Lexical and Syntax Analysis

Flex, a Lexical Analyser
Generator

Flex: a fast lexical analyser generator

Flex

List of
Pattern-Action pairs.

Match a pattern and Execute its action.

Input to Flex

The structure of a Flex (.lex) file is as follows.
/* Declarations */
\%\%
/* Rules (pattern-action pairs) */
\%\%
/* C Code (including main function) */

Any text enclosed in /* and */ is treated as a comment.

What is a rule?

A rule is a pattern-action pair, written

The pattern is (like) a regular expression. The action is a C statement, or a block of C statements in the form $\{\cdots\}$.

Example 1

Replace all tom's with jerry's and vice-versa.

tomandjerry.lex
/* No declarations */
$\% \%$
tom
printf("jerry");
jerry
printf("tom");
\%\%
/* No main function */

Output of Flex

Flex generates a C function
int yylex()
\{
\}
When yylex() is called:

1. a pattern that matches a prefix of the input text is chosen;
2. the matching text is consumed.

Output of Flex

3. the action corresponding to the chosen pattern is executed;
4. if no pattern is chosen, a single character is consumed and echoed to output.
5. repeats until all input is consumed or an action executes a return statement.

Example 1, revisited

Replace all tom's with jerry's and vice-versa.
tomandjerry.lex
/* No declarations */
$\% \%$
tom
printf("jerry");
jerry
printf("tom");
\%\%
void main() \{
yylex();
\}

Running Example 1

At a command prompt '>':

> flex -o tomandjerry.c tomandjerry.lex
> gcc -o tomandjerry tomandjerry.c -lfl
> tomandjerry
Important!
jerry should be scared of tom.
tom should be scared of jerry.

Input

Output

Maximal munch!

Many patterns may match a prefix of the input. Which one does Flex choose?

- The one that matches the longest string.
- If different patterns match strings of the same length then the first pattern in the file is preferred.

What is a pattern? (Base cases)

Pattern
 Meaning

Match the character ' x '.
Match any character except a newline character (' $\backslash n$ ').
[xyz] Match either an ' x ', ' y ' or ' z '.
[ad- f] Match an ' a ', ' d ', ' e ', or ' f '.
[A A-Z]
Match any character not in the range ' A ' to ' Z '.
[a-z]\{-\}[aeiou] Lower case consonants.
<<EOF>> Matches end-of-file.

What is a pattern? (Inductive cases)

If p, p_{1}, p_{2} are patterns then:

Pattern

Meaning

$p_{1} p_{2}$
Match a p_{1} followed by a p_{2}.
$p_{1} / p_{2} \quad$ Match a p_{1} or a p_{2}.
$p^{*} \quad$ Match zero or more p^{\prime} s.
$p+\quad$ Match one or more $p^{\prime} s$.
p ? Match zero or one p 's.
$p\{2,4\} \quad$ At least $2 p$'s and at most 4.
$p\{4\} \quad$ Exactly $4 p$'s.
(p)

Match a p, used to override precedence.
${ }^{\wedge} p \quad$ Match a p at beginning of a line
$p \$ \quad$ Match a p at end of a line

Pattern exercises

Characterise the strings matched by the following Flex patterns.

- (a|b)\{5\}
- [^ $\ n \backslash r \mid t]+$
-. / $\mid n$
- x.+y

Escaping

Reserved symbols include:

. ^ ^ [] $^{-} ?^{*}+\mid() /\{ \}<>$
Reserved symbols can be matched by enclosing them in double quotes or prefixing them with a backslash. For example:

Pattern

Meaning

" $[x y]$ " Match '[' then ' x ' then ' y ' then ' $]$ '.
" + "* Match zero or more ' + ' symbols.
l"+ Match one or more " symbols.

Declarations

/* Declarations */
\%\%
/* Rules (pattern-action pairs) */
\%\%
/* C Code (including main function) */

What is a declaration?

A declaration may be:

- a C declaration, enclosed in \%\{ and $\%\}$, visible to the action part of a rule.
- a regular definition of the form name
pattern
introducing a new pattern \{name\} equivalent to pattern.

Example 2

\%\{
int chars $=0$;
int lines $=0$;
\%\}
\%\%

- \{chars++; \}

In
\{ lines++; chars++; \}
\%\%
void main() \{
yylex();
printf("\%i \%i\n", chars, lines);
\}

Example 3

SPACE
[$\backslash t|r| n]$
WORD
[^ $|t| r \mid n]+$
\%\{
int words = 0;
\%\}
\%\%
\{SPACE\}
\{WORD\} \{words++; \}
\%\%
void main() \{
yylex();
printf("\%i\n", words);
\}

yytext and yyleng

The string matching a pattern is available to the action of a rule via the yytext variable, and its length via yyleng.
char* yytext; int yyleng;

Global variables

Warning: the memory pointed to by yytext is destroyed upon completion of the action.

Example 4

inc.lex
DIGIT [0-9]
\%\%
\{DIGIT\}+
\{
int $i=$ atoi(yytext); printf("\%i", $i+1$);
\}
\%\%
void main() \{ yylex();
\}

Exercise 1

Give a Flex program that reverses each word occurring in the input.

Example input:
quick brown fox
Example output:
kciuq nworb xof

Tokenising using Flex

The idea is that yylex() returns the next token. This is achieved by using a return statement in the action part of a rule.

Some tokens have a semantic value, e.g. NUM, which by convention is returned via the global variable yylval.
int yylval; Global variable

Example 5

nums.lex

\%\{
typedef enum \{ END, NUM \} Token; \%\}
\%\%
[^0-9]
/* Ignore */
[0-9]+
\{
yylval = atoi(yytext);
return NUM;
\}
<<EOF>> \{return END; \}
\%\%
void main() \{
while (yylex() != END) printf("NUM(\%i)\n", yylval);
\}

The type of yylval

By default yylval is of type int, but it can be overridden by the user. For example:

union \{
int number;
char* string;
$\}$ yylval;

Now yylval can either hold a number or a string.

NOTE: When interfacing Flex and Bison, the type of yylval is defined in the Bison file using the \%union option.

Start conditions and states

If p is a pattern then so is $<s>p$ where s is a state. Such a pattern is only active when the scanner is in state s.

Initially, the scanner is in state INITIAL. The scanner moves to a state s upon execution of a $B E G I N(s)$ statement.

Inclusive states

An inclusive state S can be declared as follows. \%s S

When the scanner is in state S any rule with start condition S or no start condition is active.

Exclusive states

An exclusive state S can be declared as follows.
\%x 5

When the scanner is in state S only rules with the start condition S are active.

Example 6

strip.lex
\%x COM /* In comment */
\%\%
$\begin{array}{ll}\text { "/*" } & \text { \{ BEGIN(COM); \}} \\ \text { <COM>"*/" } & \text { \{BEGIN(INITIAL); \} } \\ \text { <COM>./\n } & \text { /* Ignore */ }\end{array}$
\%\%
void main() \{ yylex();
\}

Exercise 2

Consider the following payroll.

Wayne Rooney,Footballer,13000000 David Cameron, Prime Minister,142500 Joe Bloggs,Programmer,40000

Write a Flex specification that takes a payroll and outputs the sum of the salaries.

Variants of Flex

There are Flex variants available for many languages:

Language	Tool
C++	Flex++
Java	JLex
Haskell	Alex
Python	PLY
Pascal	TP Lex
*	ANTLR

Summary

- Flex converts a list of patternaction pairs into C function called yylex().

Patterns are similar to regular expressions.

- The idea is that yylex() identifies and returns the next token in the input.

Gives a declarative (high level) way to define lexical analysers.

THE THEORY BEHIND FLEX

"Under the hood"

Outline

Automatic conversion of regular expressions to efficient stringmatching functions:

- Step 1: RE \rightarrow NFA - Step 2: NFA \rightarrow DFA - Step 3: DFA \rightarrow C Function

Acronym	Meaning
RE	Regular Expression
NFA	Non-deterministic Finite Automaton
DFA	Deterministic Finite Automaton

STEP 1: RE \rightarrow NFA

Thompson's construction

Thompson's construction

An algorithm for tuning any regular expression into an NFA.

Example input:

$$
a \cdot a^{*} \mid b \cdot b^{*}
$$

Example output:

Thompson's construction: Notation

Let $N(r)$ be the NFA accepting exactly the set of strings in $L(r)$.

We abstractly represent an NFA $N(r)$ with start state s_{0} and final state s_{a} by the diagram:

Thompson's construction:

Base cases

Thompson's construction: Choice

Thompson's construction:

 Sequence
=

Thompson's construction: Kleene closure

Exercise 3

Apply Thompson's construction to the following regular expression.

$$
((a \cdot b) / c)^{*}
$$

Problem with NFAs

It is not straightforward to turn an NFA into an efficient matcher because:

- There may be many possible next-states for a given input.
- Which one do we choose?
- Try them all?

Idea: convert an NFA into a DFA: a DFA can be easily converted into an efficient executable program.

STEP 2: NFA \rightarrow DFA

The subset construction.

What is a DFA?

A deterministic finite automaton (DFA) is an NFA in which

- there are no ε transitions, and - for each state s and input symbol a there is at most one transition out of s labelled a.

Example of a DFA

The following DFA accepts exactly the strings that match the regular expression $a \cdot a^{*} \mid b \cdot b^{*}$.

NFA \rightarrow DFA: key observation

After consuming an input string, an NFA can be in be in one of a set of states. Example 3:

NFA \rightarrow DFA: key idea

Idea: construct a DFA in which each state corresponds to a set of NFA states.

After consuming $a_{1} \cdots a_{n}$ the DFA is in a state which corresponds to the set of states that the NFA can reach on input $a_{1} \cdots a_{n}$.

Example 3, revisited

Create a DFA state corresponding to each set of NFA states.

Input	NFA States	DFA State
$a a$	$0,1,2$	A
$a b a$	0,1	B
$a a b$	0,3	C
$a a b a$	0,1	B
ε	0	D

Question: which states would be initial and final DFA states?

Notation

Operation
 Description

ε-closure(s) from NFA state s on zero or more ε-transitions.

ع-closure(T)

$$
\bigcup_{e=c \text { cosurues }}
$$

$$
s \in T
$$

Set of NFA states to which $\operatorname{move}(T, a)$ there is a transition on symbol a from some state s in T.

Exercise 4

Consider the following NFA.

Compute:

- ε-closure(0)
- ε-closure(\{1, 2\})
- move(\{0,3\}, a)
- ε-closure(move(\{0,3\}, a))

Subset construction: input and output

Input: an NFA N.

Output: a DFA D accepting the same language as N. Specifically, the set of states of D, termed $D_{\text {states }}$, and its transition function $D_{\text {tran }}$ that maps any state-symbol pair to a next state.

Subset construction: input and output

- Each state in D is denoted by a subset of N's states.
- To ensure termination, every state is either marked or unmarked.
- Initially, $D_{\text {states }}$ contains a single unmarked start state ε-closure (s_{0}) where s_{0} is the start state of N.
- The accepting states of D are the states that contain at least one accepting state of N.

Subset construction: algorithm

while (there is an unmarked state T in $\left.D_{\text {states }}\right)\{$ mark T;
for (each input symbol a) \{

$$
U=\varepsilon \text {-closure }(\operatorname{move}(T, a)) ;
$$

$D_{\text {tran }}[T, a]=U$
if (U is not in $D_{\text {states }}$) add U as unmarked state to $D_{\text {states }}$;
\}

Exercise 5

Convert the following NFA into a DFA by applying the subset construction algorithm.

Homework Exercise

Convert the following NFA into a DFA by applying the subset construction algorithm.

Exercise 6

It is not obvious how to simulate an NFA in linear time with respect to the length of the input string.

But it may be converted to a DFA that can be simulated easily in linear time.

What's the catch? Can you think of any problems with the DFA produced by subset construction?

Caveats

- Number of DFA states could be exponential in number of NFA states!

DFA produced is not minimal in number of states. (Can apply a minimisation algorithm.)

STEP 3: DFA \rightarrow C CODE

Exercise 7

Implement the DFA

as a C function
int match(char *next) \{
\}
returning 1 if the string pointed to by next is accepted by the DFA and 0 otherwise.
int match(char* next) \{
goto $A ;$

A: if (*next == ' 10 ') return 1;
if (*next == 'a') \{ next++; goto B; \}
if (*next == 'c') \{ next++; goto C; \} return 0;

B: if (*next $==$ ' $\backslash 0^{\prime}$) return 0;
if (*next == 'b') \{next++; goto D; \} return 0;

C: if (*next $==$ ' $\backslash 0^{\prime}$) return 1; if (*next $==$ ' a ') \{ next++; goto $B ;$ \} if (*next == 'c') \{next++; goto C; \} return 0;

D: if (*next == ' $\backslash 0$ ') return 1;
if (*next $==$ ' a ') \{ next++; goto $B ;$ \}
if (*next == 'c') \{ next++; goto C; \}
return 0;

SUMMARY

Summary

Automatically converting regular expressions into efficient C code involves three main steps:

1. RE \rightarrow NFA
(Thompson's Construction)
2. NFA \rightarrow DFA
(e.g. Subset Construction)
3. DFA \rightarrow C Function
(Straightforward)

APPENDIX

What is an NFA?

A directed graph with nodes denoting states

A states

An accepting
state s

The start
state s

The start state s that is also an
accepting state
and edges labelled with a symbol $x \in \sum \cup\{\varepsilon\}$ denoting transitions

Meaning of an NFA

A string $x_{1} x_{2} \ldots x_{n}$ is accepted by an NFA if there is a path labelled $x_{1}, x_{2}, \ldots, x_{n}$ (including any number of ε transitions) from the start state to an accepting state.

