Chapter 3 Neural Network MLP

Peter Linde, Emanuela Scavalli

1 Introduction

A neural network is a way of modelling data based on computer learning. The networks are built from a training dataset where structures in the data are found by the use of algorithms that use no a priori given information. The advantage of a neural network is that no prejudiced opinions affect the modelling. On the other hand, the lack of expert knowledge used can lead to unreasonable results.

The MLP Neural networks are composed of layers of elementary units, called neurones, linked to one another by weighted connections. The training of a network is a process where the set of weights is optimised in order to make the best prediction of the target variable on the basis of background variables. A MLP Neural Network can in theory approximate any distribution as precisely as we desire. It is possible to choose between several approximations to the distribution one wants to describe. In order to obtain the best approximation much computer power is needed, but it is possible to do the calculations on a modern standard computer within acceptable time. MLP Neural Networks are implemented in some of the program packages for statistical analysis.

The training is done with a training dataset where the truth is known; that is a dataset which is expected to contain no missing values or errors, and where both background and target variables are known.

The MLPs can be used for both localising errors and imputing missing values. There are two approaches for error localisation. The first one considers the presence or absence of an error as target variable. For this approach the presence of both clean and perturbed datasets are required for training the networks. By comparing clean and perturbed data, an indicator of presence/absence of errors for each variable is calculated. The network is trained on the perturbed data with the indicator variable.

The other approach consists in considering as target variable the variable itself. If the predicted value differs from the actual value then it can be considered erroneous.

As far as the imputation process is concerned, MLPs (with target variable equal to the variable itself) are trained on those records for which the target value is not missing, and the networks thus generated are applied for imputing missing values.

In the used software package, Clementine, it is possible, through the analysis node, to make analysis and comparison of results obtained by different predictive models evaluating their ability to generate accurate predictions. It performs various comparisons among actual values and predicted values for one or more generated models. It generates the coincidence matrices that show the pattern of matches between each generated (predicted) field and its target field for symbolic target. A table is displayed with rows defined by actual values and columns defined by predicted values, with the number of records having the partner in each cell. This is useful for identifying systematic errors in the prediction.

2 Method

2.1 MLP-neural networks

2.1.1 Description of the MLP methods applied

The terminology of neural networks has developed from a biological model of the brain. A neural network consists of a set of connected cells: The neurons. The neurons receive impulses from either input cells or other neurons and perform some kind of transformation of the input and transmit the outcome of the transformation to other neurons or to output cells. The neural networks considered in this paper are built from layers of neurons connected so that one layer receives input from the preceding layer of neurons and passes the output on to the subsequent layer. Networks where the information runs in one direction only are called feed forward networks.

The neurons are built as shown in figure (3.1). A neuron is simply a real function of the input vector
[image: image1.wmf](

)

k

y

y

,

,

1

K

. The output is obtained as
[image: image2.wmf](

)

å

=

+

=

k

i

j

ij

j

j

y

w

f

x

f

1

)

(

a

, where
[image: image3.wmf]f

is a function, typically the sigmoid (logistic or tangent hyperbolic) function.

[image: image4.png]
Figure 3.1: A single neuron.

In a Neural Network the neurons are gathered in layers as shown in figure (3.2). When the network presents one or more hidden layers it is named Multi-Layer Perceptron (MLP). The feed forward structure is illustrated by the arrows, which point in one direction only. The number of input neurons equals the dimension of the input vector and they transmit the input values ahead.

[image: image5.png]
Figure 3.2. MLP with one hidden layer.

Mathematically an MLP-network is a function consisting of compositions of weighted sums of the functions corresponding to the neurons. The models of the MLP networks were developed in the late fifties, but the lack of computer power made it impossible to use the models until the middle of the eighties, where it became possible to use MLP networks for practical purposes. The MLP networks are the most used neural networks and they are often referred to simply as neural networks. We will not give a formal description of the mathematics used to optimize the MLP models. The algorithm used is an iterative process called back-propagation. For a good treatment of the subject we refer to Ripley chapter 5 or Bishop. In Bishop (page 130, paragraph 4.3.2) references are given to several papers where it is proven that a MLP network with one hidden layer can approximate any continuous function defined on a space of final dimension.

It is well known that any continuous function given on a closed and bounded interval can be approximated by a polynomium or a piecewise linear function. The task of approximating is quite more difficult in the case of functions of more than one variable. For instance, if a function of ten variables was to be approximated by a polynomium of fifth degree it would take more than 510 (≈ 9,7 Millions) parameters. One of the forces of the MLP neural networks is that they can approximate functions of several variables by a limited number of parameters.

If the number of hidden neurons is arbitrary a network that fits the training dataset arbitrarily well can be found. However, this does not imply that the statistical model of the network represents a good model, it might not generalize, i.e. describe what generally happens in data of the studied kind. This is in analogy with regression models where a polynomium of a degree too high is used. The complexity of the model diminishes by reducing the number of hidden neurons.

Two datasets are often used to test the ability of generalization of a network. In the first one the parameters are estimated (training dataset), and in the other one the ability of generalizing is examined (validation set). After checking different models, i.e. different configurations of neural networks, the network that fits best the validation set is chosen. This configuration need not be the same as the one that fits best the training set.

In standard statistical modelling the insignificant parameters are removed on the basis of statistical testing. In Clementine it is possible to remove insignificant parameters of neurons through pruning. This is done by removing the neurons with the smallest parameters, but as for linear models, small parameters need not be insignificant. It is not possible to prune on the basis of statistical tests, since no test statistics are connected to the weights.

Clementine

Clementine is a computer programme developed by SPSS for data mining. The focus of data mining is to determine models that predict well. In Clementine there are procedures for MLP networks, cluster analyses, linear regression and logistic regression.

Clementine contains a very large number of statistical models. With a few clicks you can via menus set up very complicated models. The disadvantage of this user-friendly surface is that it restricts the flexibility in the available models . We see, for example, that Clementine only works with quadratic error functions, and these are optimal only when the error term is normally distributed. Clementine is indeed very user-friendly, and for someone who already has some computer knowledge, it only takes a couple of hours in order to get to know Clementine.

The MLP network of Clementine can handle up to 3 hidden layers. This limitation has no significance, practically speaking, as models with 4 hidden layers or more, rarely occur in empirical analyses and, furthermore, these models will be very slowly processed.

There is no explicit limit to the number of neurons in each layer, but since the processing time increases with the number of neurons, we have an empirical maximal limit. Models with a large number of neurons demand a large amount of memory in order to process it in a limited amount of time. In fact, each layer of neurons is completely connected, i.e. all input neurons are completely connected to the first layer and all neurons in the first layer are connected to the second layer etc.

Clementine has four different training methods for building MLP models; the choice of method depends on different issues, such as how much influence on the model choice does one want, and also on the availability of time and processing power.

Quick - This method uses rules of thumb and an analysis of the data for choosing an appropriate topology for the network. The user can specify some parameters (number of layers, neurons, etc.) according to several factors relating to the quantity and type of training data.

Dynamic - This method uses a ”dynamically growing” network. It creates an initial topology, but it modifies the topology by adding and/or removing hidden units as training progresses. This option is expensive in time, but often yields good results.

Multiple - Many networks are created each with a different topology, some with one hidden layer, and some with two hidden layers, and with a varying number of hidden units. The networks are trained pseudo-parallel and the model with the lowest RMS error is chosen. This option is also very time consuming.

Prune - This method “prunes” neurones from both the hidden and the input layers. Unlike the standard pruning, where each weight (parameter) is removed one at a time, Clementine is only able to remove a whole neuron at the same time. It starts off with a large two-layer network, and whilst training, discards the weakest hidden neurons. After selecting the optimum size neurons for the hidden layers, Clementine starts to remove the weakest input neurons to find the optimum input neurons. Clementine's prune models frequently take a long time to converge.

Training of the MLPs in Clementine

For the training of the MLP's Clementine applies the back-propagation algorithm.

It is possible in Clementine to set four different criteria enabling to stop the search for the best possible network:

· Default, the network stops training when it appears to have reached its optimally trained state;

· It stops after a specified amount of CPU time;

· It stops after a given number of iterations;

· It stops when the error of validation of the dataset goes below a certain defined threshold value.

The search for a neural network can result in overtraining. The overtraining concept means that a too specific model has been determined for the dataset, but it cannot be applied to any other set of data. Clementine has a built-in cross-validation option in order to avoid overtraining. The cross-validation option works as follows; the dataset is split up into two parts: a training dataset for estimation and a validation dataset. Back-propagation uses the training dataset in order to only customize the weights. After each iteration, in which weights are customised, it is determined how well the model fits the test data. The best model fitting the test data is then applied.

The Procedures

As far as the editing phase is concerned, two different approaches have been considered and tested. In the first one the network predicts the variable in question and the value is considered an error if it differs (too much) from the predicted value (prediction approach). In the other approach the presence or absence of errors is considered as target variable for the network. In this approach the training data set consists of perturbed data where the target variable is a flag variable that states whether the value is an error or correct. Such generated network is then used on the data set that has to be edited (flag approach).

The two approaches have been differently applied to the investigated data sets i.e. the ABI data, the DLFS data, and the SARS data. In particular, the prediction approach has been mainly applied to edit continuous variables, while the flag approach to not continuous ones. In the following, the procedures are described with focus on these three data sets.

The method used for editing and imputation on data with continuous variables

The focus in this section is on editing, but the described procedure can be also seen as an element of imputation. The main example is done on the ABI data, but the method has also equally applied to the DLFS data and to some variables of SARs data. The approach is the prediction approach.

Step 1: Validation of data

The first step in a process of data editing is to examine the marginal distributions for all variables in order to determine whether any variable takes invalid values, i.e. values not in the domain of definition, or whether simple logical constraints are respected, for example, that certain figures add up to something else than the sum. A neural network is capable of determining these types of errors, but the point is that the neural network should not be a substitution for simple data editing.

If possible, it would be useful to examine the marginal distributions in order to clarify whether they seem probable. If an equivalent dataset (for example, the same type of dataset for an earlier year) exists, then it could be possible to examine whether the two marginal distributions have any similarities. Graphs are often useful when the aim is to illustrate the marginal distributions, and graphs are therefore a good tool to perform such an examination.

Step 2: Training dataset

The neural network needs training data with no errors. This training data can be obtained by, for example, manual data editing of a segment of the data, for example, 1,000 records. The determination of the size of this dataset with no errors depends on different factors, for example, on the available resources, and analysis of how large datasets are needed in order to train the neural network. An alternative would be to use a similar corrected dataset referring to the previous calendar year. However, if there are large differences between the data that is to be trained and data from the previous year, then the neural network does not work optimally.
If the data to be edited is a very heterogeneous set, then it will sometimes be an advantage to split up the data into more homogeneous groups, and then edit the groups separately.

Step 3: Training of MLP

A neural network is trained by using the variable that is to be edited as target, and using all other variables as explanatory variables. Through the software Clementine it is possible to set up different MLP parameters. Then the best neural network is chosen on the basis of a validation dataset. Alternative possibilities are suggested in the section above.

Step 4: Using the model on the dataset that needs editing or imputation

The model defined in step 3 estimates the target variable in the data that is to be edited or imputed. The difference between the observed and the predicted (expected) value is calculated in order to localise errors: if this difference is large, then the value is classified as erroneous. The exact magnitude of the threshold difference cannot be defined generally, as this widely depends on the specific situation; often it can be considered a difference of 5 times the standard deviation. The choice depends on the tolerance levels of errors in the data material, and also on an analysis of the most efficient use of the resources, which have to be used when evaluating whether a potential error in fact is a real error.

The threshold difference

A general problem that arises when the prediction approach is used with continuous data is selecting the optimal number of records to mark as erroneous. If too few records are marked, too many of the unmarked records are erroneous. On the other hand, if too many errors are marked, too many non-erroneous records are marked as errors. Therefore, a method to balance these two considerations was introduced
.

In the following, the editing process is considered with respect to a dataset in which the true values are known. The basic idea we have employed in the editing process was to use neural networks to predict a value for the variable in question and then to mark the value in the perturbed data set as an error, if the difference between the predicted value and the value in the perturbed dataset was large. First, a neural network is trained and it is used to predict a value for the variable in question. The difference between the predicted and the given value is then calculated for each record. The records are then sorted in descending order of this difference. Finally, the first records are deemed errors and the last records are deemed non-errors. The problem is selecting an optimal number of records to mark as erroneous. We use the following terminology:

The record number after the sorting is
[image: image6.wmf]w

. The total number of errors is
[image: image7.wmf]errors

N

. The number of true errors with a record number equal to or less than
[image: image8.wmf]w

 is denoted as
[image: image9.wmf])

(

w

n

errors

. The number of non-errors with a record number equal to or less than
[image: image10.wmf]w

 is denoted as
[image: image11.wmf])

(

w

n

errors

non

-

. With this denotation, the following expressions are introduced:

[image: image12.wmf]errors

errors

N

w

n

w

R

)

(

)

(

1

=

,

[image: image13.wmf]w

w

n

w

R

errors

non

)

(

)

(

2

-

=

.

The optimal number(s) of records to mark is/are then defined by

[image: image14.wmf]{

}

ximal

ma

is

w

R

w

R

w

w

optimal

))

(

1

(

)

(

2

1

-

=

.

There need not be a unique optimal number
[image: image15.wmf]optimal

w

, and the optimal numbers may be useless. On the other hand, we found that, if the method of editing is of a reasonable quality, the value(s) of
[image: image16.wmf]optimal

w

 may be used to define a cut-off point for the process of marking errors.

The problem is that this cut-off
[image: image17.wmf]w

can only be found if the errors in the data set examined are known. Therefore, we used the
[image: image18.wmf]optimal

w

 to define a proportion of records that needed to be marked as errors.

The algorithm for finding the number of records to be marked as errors is as follows:

· Train a neural network on the true values of the 1997 data.

· Use the network to predict values for the variable in question in the 1997 perturbed data and sort the data in descending order by the difference between the given value and the predicted value.

· Find an optimal cut-off point for the 1997 perturbed data and find the proportion of the data to be marked as erroneous.

· Use the network to predict values for the variable in question in the 1998 perturbed data and sort it in descending order by the difference between the given value and the predicted value.

· Mark the first records as errors, so that the marked records make up the same proportion of the data as the marked records in the 1997 dataset.

This algorithm was carried out for each of the trained networks.

The optimal
[image: image19.wmf]w

 is found by weighting the two opposing tasks of marking as many erroneous records as possible as erroneous and marking as few non-errors as erroneous as possible. Here, they are weighted equally. However, there may be other important issues to consider, before a decision is made on the weighting. If there is no problem in contacting the respondents again, more non-errors are marked.

Missing values

One of the fundamental issues that have to be raised in connection with MLP analysis is the treatment of missing values. The neural network includes a large number of variables simultaneously, and therefore quite often there will be a large number of missing values. The problem with missing values could be treated using one of the three approaches below.

1. For each variable with missing values we add a 0-1 variable to data. This variable equals one whenever the corresponding variable has a missing value, and it equals zero otherwise. The next step is to replace the missing values with the value 0.

This method is not elegant when it comes to handling missing values, but the method is simple, and it is one of the few methods that Clementine can handle.

In a linear regression framework, this solution would be implemented as adding a common level constant whenever the explanatory variable was missing, and the slope is estimated only on the basis of the observations where no explanatory variables are missing. This implies that predictions are too low when the dependent variable takes a high value, and vice versa.

2. Neural networks include only variables that are non-missing for all observations. This solution only makes sense if the variables that are non-missing for all observations are sufficiently effective in order to form a well-performing neural network.

3. Missing values are imputed before the data editing occurs. This solution implies possibly another problem, namely that the imputation is performed on the basis of some erroneous observations, and therefore one possibly conceals the specific error. If there exist variables from the previous year that have been edited, then they could be used for the imputation process, using for example a neural network, but this process is indeed complex.

The approaches 1. and 2. have been evaluated using the ABI data. A general conclusion on the performance of the two methods cannot be drawn here, since the conclusions that can be drawn in this set-up depend strongly on the data used.

Extreme values

If very large outliers are present in data, then these outliers will have a large impact on the parameters estimated in the neural network, this is especially due to the fact that Clementine only uses a quadratic error function. The problem occurring here is that there is a risk of under training the network, so that the structure of the dataset remains undetermined. In the ideal world you obtain a model describing all observations well, but the world is in this sense not always ideal, so the point is, that we would rather choose a model describing, say, 98 % of all observations well than a model describing the 2 % corresponding to the largest outliers. If it were possible to change the error function in Clementine to, for example, the Cauchy-distribution then this problem could be solved.

Rather than trying to solve this impossible problem, we have examined the consequences of determining the largest outliers and then removing them from the data. Outliers are, for example, defined as variables, which are further from the empirical mean than 5 standard deviations. An attempt of excluding all observations where there were at least one variable that had been determined as an outlier, was thereafter made. A total of about 2 % were in this way removed from the training datasets and the consequences of the training of the MLP have been evaluated.

The method used for editing and imputation on data with non continuous variables

In the following two different approaches (flag and prediction) are described with regard to the SARS data which consists mainly of non continuous variables. However, the prediction approach has not been adopted in the evaluation phase because very poor results were obtained in the development phase.

The flag approach

The starting data set is the set of perturbed data (newhhold(area2)me), with both missing and erroneous values. For this subset of data, original data are available (newhhold(area2)), so with a SAS program for each record an error indicator (ERR+variable name) has been calculated
. In the following, an example concerning the error localisation for the variable ROOMSNUM (number of rooms in the house) is shown.

The dataset used for the training contains the original perturbed values as well as the error indicators, where the target variable is the error indicator (in the example the ERRROOMSNUM).

The first step is the selection of records containing no missing or out of range values on ROOMSNUM since these can be considered obviously erroneous. In this way, in the error localisation application we predict a binary indicator assuming only "0" and "1" values.

The second step is the partition of the original datasets into two datasets for training and test. This is performed by creating a random variable which assumes only two values (1 and 2) and including all the records with value equal to ‘1’ in the training dataset and all records with value equal to ‘2’ in the test dataset.

The third step is the selection of the best MLP neural network. For this operation the choice of variables that can be relevant for the development of MLP neural networks for the target variable in the application has been done. This step is very important, as preliminary studies showed that redundant information may limit heavily the predictive capability of a neural network. So it is important to reduce the number of inputs to the ones really relevant.

Actually, a prior decision concerning which variables are relevant can be made in two ways:

· by applying the regression node, which, throughout a stepwise selection of all the variables, single out those directly related to the target value;

· by applying the MLP using in input all variables and selecting those variables, which result from the sensitivity analysis to have more influence on the network definition.

Then different networks were trained by using different inputs (all variables and those resulting from the previous step). Moreover, some parameters have been changed in order to obtain better performance. The most important parameters taken into account, given the results from previous testing made on network definition, are:

· number of hidden layers,

· number of neurons for each layer,

· model selection (quick or prune),

· balance (boost or reduce).

The balance option has been used only in those cases for which the training dataset contains only about 1% of target value ‘1’; in fact, in those cases the system finds many difficulties in creating the network for identifying the ‘1’ values since they are too rare. Therefore, the original dataset can be balanced in order to have the same proportion of ‘0’ and ‘1’ values of the target variable. This can be obtained by increasing the number of records having target value ‘1’ (balance boost) or decreasing the number of records having target value ‘0’ (balance reduce).

The experiments have shown that networks trained with balanced data-sets find a greater number of errors, but the number of “false positive” is up to ten times bigger than the real number of errors. For this reason, networks created by using the balance option have never been applied in the evaluation phase.

At the end of the process networks have been applied to the test dataset, the predicted values for each model have been compared with the true values and the best trained network has been chosen. The criteria adopted for the selection of the best network are on the following:

· maximise the percentage of values correctly classified,

· maximise the number of errors correctly identified,

· minimise the number of errors introduced with the network.

Finally, the best network has been applied to the whole SARs dataset (newhholdme); in this case, records containing missing and out of range values in the target variable have been previously discarded since they have been considered clearly wrong. At the end of the process, a SAS dataset has been produced; it contains the key variable of the dataset (NUMBER for the individual dataset, HNUM for the household dataset) and the predicted values for the target variable.

This step has been repeated as many times as the number of variables to be edited, obtaining as many datasets as the edited variables. Finally, a final dataset containing the key variable and all the predicted indicator variables has been created by using a simple SAS program.

For the editing phase all missing values and those values which were out of range have been considered clearly errors: for this reason in the output file the flag variables (which indicate 1=error 0=correct) have been put equal 1 and they have been excluded for the MLPs training. It should be underlined that many variables have been perturbed by introducing missing and values out of range and so the introduced errors to be identified through the MLPs were in practice very few. This had obviously a great influence on the capability of the method in predicting well errors.

It can be noted that in some cases the system was not able to create a model for identifying errors. It was the case of variables DISTWORK, HOURS, LTILL, MIGORGN, QUALNUM, QUALEVEL, ECONPRIM and URVISIT, probably because in those cases the percentage of errors is too low. The system was able to create models only specifying the balance option, but the number of false positive introduced by these models was particularly higher than the real errors: in that case no models have been constructed and the indicator variable in the final dataset for the evaluation reports only value ‘1’ for missing and out of range values that have been identified with a previous analysis of the data and not with the application of MLP neural networks.

Prediction approach

This approach has been applied only in the development phase but not in the evaluation phase; even if results demonstrate that the method is not good for these particular data, we believe that it could be important to describe the adopted procedure. The subset for which clean and perturbed data are available (newhhold(area2) and newhhold(area2)me) has been used for the experiments. As it has been done for the first approach, all missing and out of range values for the target variable have been excluded.

The steps of the process are the same used in the first approach, with the difference that the target value, in this case, is not the error indicator but is the variable itself.

In this case the output file obtained by applying the generated networks to the evaluation dataset (newhholdme) was composed by three variables: the identification variable (NUMBER for the individuals and HNUM for households), the original variable and the variable predicted by the network; starting from this file, by comparing the original variable with the predicted one, a flag variable has been created which assumes value equal 1 if values are different and 0 otherwise. Moreover, all records for which the original variable presents missing and out of range values have been put equal to 1 in the flag variable.

Finally, the files containing flag variables calculated for all variables to be edited have been merged into a general dataset in the same format of the original dataset, with the difference that here the variables contain only values 0 or 1 indicating the absence or presence of errors.

This method has not been applied in the evaluation phase, because during the development phase tests made on the dataset for which it was possible to verify the goodness of the method (newhhold(area2) and newhhold(area2)me) demonstrate that the model introduces a great number of errors. Below, an example on variable ROOMSNUM (number of rooms) is reported in which the confusion matrix compares the effective errors with those classified as errors by the model.

Table 3.1 Example on variable ROOMSNUM

	
	Classification according to the model

	Actual values
	0 (correct)
	1 (erroneous)
	total

	0 (correct)
	2882
	5390
	8272

	1 (error)
	145
	309
	454

	Total
	3027
	5699
	8726

In this, case the percentage of errors in the dataset is 5.5%; however the model introduces 65% of new errors because, according to this approach, each value not exactly fitted is classified as an error.

Imputation Procedure

This process, as for the editing process, has been performed step by step for each single variable. Two datasets have been imputed, one containing missing values and errors, one containing missing values and no errors. The subset without missing and out of range values for the target variable has been used for training neural networks setting the variable to be imputed as target variable.

In order to select the best network, the training dataset has been split into two subsets, one used to train the networks and the other one to test the efficiency of the networks: the predicted values for each model have been compared with the true values in the test set and the best trained network has been chosen. The criterion adopted for the selection of the best network consists in maximising the percentage of values correctly predicted. Then the generated network (the best one among different networks) has been applied to those records with missing values.

The output file was composed by three variables: the identification variable (NUMBER for the individuals and HNUM for households), the original variable and the imputed variable obtained by applying the network; starting from this file the predicted values have been substituted in place of the missing values. Finally, the files containing the imputed variables have been merged into a general dataset in the same format of the original dataset.

2.1.2 Evaluation

ABI data

Within the timeframe for experiments on editing the ABI data set, several methods of organizing the data and several topologies of the network were examined. On the basis of these experiments, the methods of the final editing were chosen. Two types of networks and two methods of organizing the data sets are used.

The "dynamic" and the "multiple" methods were generally superior to the other network topologies that Clementine offers. Therefore, these two network topologies are used in the final runs.

The organization of the training data sets is as follows.

Records with missing observations and records with complete observations are treated separately. Extreme values are omitted. This is done by removing records that contain values more than five times the standard deviation from the mean for one or more variables. Training is conducted on 50% of the material and the remainder is used for validation. Linear constraints are taken into account. The largest possible proportion of the data is used. There are two approaches for the treatment of records with missing values:

1. Training is conducted on the basis of variables that have no missing values in any record.

2. The missing values are set at zero and a dummy variable is introduced for each variable to mark whether the zero is a measured zero or a missing value that is set as zero.

Hence, there were four runs for each of the six variables that were used in the evaluation.

1. Dynamic neural network and missing values handled by introducing dummies

2. Dynamic neural network and missing values handled by using variables that contain no missing variables

3. Multiple neural network and missing values handled by introducing dummies

4. Multiple neural network and missing values handled by using variables that contain no missing variables

For each type of network (for instance approaches 1. and 2.), six neural networks needed to be trained – three networks for the long questionnaire and three for the short questionnaire, which results in twelve networks per variable that needed to be trained.

The runs were made on an ordinary PC with a Pentium II 300 MHz CPU on a Windows platform and a 512 K cache memory. The Operating System software employed was Windows NT and the neural networks were trained using SPSS Clementine and Exceed. These programs require 130 MB RAM, which was the RAM capacity of the computer used.

The criterion for “stop training” was the training time. Each network was trained for one hour, 12 hours of training for each variable. It is difficult to provide objective measures for the quality of the training, since the measures Clementine provides for accuracy seems to have a tenuous connection with the ability to predict.

In the ABI data, there are some logical edits that may be carried out. We marked an observation as erroneous, if it was in a collection of observations that did not pass muster logically. The logical editing rules employed are described in ABImeta.xls as fatal. Therefore, an observation that is marked as erroneous in accordance with logical editing rules need not be an error, but it is known that one of the observations in the linear band is erroneous.

Results

Results from the editing and the imputation on ABI data are given in the tables below. These tables are constituents of the tables given in the appendix. The naming in the appendix follows the naming keys given below.

Editing

Table 3.2

	assacq
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Alpha
	0.675958
	0.664360
	0.667820
	0.663194

	beta
	0.008249
	0.005616
	0.005616
	0.007020

	Delta
	0.040267
	0.037414
	0.037581
	0.038590

	RAE
	0.512819
	0.740624
	0.555241
	0.366602

	RRASE
	0.025831
	0.035472
	0.027607
	0.017692

	
	DA30911_res
	DA30912_res
	DA30921_res
	DA30922_res

	assdisp
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Alpha
	0.397849
	0.397849
	0.344086
	0.327957

	beta
	0.006367
	0.006367
	0.009637
	0.012218

	Delta
	0.018509
	0.018509
	0.020010
	0.022011

	RAE
	0.811698
	0.807562
	0.785128
	0.392653

	RRASE
	0.054727
	0.054123
	0.054668
	0.011695

	
	DA30911_res
	DA30912_res
	DA30921_res
	DA30922_res

	emptotc
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Alpha
	0.613176
	0.616554
	0.652027
	0.663851

	beta
	0.029491
	0.028597
	0.021269
	0.020018

	Delta
	0.085340
	0.084855
	0.081623
	0.081623

	RAE
	0.202821
	0.140898
	0.610985
	0.650962

	RRASE
	0.010179
	0.004485
	0.023576
	0.023724

	
	DA30911_res
	DA30912_res
	DA30921_res
	DA30922_res

	purtot
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Alpha
	0.650759
	0.639913
	0.640998
	0.639913

	beta
	0.048891
	0.050976
	0.052492
	0.047375

	Delta
	0.138409
	0.138571
	0.140023
	0.135506

	RAE
	0.149304
	0.036097
	0.035991
	0.048653

	RRASE
	0.005201
	0.002044
	0.002045
	0.002703

	
	DA30911_res
	DA30912_res
	DA30921_res
	DA30922_res

	taxtot
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Alpha
	0.622795
	0.620081
	0.629579
	0.624152

	beta
	0.022344
	0.023443
	0.019963
	0.023810

	Delta
	0.093755
	0.094401
	0.092464
	0.095207

	RAE
	0.863885
	0.854189
	0.494441
	0.576957

	RRASE
	0.028001
	0.027764
	0.019394
	0.020121

	
	DA30911_res
	DA30912_res
	DA30921_res
	DA30922_res

	turnover
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Alpha
	0.648598
	0.646729
	0.641121
	0.642991

	beta
	0.015004
	0.015181
	0.021006
	0.017123

	Delta
	0.069677
	0.069677
	0.074516
	0.071129

	RAE
	0.131725
	0.125099
	0.091723
	0.092228

	RRASE
	0.005426
	0.005345
	0.004219
	0.004224

	
	DA30911_res
	DA30912_res
	DA30921_res
	DA30922_res

Imputation

Table 3.3

	assacq
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Slope
	0,01821
	0,016889
	0,04091
	0,340092

	R^2
	0,464866
	0,686611
	0,801928
	0,740419

	m_1
	76,951817
	19,680722
	95,224837
	79,155005

	
	DA21911_res
	DA21912_res
	DA21921_res
	DA21922_res

	assdisp
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Slope
	0
	0
	0
	0

	R^2
	0,761639
	0,082478
	0,711521
	0,59558

	m_1
	13,941152
	20,973604
	11,598347
	3,200131

	
	DA21911_res
	DA21912_res
	DA21921_res
	DA21922_res

	emptotc
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Slope
	0,109263
	0,035999
	0,134197
	0,157013

	R^2
	0,73897
	0,4296
	0,742756
	0,740807

	m_1
	40,974881
	88,449802
	34,899257
	37,523637

	
	DA21911_res
	DA21912_res
	DA21921_res
	DA21922_res

	purtot
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Slope
	1,185309
	0,839763
	0,871193
	0,561672

	R^2
	0,963704
	0,980596
	0,982872
	0,921014

	m_1
	12,808925
	218,415462
	177,576865
	211,223071

	
	DA21911_res
	DA21912_res
	DA21921_res
	DA21922_res

	taxtot
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Slope
	0,117133
	0,183222
	0,081956
	0,094984

	R^2
	0,908489
	0,889174
	0,847897
	0,909455

	m_1
	10,83351
	7,80441
	12,285001
	12,040489

	
	DA21911_res
	DA21912_res
	DA21921_res
	DA21922_res

	turnover
	Dynamic dummy
	Dynamic given
	Multiple dummy
	Multiple given

	Slope
	0,993157
	0,933615
	1,013959
	0,998649

	R^2
	0,946305
	0,997016
	0,855072
	0,988689

	m_1
	50,300203
	475,28031
	188,903129
	175,610682

	
	DA21911_res
	DA21912_res
	DA21921_res
	DA21922_res

Naming key for the ABI data results:

"DA" 1 digit code + 4 digit code "_res.xls".

"DA": Statistics Denmark, ABI-data

The 1 digit code:
2 the perturbed data is in sec198(y2).csv

3 the perturbed data is in sec198(y3).csv

The 4 digit code:
 First digit: 0=editing , 1=imputation

Second digit:
Variables 1=assacq, 2=assdisp, 3=emptotc,

4=purtot, 5=taxtot, 6=turnover.

Third digit:
Model type: 1=dynamic, 2=multiple

Fourth digit
Missing values handling: 1=dummies, 2=given variables

DLFS data

The MLP networks are used to impute missing values for income in the LFS. The approach was almost the same as it was for the ABI data: Neural networks are trained to predict the variable in question and the predicted values are imputed.

The training data sets are organized in two ways in accordance with two different approaches to the structure of the data.

The data from persons who responded is used to train the neural network. Here, one makes the assumption that the structure of the income variable is the same for persons who responded and persons who did not respond. Data for this approach is in the lfsn_dk2(miss).csv and consists of 11404 records.

If one believes that the distribution of the income variable is not independent of the response variable, the training data should not consist of persons who responded to the survey. Therefore, an optimal training data set should consist of persons who did not respond, where their income is known. This is not self-contradictory, since the income data is found in a register and the interviews were conducted on other matters. The approach is not unproblematic, but was nevertheless used. The training data is a subset of a random sample from lfs_dk3.csv. The size of this sample is comparable with the data set lfsn_dk2(miss).csv. The records in the sample with the response variable equal to zero form the subset making up the training data.

Both the hardware and software used for the runs on the LFS are the same as the runs on the ABI.

The two training approaches produced two networks and five training algorithms (quick with one hidden layer and two or twenty neurons, dynamic, multiple, and prune) were examined. Thus there were ten networks that needed to be trained. Each network was trained for an hour.

Results

Table 3.4

	Income
	Q2

Respons
	Q20

Respons
	Dynamic

Respons
	Multiple

Respons
	Prune

Respons

	Slope
	0,923067
	0,939302
	0,89194
	0,913251
	0,893359

	R^2
	0,389709
	0,4573
	0,444923
	0,458385
	0,454109

	m_1
	4803,427074
	604,11223
	9550,945288
	5287,954654
	8771,476776

	
	DL21110_res
	DL21210_res
	DL21310_res
	DL21410_res
	DL21510_res

	Income
	Q2

Non-respons
	Q20

Non-respons
	Dynamic

Non-respons
	Multiple

Non-respons
	Prune

Non-respons

	Slope
	0,874363
	0,850923
	0,880874
	0,904084
	0,875386

	R^2
	0,319883
	0,370838
	0,388717
	0,375974
	0,374708

	m_1
	12347,50773
	17389,50796
	12159,50506
	6480,18496
	12557,75218

	
	DL21120_res
	DL21220_res
	DL21320_res
	DL21420_res
	DL21520_res

Naming key for DLFS data results:

"DL2" + 4 digit code+"_res.xls".

"DL2": Statistics Denmark, LFS-data

First digit:
1 = for imputation.

Second digit:
Topology of the net: 1= q2, 2=q20, 3=dyn, 4=mult, 5=prune.

Third digit:
Training data set: 1=training data consists of persons who responded, 2= training data consists of persons who did not respond

Fourth digit:
0.

Discussion

The results from the evaluation of editing and imputation are provided in the tables in Appendix “Results of key experiments”. There seems to be no pattern as to which method is best, except that the dynamic topology with the dummy treatment of missing values seems to be relatively poor.

Generally, quite a number of errors remain undetected by the method used – between 60 and 80 percent, and there seems to be a tendency whereby the lower the number of errors that are not detected, the higher the number of non-errors that are marked as erroneous. Although quite a number of non-erroneous observations are marked as errors, the percentage of misclassified records decline for every variable, when editing is performed, as compared with the situation in which no records are classified as erroneous.

The quality of editing seems to be more satisfactory, when the measures take into account the size of the error. This demonstrates that the method detects most important errors.

The method of imputation is of the same type as mean value imputation by linear regression without any random noise according to the model. Therefore, one cannot expect to have a high quality of predictive, ranking or distributional accuracy. Therefore, the main focus should be on the quality measures "slope" and "m_1".

The imputation in the data set containing both missing values and errors is of quite poor quality. The explanation for this is probably the high number of errors in this data set.

SARS data

The data available for the experiments consist of a sample of around 500,000 records related to the UK population census for 13 geographical areas. Each record corresponds to an individual and variables are referred to individuals and to the household of which the individual is member.

However, since it is not methodologically correct to handle data referred to the household into an individual dataset (because the dimension of the household could have more influence on results than the applied techniques) each original dataset has been split into two sets, one referred to the individuals and one to the households. The household dataset has been created considering only one record/individual per household. The selected record for each household is the one corresponding to PNUM=1.

All the available data for the project have been perturbed with a controlled introduction of missing values and errors. Only for some data (corresponding to the geographical area=2) also true data are available for the development phase.

The data used in the development phase consists of two data sets for the geographical area 2:

1. newhhold(Area2)new with true values;

2. newhhold(Area2)me with simulated missing values and errors.

From each dataset, two datasets have been extracted, one related to the households and one related to individuals, in particular we have:

1. newhhold(Area2)Hh (clean data) and newhhold(Area2)Hhme (with missing and errors): containing 19,112 records (in which each record refers to an household) and 6 variables related to households;

2. newhhold(Area2)Ind (clean data) and newhhold(Area2)Indme (with missing and errors): containing 47,594 records (in which each record refers to an individual) and 20 variables related to individuals.

For the evaluation phase other more general datasets containing other geographical areas (apart from area 2) have been used, where:

1. newhholdtHhm (with missing data) and newhholdtHhme (with missing and errors): containing 196,224 records (in which each record refers to an household) and 6 household variables;

2. newhholdIndm (with missing data) and newhholdIndme (with missing and errors): containing 492,472 records (in which each record refers to an individual) and 20 individual variables.

A preliminary analysis on data has been done on the AREA2 datasets: by comparing the dataset of true values (newhhold(area2)new) with the one of perturbed values (newhhold(area2)me), only actually perturbed variables have been considered.

The following table contains the list of variables contained in the dataset for which the editing process is required (except for HNUM, PNUM and NUMBER which are only identification numbers for individuals and households).

Table 3.5 Variables considered in the development and evaluation phases

	DEVELOPMENT
	EVALUATION

	Newhhold(area2)Hh

newhhold(area2)Hhme
	newhhold(area2)Ind

newhhold(area2)Indme
	newhholdHhm

newhholdHhme
	newhholdIndm

newhholdIndme

	HNUM
	NUMBER
	HNUM
	NUMBER

	ROOMSNUM
	HNUM
	ROOMSNUM
	HNUM

	BATH
	PNUM
	BATH
	PNUM

	CENHEAT
	AGE
	CENHEAT
	AGE

	INSIDEWC
	COBIRTH
	INSIDEWC
	COBIRTH

	HHSPTYPE
	DISTWORK
	HHSPTYPE
	DISTWORK

	
	HOURS
	
	HOURS

	
	LTILL
	
	LTILL

	
	MSTATUS
	
	MSTATUS

	
	MIGORGN
	
	MIGORGN

	
	QUALNUM
	
	QUALNUM

	
	QUALEVEL
	
	QUALEVEL

	
	QUALSUB
	
	QUALSUB

	
	RELAT
	
	RELAT

	
	RESIDSTA
	
	RESIDSTA

	
	SEX
	
	SEX

	
	URVISIT
	
	URVISIT

	
	WORPLCE
	
	WORPLCE

	
	ISCO2
	
	ISCO2

The procedure

In general, a single application has been developed for any perturbed variable in SARs dataset. In other words, for each variable a series of steps has been performed in order to obtain the edit/imputation of the variable. At the end of the process, a general dataset has been created by merging the single datasets resulting from the single applications. Moreover, since in the original file, in which each record refers to an individual, also household variables were reported, we consider not correct to handle household variables at individual level, for those variables the household dataset has been extracted and on this dataset the applications have been run. At the end of the process household and individual datasets have been merged together reproducing a final dataset similar in the structure to the original one.
As far as the imputation process is concerned, it has been applied on two datasets, one containing missing values (newhholdm) and one containing missing and errors (newhholdme). In both cases, for each variable MLPs have been trained on those records for which the target value was not missing and the so generated networks have been applied for imputing missing values. The double application had the main purpose to verify the robustness of the method in training the network in presence of errors.

Applications have been run on PC with 128MB RAM 20GB physical memory; the software used for training and applying networks is SPSS Clementine 6.5, while SAS 8.0 has been used in the pre-processing and post-processing phases.

Results for the data set: newhholdme

Dataset newhholdme has been used for experimenting separately the edit and imputation processes through MLPs neural networks; the dataset contains missing and errors for 492,472 records. Starting from this dataset, in order to have a more practical and correct application the two datasets related to individuals (newhholIindme) and households (newhholdHhme) have been extracted.

The results obtained from the application of the processes described in the previous paragraphs are summarised in the following tables, which, for each variable, show some indicators useful for the evaluation of the method. These indicators are the result of the application of the software produced by NAG to the datasets produced respectively for the edit phase and the imputation phase.

Results of editing

In Table 3.6 the editing results are presented. As far as household variables concern, the alpha values are quite high, pointing to a large proportion of undetected errors. An exception is represented for Bath and Insidewc for which almost all errors have been localised.

The beta’s is quite low, indicating that only few correct values were considered incorrect in the editing process; among those variables Cenheat presents the highest value (0.15).

The delta range, giving the overall figure of misclassifications, varies from 0.006 (Bath) to 0.173 (Cenheat).

Table 3.6 Error localisation indicators on household variables

	
	Alpha
	Beta
	delta
	Dcat

	Bath
	0,000366
	0,006314
	0,005924
	0,000024

	Cenheat
	0,711891
	0,152842
	0,173182
	0,025900

	Insidewc
	0,000091
	0,036082
	0,034375
	0,000004

	Hhsptype
	0,926393
	0,004884
	0,028356
	0,023596

	Roomsnum
	0,979926
	0,002403
	0,052109
	0,049829

As far as individual variables concern, the alpha values vary per variable, from a situation in which large errors have been localised (0.099) to situations in which no error have been localised. In particular for some variables, for example Ltill and Migorgn the system was not able to train a network for localise errors. In these cases some errors (missing and out of range values) were found in the pre-processing phase and not through the MLP application.

The beta’s is quite low, indicating that only few correct values were considered incorrect, it should be underlined that variables for which beta is zero are those for which the system was not able to build a network and, then, to those no error localisation procedure has been applied.

The delta range, giving the overall figure of misclassifications, varies from 0.001 to 0.095.

Table3.7 Error localisation indicators on individual variables. Discrete variables
	
	alpha
	Beta
	delta
	Dcat

	Cobirth
	0,172715
	0,088375
	0,094686
	0,012923

	Distwork (*)
	0,237681
	0
	0,003013
	0,003013

	Ltill (*)
	0,109920
	0
	0,006059
	0,006059

	Mstatus
	0,302392
	0,001585
	0,015705
	0,014195

	Migorgn (*)
	1
	0
	0,007417
	0,007417

	Qualnum (*)
	0,213121
	0
	0,001296
	0,001296

	Qualevel (*)
	0,229455
	0
	0,001732
	0,001732

	Qualsub
	0,905278
	0,000378
	0,007050
	0,006675

	Relat
	0,312877
	0,011732
	0,030788
	0,019799

	Residsta
	0,243363
	0,011325
	0,026218
	0,015620

	Sex
	0,105027
	0,000373
	0,007166
	0,006818

	Termtim
	0,464274
	0,000124
	0,005826
	0,005704

	Urvisit (*)
	0,750000
	0
	0,000689
	0,000689

	Workplce
	0,099114
	0,007691
	0,009753
	0,002236

	Econprim (*)
	1
	0
	0,008819
	0,008819

	Isco2
	0,770063
	0,00132
	0,007480
	0,006171

(*) No networks have been applied.

Table 3.8 Error localisation indicators on individual variables. Quantitative variables
	
	Alpha
	Beta
	delta
	RAE
	RRASE
	RER
	tj
	AREm1
	AREm2

	Age
	0,630947
	0,00751
	0,050999
	-0,01318
	0,000226
	4,583333
	-63,9826
	0,010338
	0,013562

	Hours(*)
	0,764483
	0
	0,018681
	-0,00753
	0,000321
	3,291667
	-24,2650
	0,057431
	0,031029

(*) No networks have been applied.
Result of imputation

The Wald statistics (which extent is to measure if an imputation procedure preserves the marginal distribution of a categorical variable by comparing the imputed and true distributions of the variable across these categories) present a large variation in its values.

As far as quantitative variables (Age and Hours) are concerned, the imputation criterion dL1 provides inside in the predictive accuracy of the imputations on record level. The values for the two variables are low and quite similar. There are also low values of the Kolmogorov-Smirnov distance function (K-S) which evaluates the distributional accuracy, indicating a sufficient preservation of the distribution of the true data values. The R2-statistics indicate that only a small part of the variance in the true values remains unexplained by the imputed values for the Age, while more than 87% of variance is unexplained for the Hours. The slope is near 1 indicating that there is no systematic bias in the imputations.

Table 3.9 Results of imputation on household variables

	
	W
	D
	Eps

	Bath
	3056,238
	0,088384
	0,078150

	Cenheat
	11651,87
	0,292088
	0,284134

	Insidewc
	1669,338
	0,055196
	0,044057

	Cars
	11494,17
	0,512887
	0,505681

	Hhsptype
	1122,822
	0,529624
	0,520989

	Roomsnum
	8559,666
	0,768465
	0,763088

	Tenure
	15885,57
	0,842332
	0,837166

Table 3.10 Results of imputation on individual variables Discrete variables

	
	W
	D
	Eps

	Robirth
	8139,730
	0,231334
	0,222340

	Distwork
	3661,929
	0,595538
	0,583997

	Ltill
	100,8097
	0,105946
	0,095663

	Mstatus
	2809,312
	0,197666
	0

	Migorgn
	3335,061
	0,998805
	0,997609

	Qualnum
	1313,639
	0,046752
	0,035252

	Qualevel
	1659,173
	0,553001
	0,532199

	Qualsub
	2385,807
	0,779621
	0,765168

	Relat
	1185,921
	0,167748
	0,156883

	Residsta
	828,8696
	0,027502
	0,017340

	Sex
	1706,069
	0,236724
	0,227158

	Termtim
	189,751
	0,091426
	0,054295

	Urvisit
	342,7484
	0,841699
	0,806736

	Workplce
	647,3367
	0,115547
	0,098447

	Econprim
	465,4885
	0,237246
	0,219758

	Isco2
	10535,38
	0,788216
	0,781668

Table 3.11 Results of imputation on individual variables. Quantitative variables
	
	Age
	Hours

	Slope
	0,995302
	0,999335

	t-val
	-5,35835
	-0,95708

	Mse
	78,4429
	161,6645

	R^2
	0,853395
	0,165328

	dL1
	6,738554
	6,68879

	dL2
	8,859067
	12,71402

	dLinf
	60
	90

	K-S
	0,109
	0,164

	K-S_1
	0,043
	0,038

	K-S_2
	0,003
	0,003

	m_1
	0,830119
	1,995543

	m_2
	60,685200
	173,221300

	MSE
	3,074862
	1,415272

Results for the data set: newhholdm

The dataset newhholdm has been used for evaluating the imputation process by MLP neural networks; the dataset contains missing values for 492,472 records. Starting from this dataset, in order to have a more correct and practical application, the two datasets related to individuals (newhholIindm) and households (newhholdHhm) have been extracted.

The results obtained from the application of the process described in the previous paragraphs are summarised in the following table, which, for each variable, shows some indicators useful for the evaluation of the method. These indicators are the result of the application of the software produced by NAG to the datasets produced for the imputation phase.

Result of imputation

The Wald statistics (which extent is to measure if an imputation procedure preserves the marginal distribution of a categorical variable by comparing the imputed and true distributions of the variable across these categories) present a large variation in its values.

As far as quantitative variables (Age and Hours) are concerned, the imputation criterion dL1 provides inside in the predictive accuracy of the imputations on record level. The values for Age are low and quite similar to the ones obtained using the dataset with missing and errors, while the value for variable Hours increases. There are also low values of the Kolmogorov-Smirnov distance function (K-S) which evaluates the distributional accuracy, indicating a sufficient preservation of the distribution of the true data values. However, Hours present a value of K-S higher than the same value observed in the dataset with missing and errors.

The R2-statistic indicates that only a small part of the variance in the true values remains unexplained by the imputed values for the Age, while more than 78% of variance is unexplained for the Hours, less than in presence of errors. The slope for Age is near 1, as it was in the case of presence of errors, while for Hours it is very different, indicating a systematic bias in the imputations.

Table 3.12 Results of imputation on household variables

	
	W
	D
	Eps

	Bath
	17,28814
	0,000482
	0

	Cenheat
	10045,91
	0,292326
	0,284031

	Insidewc
	11,52381
	0,000593
	0

	Cars
	11458,46
	0,500575
	0,493347

	Hhsptype
	838,9483
	0,527905
	0,519842

	Roomsnum
	6877,852
	0,652047
	0,645603

	Tenure
	3890,001
	0,415321
	0,405804

Table 3.13 Results of imputation on individual variables Discrete variables
	
	W
	D
	Eps

	Cobirth
	8633,011
	0,227475
	0,218627

	Distwork
	4825,774
	0,582252
	0,570502

	Ltill
	3012,488
	0,093333
	0,083081

	Mstatus
	2600,258
	0,173774
	0

	Migorgn
	3545,025
	0,994750
	0,992341

	Qualnum
	1065,508
	0,041112
	0,029724

	Qualevel
	1572,781
	0,628282
	0,606594

	Qualsub
	1308,464
	0,789407
	0,773111

	Relat
	996,7533
	0,148781
	0,138097

	Residsta
	816,1392
	0,026990
	0,017044

	Sex
	1582,343
	0,229891
	0,220453

	Termtim
	45,94471
	0,064555
	0,025821

	Urvisit
	379,1689
	0,749681
	0,713921

	Workplce
	552,8755
	0,105609
	0,088568

	Econprim
	934,3305
	0,240762
	0,225360

	Isco2
	13024
	0,751936
	0,745768

Table 3.14 Results of imputation on individual variables. Quantitative variables
	
	Age
	Hours

	Slope
	1,019467
	0,67332

	t-val
	24,68808
	-317,941

	mse
	71,12676
	115,8714

	R^2
	0,863691
	0,219072

	dL1
	6,274713
	18,16781

	dL2
	8,482209
	20,46043

	dLinf
	61
	90

	K-S
	0,103244
	0,707537

	K-S_1
	0,035417
	0,186388

	K-S_2
	0,002049
	0,085017

	m_1
	0,524163
	16,73302

	m_2
	148,7667
	1459,025

	MSE
	0,002858
	0,320872

Discussion

In general, from the results obtained in the development phase and confirmed in the evaluation phase, the percentage of false positives (% of correct cases classified as errors) is very low, while the percentage of errors not localised by the network is often very high.

The number of errors present in the training dataset represents an important element for the success of the method. In our experiment on SARs data the networks have been trained on very few errors (sometime we trained networks on data with 30 errors on 50,000 cases): in this case the network tends to ignore these cases and it classifies all values as correct. The balance option, whose purpose is just to increase those cases for training, normally does not help the network to better identify these errors but it creates more confusion and usually it introduces more errors. However, for a better evaluation for the method, an experiment on a dataset with a more consistent percentage of errors should be replaced, where errors should not be missing or out of range values because for these type of errors the use of the MLP is not necessary.

2.1.3 Strengths and weaknesses of the method

The MLP networks may be quite good as a supplement to other methods, since methods that deal with the editing process in a clearer and more direct way probably provide more robust results.

In some cases some shrewdness are needed in order to obtain better results. For instance, we found that, if the training data had many outliers, the neural network modelled these outliers instead of the underlying structure of the dataset. The results were better, if the outliers were removed from the data. However, we were not able to find an optimal way of handling outliers.

The first time that the method is applied to a dataset, it requires a lot of time, but the networks, once trained, can be easily and quickly applied to other similar dataset (for example to same data collected in successive periods). It should be stressed that the presence of errors in training the network for the missing data imputation does not imply differences in the network training, which, from this point of view, seems to be very robust.

3 Conclusion

A great advantage of the MLP neural networks approach consists on the lack of a priori distributional hypothesis and in the ability of finding non linear relations between the independent variables and the output variable: however, if the variables are linearly correlated (as it happens in the ABI data), the network is not recommended.

The results indicate that, with respect to the data sets examined, it is not possible to point to a single method that is better at editing or imputation. In other words, one must work very hard to find the best neural network and the best method of organizing training data simply to get results that are slightly better than the results simple methods, such as linear regression, provide.

Despite experiments with change of parameters and topologies of the networks employed, we could find no general approach for optimizing the networks. As the results show, the same type of network may have a relatively good performance with respect to some variables and very poor performance with respect to others.

An important role is played during the pre-processing phase, in particular analysing the input variables through which train the MLPs. In fact, the quality of the results and the model efficiency depend strictly on an accurate selection of those variables which synthesise and represent the most relevant information on the target variable. In this sense, it is fundamental, for example, to discard the obviously erroneous values (like out of range or missing values) in order to improve the MLP performance, otherwise those errors risk to be modelled.

It should be stressed that the quantity and typology of errors have a great influence on the results; in fact, in the SARs data for example, for some variables where the error rate is so low the MLPs have not been able to find them.

On the other hand, whenever the method is not able to find errors, it does not introduce new ones: it could be considered a very good quality for an error localisation method.

The results indicate poor performance in imputation of continuous variables of the ABI dataset, when it comes to distribution accuracy. As previously mentioned, this is no surprise, since the imputation is simple and a kind of mean value imputation. One could have used neural networks to make multiple imputations with a jack-knife approach to get better results in distribution accuracy.

If a continuous variable contains many zeros, it should be treated as a mixed type variable. Therefore, the continuous nature of the models provided by the Clementine neural networks could lead to imputations of poor quality. The best one can hope for is that imputed values that should have been imputed as zeros have values not so far from zero, not affecting the analysis to be performed on the imputed data set.

In the continuous variables the choice of the threshold difference between the observed and predicted values (in the error localisation prediction approach) for marking errors also depends on specific situations and it cannot be generalised: it requires the suitable balance between the reducing of the introduced errors and the improvement of the errors correctly identified. In this sense, the not continuous variables where generally few modalities are present and for which the flag approach can be adopted, presents better results.

As far as the imputation of missing values concerns, MLPs achieved good results for some variables depending on specific characteristics which cannot be generalised.

4 Glossary of terms

Back-propagation. Algorithm used to optimize the weights of a neural network. See Ripley for a detailed description

Dynamic, Multiple, Prune, Quick. Methods Clementine uses to choose a network topology. See the Clementine part of paragraph 2.1.1 or the users guide for an explanation.
MLP. The general type of neural network studied in this chapter.
5 Bibliography

Bishop M. C. (1995) Neural Networks for Pattern Recognition. Oxford University Press

Nordbotten, S. (1995): Editing Statistical Records by Neural Networks. Journal of Official Statistics, Vol. 11, No. 4, pp. 391-411.

Nordbotten, S. (1996): Editing and Imputation by Means of Neural Networks. Statistical Journal of UN/ECE, Vol.13, No. 2, pp. 119-129.

Ripley B.D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press

Roddick, L. H. (1993) Data Editing Using Neural Networks. Ottawa: Statistics Canada

Russell D. Reed & Robert J. Marks II (1999) Neural Smithing, Supervised learning in Feedforward Artificial Neural Network. Massachusetts Institute of Technology

Clementine Data Mining System (1995) Clementine User Guide version. Integral Solutions Limited

SPSS Clementine 6.5 (2001) User’s Guide

� The method is almost directly copied from "Outlier Identification using WAID" by Zhao Xinqiang and Ray Chambers.

� Any indicator contains the following values: 0=original value; 1=erroneous value; 2=missing value.

_1106465323.unknown

_1106473168.unknown

_1106473240.unknown

_1106548445.unknown

_1106490973.unknown

_1106473238.unknown

_1106473239.unknown

_1106473237.unknown

_1106465324.unknown

_1106465366.unknown

_1105878635.unknown

_1105879084.unknown

_1106465322.unknown

_1088856781.unknown

_1088856830.unknown

_1088856844.unknown

_1061369630.unknown

