Appendix E. Imputation using Bayesian Networks: a first evaluation 

Bayesian Networks 

In this section we introduce the use of Bayesian Networks (BNs) for imputation. Even if they have not been explicitly mentioned at the beginning of the project, during the last year some experiments have been performed. The results seem promising and we believe it could be useful to report the characteristics of this method. Since its application is at an early stage, we carried on a protocol of experiments aiming at testing some preliminary aspects of this imputation method. For this reason the results obtained are not comparable to the others in the EUREDIT project. 

BNs belong to the family of probabilistic graphical models, and their use for imputation of missing values in the NSIs is justified by the following sentence by Jordan, 1998: "…Graphical models are a marriage between probability theory and graph theory. They provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering -- uncertainty and complexity -- and in particular they are playing an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity -- a complex system is built by combining simpler parts. Probability theory provides the glue whereby the parts are combined, ensuring that the system as a whole is consistent, and providing ways to interface models to data. The graph theoretic side of graphical models provides both an intuitively appealing interface by which humans can model highly-interacting sets of variables as well as a data structure that lends itself naturally to the design of efficient general-purpose algorithms…". Actually, uncertainty, complexity and consistency of results are the typical problems arising when dealing with missing data in NSIs. For this reason we believe that the use of BNs in this context may be extremely useful. 

Generally speaking, probabilistic graphical models are graphs in which nodes represent random variables, and the lack of arcs represent conditional independence assumptions between pair of variables (for more details, see Jensen, 1996). Hence they provide a compact representation of joint probability distributions. BNs, also called Belief Networks, are directed probabilistic graphical models and are characterised by a more complicated notion of independence, which takes into account the directionality of the arcs. Most of times, the direction of the arcs is understood as a causal relationship between two variables. In the imputation context, we have found that it is more efficient to direct arcs according to the variables' reliability (see next section for more details).

An example of a BNs when 7 variables are analysed is reported in figure 1. 

Figure E.1: an example of BN with 7 variables
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In this case, the variable C is directly linked with A and B with arcs pointing to C (A and B are the parents of C, in other words Pa(C)={A,B}) and with E and D (Pa(E)=Pa(D)={C}). Note that the direction of the edges does not allow any cycle. One characteristic of BNs, which is useful for our purposes, is the following (Pearl, 1988): " …Given a directed acyclic graph (  and a joint probability distribution  P on all the nodes of (, a necessary and sufficient condition for ( to be a Bayesian Network of P is that each variable X be conditionally independent of all its non-descendants, given its parents Pa(X), and that no proper subset of Pa(X) satisfy this condition."

The previous definition leads to a hierarchical order among the variables according to the maximum number of arcs in the path between each variable and the roots (e.g., in Figure 1 there are 5 groups: {A,B}, {C}. {D,E}, {F} and {G}). The main consequence of the previous statement is that the complete joint distribution of, generally speaking, k variables (X1,…,Xk) is determined by the univariate conditional distributions: P(Xi|Pa(Xi)), i=1,…,k, (chain rule, see Pearl, 1988):
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(1).

Note that formula (1) formally reflects the concepts expressed by Jordan at the beginning of this paragraph. In particular, the description of the joint multivariate distribution by means of the product of single conditional distributions in (1) generally leads to a dramatic decrease in the number of parameters. 

Bayesian networks for imputation

The main steps we have used for imputing missing items by BNs are:

1) introduce a hierarchy among variables according to their reliability;

2) estimate a BN according to the previous ordering;

3) use the estimated BN in order to impute missing values.

As already remarked, a BN induces a hierarchical ordering among variables. From the results of the experiments we have performed, we found that the BN-imputation is sensible to the reliability of the variables. The definition of a general concept of "reliability" is not simple and further studies are needed. In these first experiments, we characterised reliability in terms of percentage of missingness. Other aspects of reliability may involve qualitative characteristics such as the reliability of each single datum that, for instance, could be higher when external sources are available.

The ordering introduced among the variables, leads to structure the BN in a specific form. In particular, the arcs must go from a more reliable variable to a less reliable one. This constraint on the arcs direction might introduce a higher complexity in the structure of the BN (Verma and Pearl, 1990), but we believe that this step is necessary for the efficiency of the imputation procedure. 

The estimation of the BN (structure, probability distribution) has been performed by using the commercial software Hugin (http:\\www.hugin.com), that implements the pc-algorithm (Spirtes et al. 1993) for the estimation of the graph structure, and the em-algorithm (Lauritzen, 1995) for the estimation of the probability distribution conditioned to the structure. Further research is needed in order to see if other methods may be more efficient. Note that as far as the estimation of the structure is concerned, we have to eventually redirect the arcs according to the reliability-ordering rule. The estimation of the probability distribution can be conditioned to edit rules (logical constraints), that can be explicitly introduced in the em-learning step in Hugin. In other words logical constraints are used in the estimation phase and this will produce consistent imputations. This step is especially necessary when the dataset used for the estimation contains missing values, which is our typical case. In this case, even if observed data are consistent with logical edit rules, the estimated distribution may assign positive probabilities to unlogical cases. In particular, we have seen that such probabilities may be non negligible and this will affect the imputation phase.

Once the BN has been estimated, we follow the algorithm proposed by Thibaudeau and Winkler (2002). The imputation of missing values of a variable is performed according to the estimated conditional probability distribution of the variable given its parents, i.e. if variable Xi is missing in unit a then we randomly generate one value from the conditional distribution P(Xi|Pa(Xi)), where Pa(Xi ) represents the observed values of the parents of Xi  on unit a. In order to avoid the case of missing parents, we fill in the missing items following the same procedure according to the BN structure. In the case missing values affect a roots of the BN, the marginal distribution of the root is used for imputation. Given that the structure of the BN has been defined according to the reliability of the variables, this imputation mechanism imputes the missing items conditioning on the most reliable variables. 

Comments

We have evaluated this imputation method by carrying out experiments on a subset of SARS data. In these simulations we have compared BN-imputation with the random hot-deck technique with respect to MCAR and MAR missing mechanisms. We have focused on two aspects of the general criteria of the EUREDIT project, i.e. we have evaluated the performance of the imputation techniques in terms of preservation of marginal and joint distributions, and coherence between individual items with respect to logical constraints. As already remarked, it is possible to introduce logical constraints (in these first experiments we used only structural zeros) in the estimation phase of the BN. This fact will consequently produce coherent imputations straightforwardly. As far as the preservation of joint distribution is concerned, under the MCAR mechanism, both the methods are equivalently good. This was expected because in this case the subset of data forming the donor pool is representative of the population. Under the MAR mechanism, the BN behave better than the Random Hot-Deck. This is because the donor pool is not anymore a representative sample of the population, while the BN are able to use all the observed values. It is worthwhile noting that "assuming that the complete data model and ignorability assumptions are correct, all relevant statistical information about the parameters is contained in the observed data likelihood" (Schafer, 1997) and the BN are based on observed likelihood estimates according to a particular factorisation of the probability distribution. In other words, this technique allows us to exploit all the available information present in the data. For further details on the experiments, refer to Coppola et al. (2002a, 2002b).

We remark that these experiments have been performed on categorical variables. For continuous variables it is still necessary to introduce some hypotheses: for the BN structure either the knowledge of the structure is known in advance or the variables should be categorised; for the estimation phase, the variables should be assumed Gaussians.

For this work we use Hugin for the estimation of the BN, while a software code has been written for the imputation phase given the BN. 

In the estimation of the BN other techniques might be used, for instance it would be interesting to estimate the structure of the BN by other methods than the pc-algorithm.

This technique is at an early stage and it necessitates of further investigations, for instance the introduction of a measure for variables reliability and the possibility of extending BNs as a tool for dealing with editing problems. 
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