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Introduction

The purpose of this chapter is to compare and evaluate a range of procedures for imputing missing data in financial panel/time series data. A number of the methods, e.g. MLPs and multivariate regression, are also applicable to cross-sectional data, and have already been examined for their performance in this regard in previous chapters of this report. Most of the methods considered here are only applicable to time series or panel data, and no counterpart exists for cross-sectional data. With the added benefit of the availability of lagged covariates, potentially better imputations can be performed than with just cross-sectional covariates alone. As will be seen, several of the methods utilise this fact in order to improve imputation performance. The methods applied to the option time series utilise specific relationships and characteristics, e.g. implied volatilities, that are only defined for option time series.

1.1 Methods and summary

The methods considered in this chapter and their corresponding experiment numbers are given in the table below

	Table 1.1: Methods and experiments performed



	Experiment Number
	Shares and bonds (WXY dataset)
	Options (Z dataset)

	1
	LVCF
	LVCF

	2
	R1
	BSBASE

	3
	NP100
	BSLVCF

	4
	MARX1
	BSEM

	5
	AR5X
	BSMLP

	6
	MLP
	


A brief description of each method is given in sections 2-11. For a more technical and detailed description of each method refer to Kokic (2001, 2002a and 2002b). The WXY shares and bond dataset consist of daily closing share and bond prices for 51 time series covering the time period from the beginning of 1995 to the end of 1999. The Z dataset consist of 36 time series of daily closing option prices over the same time period. For a more complete and detailed description of the time series data used in the EUREDIT project refer to the documentation supplied together with the original data.

The standard imputation method for shares and bonds time series is the ‘Last Value Carried Forward’ technique (LVCF), and this method is often used for option time series as well, although the BSBASE method is something used in its place. In any case, our objective is to search for methods that outperform these standard approaches according to the various criteria and associated measures defined in Chambers (2000). In the following sections quite detailed results are given about the performance of each method.

One method that was assessed, but which has not been included in the current evaluation exercise, is the term structure method for imputing missing bond prices. It was excluded because for most of the evaluation criteria it performed poorly relative to the other methods. The main reason for this is that the technique depends on fitting a polynomial term structure to the bond prices. This turns out to be too rigid a structure in practice. Other methods exist for term structure estimation, e.g. iterative techniques and spline techniques, but they all have their pitfalls. The nonparametric approach developed by Breckling and Dal Dosso (1994) overcomes most problems, but was considered too intricate for this study. Unfortunately, the use of a polynomial term structure did not prove successful.

When imputing missing observations in panel data there are two important aspects that must be considered: the cross-sectional relationships between the data, and the temporal relationships. Most of this project deals with the modelling and imputation of cross-sectional data, and so there is no chance to incorporate temporal relationships. One of the most important findings in this chapter is that the imputation methods that utilise temporal information more so than cross-sectional information generally outperform those methods that rely strongly on the cross-sectional relationships. For example, the very simple LVCF technique, which uses no cross-sectional information to impute missing values, is quite difficult to outperform. One should note that because the generation of holes in the data is essentially random, the chance of long-runs of missing observations is low (see section 14.3 below). If, on the other hand, longer-runs occur frequently in the data, for example as one often observes with panel survey data or even with price data for infrequently traded financial instruments, we may expect to see the imputation methods that utilise cross-sectional information more heavily to outperform other methods which don’t.

Of the six methods that were tested on the shares and bonds data, only the LVCF method (see section 2) was sufficiently reliable to be applied without modification to the options data. When applied to the shares and bonds data the EM algorithm methods (R1, NP100, MARX1 and AR5X) were found to be very reliable and convergence extremely fast, usually requiring less than 5 iterations. Unfortunately, this was not the case for the option price series. The EM algorithm methods, in all cases, required over 100 iterations in this case, and sometimes they did not converge at all. After considerable testing it was found that the most likely cause of this problem is the failure of the linearity assumption between the various log-returns.

The simplest solution was to apply the EM algorithm directly to the missing implied volatility data instead. The practical reasons for doing this is as follows. In financial institutions the Black-Scholes pricing formula is used almost exclusively to price European call and put options, and to be effective this formula requires accurate estimates of the strike-to-underlying ratio, interest rate, and the implied volatility index. The first two terms can be estimated accurately, whereas the third is more problematic. The volatilities are normally estimated by inverting the Black-Scholes pricing formula, but this can only be done when the derivative price is known. Thus, one obtains missing implied volatilities exactly where there are missing derivative prices. Empirical evidence suggested that the volatilities themselves, or more precisely the log-returns of the implied volatilities, are more linearly related to each other than the log-returns of the original option prices. For these reasons we refer to the options as non-linear instruments, and the shares and bonds as linear instruments.

1.2 Generation of evaluation data

Each method was applied to two versions of the time series data (versions 2 and 3). Version 2 is the original data with ‘holes’ added, while version 3 is the same data with holes, but with additional random errors added on top. Most methods evaluated are not specifically designed to handle the outlier prone data, and the results clearly highlight this fact. The purpose of the version 3 data is to test the robust performance of the methods, and some interesting results are obtained. In this report the version of the dataset is indicated by the number suffix added to its name.

In each time series holes (missing values) were generated at random according independent Bernoulli trials with the probability of a hole occurring being inversely proportional to the total volume of trading on the particular day. This is fairly consistent with reality. The constant of proportionality was varied across the time series to produce different degrees of missingness (DoM). Three categories of DoM were formed: DoM = ‘L’, where the proportion missing was < 6 %, ‘M’, where the proportion missing was between 6 and 15 %, and DoM = ‘H’ where the proportion missing was > 15%.

The time series were categorised into linear instruments (shares and bonds), i.e. those for which linear pricing tools are often effective, and non-linear instruments (options), i.e. those for which non-linear pricing functions are used for pricing. It is interesting to compare how the various imputation methods perform for the different instrument categories. However, in most cases no comparison could be performed because any particular method that worked for shares and bonds, could only be adapted to options by utilising a pricing formula (specifically the Black-Scholes formula). Straight application of the technique in most cases did not succeed for technical reasons, as explained above. 

For the evaluation, partners were supplied with two dataset of each of versions 2 and 3. Firstly, all bond and share prices were pre-transformed by taking log-returns, i.e. for instrument i, xti = log(Pti / Pt-1,i), where Pti is the price at time t
. Since the original data had already been imputed by the last value carried forward (LVCF) method, so as not to bias results in favour of this method, missing values were not allowed to occur where xti = 0. The first data set (modelling data) consisted of the first three years of complete data (783 observations) with indication of where the missing values occur, but with all missing values filled in with their true value. These data could be used for model fitting and testing purposes by the partners. The second data (evaluation data) consisted of the final two years of data (520 observations). In this case the missing observations were not supplied
. These data could be used for evaluation purposes and optionally, could also be used for model fitting purposes as well. Although there was some potential for introducing biases, it was decided to use both the modelling and evaluation data for model fitting in the evaluation phase.

In all cases pre-transformation of the time series data was performed by taking the log-returns of each individual time series. Specific details of how this was done, and of the back transformation procedure used after imputation, can be found in Kokic (2002a).

1.3 Evaluation statistics and interpretation of results

Numerous evaluation criteria were produced for each time series (32 in total) according to the definitions presented in Chambers (2000), for each of the 12 experiments, and for each of versions 2 and 3 of the datasets. This resulted in a huge amount of statistical output which was far too unwieldy to interpret. Fortunately, the number of statistics that need to be examined can be reduced, and the method of examination can be simplified considerably. We now explain how this was done.

The following table summarises the statistics produced and reasons, if any, for excluding them from the present study.

	Table 1.2: Evaluation statistics



	Statistic
	Equation number reference in Chambers (2000)
	Reason for exclusion from evaluation of the time series data (if any)
	Purpose (only where applicable)

	alpha
	(1)
	Not applicable
	

	beta 
	(2)
	Not applicable
	

	delta
	(3)
	Not applicable
	

	RAE 
	(7)
	Not applicable
	

	RRASE
	(8)
	Not applicable
	

	RER 
	(9)
	Not applicable
	

	Dcat 
	(10)
	Not applicable
	

	tj
	(1)
	Not applicable
	

	AREm1
	(12), k = 1
	Not applicable
	

	AREm2
	(12), k = 2
	Not applicable
	

	W 
	(14)
	For categorical variables
	

	D 
	(15)
	For categorical variables
	

	Eps 
	(16)
	For categorical variables
	

	Dgen 
	(17)
	For categorical variables
	

	Slope
	Page 16
	Better to use t-val
	For preservation of value (Slope estimate of true vs. imputed)

	t-val
	Page 16
	t-val and mse together are similar to using R2
	For preservation of value (test of the above slope = 1)

	mse 
	Page 16
	t-val and mse together are similar to using R2
	For preservation of value (regression mean squared error)

	R2 
	Page 16
	
	For preservation of value (proportion of variation of true values explained by imputed values)

	dL1 
	(19)
	
	For preservation of value

(emphasis on smaller differences)

	dL2 
	(20)
	Produces similar results to dL1
	For preservation of value

(emphasis on larger differences)

	dLinf
	(21)
	Produces similar results to dL1
	For preservation of value

(emphasis on maximum difference)

	K-S 
	(25)
	
	For preservation of distribution (Kolmogorov-Smirnov distance)

	K-S1
	(26),  = 1
	Not a standard measure. Difficult to interpret
	For preservation of distribution (emphasis on smaller differences)

	K-S2
	(26),  = 2
	Not a standard measure. Difficult to interpret
	For preservation of distribution (emphasis on larger differences)

	m1 
	(28), k = 1
	
	Preservation of the mean

	m2 
	(28), k = 2
	
	Preservation of second moment

	MSE
	(30)
	
	Evaluation of outlier robustness


As can be seen from the table above, we can narrow the evaluation of the time series imputation procedures down to 6 key statistics, R2 , dL1, K-S, m1, m2 and MSE, which will cover most of the key features of the comparisons we wish to perform. 

There was a choice as whether to perform the evaluations on the original time series themselves or on their log-returns. Since in financial applications most interest is centred on returns rather than absolute values of portfolios, and since models are usually applied to returns or log returns of these data, it was decided that assessment would also be performed on the log-returns.

For the evaluation itself, as recommended in Chambers (2000), simple graphical and tabular methods are utilised as much as possible. In particular, we will make good use of box plots to compare methods as the visual aspects of these graphs clearly and quickly illustrate the differences between the various methods under consideration. In addition, they give us a simple means whereby results for all time series can be compared simultaneously in one plot. The graphics presented herein (although for a much wider range of statistics) are essentially the same as those that have been produced in Kokic (2001, 2002a and 2002b). That is, for each of the 87 time series a value of the statistic was computed for each method (6 methods in the case of shares and bonds, and 5 methods in the case of options). Box plots of the 87 values were then produced and grouped according to relevant categories.

The standard box plots produced by MatLab (The Mathworks, 1999) are used in this report. They display a box showing the median, and upper and lower quartiles, and two whiskers at each end extending to a maximum of 1.5 ( the inter-quartile range (the length of each whisker is often reduced to less than this depending on the distribution of the data itself). Data values beyond the extremes of each whisker are plotted as crosses. It has been noted elsewhere that the values used to produce the box plots are potentially correlated, but since the box plots are based on estimates of the empirical distribution function of the data, this correlation will not effect the bias of the quantile estimates, only their precision.

The ideal distribution for the K-S statistics is difficult to determine since too small values would indicate suspiciously good results. However, one can argue that due to positive correlation between the imputed and true data, the K-S statistic is likely to have much smaller values than indicated by its null distribution under the assumption of independence. For all other statistics under consideration it is clear what the ideal situation is.

For reasons of clarity and consistency of interpretation the raw statistic themselves are not always presented in the box plots, but often transformed values of these. For all box plots, the best results are indicated by the smallest values on the vertical axis.

The main comparisons that were performed are between the different methods (see appendixes 15.4 – 15.7). Comparison were performed, where possible, between the linear instruments (shares and bonds in appendixes 15.4 and 15.5) and non-linear instruments (options in appendixes 15.6 and 15.7). Finally, some comparisons between different degrees of missingness categories were also performed, but only for the most successful methods and for the most informative evaluation statistics.

1.4 Hardware and Software

The hardware used in all experiments was a single processor PC. The table in appendix 15.1 summarises its main features. Finally, all imputation methods were coded and tested in MatLab (The Mathworks, Inc, 1999); see appendix 15.2. 

2 Method 1(LVCF)

2.1 Last Value Carried Forward

2.1.1 Method Description

Unlike all other methods covered in this chapter, this method can be easily applied to both linear and non-linear financial instruments. Evaluation for both types of instruments is therefore performed in this section. The last-value carried forward (LVCF) method is extremely simple and reliable, and hardly needs definition other than for the sake of completeness. The method is frequently used by most data providers and financial institutions for imputing missing values in financial time series. In this sense, one may consider it as a universial standard method for imputing missing values in financial time series, and as a benchmark for comparitive purposes. In summary, for the LVCF method, the price Pti for instrument i at the current time point t is imputed according to Pti = Pt-1,i. If the price is not known at time t - 1, then it is carried forward from an earlier time point.
2.1.2 Evaluation

Dataset WXYZ2 and WXYZ3: Shares, Bonds and Options Time Series

Technical Summary

Method:
Last value carried forward

Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QWXY20001EQ.xls, QZ20001EQ.xls, QWXY30001EQ.xls and QZ30001EQ.xls,. In summary, all time series where imputed this way. 

The LVCF method:

· The method is used as a standard for imputing missing values in financial price time series

· This method is straightforward and does not require estimation of model parameters

· Prediction is done simply by carrying the last observed value forward in time. If a missing value occurs at the start of a time series no value can be imputed.

· No auxiliary information is used nor cross-sectional correlations. That is, the method only uses temporal information for imputation.

· The method is applicable to all variables in the dataset.

· The method is applicable to all types of variables, although it is only used for continuous variables in this study.

Results

We begin by describing the main results for the shares and bonds (WXY) data.

· The LVCF method has poor predictive power (figure 15.3.1) and poor preservation of distribution properties (figure 15.3.3). Its performance against the remaining 4 criteria is similar to the other methods (figures 15.3.2, and 15.3.4 – 15.3.6).

· For the data with errors, WXY3, its predictive power and preservation of value performance is either better than, or equal to, the other methods (figures 15.4.1 and 15.4.2). Its performance against the remaining 4 criteria is similar to the other methods (figures 15.4.3 – 15.4.6).

· For all evaluation statistics the performance of the LVCF method is about the same for both the WXY2 and WXY3 data. This probably occurs because no parameters need to be estimated for the method to work, and so no errors can arise from this source due to the outliers in the data.

Next, we describe the main results for the options (Z) data.

· The LVCF method performs worse, or considerably worse, than the other methods for predictive power, preservation of value and preservation of distribution performance (figures 15.5.1 – 15.5.3). For the other criteria, i.e. preservation of first and second moments and robust performance, (figures 15.5.4 – 15.5.6) its performance is better than the other methods.

· For the data with errors, almost identical results to those for the Z2 data are observed (figures 15.6.1 – 15.6.6). That is, there seems to be virtually no degradation in performance for the data with outliers.

2.1.3 Strengths and weaknesses of this method

· The method is very simple to implement, uses few resources, and runs very quickly.

· The imputed values never require revision.

· It is applicable to different types of datasets, but there must always be at least two time points in the data before the method can be applied. In other words it is not applicable to purely cross-sectional data. The variables can either be continuous or discrete, or a mixture of the two.

· Its performance for preserving values is good for the linear instruments, but quite poor for the non-linear instruments.

· Its performance for preservation of distribution is very poor.

· Its robust performance, and its ability to preserve moments is good, and in fact very good for the options data.

· There seems to be little or no degradation in performance for the data with errors.

3 Method 2(R1) 

3.1 Multivariate regression imputation using the EM algorithm

3.1.1 Method Description

The multivariate regression method for imputing missing values (R1) is quite sophisticated and requires considerable expert user interaction to be successful. The method requires the use of the EM algorithm, which is a well known iterative procedure for maximum-likelihood estimation when the data set is incomplete; see for example Little and Rubin (1987). It has already been described in detail in earlier parts of this report, and further specific details of how the EM algorithm may be applied to a multivarate regression model can be found in the EUREDIT report, Kokic (2002a). Thus we only present the basic multivariate regression model of Kokic (2002a), which is used by several of the imputation procedures in this chapter.

Suppose there are n observations in a dataset, and for the tth observation, t = 1, …, n, yt is a (k ( 1) vector of response variables, and xt a (p ( 1) vector of explanatory variables. We assume that yt is related to xt according to the multivariate regression model:


yt = B’ xt + t,


where t ~ NID(0, ) (i.e. independent multivariate normal random variables), B is a (p ( k) matrix of unknown regression coefficients and  is a (k ( k) correlation matrix (also unknown). When there are no missing y-values in the dataset, one may estimate B and  directly using the maximum likelihood estimators: 



[image: image1.wmf]B

ˆ

 = (X’X)-1X’Y, 
[image: image2.wmf]S

ˆ

 = n-1 t (yt – B’xt) (yt – B’xt)’,

where X = (x1, …, xn)’ and Y = (y1, …, yn)’. When some of the yt values are missing or partly missing, there is a complicated EM iterative procedure for estimating these unknown parameters, see Kokic (2002a)
. Once these parameters have been estimated (denote them by 
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), one can then impute the missing y-values by
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where E* denotes the conditional expectation given the non-missing y-values, yt*, and t* are the corresponding -values (There is a complicated closed form expression for the final term in (3.1) involving 
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, see Kokic (2002a)).

The important thing to note about the EM algorithm is that it is highly dependent on the assumption of multivariate normality and independence, and thus one would not expect it to perform well with error-prone data. In order to approximately satisfy these assumptions it is absolutely necessary to pre-transform the time series data. For financial price time series the most appropriate pre-transformation, as mentioned in the introduction, is log-returns. In the R1 model we directly apply the method above to the log-returns data as follows:

1. Let yti = log(Pt +1, i / Pt, i ) be the log-returns of the ith share or bond time series (i = 1, …, 51) and xti the log return of the ith auxiliary index time series (i = 1, …, 12).

2. Estimate B and  using the EM algorithm outlined above, then use (3.1) to impute the missing y-values.

3. Invert the log-returns pre-transformation to obtain imputed values of the missing share and bond prices. See Kokic (2002a) for details of how this back-transformation can be done. 

The difficulty with this method in practice is, firstly, that one must choose an appropriate set of y-values and covariate x-values to include, and this choice will often require considerable statistical expertise. The second difficulty arises when the assumptions of linearity, normality or independence are not satisfied, which can result in the EM algorithm not converging at all, or if it does it may produce poor results in this case.
3.1.2 Evaluation

Dataset WXY2 and WXY3: Shares and Bonds

Technical Summary

Method:
Multivariate regression method (R1)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QWXY20002EQ.xls and QWXY30002EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The R1 method:

· The EM algorithm was used to estimate the model parameters.

· Prediction of the tth value is the model expectation given the values of the covariates and the observed values of the tth observation.

· All 12 auxiliary index variables were used as covariates.

· Only cross-sectional information is used for imputation.

· The model was fitted to and prediction performed on the log returns of the data.

· The method is applicable to all shares and bonds variables in the dataset.

· The method is applicable to continuous variables.

Results

· Compared to the other methods, the R1 method has intermediate predictive power (figure 15.3.1), and the best preservation of distribution properties (figure 15.3.3). Its performance against the remaining 4 criteria is similar to the other methods (figures 15.3.2, and 15.3.4 – 15.3.6).

· For the data with errors, WXY3, its predictive power and preservation of distribution performance (figures 15.4.1 and 15.4.3) is worse than the other methods, and its preservation of value performance is intermediate compared to the other methods (figure 15.4.2). Its performance against the remaining 3 criteria is similar to the other methods (figures 15.4.4 – 15.4.6).

· Against all 6 evaluation statistics the performance of the R1 method is significantly worse for the WXY3 data than it is for the WXY2 data.

3.1.3 Strengths and weaknesses of this method

· The method is reasonably complex to implement, and requires significant computing resources.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions are not required. 

· It is only applicable to panel time series data. The variables must be continuous.

· It is advisable to pre-transform the time series data so that the assumptions of linearity, multivariate normality and independence are satisfied.

· Its performance for preserving values is good, provided there are no outliers in the data.

· Its performance for preservation of distribution is good provided there are no outliers in the data.

· The method performs poorly for data with errors. It is necessary to apply an editing method to remove or down weight outliers first.

4 Method 3(NP100)

4.1 Multivariate non-parametric regression imputation using the EM algorithm

4.1.1 Method Description

The multivariate non-parametric regression method for imputing missing values (NP100) is quite sophisticated and, like the R1 method, also requires considerable expert user interaction to succeed. The method uses the EM algorithm and a simple non-parametric version of the model described in section 3 to impute missing values.
The NP100 method proceeds as follows:

1. As in section 3, let ytj be the log-returns of the ith share or bond time series (i = 1, …, 51) and xti the log return of the ith auxiliary index time series (i = 1, …, 12).

2. Partition the set of y-variables into 3 groups, US shares (i = 1, …, 9), UK shares (i = 10, …,15) and UK bonds (i = 16, …, 51). This step is necessary to ensure that there are enough observations in the moving window to estimate the model parameters.

3. Select an initial window of length 100 (t = 1, …, T = 100)
. 

4. For each partition (step 2), use method R1 and the non-missing y-values within the window to impute the missing values for observation T only
.

5. Move the estimation window forward by 1 time point so that T ( T + 1 and the estimation window spans t = T – 99, …,T.

6. Repeat from step 4 until all missing y-values in the time series have been imputed. 

7. Invert the log-returns pre-transformation to obtain imputed values of the missing share and bond prices.

Besides the difficulties already noted for the R1 method, which also apply in this case, one must additionally choose an appropriate partition of the y-data. The partition should be performed so that similar types of instruments are grouped together, and the number of instruments in any particular partition is considerably less than the size of the estimation window. Other than this no general guiding procedures have been investigated for the construction of the y-partitions.
4.1.2 Evaluation

Dataset WXY2 and WXY3: Shares and Bonds

Technical Summary

Method:
The multivariate non-parametric regression method (NP100)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QWXY20003EQ.xls and QWXY30003EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The NP100 method:

· The EM algorithm was used to estimate the model parameters.

· Prediction of the tth value is the model expectation given the values of the covariates and the observed values of the tth observation.

· All 12 auxiliary index variables were used as covariates.

· Only cross-sectional information is used for imputation.

· The model was fitted to and prediction performed on the log returns of the data.

· The model was refitted to a moving window of each 100 consecutive observations of the time series.

· It is necessary to partition the y-values into sub-vectors before apply the method.

· The method is applicable to all shares and bonds variables in the dataset.

· The method is applicable to continuous variables.

Results

· Compared to the other methods, the NP100 method has the best predictive power (figure 15.3.1), and close-to-the-best preservation of distribution properties (figure 15.3.3). Its performance against the remaining 4 criteria it is similar in performance to the other methods (figures 15.3.2, and 15.3.4 – 15.3.6).

· For the data with errors, WXY3, its predictive power and preservation of value performance (figures 15.4.1 and 15.4.2) is worse, or nearly as worse as the other methods, and its ability to preserve second moments is worse than the other methods (figure 15.4.5). Its performance against the remaining 3 criteria is similar to the other methods (figures 15.4.3, 15.4.4 and 15.4.6).

· Against all 6 evaluation statistics the performance of the NP100 method is significantly worse for the WXY3 data than it is for the WXY2 data.

4.1.3 Strengths and weaknesses of this method

· The method is very complex to implement, requires a lot of computing resources, and is extremely slow to run.

· It is applicable only to panel time series data. The variables must be continuous.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions would not be required. 

· It is advisable to pre-transform the time series data so that the assumptions of multivariate normality and independence are satisfied. 

· With this method the assumption of linearity is somewhat relaxed by allowing for different regression parameter estimates at different time points.

· Its performance for preserving values is good, provided there are no outliers in the data.

· Its performance for preservation of distribution is very good, provided there are no outliers in the data.

· The method performs quite poorly for data with errors. It is necessary to apply an editing method to remove or down weight outliers first.

5 Method 4(MARX1)

5.1 Multivariate auto regression of lag 1 with covariates

5.1.1 Method Description

The multivariate auto-regression method with covariates for imputing missing values (MARX1) is sophisticated and like the R1 method also requires considerable expert user interaction to be successful. The method uses the EM algorithm, via the R1 method as described in section 3, to impute missing values.
The MARX1 method proceeds as follows:

1. As in section 3, let ytj be the log-returns of the ith share or bond time series (i = 1, …, 51) and xti the log return of the ith auxiliary index time series (i = 1, …, 12).

2. Partition the set of y-variables into 3 groups as described in section 4 for the NP100 method. Use the R1 method on each separate partition to form an initial impute of all missing y-values. For simplicity, generically denote the variables in any one partition by y.

3. For each partition set up a multivariate covariate consisting of all x-variables and the lag-1 values of the imputed y-variable. Call this new covariate z.

4. For each partition apply the R1 method to the non-missing y-values, using the covariate z, to obtained updated imputed values for y. 

5. Repeat the whole procedure from step 3 until convergence.

6. Invert the log-returns pre-transformation to obtain imputed values of the missing share and bond prices.

It is a well-known fact that using such an estimation procedure for AR models without missing observations is reliable and accurate, although not as efficient as a full maximum likelihood approach. Because of the considerable complexity of such a procedure, it was decided to use the operationally simpler procedure presented above in this case. 
5.1.2 Evaluation

Dataset WXY2 and WXY3: Shares and Bonds

Technical Summary

Method:
The multivariate auto-regression (lag-1) method with covariates (MARX1)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QWXY20004EQ.xls and QWXY30004EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The MARX1 method:

· The EM algorithm was used to estimate the model parameters.

· Prediction of the tth value is the model expectation given the values of the covariates and the observed values of the tth observation.

· All 12 auxiliary index variables were used as covariates as well as lag-1 values of the y-variables

· Mainly cross-sectional information is used for imputation, although a limited amount of temporal information is used.

· The model was fitted to and prediction performed on the log returns of the data.

· It is necessary to partition the y-values into subvectors before apply the method.

· The method is applicable to all shares and bonds variables in the dataset.

· The method is applicable to continuous variables.

Results

· Compared to the other methods, the MARX1 method has intermediate predictive power (figure 15.3.1), and close-to-the-best preservation of distribution properties (figure 15.3.3). Its performance against the remaining 4 criteria is similar to the other methods (figures 15.3.2, and 15.3.4 – 15.3.6).

· For the data with errors, WXY3, its predictive power and preservation of distribution performance is worse than the other methods (figures 15.4.1 and 15.4.3), and its preservation of value performance (figure 15.4.2) is intermediate. Its performance against the remaining 3 criteria is similar to the other methods (figures 15.4.4 – 15.4.6).

· Against all 6 evaluation statistics the performance of the MARX1 method is significantly worse for the WXY3 data than it is for the WXY2 data.

5.1.3 Strengths and weaknesses of this method

· The method is complex to implement, requires a lot of computing resources, and is slow to run.

· It is applicable only to time series or panel data. The variables must be continuous.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions would not be required. 

· It is advisable to pre-transform the time series data so that the assumptions of linearity, multivariate normality and independence (of the lag-1 differences) are satisfied.

· Its performance for preserving values is good, provided there are no outliers in the data.

· Its performance for preservation of distribution is very good, provided there are no outliers in the data.

· The method performs moderately poorly for data with errors. It is necessary to apply an editing method to remove or down weight outliers first.

6 Method 5(AR5X)

6.1 Univariate auto regression of lag 5 with covariates

6.1.1 Method Description

The univariate auto-regression method with covariates for imputing missing values (MARX1) is moderately sophisticated, and like the R1 method also requires considerable expert user interaction to be successful. It is practically simpler to implement when no choice of which y-variables to group together is required. The method uses the EM algorithm, via the R1 method as described in section 3, to impute missing values.
The AR5X method proceeds as follows:

1. Let ytj be the log-returns of the ith share or bond time series (i = 1, …, 51) and xti the log return of the ith auxiliary index time series (i = 1, …, 12).

2. A single y-variable is processed at a time (denote this simply by y). Use the R1 method to form an initial impute of the missing y-values.

3. Construct a multivariate covariate variable consisting of all x-variables as well as lag-1 to lag-5 values of the imputed y-variable. Call this new covariate z.

4. Apply the R1 method to the non-missing y-values, using the covariate z, to obtained updated imputed values for the y-variable. 

5. Repeat the whole procedure from step 3 until convergence.

6. Invert the log-returns pre-transformation to obtain imputed values of the missing share and bond prices.

As before, it is expected that this procedure will work quite well, and a full maximum likelihood approach should not be required because the underlying model is autoregressive. 

In practice the method should have several advantages over the other approaches so far studied. Firstly, since a single y-variable is imputed at a time, there is no need for the user to specify groupings of y-variables unlike the multivariate case. As a result, the dependence on the assumption of normality should be considerably reduced. In most applications the choice of suitable covariates should be quite straightforward. The approach, unlike the others studied, should also lend itself to efficient implementation because, with a slight modification to the procedure above, the imputed values from previous days could be used to construct the imputed values for the latest time point.

6.1.2 Evaluation

Dataset WXY2 and WXY3: Shares and Bonds

Technical Summary

Method:
The univariate auto-regression method with covariates (AR5X)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QWXY20005EQ.xls and QWXY30005EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The AR5X method:

· The EM algorithm was used to estimate the model parameters

· It is applicable only to time series or panel data

· Prediction of the tth value is the model expectation given the values of the covariates.

· All 12 auxiliary index variables were used as covariates as well as lag-1 to lag-5 values of the y-variables.

· Both temporal and cross-sectional information is used for imputation. The method adjusts in the sense that the longer the sequences of missing data, the greater is the amount of cross-sectional information used for imputation.

· The model was fitted to and prediction performed on the log returns of the data.

· The method is applicable to all shares and bonds variables in the dataset.

· The method is applicable to continuous variables.

Results

· Compared to the other methods, the AR5X method has close-to-the-best predictive power (figure 15.3.1), and the best preservation of distribution properties (figure 15.3.3). Its performance against the remaining 4 criteria is similar to the other methods (figures 15.3.2, and 15.3.4 – 15.3.6).

· For the data with errors, WXY3, its predictive power is about the same as the other methods (figure 15.4.1), it has the best preservation of distribution performance, and together with the LVCF technique the best preservation of value performance (figures 15.4.3 and 15.4.2). Its performance against the remaining 3 criteria is similar to or slightly superior to the other methods (figures 15.4.4 – 15.4.6).

· Against all 6 evaluation statistics there is a slight degradation in performance of the AR5X, but this is not as severe as for most other methods.

6.1.3 Strengths and weaknesses of this method

· The method is moderately complex to implement, requires moderate computing resources, and is moderately slow to run

· It is applicable only to time series or panel data. The variables must be continuous.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions would not be required. 

· It is advisable to pre-transform the time series data so that the assumptions of linearity, normality and independence are satisfied.

· Its performance for preserving values is good, even for the data with errors.

· Its performance for preservation of distribution is very good, even for the data with errors.

· The method preserves the marginal distribution of the true values exceptionally well for moderate and high degrees of missingness.

· The method continues to performs well for data with errors, although it would improve slightly if outliers were removed, or down weighted, first.

7 Method 6(MLP)

7.1 Multi-layer perceptron

7.1.1 Method Description

The multi-layer perceptron for imputing missing values (MLP) is highly sophisticated, and it holds out the hope that it requires little or no user interaction when fitting the model or imputing missing values. Whether this is the case or not is open to debate, although it is clear that there is no need to choose which set of y-variables to group together, unlike the multivariate methods. The method uses a special two-step iterative procedure for estimation as well as cross-validation to determine the number of nodes in the intermediate layer. The first step is a straight-forward linear regression, while the second step requires the use of a minimisation procedure as explained below.

Suppose there are n observations in a dataset, and for the tth observation, t = 1, …, n, yt is a univariate response variables, and xt is a (p ( 1) vector of explanatory variables. We assume that yt is related to xt according to the non-linear model:


yt = f(xt | ) + t,
(7.1)

where the exact form of f is defined below,  is a vector of unknown parameters, and t ~ NID(0, ) (i.e. independent normal random variables).

The non-linear function f in the MLPs has a very flexible form, which can approximate a large class of non-linear relationships. It is most convenient to present the model in vectorized form. In fact, Kokic (2002b) has shown that for a single-layer MLP, (7.1) may be written as


y = f( Z |  ) +  = tanh(Z) + ,


where y = (y1, …, yn)’,  ~ Normal(0, I), Z = (X – ) -1/2, X = (x1, …, xn)’,  = n-11’X, and  = (n – 1) –1 (X – )’(X – ),  is a (K ( 1) vector of unknown parameters, and  is a (p ( K) matrix of unknown parameters. The parameters in this model are estimated by a two-step procedure:

1. Estimate  by minimising the least squares objective: (y -tanh(Z)'(y -tanh(Z) holding the current estimate of  fixed.

2. Holding the current estimate of  fixed, estimate  by least squares.

Denote the parameter estimates from this procedure by 
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. Since the choice of the number of nodes on the intermediate layer (K) is free, this can easily lead to over fitting, thus cross-validation was used to choose an appropriate value for K; further details can be found in Kokic (2002b). Finally, one can impute the missing y-values using 
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The procedure for imputation with the EUREDIT data is very straight forward. Let ytj be the log-returns of the ith share or bond time series (i = 1, …, 51) and xti the log return of the ith auxiliary index time series (i = 1, …, 12). Imputation with the MLP technique was performed on a single y-variable at a time.

For MLPs the normal assumption is not as rigid as for the methods based on the EM algorithm. In addition, the assumption of linearity is not required. For these reason one may expect that the MLP approach to be more outlier robust than those based on the EM algorithm. The approach also lends itself to efficient implementation provided the MLP is not completely re-estimated each time new data is added to the time series.

7.1.2 Evaluation

Dataset WXY2 and WXY3: Shares and Bonds

Technical Summary

Method:
Multi-layer perceptron (MLP)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QWXY20006EQ.xls and QWXY30006EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The MLP method:

· Prediction of the tth value is the model expectation given the values of the covariates.

· All 12 auxiliary index variables were used as covariates .

· The method mainly uses cross-sectional information for imputation.

· The model was fitted to and prediction performed on the log returns of the data.

· The method is applicable to all shares and bonds variables in the dataset.

· The method is applicable to continuous variables.

Results

· Compared to the other methods, the MLP method has intermediate predictive power (figure 15.3.1), and close-to-the-best preservation of distribution properties (figure 15.3.3). Its performance against the remaining 4 criteria is similar to the other methods (figures 15.3.2, and 15.3.4 – 15.3.6).

· For the data with errors, WXY3, its predictive power and preservation of distribution performance is worse, or nearly worse than the other methods (figures 15.4.1 and 15.4.3), and its preservation of value performance (figure 15.4.2) is intermediate. Its performance against the remaining 3 criteria is similar to the other methods (figures 15.4.4 – 15.4.6).

· Against all 6 evaluation statistics the performance of the MLP method is worse for the WXY3 data than it is for the WXY2 data, although the degradation in performance is not as severe as for some of the other methods.

7.1.3 Strengths and weaknesses of this method

· The method is fairly complex to implement, requires moderate computing resources, and is moderately fast to run.

· It is advisable to pre-transform the time series data so that the assumptions of normality and independence are satisfied.

· The method does not require the assumption of linearity between the dependent and independent variables.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions would not be required. 

· Its performance for preserving values is good, provided there are no outliers in the data.

· Its performance for preservation of distribution is very good, provided there are no outliers.

· The method performs moderately well for data with errors (i.e. outlier-prone data). It would be preferable to remove or down weight outliers first.

8 Method 2(BSBASE)

8.1 Black-Scholes pricing with mean volatility imputation

8.1.1 Method Description

This method is straight forward to implement although there are serious practical considerations when deciding which instruments should be used to average the volatilities. Banks, when applying this method, will often use a more sophisticated method of averaging by selecting instruments with similar strike-price ratios and maturity dates. Because of limited data we could not afford to be so sophisticated, and so a straight cross-sectional average over all available volatilities was used instead. 

To describe the method we must first begin by presenting the Black-Scholes pricing formula. The derivation of this famous formula is standard in many financial texts, see for example Hull (1997). In summary, it is assumed that the underlying asset (in this case a share) follows log Brownian motion with volatility . Let
· Sti be the price of the underlying asset at time t,

· Xi be the excise price of the option at maturity,

· i be the time to maturity of the option (i.e. it matures at t + i), and

· r be the annual interest rate.

The Black-Scholes formula for the price of a call option at time t is:


Pti = Sti(d1) - Xie-ri(d2),
(8.1)

where d1 = (Sti/Xi)+(r+2/2)ii, d2=d1 - i, and  is the standard normal cumulative distribution function. The corresponding formula for a put option is: 


Pti = Xie-ri(-d2) - Sit(-d1).
(8.2)

Both (8.1) and (8.2 REF call ) are used as a standard in financial institutions througout the world to price European call and put options. All variables in this formula are readily available, it is only the value of  (volatility) that presents any difficulty. Volatility is typically estimated from other option prices from the current trading day by calibrating either of the above two formulae to observed prices, i.e. by inverting either (8.1) or (8.2). These values are usually referred to as the implied volatilities. 

Because (8.1) cannot be inverted when no option price is available, the implied volatility ti will be missing whenever the corresponding option price Pti is missing. In the BSBASE procedure these missing volatilities are imputed by cross-sectional averaging as follows:

1. Let Pti be the price of the ith option time series (i = 1, …, 36). Invert (8.1) to obtain the implied volatility ti.

2. Take the average (over i) of the non-missing implied volatilities to obtain the average volatility 
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3. Use formula (8.1) with  = 
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 to impute the missing option prices.

As can be seen from the above, imputation based on the Black-Scholes formula is highly dependent on the assumption of normality. If this assumption fails, or the assumption (specific to the current method) that the volatilities are constant across the instruments considered, then the imputed prices are likely to be poor.

8.1.2 Evaluation

Dataset Z2 and Z3: Options

Technical Summary

Method:
Black-Scholes pricing with mean volatility imputation (BSBASE)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QZ20002EQ.xls and QZ30002EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The BSBASE method:

· Prediction of the tth value is based on the cross sectional average of the implied volatilities.

· No auxiliary index variables were used as covariates. 

· The method uses purely cross-sectional information for imputation.

· The method is only applicable to European style call and put option time series.

· It requires the corresponding underlying share time series data, and strike prices for the option.

Results

· Compared to the other methods, the BSBASE method has intermediate predictive power (figure 15.5.1), and close-to-the-best preservation of distribution properties (figure 15.5.3). Its performance against the remaining 4 criteria is generally worse than for the other methods (figures 15.5.2, and 15.5.4 – 15.5.6).

· For the data with errors, Z3, similar and sometimes better results are observed when compared to the Z2 data. It is no longer the worst performer for preservation of moments or robust performance (figures 15.6.4 – 15.6.6). In fact, it performs better against these criteria than for the Z2 data.

8.1.3 Strengths and weaknesses of this method

· The method is simple to implement, requires few computing resources, and is fast to run

· The method makes the assumption that the underlying share price series follows log Brownian motion. It is only applicable to financial options data.

· The imputed values never require revision.

· Its performance for preserving values is moderately poor, and in fact it is slightly worse than the LVCF technique.

· Its performance for preservation of distribution is moderately good

· The method’s performance is not significantly affected by data with errors (i.e. outlier-prone data)

9 Method 3(BSLVCF)

9.1 Black-Scholes pricing with LVCF volatility imputation

9.1.1 Method Description

This method is straight forward to implement and overcomes, in a simple way, the practical difficulties encountered in the BSBASE imputation method. That is, there is no need to use information from other option time series when imputing the missing volatilities, and hence there is no need to form groupings of options. Because of this, however, one would not expect the method to perform well when there is a high degree of missingness.

The procedure for this method is extremely simple.

1. Let Pti be the price of the ith option time series (i = 1, …, 36). Invert (8.1) to obtain the implied volatilities ti.

2. If ti is missing, then use the LVCF method to impute it, i.e. 
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3. If Pti is missing, then use formula (8.1) with 
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to impute its value.

The BSLVCF method, although simple, performs extremely well in practice. It turns out to be quite difficult to develop a method that considerably out-performs it

The main disadvantage of this technique is that it relies upon the assumption that the volatilities are constant over time. For short time lags this should be fairly accurate, but when volatility is high variable, or for series with a high degree of missingness, one would expect that the method can be improved upon by taking covariate information into account. This is exactly what is done in the following two more sophisticated approaches.

9.1.2 Evaluation

Dataset Z2 and Z3: Options

Technical Summary

Method:
Black-Scholes pricing with LVCF volatility imputation (BSLVCF)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QZ20003EQ.xls and QZ30003EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The BSLVCF method:

· Prediction of the tth value is based on the implied volatilities from the previous time point.

· No auxiliary index variables were used as covariates.

· It uses only temporal information for imputation. 

· The method is only applicable to European style call and put option time series.

· It requires the corresponding underlying share time series data, and strike prices for the option.

Results

· Compared to the other methods, the BSLVCF method has the best, or close to the best performance against all 6 evaluation criteria (figures 15.5.1 – 15.5.6).

· For the data with errors, Z3, this continues to be the case (figures 15.6.1 – 15.6.6). There is little or no deterioration in performance compared to the Z2 results.

9.1.3 Strengths and weaknesses of this method

· The method is simple to implement, requires few computing resources, and is fast to run.

· The method makes the assumption that the underlying share price series follows log Brownian motion.

· The imputed values never require revision.

· Its performance for preserving values is very good.

· Its performance for preservation of distribution is very good

· The method is the best out of all those studied for options data. Even the more sophisticated methods did not outperform it.

· The method performs equally well for data with errors (i.e. outlier-prone data).

10 Method 4(BSEM)

10.1 Black-Scholes pricing with EM algorithm volatility imputation

10.1.1 Method Description

On taking the log-returns of the imputed implied volatilities from the BSLVCF method, one would note that 
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 regardless of the movement of the other implied volatility time series. Given the nature of the stock markets, volatilities for a large number of instruments tend to rise and fall in unison. Thus one would expect that by using the other implied volatilities as covariates, the imputation performance of the BSLVCF method can be improved.

One way to take the movement of other volatilities into account is to assume that yi = (y1i, …,y36,i) , where yti = log(ti/t-1,i) has a multivariate normal distribution, and then apply the EM algorithm to impute the missing y-values and hence missing volatilities. Implicit in this modelling is the assumption that the yi are independent, and the dependence between the components of yi is linear.

Because the method involves the EM algorithm, it is fairly complex to implement. The procedure for the method is as follows (further details can be found in Kokic (2002a)):

1. Let Pti be the price of the ith option time series (i = 1, …, 36). Invert (8.1) to obtain the implied volatilities ti.

2. Compute the log-returns implied volatility time series yti = log(ti/t-1,i).

3. Use the EM algorithm with no covariates (see section 3) to impute the missing y-values.

4. Invert the log-returns pre-transformation to obtain imputed values of the missing implied volatilities. Denote these imputed values by 
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5. For each imputed implied volatility value 
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, use formula (8.1) to impute the corresponding missing option price.

10.1.2 Evaluation

Dataset Z2 and Z3: Options

Technical Summary

Method:
Black-Scholes pricing with EM algorithm volatility imputation (BSEM)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QZ20004EQ.xls and QZ30004EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The BSEM method:

· Prediction of the tth value is the model expectation given the values of the observed implied volatilities.

· No auxiliary index variables were used as covariates. However, because the method is multivariate, all implied volatility time series act as covariates.

· The method uses mainly cross-sectional information, but some temporal information for imputation.

· The method is only applicable to European style call and put option time series.

· It requires the corresponding underlying share time series data, and strike prices for the option.

Results

· Compared to the other methods, the BSEM method has intermediate predictive power (figure 15.5.1), close-to-the-best preservation of distribution properties (figure 15.5.3). Its performance against the remaining 4 criteria is generally worse than for the other methods (figures 15.5.2, and 15.5.4 – 15.5.6), although slightly better than the BSBASE method.

· For the data with errors, Z3, similar results are observed when compared to the Z2 data.

10.1.3 Strengths and weaknesses of this method

· The method is complex to implement, requires considerable computing resources, and is moderately slow to run.

· The method makes the assumption that the underlying share price series follows log Brownian motion. It also assumes that the log returns of the implied volatility time series are jointly multivariate normal in distribution and independent from one time point to the next.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions would not be required. 

· Its performance for preserving values is good.

· Its performance for preservation of distribution is moderately good.

· The method performs equally well for data with errors (i.e. outlier-prone data).

11 Method 5(BSMLP)

11.1 Black-Scholes pricing with MLP volatility imputation

11.1.1 Method Description

Despite some empirical evidence to the contrary, the assumption that the components of yi are linearly related to each other is questionable. Furthermore, given the sometimes erratic behaviour of the financial markets, some yti values could easily be outlying. Both these facts draw into question the assumption made in the previous section that yti has a multivariate normal distribution.

Because both the assumptions of linearity and joint normality could be relaxed considerably it was decided to apply the MLP method (see section 7) to impute the missing implied volatilities. However, unlike the EM algorithm, the MLP method is univariate. Thus each component of y must be imputed separately using the remaining components as covariates. Unfortunately, this means that it then becomes necessary to pre-impute the missing values in the covariates. For simplicity, we used the LVCF technique for pre-imputation, i.e. set the log return yti = 0 for missing y covariate values. One would not expect much loss in accuracy using this pre-imputation method because evaluation of the BSLVCF method shows that its performance is quite good, see section 9. The BSMLP procedure is as follows:

1. Let Pti be the price of the ith option time series (i = 1, …, 36). Invert (8.1) to obtain the implied volatilities ti.

2. Compute the log-returns implied volatility time series yti = log(ti/t-1,i), and set i = 1.

3. Set yt = yti and let xt be a vector of the remaining y-variables.

4. Pre-impute the missing values in xt by setting their values equal to zero (this is the LVCF technique).
5. Impute the missing y-values using the MLP technique (see section 7), and by using xt as the input variable.
6. Invert the log-returns pre-transformation to impute the missing implied volatility values. Denote these imputed values by 
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7. Use formula (8.1) with  = 
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 to impute the corresponding missing option price. 

8. Repeat the procedure from step 3 for i = 2, …, 36.

11.1.2 Evaluation

Dataset Z2 and Z3: Options

Technical Summary

Method:
Black-Scholes pricing with MLP volatility imputation (BSMLP)
Test Scope:
Imputation

Imputation

For tables summarising which variables where imputed see the Excel datasets QZ20005EQ.xls and QZ30005EQ.xls. In summary, all shares and bonds time series were simultaneously imputed by this methods. 

The BSMLP method:

· Prediction of the tth value is the model expectation given the values of the observed implied volatilities.

· Prediction is done one variable at a time, and the implied volatilities of the other variables are used as covariates. 

· The method uses mainly cross-sectional information, but some temporal information for imputation.

· The method is only applicable to European style call and put option time series.

· It requires the corresponding underlying share time series data, and strike prices for the option.

Results

· In terms of 6 evaluation criteria, the BSMLP is almost as good as the BSLVCF method, and hence is close to the best method overall (figures 15.5.1 – 15.5.6). The only exception to this is that its performance for preserving mean is not quite as good as most of the other methods.

· For the data with errors, Z3, similar results to the Z2 data are observed. In other words, its performance is close to the best.

11.1.3 Strengths and weaknesses of this method

· The method is complex to implement, requires moderate computing resources, and is moderately fast to run

· The method makes the assumption that the underlying share price series follows log Brownian motion.

· If applied as described herein, imputed values would require revision as new data arrives. However, the method can be modified so that revisions would not be required. 

· Its performance for preserving values is very good.

· Its performance for preservation of distribution is very good

· When there is a medium or high degree of missingness the BSMLP method is clearly the best overall.

· The method performs well for data with errors (i.e. outlier-prone data)

12 Conclusion

12.1 Relative Strengths & Weaknesses of the Imputation Methods in General

There are several ways that we can make relative comparisons of the imputation methods. We begin by considering each of the 6 evaluation criteria for the clean data only, then consider the additional impact of the data with errors. For the best methods we consider the effect of degree-of-missingness (DoM). We then consider softer criteria like evaluation run times, and human intervention and skills required. Evaluation run times should only be used as a guide because the code has been developed with the objective of testing the methods against the evaluation criteria. Efficiency was a minor consideration.

12.1.1 Shares and bonds data

Original data: WXY2

In terms of predictive power, the LVCF method performs the worst, NP100 is slightly better than the rest, and there is little difference between the other methods. There is virtually no difference between the six methods against the preservation of value criteria. For preserving distribution, the LVCF method is the worse, and the other methods are about as good as each other. Against the 3 remaining criteria, i.e. the preservation of first and second moments and robust performance, there is little or no difference between the methods.

Data with errors: WXY3

As one would expect, the effectiveness of all methods is reduced to a greater or smaller degree when applied to data with errors. This is certainly the case overall, but in particular it has a much greater impact on the R1, NP100, MARX1 and MLP methods than on the LVCF and AR5X methods.

The LVCF is now the best in terms of predictive power; the other methods are all equally poor. This is the exact opposite of the situation for the data without errors. The AR5X and LVCF methods preserve values the best of all, the NP100 method is the worst, and the other methods are intermediate in performance. For preserving distribution, AR5X is the best, and the other methods are worse and about equal to each other. Against the 3 remaining criteria there is little or no difference between the methods.

The LVCF method is the only one for which unknown parameters do not need to be estimated. In this sense it is the only true non-parametric procedure in the study and because of this it is more outlier-robust than the other procedures. However, although this was not done, it is relatively straight-forward to make all the other procedures outlier robust (e.g. through the use of M-estimation methods). If this was done, one would expect to see results with an ordering of methods much more similar to those for the WXY2 data.

Evaluation against DoM

The two best methods from above are clearly the simple LVCF method and the AR5X method. These were compared against degree-of-missingness (DoM) categories for the clean data only
. We see some evidence that the AR5X method maintains better predictive power for medium and high degrees of missingness (figure 15.7.1), although unfortunately this is not reflected in the preservation of value results (figure 15.7.2). The big advantage of the AR5X method is that its preservation of distribution performance actually improves for medium and high degrees of missingness. This does not happen for the LVCF method.

Both these methods utilise temporal information to a much greater degree than the other methods, while the AR5X method has the additional advantage that it can adjust the amount of cross-sectional information used depending on the DoM. These results indicate that for financial panel data temporal relationships in the data are much strong than cross-sectional relationships, and so methods that utilise the temporal relationships tend to perform better.

Other criteria

As one would expect, the evaluation run times were the best for the LVCF method (table 12.1). Extremely long run times were observed for the NP100 technique, to the extent that this method would probably be impractical. The other approaches have run times ranging from about 2000 s. for the R1 method to 6000 s. for the MARX1 method. Bearing in mind that these times could be substantially improved by more efficient programming techniques, and they are for imputing a whole 2 years of the panel data, they are probably acceptable in practice. For the data with errors, other than the LVCF method, the evaluation times increase by a factor of about 2 to 7 compared to the data without errors. This is because the algorithms in these methods take more iterations to converge, which may be due to the fact that the assumption of normality underlying the models no longer holds for these data.

With regard to the subjective criteria (tables 12.2 and 12.3), it is clear that the LVCF method has the advantage that it requires little or no human intervention or expert knowledge to implement and produce successful results. All the model-based methods require a substantial amount of human intervention and expert knowledge to succeed. The ARX5 and MLP methods are definitely easier to use in an operating environment because they are univariate and hence, unlike the other model based procedures, do not require the choice of how to sub-categorise the shares and bonds instruments. All the model based procedures will benefit from prior exploratory analysis to identify good covariates, and to check modelling assumptions. As already mentioned, they would perform best when installed together with a prior outlier identification and down weighting procedure.

12.1.2 Options

Original data: Z2

The BSLVCF and BSMLP methods are the best methods for imputing missing options data, and are about as effective as each other. For the preservation of first and second moments and robust performance, the LVCF method performs best overall, but both the BSLVCF and BSEM methods are almost as good. Against the first three criteria, i.e. predictive power, preservation of value and preservation of distribution, the LVCF method is clearly the worst. For these same criteria, the BSBASE and BSEM are intermediate in performance compared to the other methods, while these two methods are the worst performers against the final three criteria.

Data with errors: Z3

The results for the data with errors is almost identical to those for the Z2 data. There is some slight improvement in the preservation of mean and second moment results for the BSBASE and BSEM methods, but the ordering is essentially the same as mentioned above. It appears to be the case that pre-transforming the data by taking implied volatilities also removes or significantly reduces the effect of outliers.

Evaluation against DoM

The strength of the BSMLP method compared to the BSLVCF method is well illustrated in the degree of missingness figures (15.7.4 – 15.7.6). One immediately sees that the BSLVCF is superior overall for preservation of distribution, and significantly better than the BSLVCF method for preserving values when there is a high degree of missingness. Distributions are considerably better preserved by the BSMLP method for low degrees of missingness.

Other criteria

In terms of evaluation run times, the LVCF method is extremely fast compared to all other methods studied. However, the other methods are also quite fast with run times ranging from about 2500 s. to 3000 s. The effect of introducing errors in the data only had minor influence on the run times overall. The worst case was for the BSMLP method with a 45 % increase in run time to 4260 s., but in practice this is still quite acceptable. Further significant improvements in run time performance can be expected if the code is redesigned for improved efficiency.

Of all methods studied the LVCF method is the simplest to implement and run (tables 12.2 and 12.3). BSBASE and BSLVCF are also quite simple but requires the user to have some knowledge of the use of the Black-Scholes pricing formula. The BSEM and BSMLP methods are both quite difficult to implement and require appropriate statistical and financial expert knowledge to operate successfully. Of particular difficulty here is setting up appropriate covariates (or equivalently dependent variable vectors for the BSEM method). This involves forming sub-categories of the options.

	Table 12.1: Evaluation run times (s.)



	Experiment
	Missings only
	Missings and errors 

	Shares and bonds

	1(LVCF)
	120
	120

	2(R1)
	1,800
	2,700

	3(NP100)
	106,800
	757,560

	4(MARX1)
	5,580
	48,660

	5(AR5X)
	4,020
	13,800

	6(MLP)
	5,040
	9,240

	Options

	1(LVCF)
	60
	60

	2(BSBASE)
	2,520
	2,580

	3(BSLVCF)
	2,520
	2,520

	4(BSEM)
	2,880
	2,940

	5(BSMLP)
	2,940
	4,260


	Table 12.2: Evaluation assessments



	Method
	Level of human 

intervention required
	Level of knowledge 

required 

	Shares and bonds

	LVCF
	None
	Low

	R1
	High
	High

	NP100
	High
	High

	MARX1
	High
	High

	AR5X
	Moderate
	High

	MLP
	Moderate
	High

	Options

	LVCF
	None
	Low

	BSBASE
	Low
	Moderate

	BSLVCF
	Low
	Moderate

	BSEM
	Moderate
	High

	BSMLP
	Moderate
	High


	Table 12.3: Evaluation assessments continued.



	Method
	Relationship between skill, knowledge and experience of the operator and statistical quality of the output
	Relationship between time spent setting up the system e.g. exploratory analysis, pre-processing, training and final quality of the output

	Shares and bonds

	LVCF
	None
	None

	R1
	Moderate
	Moderate

	NP100
	Moderate
	Moderate

	MARX1
	Moderate
	Moderate

	AR5X
	Moderate
	Moderate

	MLP
	Moderate
	Moderate

	Options

	LVCF
	None
	None

	BSBASE
	Moderate
	Moderate

	BSLVCF
	Low
	Low

	BSEM
	Moderate
	Moderate

	BSMLP
	Moderate
	Moderate


12.2 Discussion of results

Many practitioners would consider the LVCF method as a non-model-based procedure because no modelling assumptions are made and it applies to all types of panel or time series data. For this reason we refer to the other procedures as model-based. On top of this, the method is very simple to implement and appears to work quite well for preserving values, at least when only small clusters of missing values occur. Given these facts there is little wonder why the LVCF method is used as a standard in practice for imputing missing values in financial time series. However, as will be discussed below, if one is willing to make the effort of implementing more sophisticated model-based procedures, significant improvements in imputation performance can be achieved.

One will notice on going through the results that many methods have good predictive power but, unfortunately, this does not show up in the preservation of value performance. This is quite disappointing, but with the time series data it can be caused in the following ways.

1. One variable can be a good linear predictor of another, but its value may be systematically incorrect for imputation. This can occur because the pattern of missingness is informative, and this fact has been ignored by the imputation method

2. Most missing values occur in isolation so there is little or nothing to be gained out of good predictive power.

Evidence from Kokic (2002a) suggests that the former is not the case, so even when the degree of missingness is high, large clusters of missing values are quite infrequent. This fact was not discovered until the final evaluations were performed, so it is proposed as a topic for further investigation, below.

Methods used on the shares and bonds data

Given that the LVCF method works so well at preserving values; in fact equally well compared to the more sophisticated model-based approaches, this suggests that the lagged variables are more powerful predictors of the missing values than the cross-sectional variables. It is not surprising, then, that the model-based method which performs best for both data with and without errors, is the method which uses the greatest amount of lagged information for prediction, i.e. the AR5X method. For financial panel data temporal relationships in the data are much strong than cross-sectional relationships, and so methods that utilise the temporal relationships tend to perform better than those that just use cross-sectional relationships.

A possible reason why the AR5X method continues to perform well for data with errors is that it includes 5 lagged observations for prediction, so the influence of any one outlier is considerably less than for the other methods where fewer lagged observations are included. It should be noted that all the model-based methods can be outlier-robustified by simply using an M-estimation approach. If this was done then one would expect that the AR5X method to considerably outperform the LVCF method for the data with errors.

Even if it is known that outliers are not a problem, the AR5X method is an excellent one to use. Against all evaluation criteria it performed the best or close to the best. In addition its predictive power is much better than the LVCF method, which means it is better to use when the degree of missingness is moderate or high (>5%). Another situation where it would strongly outperform the weaker method is when missing values tend to occur in clumps. Such a situation is not uncommon with financial price data. Other types of panel data also display this type of missingness pattern, e.g. panel survey data.

Methods used on the options data

A simple competitor for the imputation of missing options prices is the BSLVCF method. It performs well over all 6 evaluation criteria, and it is straightforward and simple to implement.

If one is willing to go to the extra effort of implementing a more complicated approach, the BSMLP method does provide some significant benefits over the BSLVCF method. In particular, it is considerably better than the BSLVCF method for preserving values when the degree of missingness is high, and its preservation of distribution performance is excellent, even when the degree of missingness is low.

12.3 Weaknesses in the editing/evaluation procedures considered

The distribution performance of the LVCF technique is very poor, and most of the model-based methods easily outperform it. In finance risk analysis this is a serious shortcoming because it can lead to significant underestimation of important risk statistics such as Value-at-Risk (Jorian, 1997). Although not investigated in this report, it is quite likely that the bottom-line performance of financial institutes that use the LVCF imputation method could be improved if they used an appropriate model-based method instead (see the proposal for further study). 

A disadvantage of the model-based method in general is that their algorithms are not guaranteed to converge, which is particularly the case for the non-linear instruments, and to a lesser extent when outliers are present. However, for the linear instruments, it seems that the size of the outliers has to be extremely large before non-convergence becomes a problem. Note that the outliers which were added to the WXY3 data are extremely large and should be easily identified by any error detection system that used lagged values. Therefore, provided a suitable pre-transformation can be found to ensure that the modelling assumptions are met, then the model-based methods should operate with great reliability. For the shares and bonds data the log-return pre-transformation works well for all models considered. For the options data it was first necessary to obtain implied volatilities by inverting the Black-Scholes formula, and then apply the log-return pre-transformation to these. For other types of panel data an experienced statistician would probably need to test for appropriate pre-processing of data, including error identification.

In any case, the evidence presented for the linear instruments suggest that substantial benefit could be obtained by removing or down-weighting outliers in the pre-processing step. Results for the options data suggest that the pre-transformation to implied volatilities has served the purpose of down-weighting outliers, because results for the Z2 and Z3 data are almost identical to each other for all methods considered.

One practical shortcoming of the options imputation methods is that they are very specific to European style call and put options data. It would be preferable to have methods that work generally for many types of non-linear instruments. This is one of the proposal for further research in the following subsection.

12.4 Areas for further study

· In this study the pattern of missingness occurs at random. However, for many financial instruments missingness can occur in clusters. It would be expected that some of the model-based procedures will show significant improvement over the LVCF and BSLVCF method for such patterns of missingness. The proposal is to study the impact of clustered missingness patterns on the performance of the various imputation methods.

· For the shares and bonds data, the performance of most of the model-based imputation methods is very poor in the presence of outliers. The proposal is to test the performance of the methods when they are used in conjunction with a simple outlier identification or treatment procedure. The outliers could be removed and treated as additional missing values, or simply down weighted. Alternatively M-estimation techniques could be applied to robustify the model-based methods.

· The methods have been tested for financial data, but they could also be applied to other types of data, e.g. panel and rotating panel survey data. The proposal is to test the various imputation methods on rotating panel survey data, e.g. repeated business survey data.

· Given the good performance of the AR5X method for shares and bonds, one may expect that when applied to the option price series together with the Black-Scholes pricing formula, better imputation results could be obtained. Therefore, the proposal is to test the performance of this imputation approach against the evaluation criteria.

· For selling the idea to businesses, there is a need to determine the bottom-line impact of the imputation methods. This could be achieved by examining the impact on Value-at-Risk estimates, and consequently on the realised risk and return performance, and on the calculation of economic reserve capital of a simple portfolio. The proposal is therefore to define and perform appropriate experiments to test the bottom-line impact of the imputation methods.
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Appendixes

13.1 Hardware

	Hardware Code:
	1

	

	1.
	Contact Details

	Name:
	Dr. Philip Kokic

	Organisation:
	QANTARIS GmbH

	Email Address:
	qantaris@freenet.de

	


	2.
	Hardware

	2.1
	What type of platform did you use? (e.g. MS Windows, UNIX, MAC, Other (please specify))

	MS Windows

	2.2
	Please specify the platform details (e.g. Dell Dimension, SGI Origin 2000):

	X86-based PC

	2.3
	What type of CPU did you use (e.g. Athlon , 950MHz):

	Intel PIII 651 MHz (single CPU)

	2.4
	State details of cache/s and size/s in MB:

	Level 1: 32KB, Level 2: 256KB  

	2.5
	Any other issues:

	


	3.
	Software

	3.1
	Operating System type and version (e.g. Windows NT, Linux Red Hat 6.2)

	Windows 2000 Pro V 5.0.2195 (German)

	3.2
	List all software tools used, e.g. statistical package, neural network software, compliers (for ‘home-grown’ software like CMM) to perform the experiments (list separate pre- and post-processing packages separately:

	MATLAB was used throughout for all experiments

	4.
	Memory

	4.1
	Amount of system physical memory in MB:

	261664 KB

	4.2
	Indicate whether any virtual memory was used (if available), and also for each processor in multiprocessor systems:

	Unknown


13.2 Software

	NAME OF SYSTEM:
	MatLab

	1. Contact Details

	Name:
	Dr. Philip Kokic

	Organisation:
	QANTARIS GmbH

	Email Address:
	qantaris@freenet.de

	


	2.
	SYSTEM

	2.1
	Ability of the system to utilise data in different formats or from different systems.

	
	Accepts Excel and ASCII files easily. Most other data formats can be handled by programming the system.

	2.2
	Ability of the system to export clean data in different formats.

	
	Exports Excel and ASCII files easily. Most other data formats can be handled by programming the system.

	2.3
	Features of the system that make it easier/harder to use e.g. quality of help and accompanying documentation.

	
	Help is extensive and associated documentation good. Commands are relatively low level (i.e. on a par with SAS or S-PLUS), it takes a good programmer several weeks to learn, and moderate-considerable effort, depending on complexity, to implement procedures

	2.4
	Versatility of the system in terms of handling data from different sources (i.e. types of survey/administrative data).

	
	Can be programmed to handle just about any type of data, although there may be problems with certain types of hierarchical data. Also tools are available that allow the automatic generation of C-code, and in this way it can always be integrated with just about any other system.

	2.5
	Versatility of the system in terms of handing different variable types.

	
	Can handle virtually any type of variable

	2.6
	Versatility of the system to be combined with other edit/imputation systems.

	
	If the appropriate interfaces can be built, which may potentially be a large task, it can be made to interface with other systems. MatLab has the advantage that it can be either an Active-X client or server, which makes it possible to integrate with many other Microsoft products. Also, using the automatic C-code generation feature, it is possible to export the system to other systems relatively easily.



	2.7
	System features – portability, does the system only run under Windows, LINUX, UNIX & other platforms.

	
	Version available under all the above systems. Matlab code can be transported between these systems

	2.8
	Software and hardware requirements.

	
	See www.mathworks.com for specific requirements

	2.9


	Availability and quality of tools to assist with setting up system and validation of output e.g. visualisation tools

	
	Extensive tool sets are available for various mathematical, statistical, and graphical tasks

	2.10
	Record changes made to the data.

	
	This feature must be programmed by the user.

	2.11
	Analyse/interpret changes made to the data and their effect on outputs of interest.

	
	Not applicable

	2.12
	Level of knowledge/skill required to operate each stage of the process.

	
	A high level of skill is required to operate this system

	2.13
	The amount of resources i.e. minimum number of hardware/man hours required for processing 100,000 records.

	
	Not applicable.


Results for shares and bonds using the WXY2 (no errors) data

Figure 15.3.1: Predictive power box plots; WXY2 data
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Figure 15.3.2: Preservation of value box plots; WXY2 data
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Figure 15.3.3: Preservation of distribution box plots; WXY2 data
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Figure 15.3.4: Preservation of first moment box plots; WXY2 data
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Figure 15.3.5: Preservation of second moment box plots; WXY2 data
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Figure 15.3.6: Robust performance box plots; WXY2 data
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13.3 Results for shares and bonds WXY3 (with errors) data

Figure 15.4.1: Predictive power box plots; WXY3 data
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Figure 15.4.2: Preservation of value box plots; WXY3 data
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Figure 15.4.3: Preservation of distribution box plots; WXY3 data
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Figure 15.4.4: Preservation of first moment box plots; WXY3 data
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Figure 15.4.5: Preservation of second moment box plots; WXY3 data
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Figure 15.4.6: Robust performance box plots; WXY3 data

[image: image32.jpg]VMSE

0.6

0.5

0.4

0.2

0.1

LVCF

R1

NP100 MARX1
Method

ARS5X

MLP





13.4 Results for options Z2 (no errors) data

Figure 15.5.1: Predictive power box plots; Z2 data
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Figure 15.5.2: Preservation of value box plots; Z2 data
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Figure 15.5.3: Preservation of distribution box plots; Z2 data
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Figure 15.5.4: Preservation of first moment box plots; Z2 data
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Figure 15.5.5: Preservation of second moment box plots; Z2 data
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Figure 15.5.6: Robust performance box plots; Z2 data
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13.5 Results for options Z3 (with errors) data

Figure 15.6.1: Predictive power box plots; Z3 data
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Figure 15.6.2: Preservation of value box plots; Z3 data
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Figure 15.6.3: Preservation of distribution box plots; Z3 data
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Figure 15.6.4: Preservation of first moment box plots; Z3 data
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Figure 15.6.5: Preservation of second moment box plots; Z3 data
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Figure 15.6.6: Robust performance box plots; Z3 data
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13.6 Results by Degree of Missingness

Figure 15.7.1: Predictive power box plots; WXY2 data
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Figure 15.7.2: Preservation of value box plots; WXY2 data
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Figure 15.7.3: Preservation of distribution box plots; WXY2 data
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Figure 15.7.4: Predictive power box plots; Z2 data
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Figure 15.7.5: Preservation of value box plots; Z2 data

[image: image49.jpg]vdL1

0.5

Method by Degree of Missingness

- i o
+
+
n &2 _
—5— i . — —— -
0 - | | | | | | o
BSLVCF,L BSLVCF,M BSLVCF,H BSMLP,L BSMLP,M BSMLP, H




Figure 15.7.6: Preservation of distribution box plots; Z2 data
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� By implication, all data in this part of the study is continuous. No categorical variables were examined.


� Because QANTARIS was responsible for supplying the time series data in WP2 of the EUREDIT project, theoretically it had access to the true values of the missing data in the evaluation dataset. However, to be on par with the other partners in the consortium, this additional data was not used by QANTARIS in any phase of model selection, fitting or imputation.


� In fact the EM algorithm can be used to estimate B and  when both y and x-values are missing. However, all our imputation procedures based on the EM algorithm require that none of the auxiliary information is missing.


� Alternative window widths were tested, but the choice of 100 seemed to produce the best results for daily data.


� For the initial window all missing values in the window must be imputed, not only those for observation T.


� The implicit assumption is that a reliable method for treating outliers can be implemented. See the discussion in the conclusion.


� Throughout the best results are indicated by the smallest value on the ordinate axis.
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