
Lexical and Syntax Analysis

Flex, a Lexical Analyser
Generator

Flex: a fast lexical
analyser generator

Specification

of a lexical
analyser

List of
Pattern-Action pairs.

Match a pattern
and Execute its

action.

Flex

C function
called yylex()

Regular
Expression

C Statement

Input to Flex

 The structure of a Flex (.lex)
file is as follows.

/* Declarations */

%%

/* Rules (pattern-action pairs) */

%%

/* C Code (including main function) */

 Any text enclosed in /* and */
is treated as a comment.

What is a rule?

 A rule is a pattern-action pair,
written

pattern action

 The pattern is (like) a regular
expression. The action is a C
statement, or a block of C
statements in the form {⋯ }.

Example 1

 Replace all tom's with jerry's
and vice-versa.

/* No declarations */

%%

tom printf("jerry");
jerry printf("tom");

%%

/* No main function */

tomandjerry.lex

Output of Flex

 Flex generates a C function

int yylex()
{
 ⋯
}

 When yylex() is called:

1. a pattern that matches a prefix of
the input text is chosen;

2. the matching text is consumed.

Output of Flex

3. the action corresponding to the
chosen pattern is executed;

4. if no pattern is chosen, a single
character is consumed and
echoed to output.

5. repeats until all input is
consumed or an action
executes a return statement.

Example 1, revisited

 Replace all tom's with jerry's
and vice-versa.

/* No declarations */

%%

tom printf("jerry");
jerry printf("tom");

%%

void main() {
 yylex();
}

tomandjerry.lex

Running Example 1

 At a command prompt '>':

> flex -o tomandjerry.c tomandjerry.lex

> gcc -o tomandjerry tomandjerry.c -lfl

> tomandjerry

jerry should be scared of tom.

tom should be scared of jerry.

Input

Output

Important!

Maximal munch!

 The one that matches the
longest string.

 If different patterns match
strings of the same length
then the first pattern in the
file is preferred.

 Many patterns may match a
prefix of the input. Which one
does Flex choose?

What is a pattern?
 (Base cases)

Pattern Meaning

x Match the character ‘x’.

.
Match any character except
a newline character (‘\n’).

[xyz] Match either an ‘x’, ‘y’ or ‘z’.

[ad-f] Match an ‘a’, ‘d’, ‘e’, or ‘f’.

[^A-Z]
Match any character not in
the range ‘A’ to ‘Z’.

[a-z]{-}[aeiou] Lower case consonants.

<<EOF>> Matches end-of-file.

What is a pattern?
(Inductive cases)

Pattern Meaning

p1p2 Match a p1 followed by a p2.

p1|p2 Match a p1 or a p2.

p* Match zero or more p’s.

p+ Match one or more p’s.

p? Match zero or one p’s.

p{2,4} At least 2 p’s and at most 4.

p{4} Exactly 4 p’s.

(p)
Match a p, used to override
precedence.

^p Match a p at beginning of a line

p$ Match a p at end of a line

 If p, p1, p2 are patterns then:

Pattern exercises

 Characterise the strings matched
by the following Flex patterns.

 (a|b){5}

 [^ \n\r\t]+

 .|\n

 x.+y

Escaping

Pattern Meaning

"[xy]" Match ‘*’ then ‘x’ then ‘y’ then ‘+’.

"+"* Match zero or more ‘+’ symbols.

\"+ Match one or more " symbols.

 Reserved symbols include:

. $ ^ [] - ? * + | () / { } < >

 Reserved symbols can be
matched by enclosing them in
double quotes or prefixing them
with a backslash. For example:

Declarations

/* Declarations */

%%

/* Rules (pattern-action pairs) */

%%

/* C Code (including main function) */

What is a declaration?

 A declaration may be:

 a C declaration, enclosed in %{
and %}, visible to the action
part of a rule.

 a regular definition of the form

name pattern

 introducing a new pattern
{name} equivalent to pattern.

Example 2

%{
 int chars = 0;
 int lines = 0;
%}

%%

. { chars++; }
\n { lines++; chars++; }

%%

void main() {
 yylex();
 printf(“%i %i\n”, chars, lines);
}

Example 3

SPACE [\t\r\n]
WORD [^ \t\r\n]+

%{
 int words = 0;
%}

%%

{SPACE}
{WORD} { words++; }

%%

void main() {
 yylex();
 printf(“%i\n”, words);
}

yytext and yyleng

 The string matching a pattern is
available to the action of a rule
via the yytext variable, and its
length via yyleng.

char* yytext;
int yyleng;

 Warning: the memory pointed
to by yytext is destroyed upon
completion of the action.

Global variables

Example 4

DIGIT [0-9]

%%

{DIGIT}+ {
 int i = atoi(yytext);
 printf(“%i”, i+1);
 }

%%

void main() {
 yylex();
}

inc.lex

Exercise 1

 Give a Flex program that
reverses each word occurring in
the input.

 Example input:

 Example output:

quick brown fox

kciuq nworb xof

Tokenising using Flex

 The idea is that yylex() returns
the next token. This is achieved
by using a return statement in
the action part of a rule.

 Some tokens have a semantic
value, e.g. NUM, which by
convention is returned via the
global variable yylval.

int yylval; Global variable

Example 5
nums.lex

%{
 typedef enum { END, NUM } Token;
%}

%%

[^0-9] /* Ignore */
[0-9]+ {
 yylval = atoi(yytext);
 return NUM;
 }
<<EOF>> { return END; }

%%

void main() {
 while (yylex() != END)
 printf(“NUM(%i)\n”, yylval);
}

The type of yylval

 By default yylval is of type int,
but it can be overridden by the
user. For example:

union {
 int number;
 char* string;
} yylval;

 Now yylval can either hold a
number or a string.

 NOTE: When interfacing Flex and Bison, the type
of yylval is defined in the Bison file using the
%union option.

Start conditions
and states

 If p is a pattern then so is <s>p
where s is a state. Such a
pattern is only active when the
scanner is in state s.

 Initially, the scanner is in state
INITIAL. The scanner moves to
a state s upon execution of a
BEGIN(s) statement.

Inclusive states

 An inclusive state S can be
declared as follows.

 When the scanner is in state S
any rule with start condition S
or no start condition is active.

%s S

Exclusive states

 An exclusive state S can be
declared as follows.

 When the scanner is in state S
only rules with the start
condition S are active.

%x S

Example 6

strip.lex

%x COM /* In comment */

%%

"/*" { BEGIN(COM); }
<COM>"*/" { BEGIN(INITIAL); }
<COM>.|\n /* Ignore */

%%

void main() {
 yylex();
}

Exercise 2

 Consider the following payroll.

 Write a Flex specification that
takes a payroll and outputs the
sum of the salaries.

Wayne Rooney,Footballer,13000000
David Cameron,Prime Minister,142500
Joe Bloggs,Programmer,40000

Variants of Flex

 There are Flex variants available
for many languages:

Language Tool

C++ Flex++

Java JLex

Haskell Alex

Python PLY

Pascal TP Lex

* ANTLR

Summary

 Flex converts a list of pattern-
action pairs into C function
called yylex().

 Patterns are similar to regular
expressions.

 The idea is that yylex()
identifies and returns the next
token in the input.

 Gives a declarative (high level)
way to define lexical analysers.

THE THEORY BEHIND FLEX

“Under the hood”

Outline

 Automatic conversion of regular
expressions to efficient string-
matching functions:

 Step 1: RE ⟶ NFA

 Step 2: NFA ⟶ DFA

 Step 3: DFA ⟶ C Function

Acronym Meaning

RE Regular Expression

NFA Non-deterministic Finite Automaton

DFA Deterministic Finite Automaton

STEP 1: RE ⟶ NFA

Thompson’s construction

Thompson’s construction

 An algorithm for tuning any
regular expression into an NFA.

 Example input:

 a⋅ a* | b⋅ b*

 Example output:

0

2

4 3

1

b

a

a

b

𝜀

𝜀

5

𝜀

𝜀

Thompson’s construction:
Notation

 Let N(r) be the NFA accepting
exactly the set of strings in L(r).

 We abstractly represent an NFA
N(r) with start state s0 and final
state sa by the diagram:

N(r) s0 sa

Thompson’s construction:
Base cases

s0 sa N(𝜀) s0 sa = 𝜀

s0 sa N(x) s0 sa = x

where x ∊ ∑

Thompson’s construction:
Choice

N(r)

N(t)

s0 sa

N(r|t) s0 sa

=

𝜀

𝜀 𝜀

𝜀

Thompson’s construction:
Sequence

N(t) sa
N(r) s0

N(r ⋅ t) s0 sa

=

Thompson’s construction:
Kleene closure

N(r)

N(r*) s0 sa

=

s0

𝜀

𝜀 𝜀

𝜀

sa

Exercise 3

 Apply Thompson’s construction to
the following regular expression.

 ((a⋅ b)|c)*

Problem with NFAs

 It is not straightforward to turn
an NFA into an efficient matcher
because:

 There may be many possible
next-states for a given input.

 Which one do we choose?

 Try them all?

 Idea: convert an NFA into a
DFA: a DFA can be easily
converted into an efficient
executable program.

STEP 2: NFA ⟶ DFA

The subset construction.

What is a DFA?

 A deterministic finite automaton
(DFA) is an NFA in which

 there are no 𝜀 transitions, and

 for each state s and input
symbol a there is at most one
transition out of s labelled a.

Example of a DFA

 The following DFA accepts
exactly the strings that match the

regular expression a⋅ a* | b⋅ b*.

0

1

2

b

a

a

b

NFA → DFA:
key observation

 After consuming an input string,
an NFA can be in be in one of a
set of states. Example 3:

0

3

1

a

b

2

a b

a

Input States

aa 0, 1, 2

aba

aab

aaba

𝜀

NFA → DFA: key idea

 Idea: construct a DFA in which
each state corresponds to a set
of NFA states.

 After consuming a1⋯ an the
DFA is in a state which
corresponds to the set of states
that the NFA can reach on input
a1⋯ an.

Example 3, revisited

Input NFA States DFA State

aa 0, 1, 2 A

aba 0,1 B

aab 0,3 C

aaba 0,1 B

𝜀 0 D

 Create a DFA state corresponding
to each set of NFA states.

 Question: which states would be
initial and final DFA states?

Notation

Operation Description

𝜀-closure(s)
Set of NFA states reachable
from NFA state s on zero or
more 𝜀-transitions.

𝜀-closure(T)

move(T, a)
Set of NFA states to which
there is a transition on symbol
a from some state s in T.

⋃ 𝜀-closure(s)

s ∊ T

Exercise 4

 Consider the following NFA.

 Compute:

0 4

1
a

𝜀

2

a

a

3 𝜀

𝜀

c

 𝜀-closure(0)

 𝜀-closure({1, 2})

 move({0,3}, a)

 𝜀-closure(move({0,3}, a))

Subset construction:
input and output

 Input: an NFA N.

 Output: a DFA D accepting the
same language as N. Specifically,
the set of states of D, termed
Dstates, and its transition function
Dtran that maps any state-symbol
pair to a next state.

Subset construction:
input and output

 Each state in D is denoted by a
subset of N’s states.

 To ensure termination, every state
is either marked or unmarked.

 Initially, Dstates contains a single
unmarked start state 𝜀-closure(s0)
where s0 is the start state of N.

 The accepting states of D are the
states that contain at least one
accepting state of N.

Subset construction:
algorithm

while (there is an unmarked
 state T in Dstates) {
 mark T;
 for (each input symbol a) {

 U = 𝜀-closure(move(T, a));
 Dtran[T, a] = U
 if (U is not in Dstates)
 add U as unmarked state to Dstates;
 }
}

Exercise 5

 Convert the following NFA into
a DFA by applying the subset
construction algorithm.

2 4

b
1

a

5 6 c

7

𝜀

𝜀

8

𝜀

𝜀
9

𝜀

𝜀 𝜀

𝜀

10

Homework Exercise

 Convert the following NFA into
a DFA by applying the subset
construction algorithm.

0

3

1

a

b

2

a b

a

Exercise 6

 It is not obvious how to simulate
an NFA in linear time with respect
to the length of the input string.

 But it may be converted to a DFA
that can be simulated easily in
linear time.

 What’s the catch? Can you think
of any problems with the DFA
produced by subset construction?

Caveats

 Number of DFA states could be
exponential in number of NFA
states!

 DFA produced is not minimal
in number of states. (Can apply
a minimisation algorithm.)

STEP 3: DFA ⟶ C CODE

Exercise 7

 Implement the DFA

int match(char *next) {

 ⋯

}

 returning 1 if the string pointed
to by next is accepted by the DFA
and 0 otherwise.

 as a C function

b
B a

c

A a

c

a

C

D

c

int match(char* next) {
 goto A;

 A: if (*next == '\0') return 1;
 if (*next == 'a') { next++; goto B; }
 if (*next == 'c') { next++; goto C; }
 return 0;

 B: if (*next == '\0') return 0;
 if (*next == 'b') { next++; goto D; }
 return 0;

 C: if (*next == '\0') return 1;
 if (*next == 'a') { next++; goto B; }
 if (*next == 'c') { next++; goto C; }
 return 0;

 D: if (*next == '\0') return 1;
 if (*next == 'a') { next++; goto B; }
 if (*next == 'c') { next++; goto C; }
 return 0;
}

SUMMARY

Summary

 Automatically converting regular
expressions into efficient C code
involves three main steps:

 1. RE → NFA

 (Thompson’s Construction)

2. NFA → DFA

 (e.g. Subset Construction)

3. DFA → C Function

 (Straightforward)

APPENDIX

What is an NFA?

s s

s

s1 s2

x

A state s The start
state s

An accepting
state s

s

The start state s
that is also an

accepting state

 A directed graph with nodes
denoting states

 and edges labelled with a symbol

x ∊ ∑ ∪ {𝜀} denoting transitions

Meaning of an NFA

 A string x1x2...xn is accepted by
an NFA if there is a path
labelled x1,x2,...,xn (including
any number of 𝜀 transitions)
from the start state to an
accepting state.

