only just schedulable, and thus
vulnerable to deadline misses in the event that there is an
increase in interference, for example due to errors on the
bus. Work on robust priority ordering [6, 7] addresses this
problem by generating a priority ordering that is not only
optimal, but also tolerates the maximum amount of addi-
tional interference (i.e. is robust as well). Recent work in
this area provides a robust priority assignment for new mes-
sages added to a system where the existing message IDs are
fixed [9], addressing flaws in previous work [20].

One might expect that a system that is robust and can
tolerate the maximum additional interference would also be
extensible; however, this is not necessarily the case. In or-
der for a CAN configuration to be extensible, two aspects
need to hold: (i) The system must be able to tolerate ad-
ditional interference, since new messages will certainly gen-

erate such interference. Effectively there must be sufficient
time resource to accommodate the new messages. (ii) There
must be enough free IDs with appropriate values so that the
new messages can be assigned IDs while preserving an ef-
fective, ideally optimal, priority ordering. This can be seen
as a space resource. Robust priority assignment tackles only
the time resource aspect of the extensibility problem.

In [24] a time-triggered system is optimized towards exten-
sibility. The schedule is designed such that some time-slots
are initially unused. These empty time-slots can be utilized
later to host additional messages. This approach tackles the
space resource aspect, but only for time-triggered systems.

In [17] a CAN configuration is made extensible using Sim-
ulated Annealing (SA). The problem is tackled at two levels.
At the message level, extensibility is addressed in terms of
packing signals into messages, while at the system level ex-
tensibility is considered in terms of priority ordering. At
the end of the optimization process, the priority ordering
is transformed into an ID-assignment by evenly spacing the
message IDs over the available range.

Work on system design also tackles issues of robustness.
In [25, 26] task allocation is solved in such a way that end-
to-end deadlines are met and the system can tolerate the
maximum increase in task worst-case execution times. How-
ever, in terms of the CAN configuration, only the priority
ordering is tackled. In [13] task allocation is solved in such
a way that the system can tolerate the addition of tasks
for future upgrades. Again, in terms of the CAN configura-
tion, only priority ordering is considered; the assignment of
specific message IDs is not addressed.

2. CONTROLLER AREA NETWORK (CAN)
In this section, we recap on the CAN protocol, the system

model used in the rest of the paper, and the basic schedula-
bility analysis for CAN.

CAN is an asynchronous multi-master serial data bus that
uses Carrier Sense Multiple Access / Collision Resolution
(CSMA/CR) to determine access to the bus. The CAN
protocol [3] requires that ECUs (Electronic Control Units)
connected to the network wait for a bus idle period before
attempting to transmit. If two or more ECUs attempt to
transmit messages at the same time, then the message with
the lowest numeric ID will win arbitration and be sent. The
other ECUs will cease transmitting and wait until the bus
becomes idle again before attempting to re-transmit their
messages. In effect CAN messages are sent according to
fixed priority non-preemptive scheduling, with the message
IDs acting as priorities. IDs can be 11 or 29 bits long, thus
allowing 2032 or 532 676 608 unique IDs1. Duplicate IDs are
not permitted, as this would lead to errors as multiple ECUs
tried to transmit messages at the same time.

2.1 System Model
We now briefly describe the system model and notation

used in the paper. The system is assumed to comprise a
number of ECUs connected to each other via a CAN bus.
Each ECU is assumed to ensure that, at any given time when
arbitration starts, the highest priority message queued at
that ECU is entered into arbitration on the bus. The system
is assumed to contain a set of hard real-time messages, each
statically assigned to a single ECU. Each message m has

1Note that the 7 most significant bits of the ID are not
permitted to be all 1s. Hence the number of valid unique
IDs is 211 − 24 = 2032 for 11 bit IDs, and (211 − 24) · 218 =
532 676 608 for 29 bit IDs.



a unique ID which determines its priority. Each message
m has a maximum transmission time of Cm, a minimum
inter-arrival time or period of Tm, and a hard deadline Dm.
The deadline of each message is constrained, i.e. Dm ≤ Tm.
Each message m is assumed to be placed in a queue and
available for transmission in a bounded but variable amount
of time between 0 and Jm after its initiating event. Jm is
referred to as the release jitter of the message. The worst-
case response time Rm is defined as the maximum possible
delay from the initiating event for an instance of message
m, until it completes transmission. A message is said to be
schedulable if its worst-case response time does not exceed
its deadline (Rm ≤ Dm). A system is said to be schedulable
if all of the messages in the system are schedulable.

2.2 CAN Schedulability Analysis
For a given priority ordering, schedulability analysis [8]

can be used to determine the worst-case response time Rm

for each message m in the system. The message response
time is composed of three terms: the release jitter Jm, the
queueing delay wm and the maximum transmission time Cm.

Rm = Jm + wm + Cm (1)

Rm ≤ Dm (2)

The maximum transmission time is determined by the
message payload sm (1 to 8 bytes), the ID-format (11 or
29 bit) and the bit-time τbit (i.e. the time it takes to trans-
mit a single bit, which is derived from the baud rate).

C11 bit ID
m = (55 + 10sm) τbit (3)

C29 bit ID
m = (80 + 10sm) τbit (4)

The queueing delay wm is determined by two factors: the
blocking factor B due to non-preemptive message transmis-
sion, and the interference due to higher priority messages
(denoted by the set hp(m)).

wn+1
m = B +

∑
∀k∈hp(m)

⌈
wn

m + Jk + τbit
Tk

⌉
Ck (5)

A simple upper bound on the blocking factor B is given by
the transmission time of the longest message on the network.

B = max
∀m
{Cm} (6)

B = Bmax (7)

Many automotive systems feature low priority soft real-
time diagnostic messages. These messages typically have the
maximum payload of 8 data bytes; a safe upper-bound Bmax

can be set accordingly. Note that (5) combined with (6) in
general provides a sufficient schedulability test; however, in
the case where there are low priority soft real-time diagnostic
messages, then it is exact2.

3. SAE BENCHMARK
Throughout this paper we use a running example to demon-

strate different aspects of extensibility and our methodology.
For this purpose we utilise the well-known and openly avail-
able SAE benchmark [21]. Although somewhat old, this
benchmark is indicative of the use of CAN in automotive
systems, with groups of messages with the same periods and
deadlines, and periods that are chosen from a relatively small
set of harmonic values. This is common in automotive sys-
tems [14], and is is rooted in the underlying micro-controller

2Assuming maximum bit-stuffing.

and RTOS behaviour where tasks are triggered by a set of
timers with pre-defined periods. Although the SAE bench-
mark is small by modern standards (typical automotive sys-
tems may contain of the order of 100 messages or more on
each network), it serves our purposes as an example with a
realistic set of harmonic periods and deadlines. Table 1 pro-
vides details of the benchmark. The case study has a bus
utilization of approx. 44% at a baud rate of 250kBit/sec.
Note, for simplicity, we assume that the release jitter is zero
for all messages.

Details of a larger case study based on one of the CAN
buses of an experimental vehcile with 69 messages and 6
ECUs [23] can be found in the Appendix of the technical
report on which this paper is based [18].

Message Format
Size T D
[byte] [ms] [ms]

m01 Standard 1 50 5
m02 Standard 2 5 5
m03 Standard 1 5 5
m04 Standard 2 5 5
m05 Standard 1 5 5
m06 Standard 2 5 5
m07 Standard 6 10 10
m08 Standard 1 10 10
m09 Standard 2 10 10
m10 Standard 3 10 10
m11 Standard 1 50 50
m12 Standard 4 100 100
m13 Standard 1 100 100
m14 Standard 1 100 100
m15 Standard 3 1000 1000
m16 Standard 1 1000 1000
m17 Standard 1 1000 1000

Table 1: SAE benchmark

3.1 Example ID-Assignments schemes
There are many different ways in which IDs can be as-

signed to the messages in the SAE benchmark. Some ex-
ample schemes which we use to understand how and why
different ID-assignments impact extensibility are listed be-
low. The ID assignments produced when these schemes are
applied to the SAE benchmark are shown in Table 2.
DM at lowest IDs / DM at middle IDs / DM at high-

est IDs – The messages are in Deadline Monotonic (DM)
priority order (effectively DJMPO given that the release jit-
ter is zero), with IDs assigned consecutive values in the low-
est / middle / highest part of the range.
DM evenly spaced IDs – The messages are in DM prior-

ity order, with IDs evenly spaced throughout the available
range [17].
By ECU – We split the range of IDs into 32 ID-bands3,

each containing 64 IDs. Each ECU is assigned an ID-band.
The messages which are sent by the ECU are allocated IDs
within the associated band. (This approach, grouping IDs
by sending ECU, is sometimes used in automotive systems,
with each ECU supplier allocated a range of consecutive IDs
to use). Within an ID-band, messages are in DM order.
Random – IDs are assigned at random. We use this ap-

proach in order to simulate ID-assignment according to an
approach which is not linked to any consideration of time
constraints.

3Due to the electrical properties of CAN, there is a physical
limit on the number of ECUs that can be connected to a
single CAN bus. This depends on topology, baudrate, and
transceiver details, and is approx. 30-40 ECUs.
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m01 0 2015 1015 100 1792 870
m02 1 2016 1016 220 1408 832
m03 2 2017 1017 340 256 814
m04 3 2018 1018 460 1024 1743
m05 4 2019 1019 580 576 1215
m06 5 2020 1020 700 832 1543
m07 6 2021 1021 820 833 1827
m08 7 2022 1022 940 1793 1591
m09 8 2023 1023 1060 257 1146
m10 9 2024 1024 1180 1025 378
m11 10 2025 1025 1300 1409 7
m12 11 2026 1026 1420 1794 1199
m13 12 2027 1027 1540 1410 1460
m14 13 2028 1028 1660 577 1220
m15 14 2029 1029 1780 1795 1697
m16 15 2030 1030 1900 578 1626
m17 16 2031 1031 2020 834 1828

Table 2: ID-assignments for SAE benchmark

Note the semantic difference between priority ordering
and ID-assignment. Priority ordering relates only to the rel-
ative priority between messages, while ID-assignment spec-
ifies the actual ID values. For example, all assignments in
Table 2 that are marked DM have the same priority-ordering
(i.e. DJMPO), but very different ID-assignments.

4. ASSESSMENT OF EXTENSIBILITY
Our goal, in this section, is to provide a metric / assess-

ment method which can determine, in a detailed manner,
the degree of extensibility of a CAN configuration. Ideally,
the extensibility metric should be capable of providing en-
gineers with a detailed insight into why a particular CAN
configuration is or is not extensible.

From an engineering perspective, the extensibility of a
CAN configuration revolves around one key question: How
much additional payload data can be transmitted over the
network? This can either be implemented by (i) packing the
additional payload data into existing messages [16] which are
not fully utilized, or by (ii) adding new messages to the sys-
tem [9]. Option (i) is more efficient since no additional over-
head is introduced; however, it is limited by many factors.
These include: the maximum allowed payload of 8 bytes,
the source ECU, and the message periods and deadlines.
Option (ii) offers more flexibility, but introduces additional
overhead, and is limited by the availability of free IDs. In
this paper, we focus on option (ii).

4.1 Existing Metrics
In the literature various metrics have been used to ex-

plore the sensitivity of a system to changes in its parameters.
These include:
• Breakdown utilization [15]: In the context of CAN this

corresponds to lowering the baud rate until the system
is only just schedulable [10],
• Robustness: Adding additional interference until the

system is only just schedulable [6, 7]
• Sensitivity analysis [19], increasing C [25, 26] or de-

creasing D [17] until the system is just schedulable.
The question is: Are these metrics sensitive to differences

in ID-assignments? Table 3 shows how these metrics per-
form, when applied to the example ID-assignment schemes
from Table 2. The results show that these metrics are sen-
sitive to differences in relative priority ordering; however,
for the same priority ordering (DM in this case), there is
absolutely no sensitivity to the actual ID assignment.

ID assignment
min baudrate interference

∆C ∆D[bits/sec] [bit]

DM at lowest IDs 123k 715 2.139 0.428
DM at highest IDs 123k 715 2.139 0.428
DM at middle IDs 123k 715 2.139 0.428
DM evenly spaced IDs 123k 715 2.139 0.428
By ECU 227k 115 1.112 0.908
Random 241k 50 1.046 0.960

Table 3: Existing metrics applied to ID-assignments

4.2 Novel Assessment of Extensibility
Given that existing metrics are only sensitive to relative

priority assignment, we need to devise an extensibility met-
ric which is (i) sensitive to differences in ID-assignments,
(ii) provides detailed insight into why an ID-assignment is
extensible, and (iii) presents this information in a way that
is intuitive for engineers.

In our view, the most intuitive way to measure the ex-
tensibility of a CAN configuration is to simply estimate or
analyse how many messages can be added before the system
becomes unschedulable. However, this approach needs to be
clarified, since it is based on a set of assumptions. Before car-
rying out such analysis, we need to decide on the following
parameters for the added messages: size, deadline, period,
and also the priorities/IDs used. In addition, the question
of comparability arises. For example, which of the following
two configurations is better in terms of extensibility: A con-
figuration that can be extended by adding 7 messages with
a period of 10 ms, or one that can be extended by adding
40 messages with a period of 100 ms? Each may be more or
less favourable, depending on specific needs.

We propose assessing the extensibility of CAN configura-
tions using a method which provides the detailed informa-
tion needed to support engineering decisions. The assess-
ment proceeds as follows. We add a set of N messages to the
system. Each of these messages has a specified size, deadline,
and period. The IDs of these messages are assigned using
the function priorityAssignment() which implements Al-
gorithm 2 from [9]. This is an optimal4 method of assigning
IDs to new messages in the presence of an existing set of
messages with fixed IDs. By using a binary search, we find
the maximum number Nmax of such messages which may be
added (all at the same time). Once this number has been
found, we try via the function addLastSmallMessage() to
add one more message, allowing a smaller payload than the
previous messages. This way we can make our assessment
more precise. Algorithm 1 provides the pseudo-code.

The assessment is performed for a set of pre-defined peri-
ods and implicit deadlines. This way we get a detailed in-
sight into where a CAN configuration is extensible. (Note,
although we use a set of pre-defined periods, it is the set of
deadlines derived from them that matter most here). The
results indicate the maximum number of messages that can
be added at each of the pre-defined periods and deadlines
individually, thus indicating by how much the configuration
can be extended. In order to make the results comparable,
and easier to visualise, we normalize them by the periods.

4Optimal in terms of schedulability, but not extensibility.



Algorithm 1: Extensibility Assessment

Input: messages /* messages with fixed IDs */
Input: pay /* size of message payload */
Input: {T1, ..., Tt} /* set of pre-defined periods */

1 for each T do
2 D = T ;
3 nupper = 2032;
4 nlower = 0;
5 repeat
6 n = (nupper + nlower)/2;
7 newMessages = generateMessages(n, pay, T, D);
8 priorityAssignment(messages, newMessages);
9 if schedulable == true then

10 nlower = n;
11 else
12 nupper = n;
13 end
14 until schedulable == true and (nupper − nlower) ≤ 1;
15 paylast = addLastSmallMessage(T, D);
16 ext = (n · pay + paylast)/T ;
17 end

Output: extensibility for each period

For those engineers who are not primary interested in the
number of messages, we also output the number of payload
bytes. Hence, our extensibility metric is:

ext. =
added messages

period
∀ pre-defined deadlines

ext. =
added payload bytes

period
∀ pre-defined deadlines

Our approach can be tuned via three parameters: the
deadline D, the period T , and the payload size s of the
added messages. Since the assessment method is intended
to be effective in practice in typical automotive systems, the
periods and deadlines are set according to values observed in
real-world automotive systems, following the periods given
in [14] (T = {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} ms). The
deadlines are set equal to periods (D = T ), as this is the
case in many applications. Finally, the payload size is set
to the maximum allowed value (i.e. s = 8 bytes). Note we
could also include a fixed value for the release jitter, but have
deliberately kept the example simple by assuming J = 0.

Note that our approach to assessing extensibility consists
of several components: a metric (per period and deadline),
a set of scenarios (i.e. the set of pre-defined periods), an op-
timal method for adding messages, and a way of combining
the individual results into an overall results plot. For the
sake of simplicity and readability, we refer to all of this as
the extensibility metric.

4.3 Effectiveness of the Extensibility-Metric
Considering the effectiveness of the extensibility metric,

the most important questions which arise are: How well
does the metric perform? Is it sensitive to differences in
ID-assignments? Can it provide insight into why an ID-
assignment is extensible?

In order to answer these questions, we apply the metric to
the SAE benchmark using the example schemes from Sec-
tion 3.1 to assign the message IDs. Figure 1 depicts the
results5. Note that the plot has to be read according to an
OR syntax, i.e.: we can add x payload bytes at Ta ms, OR
y payload bytes at Tb ms, OR z payload bytes at Tc ms, etc.
We cannot add all these messages at the same time.

5All the plots in the paper are best viewed online in colour.

Figure 1: Extensibility of SAE Benchmark for dif-
ferent ID-Assignments

We now comment on the performance of the different
schemes.
DM at lowest IDs: we cannot add any messages with

short deadlines (1, 2, 5 ms); however, we can add a sig-
nificant number of medium and long deadlines messages (10
to 1000 ms). This is because all low IDs (i.e. high priorities)
have already been used, and so the new messages can only
be placed at lower priorities. Thus, only new messages with
long deadlines are schedulable.
DM at highest IDs: we can add some messages with short

deadlines (1, 2, 5 ms). For medium and long deadlines (10
to 1000 ms), the number of messages that can be added is
constant. Due to the normalization by period, the extensi-
bility metric decreases accordingly. This is because all high
IDs (i.e. low priorities) have already been used, and so the
new messages can only be placed at high priorities. This
causes interference on the existing messages from the SAE
benchmark, thus limiting the number of new messages which
can be added. The bottleneck is that existing short-deadline
messages have been placed at high IDs, i.e. low priorities.
DM at middle IDs: the results are a combination of those

for the previous two schemes. A significant number of short
and long deadlines messages can be added. This is due to
the fact that there are many free IDs both at high and low
priorities. Only the medium priority IDs are already used,
which leads to decreased extensibility for medium deadlines
(10, 20, 50 ms). Overall, this ID-assignment scheme domi-
nates the previous two for the SAE benchmark.
DM evenly spaced IDs: here we see the positive effect

of increasing the ID-spacing between messages (i.e. leaving
some IDs unused, so that new messages can be added there
later on). Overall, we can add a large number of messages
for all deadlines. However, for long deadlines (500, 1000 ms)
the number that can be added saturates at 466 messages.
Random: here we see the effects of poor schedulability

caused by using an ID-assignment scheme that does not take
into account message deadlines. There is low extensibility
for messages with short and long deadlines, and reduced ex-
tensibility for messages with medium deadlines.
By ECU: we observe that with this scheme extensibility is

similar to that of Random. This can be explained as fol-
lows. Although ID-assignment inside each band is DM, the
assignment of ECUs to bands is random, thus the overall
ID-assignment again does not reflect the timing constraints.

It is clear from these observations that the proposed met-
ric is capable of assessing the extensibility of a given CAN
configuration. It highlights both where (i.e. for what mes-



sage periods and deadlines) and by how much a CAN con-
figuration can be extended. This provides useful insight for
engineers developing CAN-based systems. Further, it is sen-
sitive to both the relative priority ordering and the actual
ID assignment. By contrast state-of-the-art metrics such as
breakdown utilisation, robustness, and sensitivity analysis
are only sensitive to differences in relative priority ordering.
Hence, we claim that the proposed metric is better suited to
assessing the extensibility of CAN configurations.

5. EXTENSIBLE ID-ASSIGNMENT
In the previous section we provided a metric for assessing

the extensibility of a CAN configuration. By applying it to
the SAE benchmark, we gained insight into which of the
example ID-assignment schemes are good or bad in terms of
extensibility. However, in order to devise an ID-assignment
scheme which maximizes extensibility, we first need to fully
understand what the limiting factors on extensibility are.

5.1 Limiting Factors on Extensibility
Clearly, an empty CAN configuration, which contains no

messages at all, is the most extensible. Table 4 gives the
maximum number of messages that can be added to an
empty CAN configuration for different baud rates. Here,
we can add a few short deadline messages, some medium
deadline messages, and many long deadline messages. We
also see that for higher baud rates, we could theoretically
add more long-deadline messages than there are IDs avail-
able (indicated by an asterisk). This is clearly a limiting
factor for extensibility when using the standard ID format
(i.e. 11 bit IDs).

D=T [ms] 125k 250k 500k 1M

1 0 1 3 6
2 1 3 6 14
5 4 8 18 36

10 8 18 36 73
20 18 36 73 147
50 45 92 184 369

100 92 184 369 740
200 184 369 740 1481
500 462 925 1851 3702*

1000 925 1851 3702* 7404*∑
1739 3487 6982 13972

overfit 0.86 1.72 3.44 6.86

Table 4: Maximum number of 8-Byte messages that
can be added to an empty configuration (11 bit IDs)

The key limiting factor is however schedulability, which
is critically dependent on maintaining an effective, ideally
an optimal, priority ordering. From the example schemes
studied in section 4.3, it is clear that extensibility is max-
imised when there is sufficient space between the existing
message IDs to insert all of the new messages with a par-
ticular deadline while maintaining an effective priority or-
der (e.g. DJMPO). Thus DM at lowest IDs has high ex-
tensibility for messages with long deadlines (200, 500, 1000
ms), while conversely DM at highest IDs has high extensi-
bility for messages with short deadlines (1, 2, 5 ms). Finally
DM even spacing has good extensibility for messages with
medium deadlines (10, 20, 50 ms).

In summary, we have identified three limiting factors: First-
ly, for messages with short deadlines, the main limiting fac-
tor is schedulability, and thus maintaining an effective pri-
ority ordering is essential. Secondly, for messages with long

deadlines the main limiting factor is the number of available
IDs. Finally, extensibility may be limited by the number
of available IDs between messages with different deadlines;
once this space runs out, effective priority ordering can no
longer be maintained and schedulability suffers.

5.2 Policy for Extensible ID-Assignment
Knowing the maximum number of messages with a par-

ticular deadline that can be scheduled, and how ID-spacing
impacts extensibility, we can derive a set of rules for design-
ing an ID-assignment policy that maximizes extensibility:
• The relative priority ordering of the messages must

follow a policy which reflects deadline requirements.
• Messages with the same deadline can be grouped to-

gether, and thus be inside an ID-band. The relative
priority ordering of messages with the same deadline
is of little or no consequence.
• The width of the ID-bands can be derived from the

maximum number of messages with the corresponding
deadline (and period) which can possibly exist in a
schedulable system. Thus the width of the ID-bands
increases with increasing deadline.

Based on these rules, we derive a simple, yet powerful
ID-assignment algorithm. We call it DWB, for Deadline-
Width-Band (i.e. DJMPO, increasing Width, ID-Bands). It
features a set of ID-bands into which messages are assigned
according to their deadlines. The pseudo code for the DWB
algorithm is given in Algorithm 2.

The DWB algorithm generates ID-assignments which are
optimized for future extensibility. It also provides an up-
grade pathway, since it can be applied to generate an initial
ID-assignment from scratch (i.e. when none of the messages
has been assigned an ID yet) and it can also be applied
to make repeated upgrades. Every time the systems is up-
graded, the algorithm assign IDs to the new messages, pre-
serving an appropriate priority order (i.e. DJMPO) without
changing the IDs of the old messages. Hence the algorithm
is applicable over the entire lifespan of a CAN-based system.

Algorithm 2: DWB ID-Assignment

Input: oldMessages /* messages with fixed IDs */
Input: newMessages /* messages without ID yet */

1 /** Phase 1: ID-Bands **/;
2 setup ID-bands according to DM and increasing width;
3 /** Phase 2: ID-Assignment **/;
4 for each message in newMessages do
5 choose ID-band according to message’s deadline;
6 assign smallest free ID inside ID-band to message
7 end

Output: ID-Assignment

5.3 Setting the Width of the ID-Bands
The DWB algorithm is based on a set of ID-bands, each

dedicated to a specified deadline. The width of these ID-
bands impacts extensibility. Hence a key requirement is to
find the optimal widths for the ID-band widths. Based on
the insight we gained concerning the limiting factors (see
Table 4), we set the ID-band widths as follows: For a baud
rate of 125Kbits/sec we can set the widths according to the
maximum number of messages for each deadline without uti-
lizing all IDs. For higher baud rates, this is no longer possi-
ble, since the total number of messages exceeds the number
of available IDs. This may not be a major issue, since it is
very unlikely that a CAN system could host all these mes-
sages at the same time. However, since we cannot predict
which messages will be added in the future, it is beneficial



to have all ID-band widths set as close as possible to these
numbers. Thus, we have to find a suitable trade-off. We
consider three different approaches for this problem:
scaled – One way to address this trade-off is to scale

the width of the ID-bands according to the total number of
messages and the available IDs (i.e. 2032). This way, all
ID-bands are narrowed by the same factor.

widthID-band = messages per D · 2032∑
all messages

greedy – We start to set the ID-band widths according to
the maximum number of messages (starting from short dead-
lines). We do this for each deadline. Once we reach the 2032
limit, we end the current ID-band there. In a sense, this ap-
proach simply cuts off the long-deadline band(s). Messages
which have a deadline whose ID-band is cut off are simply
placed at the highest available IDs (i.e. lowest priorities).
adjusted – It is unlikely that a network will ever host the

maximum number (i.e. 1000+) of long-deadline messages
(500, 1000 ms); however, it may well host most of the short-
to medium-deadline messages. This is mainly rooted in the
dynamics of automotive systems where most data needs to
be sent more frequently than 1000 ms [14]. The adjusted
approach uses a simple, and somewhat arbitrary, method to
give short- and medium-deadline ID-bands their maximum
width, while compensating by narrowing the long-deadline
ID-bands. First we determine the ID-band with deadline X
and maximum width W that has the longest deadline such
that if we also assigned all ID-bands with longer deadlines
a width of W then there would be sufficient IDs available.
Next we assign all ID-bands up to and including X their
maximum width, and allocate an initial width of W to the
remaining bands with longer deadlines. We then compute
the total number of IDs left over. These left over IDs are
allocated to the bands with longer deadlines than X in pro-
portion to the value of log(Y −X) where Y is the deadline
of the band.

Based on these policies, we set the ID-band widths as
shown in Table 5. All policies follow the increasing ID-band
width concept.

D=T [ms] max. scaled greedy adjusted

1 1 1 1 1
2 3 2 3 3
5 8 5 8 8

10 18 10 18 18
20 36 21 36 36
50 92 53 92 92

100 184 107 184 184
200 369 215 369 369
500 925 539 925 581

1000 1851 1078 396 740∑
3487 2032 2032 2032

Table 5: Width of ID-Bands for 250Kbit/sec

We note that an alternative approach to narrowing the
long-deadline ID-bands could be to use statistical informa-
tion about existing systems. For example, it may be consid-
ered extremely unlikely that more than 500 messages could
be added with any particular deadline, hence that number
could serve as a valid upper limit on the width of any band.

5.4 Performance of Extensible ID-Assignment
In order to evaluate the performance of the DWB ID-

assignment policy (and its three options for ID-band widths),
we applied it to the SAE benchmark. The IDs are listed in

Table 6. Note message m06, although it has a 5 ms deadline,
is placed inside the 10ms-band with the scaled option. This
is because the 5ms-band can only accommodate 5 messages,
but the system has 6 of these messages. This highlights a
shortcoming of the scaled option.

Message
DWB DWB DWB

(scaled) (greedy) (adjusted)

m01 3 4 4
m02 4 5 5
m03 5 6 6
m04 6 7 7
m05 7 8 8
m06 8* 9 9
m07 9 12 12
m08 10 13 13
m09 11 14 14
m10 12 15 15
m11 39 66 66
m12 93 158 158
m13 94 159 159
m14 95 160 160
m15 954 1636 1292
m16 955 1637 1293
m17 956 1638 1294

Table 6: ID-Assignment for the SAE benchmark

By assessing the extensibility and comparing against the
previously best-performing policies (i.e. DM at middle IDs
and DM evenly spaced IDs) we can see by how much our
proposed policy and its options concerning the ID band
widths improve extensibility. Figure 2 shows these results.
Here, we can see that the DWB ID-assignment policy sig-
nificantly improves extensibility for a wide range of periods
and deadlines. For the scaled option we notice poor perfor-
mance for messages with a 5 ms deadline. This is caused by
the fact that the 5ms-band is set too narrow, as mentioned
above. Both the greedy and the adjusted option perform
equally well, and they outperform all other policies. They
have high extensibility across all periods and deadlines.

Figure 2: Extensibility of DWB ID-Assignment

5.5 Handling 29 bit IDs
The CAN protocol can handle both 11 and 29 bit IDs.

While 11 bits provide only 2032 unique IDs, 29 bits provide
a vast 532 676 608 unique IDs. The only downside is that
the message transmission time is increased by up to 25 bits
(18 extra ID bits plus additional stuff bits) for the longer
IDs, which leads to a less efficient payload-to-overhead ratio.
Table 7 shows the maximum number of messages which can
be scheduled when using 29 bit IDs.



D=T [ms] 125k 250k 500k 1M

1 0 1 2 5
2 1 2 5 11
5 3 7 15 30

10 7 15 30 61
20 15 30 61 124
50 38 77 155 311

100 77 155 311 624
200 155 311 624 1249
500 390 780 1561 3124

1000 780 1561 3124 6251∑
1466 2939 5888 11790

Table 7: Maximum number of 8-byte messages with
29 bit IDs

Due to the longer IDs, there are significantly more unique
IDs than schedulable messages, hence all ID-band widths
can be set to the maximum number of messages which are
schedulable with that deadline. Based on Table 7 we con-
clude that only 14 of the 29 bits are needed to uniquely
identify the messages. The remaining 15 bits could be used
to encode additional information, such as sender ECU, or
for message filtering purposes.

6. MULTIPLE SYSTEM UPGRADES
In the previous section we presented the DWB ID assign-

ment policy and showed that it maximizes extensibility. The
DWB ID-assignment policy offers an upgrade path. We can
apply it to build the initial configuration, and then repeat-
edly to perform system upgrades, adding a new set of mes-
sages each time. Note that on each upgrade, the IDs of exist-
ing, previously assigned messages remain unchanged. This
ensures backwards compatibility, and removes a number of
verification and logistical burdens.

In this section we demonstrate how the extensible ID-
assignment policy performs for such system upgrades. We
apply two consecutive upgrades to the SAE benchmark. Each
upgrade imposes an additional 16% utilization on the CAN
bus, thus moving the system from 44% to 60% and then to
76% utilization. Table 8 gives details of the messages that
were added on each upgrade. These messages were randomly
generated. The message periods were randomly chosen from
the set of specified periods, and the deadlines set equal to
them. The payload of each message was randomly chosen
from 1 to 8 bytes.

Message Format
Size T D
[byte] [ms] [ms]

m18 Standard 1 5 5
m19 Standard 2 10 10
m20 Standard 4 20 20
m21 Standard 8 100 100
m22 Standard 7 200 200
m23 Standard 5 20 20
m24 Standard 2 10 10

m25 Standard 1 2 2
m26 Standard 2 50 50
m27 Standard 3 100 100
m28 Standard 1 50 50
m29 Standard 1 20 20
m30 Standard 4 500 500
m31 Standard 2 200 200

Table 8: System-Upgrade Scenarios

The evaluation was performed in three consecutive steps:
• initial – The initial ID-assignment was built using

the DWB algorithm. This provides maximum extensi-
bility for the subsequent upgrades. (Note we used the
adjusted option, see Table 5 for the ID-band widths,
and Table 6 for the message IDs).
• initial + upgrade #1 – Upgrade #1 is applied to the

initial system, with IDs assigned to the new messages.
Here we compared two policies: the DWB algorithm
and the Robust Priority Assignment Algorithm (Algo-
rithm 3 from [9]).
• initial + upgrade #1 + upgrade #2 – Upgrade #2

is applied to the already upgraded system, with IDs
assigned to the new messages. Again, we applied the
two policies discussed above.

Table 9 shows the IDs that were assigned to the upgrade
messages. Figure 3 shows the extensibility metric for the
resulting CAN configurations.

Message Robust DWB Message Robust DWB

m18 11 10 m25 3 1
m19 1290 16 m29 2022 32
m24 1291 17 m26 2023 67
m20 2028 30 m28 2024 68
m23 2029 31 m27 2025 162
m21 2030 161 m31 2026 343
m22 2031 342 m30 2027 711

Table 9: ID-Assignment for system upgrades

Figure 3: Extensibility of Configuration when per-
forming System-Upgrades

We observe from Figure 3 that the upgrade path using the
extensible ID-assignment policy (i.e. the DWB Algorithm)
performs very well. Although extensibility drops, since we
are adding messages, it stays at relatively high levels, and is
almost even across all deadlines.

In contrast, the upgrade pathway using the Robust Pri-
ority Assignment Algorithm performs poorly, with extensi-
bility dropping significantly. This is caused by the fact that
the medium-deadline messages are placed at relatively low
priorities during upgrade #1. This limits and decreases ex-
tensibility, and hence makes upgrade #2 challenging. Again,
the messages are placed at low priorities leaving very little
in terms of future extensibility.

Since we are comparing against Robust Priority Assign-
ment, it is also interesting to see which message is the lim-
iting factor in terms of schedulability. For that purpose we
apply robustness analysis: We analyse how much additional
interference (in terms of bit times) the system can handle
before it becomes unschedulable [7]. The results are shown
in Table 10. For both upgrade pathways the same message
is the limiting factor, although IDs have been assigned in a



completely different manner. However, this is not surpris-
ing, since these messages have the shortest deadlines in their
respective configurations: m06 has a 5 ms deadline, upgrade
#1 then introduces m18 which also has a 5 ms deadline, and
finally upgrade #2 adds m25 which has a 2 ms deadline.

System Interference Message

init 715 m06
init + upgrade #1 (extensible) 630 m18
init + upgrade #1 (robust) 630 m18
init + #1 + #2 (extensible) 300 m25
init + #1 + #2 (robust) 300 m25

Table 10: System Upgrades: Robustness Metric

Based on these comparisons we see that applying the ex-
tensible ID-assignment policy (DWB Algorithm) proposed
in this paper, results in CAN configurations that are both ex-
tensible and robust. This enables multiple system upgrades
to be performed consecutively without the need to re-assign
any existing (previously assigned) message IDs. However,
if we apply Robust Priority Assignment then the resulting
CAN configuration is robust, but hardly extensible. It be-
comes much less likely that we can upgrade the system sev-
eral times in a row.

While the evaluation results can only provide data on ro-
bustness for the case study considered, the extensible ID-
assignment policy is in fact a robust policy, providing ID
assignments that tolerate the maximum additional interfer-
ence. This stems from the fact that the DWB Algorithm
preserves, at each step, Deadline minus Jitter Monotonic
Priority Ordering, which has been proven to also be robust
[9] in the cases where it is optimal.

7. OPTIMALITY OF ID-ASSIGNMENT
In this section we consider to what extent the DWB algo-

rithm is optimal in terms of extensibility. Note as with the
rest of the work in this paper, the scope of the problem we
are interested in comprises building an initial configuration
and then extending it via a sequence of upgrades. At each
step no specific information is assumed to be available about
the set of messages in the subsequent upgrade steps, and the
message IDs need to be assigned and fixed at each step.

We define optimal extensibility as follows: Let UP =
(I0, U1, U2, U3, ...) be an arbitrary upgrade path consisting
of a sequence of message sets corresponding to an initial
message set I0 and those added by subsequent upgrades
(U1, U2, U3, ...).

Definition: An ID-assignment algorithm X provides op-
timal extensibility if it is able to assign message IDs and
obtain a schedulable system at every step in some upgrade
path UP , for every upgrade path UP where there exists
an ID-assignment algorithm that makes UP schedulable at
every step.

In determining optimality it is useful to consider the be-
haviour of a hypothetical clairvoyant ID-assignment algo-
rithm. A clairvoyant algorithm would have full information
about the upgrade path and hence be able to work back from
the final set of messages. If that final set of messages is feasi-
ble, i.e. can be scheduled using optimal priority assignment
[1, 2] then the ID-assignment trivially follows, since the pre-
vious stages of the upgrade path involve subsets of the final
message set and are hence schedulable using the same IDs.

The above discussion provides a simple way to determine
optimality with respect to extensibility, we can make com-
parisons against a policy that is permitted to re-assign mes-
sage IDs that were previously fixed. Since schedulability

depends only on the relative priority ordering of the mes-
sages rather than the actual IDs assigned, such a flexible
approach effectively equates to the behaviour of a clairvoy-
ant algorithm for the problem where message IDs are fixed
after initial configuration, and again after each upgrade.

We further define weak optimality with respect to exten-
sibility as follows.

Definition: An ID-assignment algorithm provides weakly
optimal extensibility if optimality holds conditional on the
following constraints: (i) The added messages have con-
strained deadlines that equate to the deadlines specified for
the ID-bands used. (ii) The number of messages with each
deadline does not exceed the width of the corresponding ID-
band.

Theorem 1. The extensible ID-assignment policy imple-
mented by the DWB algorithm provides weakly optimal ex-
tensibility compared to using DJMPO with freely assignable
message IDs.

Proof. Proof follows from the fact that providing con-
straints (i) and (ii) hold, then the priority ordering of the
messages produced by the DWB algorithm is at every stage
maintained in accordance with DJMPO, hence schedulabil-
ity is the same as it is when message IDs are freely assigned
using DJMPO.

If all messages are of the maximum length, then it is not
possible to have more messages of a particular deadline than
the maximum width of the corresponding ID-band without
the system becoming unschedulable, even when IDs can be
freely assigned. This is the case because the maximum width
of each ID-band is computed in such a way that it can ac-
commodate the largest number of maximum length messages
with that deadline that it is possible to schedule, regardless
of the message periods6, and assuming there are no other
messages in the system. Hence (ii) is only a constraint for
ID-bands that have been reduced in size.

We note that if the system designer knows that the system
will evolve by adding many messages that have payloads less
than the maximum (8 data bytes) then they may choose to
compute the size of the bands accordingly. In this paper,
we assume that as the system evolves, where possible, good
use will be made of any spare capacity in existing messages
and thus accounting only for maximum length messages is a
reasonable compromise. In practice it may be appropriate to
allow for shorter messages in the shortest deadline ID-bands,
since individual ECUs need to send disparate messages. The
width of these ID-bands could instead be set on the basis of
the maximum number of short (i.e. 1 data byte) messages
that can be scheduled with that deadline and period.

8. DISCUSSION & CONCLUSIONS
In this paper we introduced an ID-assignment policy for

CAN messages which maximizes extensibility for future up-
grades. The policy is applied to derive an initial CAN con-
figuration, and also used to perform system upgrades. A key
aspect of the policy is ID-bands with increasing width; bands
of IDs are reserved for messages with different deadlines, and
these bands are wider, with more IDs available, for longer
deadlines. We proved that the policy is weakly-optimal in
the sense that, subject to some constraints, it provides the
same extensibility as a clairvoyant policy which knows what
the upgrades, i.e. sets of added messages, will be. It gives
the same extensibility as freely assigning message IDs using

6Provided they are no smaller than the deadline.



Deadline minus Jitter Priority Order (DJMPO), since it en-
sures that relative priority ordering is maintained through-
out. Further, since the policy maintains DJMPO it makes
no compromises in terms of robustness; the ability to toler-
ate additional interference e.g. from errors on the bus.

In addition we introduced a metric and assessment method
aimed at determining the extensibility of a CAN configura-
tion. This metric provides insight into where (i.e. at which
periods and deadlines) and by how much a CAN configu-
ration can be extended. Our evaluation based on a simple
automotive benchmark shows that the ID-assignment policy
is effective at maximizing extensibility, and that it performs
well for consecutive system upgrades.

The extensible ID-assignment policy presented in this pa-
per needs to be applied starting from an empty configura-
tion. Due to the use of legacy components, beginning a clean
sheet design is rare in the context of automotive systems.
An open problem therefore remains: How to extend (up-
grade) an existing CAN configuration with arbitrary fixed
message IDs to maintain maximum extensibility for further
upgrades. This problem is the subject of our ongoing work.
We note that the extensibility-assessment metric presented
in this paper is applicable in that case.

In a technical report [18], we provide additional discussion
about how the approach proposed in this paper may be ex-
tended, in particular considering systems with release jitter
[12], messages with offset release times [22], and applica-
bility of the approach to CAN-FD which employs a flexible
data-rate [4].
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APPENDIX
A. MULTIPLE SYSTEM UPGRADES:

A LARGER CASE STUDY
In order to evaluate how the proposed approach scales,

we have performed a larger case study. The system is based
on one described in [23]. It features a system that contains
69 messages, which are sent by 6 ECUs. The CAN bus is
operated at 500 kbit/s, which results in a CAN utilization
of 60%.

ECU Messages Utilization [%]

1 18 9.28
2 15 15.12
3 18 19.29
4 7 5.03
5 6 3.51
6 5 7.94∑

69 60.25

Table 11: Case Study

Based on this system, we have performed the following
evaluation: First we build an initial configuration. For this
we pick the messages which are sent by ECUs 1, 5, and 6.
This leads to an initial utilization of 20%. Then we perform
upgrade #1 by adding the messages which are sent by ECUs
2 and 4. This moves the utilization to 40%. Finally we
perform upgrade #2 by adding the messages which are sent
by ECU 3. This moves the utilization to 60%. The messages
are specified in table 12, 13 and 14 respectively.

Message Format
Size T D

ECU
[byte] [ms] [ms]

m05 Standard 4 10 10 1
m07 Standard 8 100 100 1
m08 Standard 2 100 100 1
m09 Standard 3 100 100 1
m11 Standard 2 100 100 1
m12 Standard 4 20 20 1
m14 Standard 4 100 100 1
m16 Standard 6 10 10 1
m29 Standard 3 25 25 1
m35 Standard 7 25 25 1
m50 Standard 8 100 100 1
m53 Standard 4 100 100 1
m61 Standard 8 100 100 1
m62 Standard 1 100 100 1
m64 Standard 8 100 100 1
m65 Standard 1 100 100 1
m66 Standard 1 100 100 1
m68 Standard 1 100 100 1
m10 Standard 8 25 25 5
m15 Standard 8 100 100 5
m27 Standard 8 25 25 5
m39 Standard 8 50 50 5
m44 Standard 8 100 100 5
m56 Standard 8 100 100 5
m06 Standard 8 10 10 6
m21 Standard 8 10 10 6
m22 Standard 8 25 25 6
m36 Standard 8 25 25 6
m42 Standard 8 50 50 6

Table 12: Case Study – Initial System

The evaluation is performed as follows:
• initial – The initial ID-assignment was built using the

DWB algorithm. This provides maximum extensibility

for the subsequent upgrades. (Note we use the adjusted
option.)
• initial + upgrade #1 – Upgrade #1 is applied to the

initial system, with IDs assigned to the new messages.
Here we compared two policies: the DWB algorithm
and the Robust Priority Assignment Algorithm (Algo-
rithm 3 from [9]).
• initial + upgrade #1 + upgrade #2 – Upgrade #2

is applied to the already upgraded system, with IDs
assigned to the new messages. Again, we applied the
two policies discussed above.

Message Format
Size T D

ECU
[byte] [ms] [ms]

m01 Standard 8 10 10 2
m02 Standard 8 10 10 2
m13 Standard 4 100 100 2
m17 Standard 7 100 100 2
m18 Standard 8 100 100 2
m19 Standard 7 50 50 2
m26 Standard 8 20 20 2
m28 Standard 8 20 20 2
m30 Standard 5 10 10 2
m31 Standard 8 20 20 2
m43 Standard 8 50 50 2
m45 Standard 2 25 25 2
m46 Standard 4 50 50 2
m47 Standard 4 50 50 2
m67 Standard 8 50 50 2
m32 Standard 8 10 10 4
m37 Standard 8 50 50 4
m38 Standard 8 50 50 4
m41 Standard 8 50 50 4
m48 Standard 8 100 100 4
m60 Standard 3 100 100 4
m69 Standard 8 100 100 4

Table 13: Case Study – Upgrade #1

Message Format
Size T D

ECU
[byte] [ms] [ms]

m03 Standard 4 5 5 3
m04 Standard 7 10 10 3
m20 Standard 8 10 10 3
m23 Standard 6 25 25 3
m24 Standard 6 25 25 3
m25 Standard 7 25 25 3
m33 Standard 8 10 10 3
m34 Standard 8 10 10 3
m40 Standard 5 50 50 3
m49 Standard 8 100 100 3
m51 Standard 1 100 100 3
m52 Standard 8 100 100 3
m54 Standard 1 100 100 3
m55 Standard 1 100 100 3
m57 Standard 7 100 100 3
m58 Standard 1 100 100 3
m59 Standard 1 100 100 3
m63 Standard 4 100 100 3

Table 14: Case Study – Upgrade #2

The IDs which have been assigned during each step are
given in table 15, 16 and 17 respectively. Note that the
DWB policy puts the 25 ms messages into the 20 ms band.
This is done on purpose. We could have introduced a new
25 ms band, but decided not to. Instead we use the bands
already derived from [14]. This makes for a fair comparison
with the SAE benchmark.

Figure 4 shows the extensibility of the individual config-
urations along the upgrade pathway. When applying the



Message
ID

Message
ID

Message
ID

(DWB) (DWB) (DWB)

m05 27 m50 325 m27 67
m07 320 m53 326 m39 136
m08 321 m61 327 m44 334
m09 322 m62 328 m56 335
m11 323 m64 329 m06 29
m12 63 m65 330 m21 30
m14 324 m66 331 m22 68
m16 28 m68 332 m36 69
m29 64 m10 66 m42 137
m35 65 m15 333

Table 15: ID-Assignment for Initial System

Message
ID ID

Message
ID ID

(DWB) (RPA) (DWB) (RPA)

m01 31 23 m45 73 2017
m02 32 24 m46 140 2020
m13 336 2026 m47 141 2021
m17 337 2027 m67 142 2022
m18 338 2028 m32 34 26
m19 138 2018 m37 143 2023
m26 70 2014 m38 144 2024
m28 71 2015 m41 145 2025
m30 33 25 m48 339 2029
m31 72 2016 m60 340 2030
m43 139 2019 m69 341 2031

Table 16: ID-Assignment for Upgrade #1

Message
ID ID

Message
ID ID

(DWB) (RPA) (DWB) (RPA)

m03 9 22 m49 342 2005
m04 35 316 m51 343 2006
m20 36 317 m52 344 2007
m23 74 2001 m54 345 2008
m24 75 2002 m55 346 2009
m25 76 2003 m57 347 2010
m33 37 318 m58 348 2011
m34 38 319 m59 349 2012
m40 146 2004 m63 350 2013

Table 17: ID-Assignment for Upgrade #2

Figure 4: Extensibility of Configuration when per-
forming System-Upgrades

DWB algorithm, the extensibility remains at high levels, and
is relatively even across all deadlines. Note that the reduced
extensibility at 1000 ms is caused by the fact that we run out
of free IDs. This is indicated by the max IDs line, which is a
hard upper-bound for extensibility. When applying Robust
Priority Assignment (RPA) for the upgrade steps, we see
that the extensibility is significantly reduced. In addition,
extensibility is no longer even cross all deadlines, but drops
significantly for longer deadlines.

Table 18 shows the robustness (the maximum additional
interference tolerated in terms of bit times) for the individual
configurations along the upgrade pathways.

System Interference Message

init 4385 m21
init + upgrade #1 (extensible) 3875 m32
init + upgrade #1 (robust) 3875 m21
init + #1 + #2 (extensible) 2270 m03
init + #1 + #2 (robust) 2040 m31

Table 18: System Upgrade: Robustness Metric

In summary, the results are very similar to those seen
for the SAE benchmark, and show that the DWB approach
scales well with respect to the size of the message set.

B. DISCUSSION
In this section, we discuss extension of the approach pro-

posed in this paper to systems with release jitter, offset re-
lease times, and using CAN-FD. Further research is needed
to investigate the effectiveness of the proposed approach in
each of these cases.

B.1 Release Jitter
In our analysis of message ID-assignment, we have de-

liberately assumed that the release jitter of each message
is zero. This simplifies both the explanations and the ex-
periments. The concept can however be easily extended to
messages with release jitter. What is important in terms of
priority assignment is the transmission deadline Ei of each
message, where Ei = Di − Ji. Messages should therefore
be allocated to ID-bands on the basis of their transmission
deadlines. When release jitter is small compared to message
deadlines, as is the case for most messages in real systems,
then transmission deadlines form bands of similar values,
reflecting their common deadlines and periods, thus all of
the messages with similar transmission deadlines can be as-
signed to the same band. The width of the ID bands can be
computed assuming messages with zero jitter as this allows
for additional messages to be added that have zero (or min-
imal) jitter. We note that this potential under-estimation
of the release jitter has the effect of making the ID-bands
slightly wider than they may need to be, which is a conserva-
tive over-approximation. Messages gatewayed from another
network can however have large jitter compared with their
deadlines. These messages need to be allocated an ID band
based on their transmission deadline, which may be quite
different from their overall deadline. This may be problem-
atic, since the transmission deadline of such a message may
not necessarily fit well with the deadlines associated with
the available ID-bands. We note; however, that methods
exist to eliminate jitter due to gateways [12], which may go
some way to alleviate this problem.

B.2 Offsets
Many automotive systems based on CAN use offset re-

lease times for messages sent by the same ECU [22], thus



avoiding the peak loads on the bus inherent in synchronous
release. For systems with offsets, DJMPO is no longer opti-
mal; however, the concepts developed in this paper can still
be applied as a heuristic.

B.3 CAN-FD
This paper focuses on systems complying with the origi-

nal CAN standard [3]. In some automotive systems, this is
being superseded by CAN-FD which has a flexible data-rate
[4]. With CAN-FD, the data part of each message can be up
to 64 bytes and may be sent at a higher baud rate than the
arbitration field and other parts of the message. With CAN-
FD, it is no longer reasonable to assume that all messages
may have the same maximum length. When there are large
variations in the maximum transmission time of different
messages, then it follows that DJMPO is no longer an opti-
mal priority ordering. Nevertheless, the concepts developed
in this paper can still be applied, with messages allocated
to ID-bands reflecting their deadlines (or transmission dead-
lines). The width of those bands may be determined based
on the transmission time of short messages, thus ensuring
that the bands are sufficiently wide.

C. ADJUSTING WIDTHS OF ID-BANDS
For baud rates higher than 125 kbit/s the number of

schedulable messages exceeds the number of available IDs.
Thus, the widths of the ID-bands need to be adapted. We
have proposed three methods to do so: linear scaled, greedy,
and adjusted. Tables 19, 20, and 21 show the resulting ID-
band widths.

D=T [ms] max. scaled greedy adjusted

1 1 1 1 1
2 3 2 3 3
5 8 5 8 8

10 18 10 18 18
20 36 21 36 36
50 92 53 92 92

100 184 107 184 184
200 369 215 369 369
500 925 539 925 581*

1000 1851 1078 396 740*∑
3487 2032 2032 2032

Table 19: ID-Band Widths for 250 kbit/s

D=T [ms] max. scaled greedy adjusted

1 3 1 3 3
2 6 2 6 6
5 18 5 18 18

10 36 11 36 36
20 73 21 73 73
50 184 54 184 184

100 369 107 369 276*
200 740 215 740 367*
500 1851 539 603 489*

1000 3702 1077 – 580*∑
6982 2032 2032 2032

Table 20: ID-Band Widths for 500 kbit/s

D=T [ms] max. scaled greedy adjusted

1 6 1 6 6
2 14 2 14 14
5 36 5 36 36

10 73 11 73 73
20 147 21 147 147
50 369 54 369 225*

100 740 107 740 284*
200 1481 215 647 344*
500 3702 539 – 422*

1000 7404 1077 – 481*∑
13972 2032 2032 2032

Table 21: ID-Band Widths for 1 Mbit/s

The ’-’ indicates that an ID-band is non-existing. We
see: the higher the baudrate, the more ID-bands need to be
cut-off when using the greedy approach.

The adjusted approach circumvents this problem by nar-
rowing long deadline ID-bands. These are marks with ’*’.
We think that this approach is more balanced and more
fair.
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