CHAPTER 8 Evaluation of Edit and Imputation Performance

Our aim in this chapter is set out the definitions and rationalisation for the various measures that were used to evaluate editing and imputation performance of the different methodologies considered by the EUREDIT project.

8.1 Performance Requirements for Statistical Editing

There are two basic requirements for a good statistical editing procedure.

(1)
Efficient Error Detection: Subject to constraints on the cost of editing, the editing process should be able to detect virtually all errors in the data set of interest.

(2)
Influential Error Detection: The editing process should be able to detect those errors in the data set that would lead to significant errors in analysis if they were ignored.

Below we develop measures of how well a particular statistical editing process achieves these aims.

8.1.1 Evaluating the Error Detection Performance of a Statistical Editing Procedure

Suppose our concern is detection of the maximum number of true errors (measured value (true value) in the data set for a specified detection cost. Typically, this detection cost rises as the number of incorrect detections (measured value = true value) made increases, while the number of true errors detected obviously decreases as the number of undetected true errors increases. Consequently, we can evaluate the error detection performance of an editing procedure in terms of the both the number of incorrect detections it makes as well as the number of correct detections that it fails to make.

From this point of view, editing is essentially a classification procedure. That is, it classifies each recorded value into one of two states: (1) acceptable and (2) suspicious (not acceptable). Assuming information is available about the actual correct/incorrect status of the value, one can then cross-classify it into one of four distinct classes: (a) Correct and acceptable, (b) Correct and suspicious, (c) Incorrect and acceptable, and (d) Incorrect and suspicious. Class (b) is a classification error of Type 1, while class (c) is a classification error of Type 2.

If the two types of classification errors are equally important, the sum of the probabilities of the two classification errors provides a measure of the effectiveness of the editing process. In cases where the types of classification errors have different importance, these probabilities can be weighted together in order to reflect their relative importance. For example, for an editing process in which all rejected records are inspected by experts (so the probability of an incorrect final value is near zero for these), Type 1 errors are not as important because these will eventually be identified, while Type 2 errors will pass without detection. In such a situation the probability of a Type 2 error should have a bigger weight. However, for the purposes of evaluation within the EUREDIT project both types of errors were given equal weight.

In order to model the error detection performance of an editing process, we assume that we have access to a data set containing i = 1, ..., n cases, each with "measured" (i.e. pre-edit) values Yij, for a set of j =1, ..., p variables. For each of these variables it is also assumed that the corresponding true values
[image: image1.wmf] are known. The editing process itself is characterised by a set of variables Eij that take the value one if the measured value Yij passes the edits (Yij is acceptable) and the value zero otherwise (Yij is suspicious). For each variable j we can therefore construct the following cross-classification of the n cases in the dataset:

	
	Eij = 1
	Eij = 0

	Yij =
[image: image2.wmf]
	naj
	nbj

	Yij (
[image: image3.wmf]
	ncj
	ndj

The ratio ncj/n is the proportion of false positives associated with variable j detected by the editing process, with nbj/n the corresponding proportion of false negatives. Then

[image: image4.wmf]j = ncj/(ncj + ndj)

(1)

is the proportion of cases where the value for variable j is incorrect, but is still judged acceptable by the editing process. It is an estimate of the probability that an incorrect value for variable j is not detected by the editing process. Similarly

[image: image5.wmf]j = nbj/(naj + nbj)

(2)

is the proportion of cases where a correct value for variable j is judged as suspicious by the editing process, and estimates the probability that a correct value is incorrectly identified as suspicious. Finally,

[image: image6.wmf]j = (nbj + ncj)/n

(3)

is an estimate of the probability of an incorrect outcome from the editing process for variable j, and measures the inaccuracy of the editing procedure for this variable.

A good editing procedure would be expected to achieve small values for
[image: image7.wmf]j,
[image: image8.wmf]j and
[image: image9.wmf]j for all p variables in the data set.

In many situations, a case that has at least one variable value flagged as "suspicious" will have all its data values flagged in the same way. This is equivalent to defining a case-level detection indicator:

[image: image10.wmf].

Let Yi denote the p-vector of measured data values for case i, with
[image: image11.wmf] the corresponding p-vector of true values for this case. By analogy with the development above, we can define a case-level cross-classification for the edit process:

	
	Ei = 1
	Ei = 0

	Yi =
[image: image12.wmf]
	na
	nb

	Yi (
[image: image13.wmf]
	nc
	nd

where Yi =
[image: image14.wmf] denotes all measured values in Yi are correct, and Yi (
[image: image15.wmf] denotes at least one measured value in Yi is incorrect. The corresponding case level error detection performance criteria are then the proportion of cases with at least one incorrect value that are passed by all edits:

[image: image16.wmf] = nc/(nc + nd);

(4)

the proportion of cases with all correct values that are failed by at least one edit:

[image: image17.wmf] = nb/(na + nb);

(5)

and the proportion of incorrect error detections:

[image: image18.wmf] = (nb + nc)/n.

(6)

Note that the (1) to (6) above are averaged over the n cases that define the cross-classification.

8.1.2 Evaluating the Error Reduction Performance of a Statistical Editing Procedure

In this case our aim in editing is not so much to find as many errors as possible, but to find the errors that matter (i.e. the influential errors) and then to correct them. From this point of view the size of the error in the measured data (measured value - true value) is the important characteristic, and the aim of the editing process is to detect measured data values that have a high probability of being "far" from their associated true values.

In order to evaluate the error reduction brought about by editing, we shall assume that all values flagged as suspicious by the editing process are checked, and their actual true values determined. Suppose the variable j is scalar. Then the editing procedure leads to a set of post-edit values defined by
[image: image19.wmf]. The key performance criterion in this situation is the "distance" between the distribution of the true values
[image: image20.wmf] and the distribution of the post-edited values
[image: image21.wmf]. The aim is to have an editing procedure where these two distributions are as close as possible, or equivalently where the difference between the two distributions is as close to zero as possible.

In many cases the data set being edited contains data collected in a sample survey. In such a situation we typically also have a sample weight wi for each case, and the outputs of the survey are estimates of target population quantities defined as weighted sums of the values of the (edited) survey variables. In non-sampling situations we define wi = 1.

When variable j is scalar, the errors in the post-edited data are
[image: image22.wmf]. The p-vector of error values for case i will be denoted Di. Note that the only cases where Dij is non-zero are the ncj cases corresponding to incorrect Yij values that are passed as acceptable by the editing process. There are a variety of ways of characterising the distribution of these errors. Suppose variable j is intrinsically positive. Two obvious measures of how well the editing procedure finds the errors "that matter" are then:

Relative Average Error:

[image: image23.wmf].

(7)

Relative Root Average Squared Error:

[image: image24.wmf].

(8)

When variable j is allowed to take on both positive and negative values it is more appropriate to focus on the weighted average of the Dij over the n cases and the corresponding weighted average of their squared values.

Other, more "distributional" measures related to the spread of the Dij will also often be of interest. A useful measure of how "extreme" is the spread of the undetected errors is

Relative Error Range:

R(D)/IQ(Y*)

(9)

where R(D) is the range (maximum - minimum) of the non-zero Dij values and IQ(Y*) is the interquartile distance of the true values for all n cases. Note that weighting is not used here.

With a categorical variable we cannot define an error by simple differencing. Instead we define a probability distribution over the joint distribution of the post-edit and true values, ab =
[image: image25.wmf], where Yij = a indicates case i takes category a for variable j. A "good" editing procedure is then one such that ab is small when a is different from b. For an ordinal categorical variable this can be evaluated by calculating

[image: image26.wmf]

(10)

where i(j(ab) denotes those cases with
[image: image27.wmf], and d(a,b) is a measure of the distance from category a to category b, defined as one plus the number of categories that lie "between" categories a and b. When the underlying variable is nominal, we set d(a,b) = 1.

A basic aim of editing in this case is to make sure that any remaining errors in the post-edited survey data do not lead to estimates that are significantly different from what would be obtained if editing was "perfect". In order to assess whether this has been achieved, we need to define an estimator of the sampling variance of a weighted survey estimate. This variance can be approximated using the jackknife formula

[image: image28.wmf].

Here
[image: image29.wmf] denotes the weighted sum of values for a particular survey variable Y and
[image: image30.wmf] denotes the same formula applied to the survey values with the value for the ith case excluded, and with the survey weights scaled to allow for this exclusion. That is

[image: image31.wmf]
where

[image: image32.wmf].

Let vw(
[image: image33.wmf]) denote the value of this variance estimator when applied to the n-vector
[image: image34.wmf] of true sample values for the jth survey variable. Then

tj =
[image: image35.wmf]

(11)

is a standardised measure of how effective the editing process is for this variable. Since the sample size n will be large in typical applications, values of tj that are greater than two (in absolute value) indicate a significant failure in editing performance for variable j.

Finally, when the variable of interest is categorical, with a = 1, 2, ..., A categories, we can replace the Dij values in tj above by

[image: image36.wmf].

Here I(Yij = a) is the indicator function for when case i takes category a for variable j. If the categorical variable is ordinal rather than nominal then it is more appropriate to use

[image: image37.wmf]
where d(a,b) is the "block" distance measure defined earlier.

8.1.3 Evaluating the Outlier Detection Performance of a Statistical Editing Procedure

Statistical outlier detection can be considered a form of editing. As with "standard" editing, the aim is to identify data values that are inconsistent with what is expected, or what the majority of the data values indicate should be the case. That is, all errors detected by the editing procedure are assumed to be outliers. These values are then removed from the data being analysed, in the hope that the subsequent outputs from this analysis will then be closer to the "truth" compared with an analysis that includes these values (i.e. with the detected outliers included).

In order to evaluate how well an editing procedure detects outliers, we can compare the moments and distribution of the outlier-free data values (i.e. those that pass the edits) with the corresponding moments and distribution of the true values. For positive valued scalar variables, this leads to the measure

Absolute Relative Error of the k-mean for Yj:

[image: image38.wmf].

(12)

Typically, (12) would be calculated for k = 1 and 2, since this corresponds to comparing the first and second moments (i.e. means and variances) of the outlier-free values with the true values. For real-valued variables this measure should be calculated as the absolute value of the difference between the k-mean calculated from the identified "non-outlier" data and that based on the full sample true values.

8.1.4 Evaluating the Error Localization Performance of a Statistical Editing Procedure

We define error localization as the ability to accurately isolate "true errors" in data. We also assume that such "localization" is carried out by the allocation of an estimated error probability to each data item in a record. Good localization performance then corresponds to estimated error probabilities close to one for items that are in error and estimated error probabilities close to zero for those that are not. To illustrate, consider the following scenarios for a record containing 4 variables (Y1 - Y4). Here
[image: image39.wmf] denotes the estimated probability that the jth item for the ith record is erroneous. The indicator function I(Yij =
[image: image40.wmf]) then takes the value 1 if there is no error and the value zero otherwise.

	Scenario

	
	Yi1
	Yi2
	Yi3
	Yi4
	Gi

	
	
[image: image41.wmf]
	0.9
	0.8
	0.2
	0.1
	

	A
	I(Yij =
[image: image42.wmf])
	1
	1
	0
	0
	1.7

	B
	I(Yij =
[image: image43.wmf])
	0
	0
	1
	1
	0.3

	C
	I(Yij =
[image: image44.wmf])
	0
	1
	0
	1
	0.9

	
	
[image: image45.wmf]
	0.6
	0.5
	0.4
	0.3
	

	D
	I(Yij =
[image: image46.wmf])
	1
	1
	0
	0
	1.2

	E
	I(Yij =
[image: image47.wmf])
	0
	0
	1
	1
	0.8

	F
	I(Yij =
[image: image48.wmf])
	0
	1
	0
	1
	0.9

The first three scenarios above show a case where the error estimates are quite "precise" (i.e. they are either close to one or close to zero). Observe that Scenario A then represents very poor error localization, with both Yi1 and Yi2 identified as being in error with high probability, while in fact they are not, while Scenario B is the reverse. Scenario C is somewhere between these two situations. Scenarios D, E and F repeat these "true value" realisations, but now consider them in the context of a rather less "precise" allocation of estimated error probabilities. The statistic Gi provides a measure of how well localization is "realised" for case i. It is defined as

[image: image49.wmf]
where p is the number of different items making up the record for case i. A small value of Gi corresponds to good localization performance for this case. This is because such a situation occurs if (a) there are no errors and all the
[image: image50.wmf] are close to zero; or (b) all items are in error and all the
[image: image51.wmf] are close to one; or (c)
[image: image52.wmf] is close to one when an item is in error and is close to zero if it is not. Note also that Gi is an empirical estimate of the case-level Gini index value for the set of estimated error probabilities, and this index is minimised when these probabilities are close to either zero or one (so potential errors are identified very precisely). Thus, although scenarios B and E above represent situations where the higher estimated error probabilities are allocated to items which are actually in error, the value for Gi in scenario B is less than that for scenario E since in the former case the estimated error probabilities are more "precisely" estimated.

For a sample of n cases these case-level measures can be averaged over all cases to define an overall error localization performance measure

[image: image53.wmf].

(13)

Note that the above measure can only be calculated for an editing procedure that works by allocating an "error probability" to each data item in a record. Since some of the more commonly used editing methods only identify a group of items as containing one or more errors, but do not provide a measure of how strong is the likelihood that the error is "localized" at any particular item, it is clear that the "error localization" performance of these methods cannot be assessed via the statistic G above.

8.2 Performance Requirements for Statistical Imputation

Ideally, an imputation procedure should be capable of effectively reproducing the key outputs from a "complete data" statistical analysis of the data set of interest. However, this is usually impossible, so we investigate alternative measures of performance in what follows. The basis for these measures is set out in the following list of desirable properties for an imputation procedure. The list itself is ranked from properties that are hardest to achieve to those that are easiest. This does NOT mean that the ordering also reflects desirability. Nor are the properties themselves mutually exclusive. In fact, in most uses of imputation within NSIs the aim is to produce aggregated estimates from a data set, and criteria (1) and (2) below will be irrelevant. On the other hand, if the data set is to be publicly released or used for development of prediction models, then (1) and (2) become rather more relevant.

(1)
Predictive Accuracy: The imputation procedure should maximise preservation of true values. That is, it should result in imputed values that are "close" as possible to the true values.

(2)
Ranking Accuracy: The imputation procedure should maximise preservation of order in the imputed values. That is, it should result in ordering relationships between imputed values that are the same (or very similar) to those that hold in the true values.

(3)
Distributional Accuracy: The imputation procedure should preserve the distribution of the true data values. That is, marginal and higher order distributions of the imputed data values should be essentially the same as the corresponding distributions of the true values.

(4)
Estimation Accuracy: The imputation procedure should reproduce the lower order moments of the distributions of the true values. In particular, it should lead to unbiased and efficient inferences for parameters of the distribution of the true values (given that these true values are unavailable).

(5)
Imputation Plausibility: The imputation procedure should lead to imputed values that are plausible. In particular, they should be acceptable values as far as the editing procedure is concerned.

It should be noted that not all the above properties are meant to apply to every variable that is imputed. In particular, property (2) requires that the variable be at least ordinal, while property (4) is only distinguishable from property (3) when the variable being imputed is scalar. Consequently the measures we define below will depend on the scale of measurement of the variable being imputed.

An additional point to note about property (4) above is that it represents a compromise. Ideally, this property should correspond to "preservation of analysis", in the sense that the results of any statistical analysis of the imputed data should lead to the same conclusions as the same analysis of the complete data. However, since it is impossible to a priori identify all possible analyses that could be carried out on a data set containing imputed data, this criterion has been modified to focus on preservation of estimated moments of the variables making up the data set of interest.

We also note that in all cases performance relative to property (5) above ("plausibility") can be checked by treating the imputed values as measured values and assessing how well they perform relative to the statistical editing criteria described earlier in this paper.

Finally, unless specifically stated to the contrary below, all measures are defined on the set of n imputed values within a data set, rather than the set of all values making up this set. That is, n below refers to the total number of imputed values for a particular variable. Also, we drop the index j used above to refer to the particular variable being considered, and evaluate imputation for each variable specifically.

8.3.1 Imputation Performance Measures for a Nominal Categorical Variable

The extent to which an imputation procedure preserves the marginal distribution of a categorical variable with c+1 categories can be assessed by calculating the value of a Wald-type statistic that compares the imputed and true distributions of the variable across these categories. This statistic is the extension (Stuart, 1955) of McNemar’s statistic (without a continuity correction) for marginal homogeneity in a 2 (2 table. It is given by

[image: image54.wmf].

(14)

Here R is the c-vector of imputed counts for the first c categories of the variable, S is the c-vector of actual counts for these categories and T is the square matrix of order c corresponding to the crossclassification of actual vs. imputed counts for these categories. Under relatively weak assumptions about the imputation process (essentially providing only that it is stochastic, with imputed and true values independently distributed conditional on the observed data - see Appendix 2), the large n distribution of W is chi-square with c degrees of freedom, and so a statistical test of whether the imputation method preserves the distribution of the categorical variable of interest can be carried out. Obviously, although W can still be calculated when a non-stochastic imputation scheme is used, this distributional result can no longer be used to determine the "significance" of its value.

Note that adding any number of “correct” imputations to the set of imputed values being tested does not alter the value of W. That is, it is only the extent of the "incorrect" imputations in the data set that determines whether the hypothesis of preservation of marginal distributions is supported or rejected.

The extension of W to the case where more than one categorical variable is being imputed is straightforward. One just defines Y as the single categorical variable corresponding to all possible outcomes from the joint distribution of these categorical variables and then computes W as above. This is equivalent to testing for preservation of the joint distribution of all the imputed variables.

We now turn to assessing how well an imputation process preserves true values for a categorical variable Y with c+1 categories. An obvious measure of how closely the imputed values “track” the true values for this variable is given by the proportion of off-diagonal entries for the square table T+ of order c+1 obtained by cross-classifying these imputed and actual values. This is

[image: image55.wmf]

(15)

where
[image: image56.wmf] denotes the imputed version of Y and
[image: image57.wmf] is its true value.

Provided we cannot reject the hypothesis that the imputation method preserves the marginal distribution of Y, we can estimate the variance of D by

[image: image58.wmf] = n-1(1 D)

where 1 denotes a c-vector of ones. See Appendix 2 for details.

If the imputation method preserves individual values, D should be identically zero. To allow for the fact that the imputation method may "almost" preserve true values, we can test whether the expected value of D is significantly greater than a small positive constant . That is, we are willing to allow up to a maximum expected proportion of incorrect imputations and still declare that the imputation method preserves true values. Consequently, if

[image: image59.wmf]
we can say that the imputation method has an expected incorrect imputation rate that is significantly larger than and hence does not preserve true values. The choice of will depend on the application. We set this constant equal to

[image: image60.wmf].

(16)

The smaller this value, the better the imputation process is at preserving true values. If * is zero we say that the imputation method preserves true values.

Appendix 1 describes an exemplar analysis that illustrates the use of W and D to evaluate a set of imputations.

8.3.2 Imputation Performance Measures for an Ordinal Categorical Variable

So far we have assumed Y is nominal. We now consider the case where Y is an ordinal categorical variable. This will be the case, for example, if Y is defined by categorisation of a continuous variable. Here we are not only concerned with preservation of distribution, but also preservation of order. To illustrate that order is important consider the following 4 imputed by actual cross-classifications for an ordinal variable Y taking values 1, 2 and 3. In all cases the value of W is zero, so the issue is one of preserving values, not distributions. The D statistic value for each table is also shown. Using a subscript to denote a particular table we see that Da < Db < Dc < Dd so it appears, for example, that the imputation method underlying table (a) is “better” in this regard than that underlying table (b) and so on.

However, one could question whether this actually means method (a) IS better than methods (b), (c) and (d). Thus method (a) twice imputes a value of 1 when the actual value is 3, and similarly twice imputes a value of 3 when the actual value is 1, a total of 4 “major” errors. In comparison, method (b) only makes 2 corresponding major errors, but also makes an additional 4 “minor” errors. The total error count (6) for (b) is clearly larger than that of (a), but its “major error count” (2) is smaller. The corresponding count for (c) is smaller still (0). It may well be that method (c) is in fact the best of all the four methods!

	(a)
	Y* = 1
	Y* = 2
	Y* = 3
	
	
	(b)
	Y* = 1
	Y* = 2
	Y* = 3
	

	
[image: image61.wmf] = 1
	3
	0
	2
	5
	
	
[image: image62.wmf] = 1
	3
	1
	1
	5

	
[image: image63.wmf] = 2
	0
	5
	0
	5
	
	
[image: image64.wmf] = 2
	1
	3
	1
	5

	
[image: image65.wmf] = 3
	2
	0
	3
	5
	
	
[image: image66.wmf] = 3
	1
	1
	3
	5

	
	5
	5
	5
	D = 4/15
	
	
	5
	5
	5
	D = 6/15

	
	
	
	
	
	
	
	
	
	
	

	(c)
	Y* = 1
	Y* = 2
	Y* = 3
	
	
	(d)
	Y* = 1
	Y* = 2
	Y* = 3
	

	
[image: image67.wmf] = 1
	3
	2
	0
	5
	
	
[image: image68.wmf] = 1
	0
	0
	5
	5

	
[image: image69.wmf] = 2
	2
	1
	2
	5
	
	
[image: image70.wmf] = 2
	0
	5
	0
	5

	
[image: image71.wmf] = 3
	0
	2
	3
	5
	
	
[image: image72.wmf] = 3
	5
	0
	0
	5

	
	5
	5
	5
	D = 8/15
	
	
	5
	5
	5
	D = 10/15

A way of allowing not only the absolute number of imputation errors, but also their “size” to influence assessment, is to compute a generalised version of D, where the "distance" between imputed and true values is taken into account. That is, we compute

[image: image73.wmf]

(17)

where d(t1, t2) is the "distance" from category t1 to category t2. Thus, if we put d(t1, t2) equal to the “block metric” distance function, then
[image: image74.wmf] = 1 if
[image: image75.wmf] = j and Y* = j-1 or j+1 and
[image: image76.wmf] = 2 if
[image: image77.wmf] = j and Y* = j-2 or j+2. With this definition we see that Da = Db = Dc = 8/15 and Dd = 20/15. That is, there is in fact nothing to choose between (a), (b) and (c).

Suppose however that we put
[image: image78.wmf] = 1 if
[image: image79.wmf] = j and Y* = j-1 or j+1 and
[image: image80.wmf] = 4 if
[image: image81.wmf] = j and Y* = j-2 or j+2. That is, major errors are four times more serious than minor errors (a squared error rule). Then Da = 16/15, Db = 12/15, Dc = 8/15 and Dd = 40/15. Here we see that method (c) is the best of the four.

Setting d(t1, t2) = |t1 - t2| leads to the average error measure underpinning W, while d(t1, t2) = I(t1 ≠ t2) leads to the unordered value of D in (14). In EUREDIT we use

[image: image82.wmf].

8.3.3 Imputation Performance Measures for a Scalar Variable

To start, consider preservation of true values. If this property holds, then
[image: image83.wmf] should be close to Y* for all cases where imputation has been carried out. One way this "closeness" can be assessed is by calculating the weighted Pearson moment correlation between
[image: image84.wmf] and Y* for those n cases where an imputation has actually been carried out:

[image: image85.wmf].

(18)

Here m(Y) denotes the weighted mean of Y-values for the same n cases. For data that are reasonably "normal" looking this should give a good measure of imputation performance. For data that are highly skewed this measure is not recommended since this correlation coefficient is rather sensitive to outliers and influential data values. Instead, it is preferable to focus on estimates of the regression of Y* on
[image: image86.wmf], particular those that are robust to outliers and influential values.

The regression approach evaluates the performance of the imputation procedure by fitting a linear model of the form Y* =
[image: image87.wmf] + to the imputed data values using a (sample weighted) robust M-estimation method (in the EUREDIT project this was Huber’s method with cut-off set to 2). Let b denote the fitted value of that results. Evaluation then proceeds by comparing this value with = 1. In addition, a measure of the regression mean square error

[image: image88.wmf]
can be computed. A good imputation method will have b close to 1 and a low value of
[image: image89.wmf].

Underlying the above regression-based approach to evaluation is the idea of measuring the performance of an imputation method by the distance
[image: image90.wmf] between the n-vector
[image: image91.wmf] of imputed values and the corresponding n-vector Y* of true values. This suggests we evaluate preservation of values directly by calculating
[image: image92.wmf] for a number of distance measures. An important class of such measures include the following (weighted) distances:

[image: image93.wmf]

(19)

[image: image94.wmf]

(20)

[image: image95.wmf].

(21)

When the variable Y is intrinsically positive, the differences
[image: image96.wmf] in the above formulae can be replaced by their relative versions,
[image: image97.wmf], to provide measures of the relative distance between
[image: image98.wmf] and Y*.

Rather than measuring the distance
[image: image99.wmf] one can focus on measures of the distance between the empirical distributions defined by these two data sets. That is, one can compute the weighted empirical distribution functions for both sets of values:

[image: image100.wmf]

(22)

[image: image101.wmf]

(23)

and then measure the "distance" between these functions. For example, the Kolmogorov-Smirnov distance is

[image: image102.wmf]

(24)

where the {tj} values are the 2n jointly ordered true and imputed values of Y. An alternative is the integrated distance

[image: image103.wmf]

(25)

where is a "suitable" positive constant and t0 is the largest integer smaller than or equal to t1. Larger values of attach more importance to larger differences between (23) and (24). Two obvious choices are = 1 and = 2.

Finally, we consider preservation of aggregates when imputing values of a scalar variable. The most important case here is preservation of the raw moments of the empirical distribution of the true values. For k = 1, 2, ..., we can measure how well these are preserved by

[image: image104.wmf].

(26)

8.3.4 Evaluating Outlier Robust Imputation

The outlier robustness of an imputation procedure can be assessed by the "robustness" of the analyses based on the imputed values, compared to the analyses based on the true data (which can contain outliers). This is a rather different type of performance criterion from that investigated so far, in that the aim here is not to get "close" to the unknown true values but to enable analyses that are more "efficient" than would be the case if they were based on the true data values.

For the EUREDIT project the emphasis has been on assessing efficiency in terms of mean squared error for estimating the corresponding population mean using a weighted mean based on the imputed data values. Note that this measure uses all N data values in the data set rather than just the n imputed values, and is given by

[image: image105.wmf].
(27)

Here mN(Y) refers to the weighted mean of the variable Y defined over all N values in the data set of interest. Note also that the variance term in (30) includes a penalty for excessive imputation.

8.3.5 Evaluating Imputation Performance in Panel and Time Series Data

A panel data structure exists when there are repeated observations made on the same set of cases. Typically these are at regularly spaced intervals, but they do not have to be. Since the vector of repeated observations on a variable Y in this type of data set can be considered as a realisation of a multivariate random variable, we can immediately use the multivariate extensions of the evaluation methods for univariate data discussed earlier.

For time series data the situation is a little different. Here i = 1, ..., n indexes the different time series of interest, with each series corresponding to a multivariate observation indexed by time. For such data most methods of analysis are based on the estimated autocorrelation structure of the different series. Hence an important evaluation measure where imputed values are present is preservation of these estimated autocorrelations. Let
[image: image106.wmf] denote the true value of the estimated autocorrelation at lag k for the series defined by variable Yi, with
[image: image107.wmf] the corresponding estimated lag k autocorrelation based on the imputed data. A measure of the relative discrepancy between the estimated lag k autocorrelations for the true and imputed versions of these series is then

[image: image108.wmf].

(28)

8.4 Operational Efficiency

Editing and imputation methods have to be operationally efficient in order for them to be attractive to most "large scale" users. This means that an important aspect of assessment for an editing and imputation method is the ease with which it can be implemented, maintained and applied to large scale data sets. Examples of criteria that could be used to determine the operational efficiency of an editing and imputation (E&I) method are:

(a) What resources are needed to implement the E&I method in the production process?

(b) What resources are needed to maintain the E&I method?

(c) What is the required expertise needed to apply the E&I method in practice?

(d) What are the hardware and software requirements?

(e) Are there any data limitations (e.g. size/complexity of data set to be imputed)?

(f) What feedback does the E&I method produce? Can this feedback be used to "tune" the process in order to improve its efficiency?

(g) What resources are required to modify the operation of the E&I method? Is it possible to quickly change its operating characteristics and rerun it?

(h) A key aspect of maintaining an E&I system is its transparency. Is the underlying methodology intuitive? Are the algorithms and code accessible and well documented?

It can be argued that no matter how excellent the statistical properties of an editing or imputation method, the method is essentially useless unless it is practical to use in everyday data processing. Consequently it is vital that a candidate E&I methodology demonstrates its operational efficiency before it can be recommended. This in turn requires that any analysis of the performance of a method should provide clear answers to the above questions. In particular the resources needed to implement and maintain the system (both in terms of trained operatives and information flows) need to be spelt out. Comparison of different E&I methods under this heading is of necessity qualitative, but that does not diminish its importance.

8.5 Plausibility

The plausibility of the imputed values is an important performance criterion. In fact, there is an argument that plausibility is a binding requirement for an imputation procedure. In other words, an imputation procedure is unacceptable unless it satisfies this criterion. This is particularly important for applications within NSIs.

Plausibility can be assessed by the imputed data passing all "fatal" edits, if these are defined.

8.6 Quality Measurement

In the experimental situations that have been explored in EUREDIT, it has been possible to use simulation methods to assess the quality of the E&I method, by varying the experimental conditions and observing the change in E&I performance. However, in real life applications the true values for the missing/incorrect data are unknown, and so this approach is not feasible. In particular, information on the quality of the editing and imputation outcomes in such cases can only be based on the data available for imputation.

In this context editing quality can be assessed by treating the imputed values as the true values and computing the different edit performance measures described earlier. Of course, the quality of these quality measures is rather suspect if the imputed values are themselves unreliable. Consequently an important property of an imputation method should be that it produces measures of the quality of its imputations. One important measure (assuming that the imputation method preserves distributions) is the so-called imputation variance. This is the additional variability, over and above the "complete data variability", associated with inference based on the imputed data. It is caused by the extra uncertainty associated with randomness in the imputation method. This additional variability can be measured by repeating the imputation process and applying multiple imputation theory. Repeatability of the imputation process is therefore an important quality measure.

8.7 Computation of Performance Measures within the EUREDIT Project

In order to ensure consistency of approach to evaluation of the different editing and imputation methodologies investigated within the EUREDIT project, a software tool was developed by one of the EUREDIT partners (Numerical Algorithms Group) for calculation of the various performance measures described above. The code for this software is included in Appendix 3. This software was then used by all the partners to evaluate the performance of their edit and imputation methodologies when applied to the EUREDIT evaluation data sets. The outputs from the software consisted of a set of measures defined by the formulae given above. In the table below we provide a “map” that links the names of the measures output by the NAG evaluation software with their relevant formulaic definitions. Note that all measures used sample weights if these were available.

	Name of measure
	Description
	Equation

	alpha
	Proportion of cases where a value is incorrect, but is still judged acceptable by the editing process. Estimates the probability that an incorrect value is not detected by the editing process
	(1)

	beta
	Proportion of cases where a correct value is judged as suspicious by the editing process. Estimates the probability that a correct value is incorrectly identified as suspicious
	(2)

	delta
	Estimate of the probability of an incorrect outcome from the editing process. Provides a measure of the inaccuracy of the editing procedure
	(3)

	A
	Proportion of cases that contain at least one incorrect value and that pass all edits
	(4)

	B
	Proportion of cases containing no errors that fail at least one edit
	(5)

	C
	Proportion of incorrect case level error detections
	(6)

	RAE
	Relative Average Error, defined as the ratio of the mean of the post-edit errors to the mean of the true values
	(7)

	RRASE
	Relative Root Average Squared Error, defined as the ratio of the square root of the mean of the squares of the post-edit errors to the mean of the true values
	(8)

	RER
	Relative Error Range, defined as the ratio of the range of the post-edit errors to their inter-quartile range
	(9)

	Dcat
	(Weighted) proportion of cases where post-edit and true values of a categorical variable disagree
	(10)

	tj
	Standardised measure of effectiveness of the editing process, defined as the t-statistic for testing whether the mean of the post-edit errors in the data (continuous variable) or weighted proportion of cases where post-edit values are different from true values (categorical variable) is significantly different from zero
	(11)

	AREm1
	Absolute relative difference between the mean of the values that pass the edits and the mean of the true values
	(12)

	AREm2
	Absolute relative difference between the mean of the squares of the values that pass the edits and the mean of the squares of the true values
	(12)

	G
	Error localisation performance measure for methods that return probability of being in error
	(13)

	W
	Wald statistic comparing marginal distributions of imputed and true values (categorical variables)
	(14)

	D
	Proportion of cases where imputed, true values differ (categorical variables)
	(15)

	Eps
	Test statistic for preservation of values, based on D
	(16)

	Dgen
	Generalised version of D that takes into account the “distances” between categories (ordinal variables)
	(17)

	R^2
	Square of weighted correlation of imputed and true data
	(18)

	Slope
	Slope of robust regression of true values on imputed values
	Value of b defined after (18)

	mse
	Residual mean squared error for robust regression of true values on imputed values
	Value of
[image: image109.wmf] defined after (18)

	t_val
	t-statistic for test of difference of Slope from one
	See discussion following (18)

	dL1
	Mean distance between imputed and true values
	(19)

	dL2
	Mean distance between squares of imputed and true values
	(20)

	dLinf
	Maximum distance between imputed and true values
	(21)

	K-S
	Kolmogorov-Smirnov distance between distributions of imputed and true values
	(24)

	K-S_1
	Integrated absolute distance between distributions of imputed and true values
	(25)

	K-S_2
	Integrated squared distance between distributions of imputed and true values
	(25)

	m_1
	Absolute value of difference between means of imputed and true values
	(26)

	m_2
	Absolute value of difference between means of squares of imputed and true values
	(26)

	MSE
	Mean squared error of imputed values compared with true values
	(27)

References

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 42, pg. 412.

Appendix 1: An Exemplar Analysis

Suppose the categorical variable Y has 5 categories and 100 individuals have their values imputed. The true vs. imputed cross-classification of these data is

	
	Impute = 1
	Impute = 2
	Impute = 3
	Impute = 4
	Impute =5
	Total

	True = 1
	18
	2
	2
	0
	0
	22

	True = 2
	2
	22
	2
	2
	0
	28

	True = 3
	0
	1
	16
	0
	0
	17

	True = 4
	0
	0
	0
	12
	5
	17

	True = 5
	0
	0
	0
	1
	15
	16

	Total
	20
	25
	20
	15
	20
	100

We take category 5 as our reference category. Then

[image: image110.wmf]
and

[image: image111.wmf]
so

[image: image112.wmf]
on 4 degrees of freedom (p = .1592).

Since W is not significant, we can now proceed to test preservation of individual values. Here D = 1 – 83/100 = 0.17 and

[image: image113.wmf]
so

[image: image114.wmf] 0.0083

and hence

[image: image115.wmf].

We therefore conclude that the imputation method also preserves individual values.

Appendix 2: Statistical Theory for W and D
Let Y denote a categorical variable with c+1 categories, the last being a reference category, for which there are missing values. The value for Y can be represented in terms of a c-vector y whose components “map” to these categories. This vector is made up of zeros for all categories except that corresponding to the actual Y-category observed, which has a value of one. As usual, we use a subscript of i to indicate the value for a particular case. Thus, the value of y when Y = k < c+1 for case i is yi = (yij), where yik = 1 and yij = 0 for j (k. For cases in category c+1, y is a zero vector. We assume throughout that the values of y are realisations of a random process. Thus for case i we assume the existence of a c-vector pi of probabilities which characterises the “propensity” of a case “like” i to take the value yi.

Suppose now that the value yi is missing, with imputed value
[image: image116.wmf]. Corresponding to this imputed value we then (often implicitly) have an estimator
[image: image117.wmf] of pi. We shall assume

1. The imputed value
[image: image118.wmf] is a random draw from a distribution for Y characterised by the probabilities
[image: image119.wmf];

2. Imputed and actual values are independent of one another, both for the same individual as well as across different individuals.

The basis of assumption 1 is that typically the process by which an imputed value is found corresponds to a random draw from a “pool” of potential values, with the
[image: image120.wmf] corresponding to the empirical distribution of different Y-values in this pool. The basis for the between individuals independence assumption in 2 is that the pool is large enough so that multiple selections from the same pool can be modelled in terms of a SRSWR mechanism, with different pools handled independently. The within individual independence assumption in 2 is justified in terms of the fact that the pool values correspond either to some theoretical distribution, or they are based on a distribution of “non-missing” Y-values, all of which are assumed to be independent (within the pool) of the missing Y-value. Essentially, one can think of the pool as being defined by a level of conditioning in the data below which we are willing to assume values are missing completely at random (i.e. a MCAR assumption).

Given this set up, we then have

[image: image121.wmf]
and

[image: image122.wmf]
In order to assess the performance of the imputation procedure that gives rise to
[image: image123.wmf], we first consider preservation of the marginal distribution of the variable Y. We develop a statistic with known (asympotic) distribution if this is the case, and use it to test for this property in the imputations.

To make things precise, we shall say that the marginal distribution of Y has been preserved under imputation if, for any i,
[image: image124.wmf]. It immediately follows that if this is the case then
[image: image125.wmf] and
[image: image126.wmf]. Hence

[image: image127.wmf]
and

[image: image128.wmf]

(A1)

Consequently,

[image: image129.wmf]

(A2)

and so an unbiased estimator of (A1) is

[image: image130.wmf].

For large values of n the Wald statistic

[image: image131.wmf]
then has a chi square distribution with c degrees of freedom, and so can be used to test whether the imputation mehod has preserved the marginal distribution of Y. See the main text for the definitions of R, S and T.

In order to assess preservation of true values, we consider the statistic

[image: image132.wmf]
where I(x) denotes the indicator function that takes the value 1 if its argument is true and is zero otherwise. If this proportion is close to zero then the imputation method can be considered as preserving individual values.

Clearly, an imputation method that does not preserve distributions cannot preserve true values. Consequently, we assume the marginal distribution of Y is preserved under imputation. In this case the expectation of D is

[image: image133.wmf]
where
[image: image134.wmf] denotes that the value for Y is category j, with
[image: image135.wmf] defined similarly, and 1 denotes a vector of ones. Furthermore, the variance of D is

[image: image136.wmf]
unless there are a substantial number of missing values for Y drawn from distributions that are close to degenerate. Using (A2), we see that

[image: image137.wmf]

[image: image138.wmf]
and hence an approximately unbiased estimator of the variance of D (given preservation of the marginal distribution of Y) is

[image: image139.wmf]
Appendix 3: Code for Evaluation Program Used By EUREDIT

Definitions

Input values

n – number of observations

m – number of variables

From perturbed differences file

trow - row index

tcol – column index

tval – true value

pval – perturbed value

From imputed differences file

irow – row index

icol – column index

oval – original value in perturbed data file (may be true or

 perturbed value)

ival – imputed value

Summary statistics information

sumwts
- sum of weights

t1[j]

- weighted sum of true values

&t2[j]
- weighted sum of true values squared

wt_mean[j]
- weighted mean

wt_var[j])
- weighted variance

varD[j]
- jacknife variance (Vw(Y))

iqr[j]
- interquartile range

Information on the categories for categorical variables is also input from the summary statistics file.

Start Algorithm

Initialise counters to zero

for j=0 to j = m-1
 Definition

{

a[j] = 0 number accept/correct

b[j] = 0 number reject/correct

c[j] = 0 number accept/incorrect

d[j] = 0 number reject/incorrect

nimp[j] = 0 number imputed

D[j] = 0.0 yhat - ystar

D2[j] = 0.0 (yhat-ystar)^2

Dmin[j] = Big min(yhat-ystar)

Dmax[j] = -Big max(yhat-ystar)

Dcat[j] = 0.0 weight*(cat(y)-cat(ystar) [c] only

EY1[j] = 0.0 - weight*ystar (+ weight*y in [c])

EY2[j] = 0.0 - weight*ystar^2 (+ weight*y*y in [c])

saw[j] = 0.0 weights for [a]

sbw[j] = 0.0 weights for [b]

scw[j] = 0.0 weights for [c]

sdw[j] = 0.0 weights for [d]

DL1[j] = 0.0 weight*abs(yhat-ystar)

DL2[j] = 0.0 weight*(yhat-ymin)^2

DLi[j] = 0.0 max(weight*(yhat-ymin)

m1[j] = 0.0 weight*(yhat-ystar)

m2[j] = 0.0 weight*(yhat^2-ystar^2)

Dcount[j] = 0.0 category(yhat)==category(ystar)

Dgen[j] = 0.0 abs(category(yhat)-category(ystar))

 wt_sum[j] = sumwts sum of weights for yhat=ystar

}

Loop over ‘virtual’ data

Note in the algorithm ++ means increment value by 1 i.e., if the value of d[2] = 20 then d[2]++ changes the value to 21.

Distance(x,y) is block matrix distance. If a returned category is not valid the observation is skipped and the number of such errors reported.

Get perturbed and impute values

for i=0 to i = n-1

{

get weight for ith observation: wts

(set to 1.0 for unweighted)

for j = 1 to m-1

{

if no changes to i,j

{

Correctly accept [a]

a[j]++

saw[j] = saw[j] + wts

G = G + probi,j

}

else if perturbed and imputed both report change

{

Correctly reject (impute) [d]

if pval = miss_val

{

if no imputation SKIP VALUE

}

else

{

d[j]++

E1 = 0

YY = 0

G = G + (1.0-probi,j)

if continuous and applicable

{

EY1[j] = EY1[j] - wts*tval

EY2[j] = EY2[j] - wts*tval*tval

}

}

if imputations and ival=miss_val

{

nmm++

SKIP VALUE

}

if tval not applicable or ival not applicable

{

goto SKIP_VALUE

}

if imputations and variable continuous

{

nimp[j]++

sdw[j] = sdw[j] + wts

Store values tval,ival,wts as (y,x,wt)

m1[j] = m1[j] + wts*(tval-ival)

m2[j] = m2[j] +

wts*(tval*tvalival*ival)

if (ival!=tval)

{

tempR = abs(ival-tval)

DL1[j] = DL1[j] + wts*tempR

DL2[j] = DL2[j] +

wts*tempR*tempR

if tempR > DLi[j] then

DLi[j] = tempR

wt_sum[j] = wt_sum[j] - wts

Drop tval

W = -wts/(sumwts-wts)

tempR = (tval-wt_mean[j])

wt_mean[j] = wt_mean[j] +

tempR*W

wt_var[j] = wt_var[j]+

tempR*tempR*W*sumwts

Add ival

W = wts/sumwts

tempR = (ival-wt_mean[j])

wt_mean[j] = wt_mean[j] +

tempR*W

wt_var[j] = wt_var[j] +

tempR*tempR*W*(sumwts-wts)

}

}

if imputations and categorical variable

{

if tval = ival

{

Dcount[j] = Dcount[j] + 1.0

nimp[j]++

}

else

{

increment table count

if tval valid

{

Dgen[j] = Dgen[j] +

Distance(tval,ival)

}

}

}

get next perturbed value and impute value

}

else if only imputed report change

{

Incorrectly reject (impute) [b]

b[j]++

sbw[j] = sbw[j] + wts

E1 = 0

G = G + probi,j

if continuous variable

{

if oval valid

{

EY1[j] = EY1[j] - wts*oval

EY2[j] = EY2[j] - wts*oval*oval

}

}

if imputations and ival==miss_val

{

nmm++

SKIP VALUE

}

if oval not applicable or ival not applicable

{

SKIP VALUE

}

if imputations and continuous variable

{

nimp[j]++

Store values oval, ival, wts as (y,x,wt)

m1[j] = m1[j] + wts*(oval-ival)

m2[j] = m2[j] +

wts*(oval*oval-ival*ival)

tempR = abs(ival-oval)

DL1[j] = DL1[j] + wts*tempR

DL2[j] = DL2[j] + wts*tempR*tempR

if (tempR>DLi[j]) then

DLi[j] = tempR

wt_sum[j] = wt_sum[j] - wts

Drop oval

W = -wts/(sumwts-wts)

tempR = (oval-wt_mean[j])

wt_mean[j] = wt_mean[j] + tempR*W

wt_var[j] = wt_var[j] +

tempR*tempR*W*sumwts

Add ival

W = wts/sumwts

tempR = (ival-wt_mean[j])

wt_mean[j] = wt_mean[j] + tempR*W

wt_var[j] = wt_var[j] +

tempR*tempR*W*(sumwts-wts)

}

if imputations and categorical variable

{

if tval applicable

Dgen[j] = Dgen[j] +

Distance(oval,ival)

nimp[j]++

increment table count

}

get next imputed value

}

else if only perturbed change reported

{

Incorrectly accept [c]

if pval = miss_val

{

if imputation then nmm++

SKIP VALUE

}

if tval not applicable or pval not applicable

{

SKIP VALUE

}

G = G + (1.0-probi,j)

if continuous variable

{

 EY1[j] = EY1[j] - wts*(tval-pval)

 EY2[j] = EY2[j] - wts*(tval*tval –

pval*pval)

}

c[j]++

scw[j] = scw[j] + wts

YY = 0

if continuous variable

{

tempR = pval-tval

D[j] = D[j] + wts*tempR

D2[j] = D2[j] + wts*tempR*tempR

if tempR < Dmin[j] then
Dmin[j] = tempR

if tempR > Dmax[j]then Dmax[j] = tempR

wt_sum[j] = wt_sum[j] - wts

Drop tval

W = -wts/(sumwts-wts)

tempR = tval-wt_mean[j]

wt_mean[j] = wt_mean[j] + tempR*W

wt_var[j] = wt_var[j] +

tempR*tempR*W*sumwts

Add pval

W = wts/sumwts

tempR = pval-wt_mean[j]

wt_mean[j] = wt_mean[j] + tempR*W

wt_var[j] = wt_var[j] +

tempR*tempR*W*(sumwts-wts)

}

if categorical variable

{

if ordinal

{

Dcat[j] = Dcat[j] +

Distance(tval,pval)*wts

}

else

{

Dcat[j] = Dcat[j] + wts

}

get next perturbed value

}

}

}

Case level statistics

if E1==1 and YY==1

{

ra++

}

else if E1 = 1

{

rc++

}

else if YY = 1

{

rb++

}

else

{

rd++

}

}

Calculate variable statistics

for j = 1 to m-1

{

if (c[j]>0)

{

alpha = c[j]/(c[j]+d[j])

}

else

{

alpha = 0.0

}

if (b[j]>0)

{

beta = b[j]/(a[j]+b[j])

}

else

{

beta = 0.0

}

rn = a[j] + b[j] + c[j] + d[j]

delta = (b[j]+c[j])/rn

if continuous variable

{

RAE = D[j]/t1[j]

RRASE = sqrt(D2[j])/t1[j]

 RER = (Dmax[j]-Dmin[j])/iqr[j]

 tj = D[j]/sqrt(varD[j])

R = sumwts/(saw[j]+scw[j])

EY1[j] = (R-1.0) + (EY1[j]/t1[j])*R

AREm1 = abs(EY1[j])

EY2[j] = (R-1.0) + (EY2[j]/t2[j])*R

AREm2 = abs(EY2[j])

}

else

{

Dcat = Dcat[j]/rn

tj = Dcat[j]/sqrt(varD[j])

}

if imputation and continuous

{

wimp = sbw[j] + sdw[j]

if (wimp>0)

{

dL1 = DL1[j]/wimp

dL2 = sqrt(DL2[j]/wimp)

dLinf = nimp[j]*DLi[j]/wimp

}

if nimp[j] > 1

{

Retrieve values (y,x,wt) for variable

Call regression(y,x,wt)

Compute K-S statistics

sort(x)

sort(y)

ksa = 0.0

ks1 = 0.0

ks2 = 0.0

i = 0

k = 0

fnx = 0.0

fny = 0.0

if x[0] < y[0]

{

t0 = floor(x[0])

}

else

{

t0 = floor(y[0])

}

if (x[nimp[j]-1] > y[nimp[j]-1]

{

t2n = x[nimp[j]-1]

}

else

{

t2n = y[nimp[j]-1]

}

x[nimp[j]] = Big

y[nimp[j]] = Big

point = t0

while i < nimp[j] or k < nimp[j]

{

if (x[i] < y[k])

{

fnx = (i+1)/nimp[j]

step = x[i] - point

point = x[i]

++i

}

else if (y[k] < x[i])

{

fny = (k+1)/nimp[j]

step = y[k] - point

point = y[k]

++k

}

else

{

fnx = (i+1)/nimp[j]

++i

fny = (k+1)/nimp[j]

++k

while i<nimp[j] and x[i]=x[i-1])

{

fnx = (i+1)/nimp[j]

++i

}

while k<nimp[j] and y[k]=y[k-1])

{

fny = (k+1)/nimp[j]

++k

}

if x[i] <= y[k]

{

step = x[i] - point

point = x[i]

}

else

{

step = y[k] - point

point = y[k]

}

}

tempR = abs(fnx-fny)

if (tempR > ksa)

ksa = tempR

ks1 = ks1 + tempR*step

ks2 = ks2 + tempR*tempR*step

}

if x[nimp[j]] > y[nimp[j]]

{

point = x[nimp[j]]

}

else

{

point = y[nimp[j]]

}

step = t2n - t0

K-S = ksa

if (step>0.0)

{

if ks1 > 0

{

K-S_1 = ks1/step

}

else

{

K-S_1 = -ks1/step

}

K-S_2 = ks2/step

}

m_1 = abs(m1[j])/wimp

m_2 = abs(m2[j])/wimp

}

if wt_sum[j] > 0.0

{

tempR = wt_mean[j] - true_mean[j]

MSE = wt_var[j]/sumwts/wt_sum[j] +

 tempR*tempR

}

}

else if imputation and categorical

{

Extract vectors R and S and matrix T from

values stored in tables and forming vec = R-S and

matrix = diag(R+S)-T-Tt

remove not applicable and empty rows and columns

calculate choleski of matrix (in situ)

solve matrix with vec to give vec (in situ)

W = 0.0

for (i=0 i<k i++)

{

W = W + vec[i]*vec[i]

}

W = W

D = 1.0 - Dcount[j]/nimp[j]

tempR = sqrt(Dcount[j]/(double)(nimp[j]*nimp[j]))

tempR = (1.0 - Dcount[j]/nimp[j]) - 2.0*tempR

if (tempR > 0.0)

{

Eps = tempR

}

else

{

Eps = 0.0

}

if variable is ordinal

{

tempR = number of true applicable categories

 -1

Dgen = 0.5+0.5*(Dgen[j]/tempR-

 count[j])/nimp[j]

}

}

}

}

Case level statistics

if probabilities supplies

{

G = G/(2*m*n)

}

if (rc>0)

{

A = rc/(rc+rd)

}

else

{

A = 0.0

}

if (rb>0)

{

B = rb/(ra+rb)

}

else

{

B = 0.0

}

C = (rb+rc)/n

Regression Algorithm

Input y, x, optional wt, n = length(y), c = 2.0, tol = 0.00001

Note: this will return errors if x values are identical or if scale is zero (see mad function)

scale = 0.0

beta = 0.0

while iterations < 50

{

ssx = 0.0

cxy = 0.0

for i = 0 to n-1

{

res = scale*abs(y[i]-beta*x[i])

if (res > c)

{

wwt = c/res

}

else

{

wwt = 1.0

}

if weights

wwt = wwt*wt[i]

xi = x[i]

yi = y[i]

ssx = ssx+wwt*xi*xi

cxy = cxy+wwt*xi*yi

}

if ssx = 0.0

{

return with error

}

beta = cxy/ssx

if iter = 1

{

beta0 = beta

}

else

{

if abs(beta-beta0) < tol then

exit iterations

}

for i = 0 t n-1

{

r[i] = y[i] - beta*x[i]

}

call mad with input r return scale

if scale = 0.0

{

return with error

}

scale = 1.0/scale

}

Slope = beta

t_val = (beta-1.0)*scale*sqrt(ssx)

Compute R^2 values

ybar = 0.0

xbar = 0.0

if weights

{

wtsum = 0.0

for i = 0 to n-1

{

ybar = ybar + y[i]

xbar = xbar + x[i]

wtsum = wtsum + wt[i]

}

if wtsum <= 0.0

{

return with error

}

ybar = ybar/wtsum

xbar = xbar/wtsum

ssx = 0.0

ssy = 0.0

cxy = 0.0

rsum = 0.0

for i = 0 to n-1

{

xi = x[i] - xbar

yi = y[i] - ybar

ssx = ssx + wt[i]*xi*xi

ssy = ssy + wt[i]*yi*yi

cxy = cxy + wt[i]*xi*yi

res = y[i] - beta*x[i]

rsum = rsum + wt[i]*res*res

}

}

else

{

for i=0 to n-1

{

ybar = ybar + y[i]

xbar = xbar + x[i]

}

wtsum = n

ybar = ybar/wtsum

xbar = xbar/wtsum

ssx = 0.0

ssy = 0.0

cxy = 0.0

rsum = 0.0

for i = 0 to n-1

{

xi = x[i] - xbar

yi = y[i] - ybar

ssx = ssx + xi*xi

ssy = ssy + yi*yi

cxy = cxy + xi*yi

res = y[i] - beta*x[i]

rsum = rsum + res*res

}

}

if ssy non-zero and ssx non-zero

{

R^2 = cxy*cxy/(ssx*ssy)

}

mse = rsum/(double)(n-1)

mad function

input y, n = length(y), return scale

Note if the (n+1)/2 middle observations are identical this will return scale = zero

if (n == 2)

{

xme = (y[0] + y[1]) / 2.0

if (y[0] > y[1])

{

xmd = y[0] - xme

}

else

{

xmd = y[1] - xme

}

scale = xmd / .6744897501962755

}

else if n > 2

{

rank y into rank

convert rank into index

km = (n + 1) / 2 - 1

xme = y[rank[km]]

if n is even

{

xme = 0.5*(xme + y[rank[km+1]])

}

k = -1

k1 = km

k2 = km

x1 = 0.0

x2 = 0.0

 Loop:

if k < km

{

k++

if (x1 > x2)

{

k2++

if k2 <= n

{

x2 = y[rank[k2]] - xme

goto Loop

}

}

else

{

k1--

if k1 >= 0

{

x1 = xme - y[rank[k1]]

goto Loop

}

}

}

if x1 < x2

{

xmd = x1

}

else

{

xmd = x2

}

scale = xmd / .6744897501962755

}

8
31

_979847590.unknown

_979847692.unknown

_979847984.unknown

_979848213.unknown

_979848394.unknown

_980455508.unknown

_980486596.unknown

_1018333396.unknown

_1018339530.unknown

_980486608.unknown

_1018297435.unknown

_980455558.unknown

_980455571.unknown

_979848463.unknown

_979848493.unknown

_979848522.unknown

_979848532.unknown

_979848479.unknown

_979848418.unknown

_979848439.unknown

_979848406.unknown

_979848270.unknown

_979848300.unknown

_979848383.unknown

_979848280.unknown

_979848236.unknown

_979848249.unknown

_979848226.unknown

_979848165.unknown

_979848190.unknown

_979848202.unknown

_979848179.unknown

_979848034.unknown

_979848050.unknown

_979847997.unknown

_979847787.unknown

_979847861.unknown

_979847939.unknown

_979847953.unknown

_979847885.unknown

_979847814.unknown

_979847846.unknown

_979847804.unknown

_979847726.unknown

_979847776.unknown

_979847711.unknown

_979847642.unknown

_979847671.unknown

_979847681.unknown

_979847660.unknown

_979847618.unknown

_979847631.unknown

_979847600.unknown

_979846643.unknown

_979847119.unknown

_979847310.unknown

_979847545.unknown

_979847568.unknown

_979847578.unknown

_979847556.unknown

_979847347.unknown

_979847383.unknown

_979847535.unknown

_979847394.unknown

_979847372.unknown

_979847328.unknown

_979847211.unknown

_979847261.unknown

_979847282.unknown

_979847247.unknown

_979847157.unknown

_979847197.unknown

_979847144.unknown

_979846856.unknown

_979847054.unknown

_979847089.unknown

_979847106.unknown

_979847070.unknown

_979846885.unknown

_979847039.unknown

_979846868.unknown

_979846768.unknown

_979846805.unknown

_979846841.unknown

_979846791.unknown

_979846688.unknown

_979846704.unknown

_979846657.unknown

_979846457.unknown

_979846560.unknown

_979846605.unknown

_979846620.unknown

_979846580.unknown

_979846505.unknown

_979846533.unknown

_979846483.unknown

_979844576.unknown

_979846242.unknown

_979846418.unknown

_979846442.unknown

_979846391.unknown

_979846279.unknown

_979846147.unknown

_979846221.unknown

_979846103.unknown

_979846126.unknown

_979846084.unknown

_979842201.unknown

_979842254.unknown

_979842287.unknown

_979844367.unknown

_979842270.unknown

_979842230.unknown

_979842030.unknown

_979842175.unknown

_979841736.unknown

_979841987.unknown

_979806705.unknown

_979806720.unknown

