Appendix

Measuring the statistical performance of data editing in the Euredit project – formulae used.
This appendix provides further brief details of formulae as a supplement to Chapter 2. Chapter 8 of Methods and Experimental Results from the Euredit Project (see CD) discusses statistical performance measures for edit and imputation more fully. 

In the EUREDIT project errors and missing values were introduced to previously clean data and the success of the procedures at re-capturing the properties of the original data was measured. In this situation “true” values were available. In a typical real-world application a researcher can only obtain “true” values by a careful manual validation processes, perhaps on a small subset of the data, but the performance measures described below can still be used for this subset of data to assess relative performance. 

For all formulae in this chapter we assume that the dataset has n cases and p variables, where each recorded (pre-edit) value is Yij , and the true values Y*ij are assumed known. The formulae below allow for a sample weight wi for each case – in non-sampling situations we define wi = 1. I deriving the formulae for editing we assume that if an error is detected it will be corrected.

1. Formulae for editing (error detection) performance

1.1 Measuring efficient error detection performance

In assessing the efficiency of error detection if we count the decisions resulting from the edit rules for variable j the following table results:

	
	Value accepted
	Value flagged as error

	Value  correct (Yij=Y*ij)
	a
	b

	Value erroneous (Yij(Y*ij) 
	c
	d 


 Then ( =    c/(c+d) 








(1)

is the “false negative rate”, the proportion of cases that are actually in error where the edit process fails to detect the error, and 

( =   b/(a+b)









(2)

is the “false positive rate”, the proportion of correct cases for variable j which the edit process flags as in error, and

(= (b+c)/(a+b+c+d)








(3)

is an estimate of the probability of an incorrect outcome from the editing process for variable j – an overall measure of inaccuracy for this variable.

In many edit situations it will not be possible to say which variable is the one causing the edit check to fail, so if at least one variable value is flagged as ‘suspicious’ the whole record will be flagged as suspicious. This is equivalent to a case-level error detection, where, counting suspicious/ non-suspicious cases rather than variables in the table above gives:

A= c/(c+d)








(4)

B= b/(a+b)








(5)

D= (b+c)/(a+b+c+d)







(6)

Some editing procedures, rather than assigning each value to “pass”/ “fail”, assign a probability of each variable being in error, and for these it is possible to use the probabilities to derive a measure of error localisation accuracy. Good error localisation then corresponds to estimated error probabilities close to 1 for variables that are in error, and close to 0 for those that are not. We define error localization as the ability to accurately isolate "true errors" in data, and measure accuracy via the Gini statistic, Gi which provides a measure of how well localization is "realised" for case i. It is defined as
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where p is the number of different items comprising the record for case i. 

To illustrate, consider the following scenarios for a record containing 4 variables (Y1…Y4). Here 
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 denotes the estimated probability that the jth variable in the ith record is erroneous. Let Cij =1 if the variable is correct, 0 otherwise. Then consider the following scenarios A…F representing 6 different potential situations where each of the 4 variables may be in error or not:

	
	
	Yi1
	Yi2
	Yi3
	Yi4
	Gi

	Estimated error probabilities 
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	0.9
	0.8
	0.2
	0.1
	

	Data scenario A (Cij)
	
	1
	1
	0
	0
	0.43

	Data scenario B (Cij)
	
	0
	0
	1
	1
	0.08

	Data scenario C (Cij)
	
	0
	1
	0
	1
	0.23

	
	
	
	
	
	
	

	Estimated error probabilities 
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	0.6
	0.5
	0.4
	0.3
	

	Data scenario D (Cij)
	
	1
	1
	0
	0
	0.30

	Data scenario E (Cij)
	
	0
	0
	1
	1
	0.20

	Data scenario F (Cij)
	
	0
	1
	0
	1
	0.23


Scenarios A…C above show cases where the error estimates generated from an editing procedure are quite "precise" (i.e. they are either close to one or close to zero). Scenario A represents very poor error localization, since both Yi1 and Yi2 are identified as being in error with high probability, while in fact they are not, while Scenario B is the reverse. Scenario C is somewhere between these two situations. Scenarios D, E and F repeat these "true value" realisations, but now consider them in the context of a rather less "precise" allocation of estimated error probabilities.  

So for case A it is (0.9x1+0.8x1+0.8x1+0.9x1)/(2x4) = 0.43

A small value of Gi corresponds to good localization performance for this case. This is because such a situation occurs if (a) there are no errors and all the
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 are close to zero; or (b) all items are in error and all the 
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 are close to one; or (c) 
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 is close to one when an item is in error and is close to zero if it is not. For a sample of n cases these case-level measures can be averaged over all cases to define an overall error localization performance measure
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1.2 Measuring influential error detection performance

Here our aim in editing is not so much to find as many errors as possible, but to find the errors that matter (i.e. the influential errors) and correct these. Thus the size of the error (measured value - true value) in the data (for continuous data 
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) is the important characteristic. The aim is to detect measured data values that are "far" from their associated true values. This type of approach is most appropriate for scalar or ordinal (e.g. Likert scales) data. Since in Euredit evaluations we assume that if an error is detected it will be corrected, Dij is only non-zero when incorrect Yij values have been passed as correct by the editing process. 

For positive scalars, we have the following two measures:

The Relative Average Error is the ratio of the average of the post-edit errors to the average of the true values:
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Relative Root Average Squared Error: 
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(9)

As well as measuring the average size of errors, it is of interest to also measure the spread of the Dij . The Relative Error Range measures how "extreme" the spread of the undetected errors is, based on the range of Dijs. Note that weighting is not used in this formula.

RERj= Rj(D)/IQj(Y*)  






(10)

where Rj(D) is the range (maximum - minimum) of the non-zero Dij values and IQj(Y*) is the interquartile distance of the true values for all n cases.

With a categorical variable we cannot define an error by simple differencing, but  “distance” can still be measured, e.g. for nominal data as “1” if the values are different, and “0” if the values are the same, and for ordered categorical data a simple definition of distance could be the number of categories between two categories, plus 1.  A "good" editing procedure is one that would have few off-diagonal counts in a table such as the above. A formula used in EUREDIT for categorical data is

Dcat
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where i(j(ab) denotes off-diagonal cases with 
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, and d(a,b) is a measure of the distance from category a to category b. 

The variance of DCATj ,
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tj = 
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is a t-test on how effective the editing process has been for error reduction for variable j. Values >2 indicate significant failure of the edit process.

1.3 Outlier Detection Performance of an Editing Procedure

In order to evaluate how well an editing procedure detects outliers, we compare (as a ratio) the moments of the outlier-free data values with the corresponding moments of the true values. In order to retain consistency with interpretation of the other measures, where smaller values indicate better performance, 1 is subtracted from this ratio, and the measure is expressed as an absolute value. For Euredit the indicator was calculated to compare the first and second moments (i.e. means and variances) of the outlier-free values with the true values – AREm1 (mean) and AREm2 (variance).

AREmk = Absolute Relative Error for Yj=  
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In the above formula Ei =1 if the ith observation is retained in the outlier-free dataset (and =0 otherwise). The formula assumes that the variables are positive valued scalar variables.

2. Formulae for imputation performance

2.1 Performance measures for predictive accuracy of imputation (true values or rank order)

Preservation of true values for a categorical variable Y with c+1 categories. 

An obvious measure of how closely the imputed values “track” the true values for this variable is given by the proportion (D) of off-diagonal entries for the square table of order c+1 obtained by cross-classifying the imputed and actual values, i.e.
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where 
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 denotes the imputed version of Y and 
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 is its true value.

Provided that the imputation method preserves the marginal distribution of Y (see (21) below) we can estimate the variance of D, 
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, (see Chapter 8 of Methods and experimental results). If the imputation method preserves individual values, D should be identically zero. To allow for the fact that the imputation method may "almost" preserve true values, we can test whether the expected value of D is significantly greater than a small positive constant . That is, we are willing to allow up to a maximum expected proportion  of incorrect imputations and still declare that the imputation method preserves true values. Based on this reasoning we calculate
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The smaller this value, the better the imputation process is at preserving true values. If * is zero we say that the imputation method preserves true values perfectly.

Preservation of order for categorical data. 

In the example above, Y could be a continuous variable defined by categorisation of a continuous variable. Here we are not only concerned with preservation of values, but also preservation of order. 

A way of allowing not only the absolute number of imputation errors, but also their “size” to influence assessment, is to compute a generalised version of D, where the "distance" between imputed and true values is taken into account. That is, we compute
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where 
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is the "distance" between 
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 (see Chapter 8 of Methods and Experimental Results for distance measures and further details) 

Preservation of true values for continuous (scalar) data. 

A regression approach is used. If values are preserved then 
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 should be close to Y* for all cases where imputation has been carried out. Generally it is preferable to focus on estimates of the regression of Y* on 
[image: image27.wmf]Y

ˆ

, particular those that are robust to outliers and influential values. The regression approach evaluates the performance of the imputation procedure by fitting a linear model of the form Y* = 
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 +  to the imputed data values using a sample-weighted robust estimation method. Let b denote the fitted value of  that results. Evaluation then proceeds by testing whether  = 1. If this test does not indicate a significant difference, then a measure of the regression mean square error


MSE = 
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can be computed. A good imputation method will have a non-significant p-value for the test of  = 1 as well as a low value of MSE.

Another regression-based measure is the value R2 of the proportion of the variance in Y* "explained" by the variation in 
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Underlying the above regression-based approach to evaluation is the idea of measuring the performance of an imputation method by the distance 
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 between the n-vector 
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 of imputed values and the corresponding n-vector Y* of true values. This suggests we evaluate preservation of values directly by calculating 
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 for a number of distance measures. An important class of such measures include the following (weighted) distances:



[image: image34.wmf]å

å

=

=

-

=

n

i

i

n

i

i

i

i

L

w

Y

Y

w

d

1

1

*

*

1

/

ˆ

)

,

ˆ

(

Y

Y






(18)



[image: image35.wmf]å

å

=

=

-

=

n

i

i

n

i

i

i

i

L

w

Y

Y

w

d

1

1

2

*

*

2

/

)

ˆ

(

)

,

ˆ

(

Y

Y






(19)



[image: image36.wmf](

)

[

]

å

=

¥

-

=

n

i

i

i

i

i

i

L

w

Y

Y

w

n

d

1

*

*

/

ˆ

max

)

,

ˆ

(

Y

Y

.




(20)

Preservation of ranks in imputation for scalar data

Preservation of ordering can be evaluated very simply for a scalar variable. We just replace Y* and 
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 in the proceeding "value preserving" analysis by their ranks in the full data set (not just in the set of imputed cases). 

2.2 Performance measures for distributional accuracy

Preservation of marginal distribution for a categorical variable with c+1 categories

This can be assessed by calculating the value of a Wald-type statistic that compares the imputed and true distributions of the variable across these categories. This statistic is the extension of McNemar’s statistic (without a continuity correction) for marginal homogeneity in a 2 ( 2 table. It is given by
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Here R is the c-vector of imputed counts for the first c categories of the variable, S is the c-vector of actual counts for these categories and T is the square matrix of order c corresponding to the cross-classification of actual vs. imputed counts for these categories. Under relatively weak assumptions about the imputation process (essentially providing only that it is stochastic, with imputed and true values independently distributed conditional on the observed data - see Chapter 8 of Methods and Experimental Results), the large n distribution of W is chi-square with c degrees of freedom, and so a statistical test of whether the imputation method preserves the distribution of the categorical variable of interest can be carried out. While W can still be calculated when a non-stochastic imputation scheme is used, this distributional result can no longer be used to determine the "significance" of its value.

Note that adding any number of “correct” imputations to the set of imputed values being tested does not alter the value of W. That is, it is only the extent of the "incorrect" imputations in the data set that determines whether the hypothesis of preservation of marginal distributions is supported or rejected.

The preservation of distribution for a scalar variable can be evaluated by computing the weighted empirical distribution functions for both sets of values:
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and then measure the "distance" between these functions using the Kolmogorov-Smirnov distance


[image: image41.wmf](

)

(

)

)

(

)

(

max

)

(

)

(

max

)

,

(

ˆ

ˆ

ˆ

*

*

*

j

n

Y

j

n

Y

j

n

Y

n

Y

t

n

Y

n

Y

KS

t

F

t

F

t

F

t

F

F

F

d

-

=

-

=


(22)

where the {tj} values are the 2n jointly ordered true and imputed values of Y. An alternative is
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where t0 is the largest integer smaller than or equal to t1. 

2.3 Performance measures for estimation accuracy

We consider preservation of aggregates when imputing values of a scalar variable. The most important case here is preservation of the raw moments of the empirical distribution of the true values. For k = 1, 2… we can measure how well these are preserved by
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In EUREDIT the statistic was calculated for the first two moments, m1 and m2
2.4 Evaluating Outlier Robust Imputation

The outlier robustness of an imputation procedure can be assessed by the "robustness" of the analyses based on the imputed values, compared to the analyses based on the true data (which can contain outliers). This is a rather different type of performance criterion from that investigated so far, in that the aim here is not to get "close" to the unknown true values but to enable analyses that are more "efficient" than would be the case if they were based on the true data values.

For the EUREDIT project the emphasis was on assessing efficiency in terms of mean squared error for estimating the corresponding population mean using a weighted mean based on the imputed data values. Note that this measure uses all N data values in the data set rather than just the n imputed values, and is given by
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Here mN(Y) refers to the weighted mean of the variable Y defined over all N values in the data set of interest. Note also that the variance term above includes a penalty for excessive imputation. 

2.5 Evaluating Imputation Performance in Time Series Data

Here i = 1, ..., n indexes the different time series of interest, with each series corresponding to a multivariate observation indexed by time. For such data most methods of analysis are based on the estimated autocorrelation structure of the different series. Hence an important evaluation measure where imputed values are present is preservation of these estimated autocorrelations. Let 
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 denote the true value of the estimated autocorrelation at lag k for the series defined by variable Yi, with 
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 the corresponding estimated lag k autocorrelation based on the imputed data. A measure of the relative discrepancy between the estimated lag k autocorrelations for the true and imputed versions of these series is then
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