

National Statistics Methodology Series No. X

Integrated modelling approach to imputation

Seppo Laaksonen – Statistics Finland

Pasi Piela – Statistics Finland

About the National Statistics Methodology Series
The aim of this series is to publish monographs with a substantial methodological interest written by people across the Government Statistical Service. Findings can be included provided that they illustrate methodology, but the series is not for findings 
per se.
Publication process
Contributors should send their submissions to the series editor at the address below. Before doing so, however, they should clear the work with their line manager. The submissions will then be subjected to peer review, external or internal, or both, as the series editor see fit. Authors can submit their work for peer reviewed journals as well.

The series is aimed at getting out results quickly and easily. It is the intention that authors will prepare the final documents themselves, on their own PCs. The style has therefore been kept simple. Style guidelines specifying the fonts, type size, margin settings, etc. are available from the series editor (at the address below). The series editor should need to do minimal editing.
Dissemination
Members of the GSS can obtain copies free of charge from the National Statistics Library, Room DG/18, tel 0171 533 6266 or GTN 3042 6266 at the address below. Copies are also available for sale to customers outside the GSS. These can be obtained from ONS Direct, Room D140, Government Buildings, Cardiff Road, Newport 
NP10 8XG, tel 01633 812078 or fax 01633 812762.


Series editor
Assistant editor


John Charlton
Sanchia Bailey


Office for National Statistics
Office for National Statistics


Room DG2/08
Room DG2/07


1 Drummond Gate
1 Drummond Gate



London SW1V 2QQ
London SW1V 2QQ


Tel 0171 533 6239
Tel 0171 533 6188


email john.charlton@ons.gov.uk
email sanchia.bailey@ons.gov.uk

Contents

Summary
4

1
Introduction
4

2
Survey process and imputation
5

3
Imputation process
6

4
Imputation specifications for the four Euredit data sets
10

5
Conclusions
21

6
References
22

Appendices

A
Some households and individuals from the GSOEP
25

B
Tables of the evaluation results
27

Summary

The paper first gives an overview to imputation techniques using a somewhat new approach. Some attention to editing methods are also given. Next, the implementation of some of the imputation developments is presented for the four Euredit data sets, that is, for the Danish Labour Force Survey, the UK Annual Business Inquiry (ABI), the German Sosio-economic Household Panel, and the UK Census Sample data (SARS). An editing implementation for the UK ABI is presented too. Some discussion with so-called new techniques is included. This is focused on a technique of neural nets, that is, on self.organising maps (SOM). This report includes some comparative results from the Euredit development data sets, and also results based on the evaluation data sets of the above mentioned data. 

Keywords: Classification and Regression Tree, Logistic Regression, Model-donor imputation, Regression Based Nearest Neighbour, Real-donor imputation, Self-Organising Maps.  
1. Introduction

Imputation is a technique for replacing missing or/and other incomplete values with such ones (i) which are expected to be close to the true values, or (ii) the distribution of these imputed values is close to the distribution of the true values, or (iii) the aggregated estimates based on these imputed values are expected to be close to the aggregated estimates based on the true values. The first requirement is most demanding, if it is successful, the relationships between different variables will also be close to the true relationships. If this is not the case, a special requirement for correctly imputing the relationships will also be arisen. It is often difficult to achieve the reasonable results for the first requirement which leads to attempts to succeed with those less demanding requirements, the second and the third, respectively.    

The replacement of incomplete values may be done either singly or multiply. The former is called single imputation and the latter multiple imputation, respectively. This paper does not deal with the latter methodology, although it could be practicable in some considered situations (see e.g. Rubin 1987, Little and Rubin 1987 or its new edition from 2002, Rubin et al 1996). 

The Euredit project is especially considered so-called new techniques for editing and imputation. The new techniques here mean neural nets. In this paper we present comments on self-organising maps (see e.g. Koikkalainen 1995-1999, Häkkinen 2001, NDA software for editing and imputation), but these will be in more details presented in another document. We mainly discuss methods which may be called traditional, but in some cases new applications of these methods. However, it is not clear what method is new, what old or traditional. 

The empirical results are based on the three Euredit data sets for which an independent body has done the missingness but we may check after our imputation how well we have succeeded. In this report, we do not present the results but the implementation of our methods to these data sets. Some comments on the missingness mechanisms of these est files are given too.

 Besides the different comparative empirical exercises, the paper aims at describing the imputation process a bit differently than traditionally done (cf.  Kalton and Kasprzyk 1986, Little and Rubin 1987, Särndal et al 1992, Schulte Nordholt 1998, Solas 2001, Marker et al 2002).  

The paper is organised so that in Section 2 we explain the role of imputations in the whole survey process. The next section concentrate on the key aspects of imputation techniques, showing thus the approach of the author to imputations. Section 4 presents our methodological implementations for the three data sets, and Section 5 concludes the paper.
2. Survey process and imputation 

The survey process may be from the methodological point of view summarised as follows: 

(i)  Users’ Needs  (e.g. what are the key outputs which has an effect on the requirements of imputations too), 

(ii) Survey Design (requirements for imputation needed to take into account, avoiding such questions/variables which obviously lead to high missing and erroneous values),  

(iii) Sampling Design, 

(iv) Data Collection (auxiliary data for imputation too), 

(v) Editing and Imputation, 

(vi) Initial Weighting (Design Weights, Basic Weights), 

(vii) Re-Weighting (Post-stratification, Response Propensity Modelling (individual level), G-Weighting, Outlier Weighting, Calibration), 

(viii) Output Data: Aggregated Macro Data and Micro Data for users (data should have been flagged if imputed, for example), 

(ix) Dissemination (includes quality information derived from imputations).  

This list shows that the imputation process must have taken into account all the time when processing the survey. However, there is usually a special step for editing and imputation. In this paper, we do pay special attention to this step, although imputation may be important in other parts as well. In practice, the steps like above cannot be followed straightforwardly. For example, although the editing and imputation starts with close connection with the data collection, this step is not possible to finalise before the re-weighting has been done. Sometimes, imputation and re-weighting may even be competitive to each other, or also so that both approaches may lead to the same result. However, there are several situations when imputation is superior to weighting. It is more flexible, no many weights needed if the missingness mechanism is complex. A problem of re-weighting is that it only operates with observed values, but some imputation methods may obtain values outside this range. 

3. Imputation Process

We here consider that the imputation process consists of the following 6 steps: (i) The data editing process, (ii) Service of auxiliary information, (iii) Building of  a good imputation model, (iv) Imputation task (may leads to a new editing), (v) Estimation including point estimates, sampling variance and imputation variance, (iv) Outputs from imputations including flagging, dissemination to aggregate statistics, and micro data users. 

We do not here consider editing in very details, we only pay attention to error detection or error localisation, and consequently, we may handle editing very similarly to imputation. For this purpose, we need first to build a good editing model like step (iii) for imputation, and next to try detect each particular error. This corresponds to step (iv) as far as an imputation process is concerned. This paper concentrates, respectively, on steps (iii) and (iv), both for editing and imputation. 

Before going to look the two most important steps of imputations, it is necessary to remind that there is a high need for providing as versatile, good, up-to-date auxiliary information preferably at individual unit level, although the aggregated data may be exploited too (see the classification of auxiliary data in Laaksonen 1999, and its revised version in Laaksonen 2002a). This job will continue during the following tasks if reasonable results have not been achieved with available variables and with their initial forms. In this case, we cannot create any new auxiliary variables, we only may choose one or more such variables of the list included in the test file. Basically, we are only looking for such variables which have more non-missing values as the target variable has, as available auxiliary variables.

Next, we go to consider the most crucial aspects of the imputation model, on one hand, and the imputation task, on the other. Although we present these separately, these steps should have been integrated, and iteratively built. In the Euredit context, we call this strategy for imputation and partially for editing as ‘Integrated Modelling Approach to Imputation’ (IMAI).  

3.1. Imputation model 

The dependent variable of the imputation model may be of the two types:

(i) The variable being imputed, or

(ii) Indicator of the missingness mechanism of the variable being imputed.

If y is this variable, then in case (i) the model is constructed using the non-missing part of the data set (say for r units), but the explanatory variables of the model should have been available for the missing part as well (say for n units). The initial variable may be transformed by logarithm, among others, and it may be also categorised. A practicable strategy for categorisation in such cases when a non-negative variable y has many zero values is to binarise it so that if y>0 then the new variable z =1, whereas in other cases z = 0. This is fairly common in business surveys, in particular (see e.g. Laaksonen 2003). This leads to exploit the two models. After the above mentioned first step, a new model is to be built for those with non-zero values, these being either real or imputed ones. 

Respectively, in case (ii), the model is to be built for the n units and the response variable may, for example, be 

= 1 if the value is non-missing, and

= 0 if the value is missing.

The explanatory variables are as in case (i) such which are available for the full data set (n units).   

An imputation model may be specified in different manners. It is impossible to give a completed list of these specifications. In some cases, the model behind imputation is so simple that one can not see any model. For logical imputations, a statistician may use a known function, or a edit rules specification. In some sense, the model may be like a good guess, derived from the experience of this survey process.  In these cases, any model are not estimated. 

When going towards more complex techniques, the model needs an estimation using available data. A typical specification is a linear statistical (regression) model. In very simple cases, such a model may be include noise term, or constant and noise term or one explanatory variable with or without noise term. In these cases, only little auxiliary data are available. While the amount of auxiliary data increases, more complex and multivariate models may be used. For binary response variables, logistic regression is often used. In principle, all types of traditional statistical models may be attempted as imputation models.  

Naturally, new modelling techniques may be exploited, such as classification tree for categorical variables and regression tree for continuous ones, respectively (e.g. like in the AutImp project, see Chambers et al 2001). And of course, various types of neural nets models as in this Euredit project. Another report is written on these methods. 

There is a special feature both for constructing an imputation model and for imputations themselves, consequently. These models may be built either, (a) for the whole data set considered, or (b) for certain sub-sets of the data set, independently, for each.  

The latter sub-groups are often called imputation cells, or imputation classes. The nature of such cells is also similar to adjustment cells or response homogeneity groups of reweighting techniques. In case (a) this kind of imputation cell may be an explanatory variable. Ideally, an imputation cell is homogenous or the missingness mechanism is ignorable or at least MAR (see e.g. Rubin 1987) within this cell.  

A specific part of the imputation process is to define these imputation cells as correctly as possible. But how to do those, it is a big issue. Traditionally, an ‘imputeur’ just makes his/her choice using a good intuition and an experience on parallel situations. A more advanced way to exploit any good modelling technique for this purpose. For example, logistic regression may be used so that the dependent variable is = 0, if the value is missing and = 1, if it is not missing. The estimated propensity scores are next divided into the quintiles and these are used as imputation cells (this is a solution in Solas). Naturally many other techniques finding such cells may be used under traditional models. The certain new methods, such as tree-based methods (e.g. Piela and Laaksonen 2001, Chambers et al 2001) and SOM, may be used so that these automatically provide the possible imputation cells for the further use. However, there are no automatic criteria how to find the optimal combination of cells. 

The technology for the SOM/NDA is from the imputation point of view analogous to tree-methods, but the algorithms behind this SOM are more complex and comprehensive (see Häkkinen 2001, Koikkalainen 1995 and 1999, etc.). A specification is called Tree-Structured Self-Organizing Maps (TS-SOM). This technology starts from the full data set, called root – one neuron, and next it creates the first sub-groups, called SOM layer 1 – four neurons (these correspond to clusters or imputation cells ) and each of these into 4 sub-groups, called SOM layer 2 - 16 neurons, and so on.  These layers or levels, and neurons or cells may be examined graphically and standard statistical tables and indicators may be provided. Within each neuron an imputation operation may be done. A user has to choose which level of layers to apply. It is possible to use a certain level for one part of the data set, and another level for the rest.   

3.2. Imputation Task  

We here use the terminology which consists of the only two basic techniques for imputation conditional to the imputation model: 

(i) In case of model-donor imputation the imputed values are directly derived from a (behavioural) model.

(ii) In case of real-donor imputation the imputed values are directly derived from a set of observed values, from a real donor respondent, but still are indirectly derived from a more or less exactly defined model. 

We next present some specifications for both types imputation tasks: 

Options for model-donor method

In this case, an imputed value is either

(i)  a predicted value of the model (deterministic solution), or it is

(ii) a predicted value of the model plus a noise term (stochastic solution). 

But if a predicted value is a probability, say pk , thus within interval (0, 1), then there are two alternatives for deciding whether the imputed value is to be either 1 or 0: 

(a) to create an uniformly distributed random variable within (0, 1), say uk , then the imputed value = 1 if pk > uk, = 0, otherwise,

or 

(b) to use an external information on which level the probability should be (e.g. less than 0.5 then the imputed value = 0, and =1, otherwise). This external information may be derived from the training set or just based on a good guess.   

Case (ii) for model-donor imputation requires some assumptions on the distribution of the noise term. It should be fitting well with real unknown observations (in order to achieve proper imputation). 

Most usual for continuous variables is to use a normal distribution so that the mean and the variance of noise term are estimated from the real data. Since the real life is not infinite, the distribution must have truncated to a certain realistic level. How to do this correctly, it is not examined much? I have tried to look the distribution of residuals. In my experience, even one standard error or one root mean square error is enough, sometimes even too large, but it depends so much on the predictability ability of the imputation model. If no bound have not bee used, the results may be very strange. For example, if the Solas software is applied automatically to ordinary business survey data with skewly distributed variables, there will be some big outliers including non-acceptable negative values (see Chambers et al 2001).   

If an explicit model has been used, and the residuals for the observed units have been estimated, then it is useful to exploit these either  

  - choosing one of the residuals randomly (model-donor) or

  - choosing a residual of a nearest (near) neighbour of a unit with a missing value. 

On the contrary, for categorical variables, the empirical or estimated distribution is used preferably so that, the distribution of the imputed values will be equal to the observed distribution (with random error since in this operation the uniformly distributed random variable has been used as a technical tool like above)..    

Options for real-donor method

The model is used thus to find a donor, who’s value has been used as a substitute for the missing one. In principle, this donor may be chosen using various criteria, but most natural, it is to choose it from the neighbourhood of a unit with a missing value. This requires to exploit a metrics for finding this neighbourhood. This is a big issue under real-donor methods. There are following techniques, among others: 

- Euclidean distance

 - Gini index of categorical variables: this is the metrics used in classification tree of the WAID software..

- Entropy measure for ordinal variables.

- Edit rules must have been satisfied.

- When using certain methods like random hot decking within imputation cells, it is assumed that all distances within this cell are equal. 

- Predicted values of the estimated statistical model with or without random noise term (the same what may be already used as imputed values). It is, as in case of model-donor methods, not clear how to truncate this noise term. An advantage of the adding of the noise term is that it gives a good tool for multiple imputations. It seems to be good for single imputations in some cases too (e.g. it scatters piles and gives more opportunities to find different neighbours). An advantage of this metrics is that the auxiliary variables will be weighted using empirical training data set of the respondents, and this thus leads to an objective weighting solution. We here call the methodology which exploits this metrics Regression-based Nearest Neighbour (RBNN) which is a shortened form for the term used by Laaksonen (2000) and Laaksonen (2002b). 

Since we exploit in our exercises SOM applications, we next describe the metrics of it in more details: 

4. Imputation specifications for the four Euredit data sets  

To concretise our approach to imputation methods we in this section present examples from the four quite different situations. 

The data sets used in these examples are constructed by an anonymous person as a special work for the Euredit project. Hence we cannot know what have been the principles for the missingness mechanism. 

The first data set is from the UK Annual Business Inquiry (ABI), which is based on a typical business survey design. The data are available from the two successive years, however so that there are only about 25 percent of the units from the both years, these being mainly big firms which are included in the survey at certainty. The variables of interest in this exercise are total survey turnover (variable name = TURNOVER), total employment costs (EMPTOTC), Total purchases of goods and services (PURTOT), Total taxes paid (TAXTOT), Total cost of all capital assets acquired (ASSACQ), and Total proceeds from capital asset disposal (ASSDISP). We consider variable TURNOVER as one of the key variables of the survey. A possible strategy is to check and impute the problematic values of this variable first, and next to use this variable as an auxiliary variable when going to impute such variables as EMPTOTC and PURTOT. There is a need to check the components of each of these variables, and this leads to continue imputations using these ‘total’ variables as auxiliary variables, among others. This kind of strategy is called sequential imputation. 

Although it has been seen that the key variable may have a high influence on the several survey results, there are not in this data very many auxiliary variables available. Fortunately, turnover derived from register information is available. It is often well correlated to survey turnover, but not in all cases, and these cases just are arising problems.  

Our second data set, the German Socio-economic Panel (GSOEP) covers the 6 successive years, from 1991 until 1996. The data are not like a typical panel in the sense that panel mortality or attrition would have been included. So, the file only includes those who have been alive each panel year. Nevertheless, there are sometimes missing values, most typically for one year, but several years for some households. All missingness is for incomes, that is, for individual yearly income (variable name being INCOME) on one hand, and for household yearly income (HHINCO), on the other. 

Logically, the sum of individual incomes should be equal to household income, but this does not hold in all cases. A reason is that there are some confusion on the household composition in the data file. For example, in some cases, there are two different household incomes within one household. I have however, accepted one of these, typically a larger one, but this may be a reason for errors in imputations. The missingness of this data set is also awkward since there may be both individual income and household income missing for one member only, for example. Hence, we may definitely impute these incomes for this member using a logical deduction. On the contrary, if variable INCOME is missing for two or more members of the same household, but variable HHINCO not, we only know the sum income of these two ones, but the allocation for these two ones is not automatic. This kind of occasions are not possible in real life, however. We tried to edit the data with respect to such a logic, but this requires much time, and we did not like to spend much time for this additional work in order to concentrate on real imputations. Hence our results cannot be ideal. 

The auxiliary data for real imputations of the GSOEP is quite large, including a number of individual and household characteristics, such gender, age, number of children in household, employment position, size of the company and ISCO occupation code. 
The third data set is derived from the Danish Labour Force Survey (DLFS). There is only one variable with missingness in this data set, that is, individual yearly income. The data are fairly typical for such surveys since several characteristics of individuals are in the data set such as gender, age, employment status, living region and education level. However, there are no variable which is very well related to personal income at individual level. 

Finally, we are looking for the UK SARS data which are a regional 1% sub-set of the UK census from 1991. The evaluation data include 492472 observations. There are both member level and household level data, and all the variables are categorical except AGE and working HOURS. 

We present our results in the following four sub-sections. 

4.1. Imputation and error localisation for  1998 from the 1997-98 ABI data set

The imputations have been done starting from TURNOVER, next going to EMPTOTC, PURTOT, TAXTOT, ASSACQ and ASSDISP. The idea is that when the first variable, that is, TURNOVER, has been imputed, this completed variable has been used as an additional auxiliary variable for the next target variable. For error localisation, we cannot use this kind of sequential approach. That is, each error localisation is independent of each other. We next describe our approaches in more details starting from imputations, and variable TURNOVER.   

Imputation for TURNOVER 

Our best auxiliary variable in all imputation models has been register turnover from the same year. In addition, we have included in the cross-sectional models the two categorical variables, that is, level of register employment (6 categories) and industry class (3). In case of panel models, we have also used the following auxiliary variables from the previous year: TURNOVER, register turnover, TAXTOT and PURTOT.  

Table 1 gives the specifications of the 9 different exercises, and results based on the development data set.. The notation of the table is an illustration of our strategy for imputations. We thus see that the three factors, at minimum, specifies an imputation method: the data used for modelling, model specification itself (these two ones thus cover ‘imputation model’), and how imputation have been done. Naturally, if the variance estimates have been done, this requires a new column in the table. 

The background of each method has been explained in Sections 2 and 3, but the method called Residual RBNN requires an additional description. The basic idea behind this method is the same as that of the RBNN. We first estimate an multivariate regression model. Next, we search for each missing unit the nearest neighbour using the metrics of the predicted values. Finally, we do not take the real values from this donor, but instead, we take the estimated residuals from this donor, and add these values to the predicted values of the missing unit. This methodology must have been further examined, but logically, it could be advantageous in the two respects: (i) the  residuals are to observed values and not very dramatic as it may happen when using theoretical residuals without bounds, (ii) if there are systematic effects (autocorrelation) in residuals as often happens in practice, the use of residuals from the neighbourhood should be well predictable. 

The models for TURNOVER were very well fitting in all cases. In panel models, when using linear scaling, the R-Square’s were around 95 percent, whereas when using log-scaling the respective fits were 90 percent. The fits for cross-sectional models were somewhat lower, around 80 percent. The goodness of fits is an essential indicator for the success of imputations, at least in the sense, that the results when using panel data are on average better than when only using cross-sectional data. This is not always guaranteed, but in this case, the panel businesses – mainly big ones – seem to differ from cross-sectional ones in other sense too, and hence the same imputation model does not be advantageous for both ones. 

The log-scaling seems to give, on average, the better results than linear scaling. Note that the R-squares are lower for log-turnover but as it is well known, a high R-square does not automatically lead to the best results from the predictability point of view. The overall best results are achieved when using the panel data and log-turnover in imputation model, and when model-donor imputation.    

The results for the panel case are very satisfactory, but we wanted to compare some techniques for the cross-sectional case, since this is more difficult, and it is often in practice the only possible method. Now, there are much more differences in results. When comparing the results with and without an outlier, a clear conclusion is that the success depends much on the success with this outlier. Some methods are very sensitive, especially the technique which tries to take advantage of the distribution of ‘theoretical residuals.’ Even when we assume that the random noise term is normally distributed with zero mean and the bound for the root mean square error is equal = 1.5, some imputed values may be very big. This naturally depends on the random number chosen, but we cannot go to choose subjectively such random number which satisfy one of our targets, but obviously not all others.  

It is interesting that the new ‘residual RBNN’ succeeds quite well, its specification for the log-scaled model is the best cross-sectional result. This is much due to its lesser sensitivity to outliers, compared to model-donor techniques. However, this method is as good when excluding one big value. Note that the exclusion of one value and unit after all imputation procedures is not fully fair for the methods since all models have been done without taking into account this information. 

As expected, the variation coefficients (CV’s) are underestimated for model-donor techniques without noise term. This is concerned also the panel data results with outlier. There is one strange exception, the technique ‘cross-section-linear-predicted,’ which gives a too large estimate for the whole data set, whereas a too small estimate for the ‘non-outlier data set’. These show how sensitive such a technique may be.  

For the evaluation data set, we chose the two panel – predicted methods, one with the linear scaling (number 7 ), and the other with the log-linear one (number 9). This data set was not as awkward as the development data set since no bad outlier does exist. For this reason, it is possible to succeed without panel data too. 

ABI by Solas

We also made an exercise by using SOLAS 3.0. First, PURTOT and TAXTOT with other three variables (EMPTOTC, ASSACQ, ASSDISP) are hot-deck imputed simply by using CLASS and EMPREG as sorting variables. According to many tests the simple linear regression model without any transform is preferred for imputation of TURNOVER. The chosen explanatory variables are Registered turnover (TURNREG), TAXTOT and PURTOT. The two largest observations according to TURNOVER are deleted before modelling, because they are clear outliers for this linear model.

The development data set is here quite different to the evaluation data set. For example, there are no hard outliers in the missing part of the evaluation data set, whereas our many efforts when imputing the development data set deal with these problems. On the other hand, it seems that the linear model, especially, when dropping out the worst outliers, works a bit better in case of the evaluation data set than the respective log-linear model as far as turnover is concerned. there is however, one big exception; the Kolmogorov-Smirnov mesure is very bad for the model A. The reason for this result is not known. The direct linear model does not work well for variables Assacq and Assdisp which consist of many zeros. The two-step models, methods C, yield better results. The Nag software does not give the results for Slope and R2, ; the reason for this is unknown. Note that if we had used more auxiliary data (variables with partially missing values such Purtot and Taxtot for Turnover), we could improved some results. We do not know the effect which could have been achieved if exploiting edit rules. Now, these were completely forgotten.

Table 1. The ABI 1997-98 test results for variable TURNOVER using development data. 

Data for model
Model type
Imputation task
Quality indicators




Mean
CV
Maxi-

mum
Mean absolute

error

True values


 76274 

(25620)
 686

(385)
 5242956

  (887613)
0

0

1.


Cross-section
Linear


Predicted 


148067

(27417)
 829

(322)
12454429

 (754133)
 77236

 (7293)

2.


Cross- section
Log-linear


Predicted


 44822

(20895)
 563

 (334)
  2485495

 (606813
 34729

 (8036)

3.


Cross-section
Log-linear


Predicted plus 1 RTMSE
 66257

 (43330)
 470

(481)
 2404862

(1940782)
 59919

 (32663)

4.


Cross-section
Log-linear


Predicted plus 1.5 RTMSE’s
155100

(100425)
 650

(689)
 9944179

(6928171)
150528

 (90468)

5.


Cross-section
Linear


Predicted plus

residual RBNN
125698

 (28194)
 793

 (415)
10071016

(1053046)
54488

 (8490)

6.


Cross-section
Log-linear


Predicted plus

residual RBNN 
103626

 (30497)
725

(386)
 7562812

(1051774)
34670

 (8715)

7.


Panel


Linear


Predicted


  98123

 (31426)
 701

 (399)
 6901249

(1155652)
24161

 (8141)

8.


Panel


Log-linear plus linear
Predicted


  80091

  (28455)
 666

 (360)
 5347064

 (903708)
  6032

 (5071)

9.


Panel


Log-linear

 
Predicted


  78311

  (26415)
 681

 (384)
 5347064

 (903708)
  5565

 (4600)

Notes

(1)
RTMSE = root means square error of regression model. In parenthesis figures one big true value – outlier – has been excluded. 

(2)
The number of imputed values = 103 (102), and the whole sample size = 5594.

Table 2.  ABI evaluation results. 

Method
Variable 
m1
m2
K-S
DL1
Slope
R2

 A Cross-section
Turnover
158
1.9E+08
0.485
309
1.03
1.000

 B Panel
Turnover
246
5,9E+08
0,037
323
1.49
0.995

 A Cross-section
Emptotc
4
5.0E+03
0.067
24
1.00
0.974

 B Cross-section
Emptotc
10
5.9E+04
0.143
20
1.13
0.933

 A Cross-section
Purtot
108
4.8E+07
0.022
117



 B Cross-section
Purtot
17
1.1E+07
0.036
47
1.08
1.000

 A Cross-section
Taxtot
0.6
1.0E+03
0.055
8.2
0.36
0.386

 B Cross-section
Taxtot
1.6
6.5E+03
0.220
5.0
1.24
0.963

 A Cross-section
Assacq
113
6.3E+07
0.245
155
0.79
0.045

 C Cross-section
Assacq
133
6.6E+07
0.090
135
6.71
0.992

 A Cross-section
Assdisp
7.5
2.4E+04
0.447
10.2
0
0.029

 C Cross-section
Assdisp
3.9
2.5E+04
0.079
4.5



Notes


IMAI A = Linear multivariate model without noise (2 outliers dropped out) plus predicted model-donor


IMAI B = Log-linear multivariate model without noise plus predicted model-donor


IMAI C = Two-step model (multivariate logistic regression + log-linear multivariate model without noise) plus predicted model-donors 


Panel = auxiliary variables from year t-1 used when available


Cross-section = only auxiliary variables from year t used incl. imputed Turnover 


No edit rules used in any experiment.

Error localisation for TURNOVER

We tested the two alternative editing models: (i) target variable being TURNOVER, and (ii) target variable being error in the unedited data set. The key point was first to build this model for the training data set, that for the previous year, and next to assume that the same erroneous structure does hold for the reference year. We had some difficulties in specifying the correct bounds for errors in the first case, and hence, we only submitted the results based on the second approach. 

The target variable of the editing model = 1 if the error occurred in 1997, and = 0, otherwise. The explanatory variables of the logistic regression model were, respectively: log(register turnover, correct value), log(survey turnover, possibly erroneous value), and log(employment, possibly erroneous value). This model was estimated, and next the prediction for 1998 was done so that the explanatory variables are from 1998. The prediction gives the probabilities that the particular value is erroneous. Now we have to decide which value is as big that we may decide that this is erroneous. We looked what was the expected value for the erroneousness, and put this bound. The following scatter plot illustrates the situation (square plot = correct, star = error):

There are only a small number of cases in the middle, which means that this bound has not much importance, although our training data set that the good bound = 65%. The graph shows well that we may succeed well if using this bound, but not in all cases.  Especially, we are wondering what means a low line on the right-hand side of the graph which are not errors although the probability for erroneousness is high. It is possible that these true values are not correct so that the editing system has not found these values to be too small. 

Imputation for EMPTOTC, TAXTOT and PURTOT

The methodology for EMPTOTC is basically the same as for TURNOVER except that we have added the completed TURNOVER to the list of the explanatory variables of the imputation model. Respectively, when imputing TAXTOT, variable EMPTOTC has been added, and finally, analogously to PURTOT.

Imputation for ASSACQ and ASSDISP

This follows the previous ideas otherwise but now the model was built in the two steps. First, a logistic model was estimated in order to find non-zeros and zeros (see Section 3). Next, the standard regression model for the non-zeros data set was estimated, and the classical regression techniques was exploited, thus the predicted values of this model were used as imputed values. 

Error localisation for EMPTOTC and four other ABI variables

The ideas for this error localisation have been the same as for TURNOVER. However, we also have used EMPLOYMENT as an additional auxiliary variable or its log-scaled form. We tried to work without this variable too. Also we tested some categorical variables, especially sizeband, or its collapsed forms. There were not much differences in results, however. An example is given in the next graph. Here the y-axis error probabilities are from 3 sizebands model, whereas the model for the x-axis probabilities does not include sizeband. There are little differences in the right-hand side, that is, both solutions give about the same high probabilities for errors, but not so similar when these probabilities are lower than 50 percent. 

The scatter plot between not edited EMPTOTC and the y-axis error probabilities is given in the next graph. This is quite similar to the TURNOVER graph but now there is not any strange bad-success line anywhere. All correct values are close to incorrect values. This thus means that we may succeed with such errors only with good luck given that our model is bets possible.  

Graph 1. Estimated probability for error (x-axis) against log(TURNOVER) (y-axis). Square means that the value is true, whereas star implies an error.  

[image: image5.emf]
Graph 2. Estimated probability for error (x-axis) against log(EMPTOTC (y-axis). Square means that the value is true, whereas star implies an error.  

[image: image1.emf]
Graph 3. Estimated probability for error (x-axis) against log(ASSACQ) (y-axis). Square means that the value is true, whereas star implies an error.  

[image: image2.png]
Graphs 1 to 3 are for the training data. As observed, it does not mean much where between 0.1 and 0.6 probabilities, for example, the cutting point would be good to put up. We used the training data for determining this point, too. The results for 5 main variables of the ABI are in Table 3.
Table 3.  ABI evaluation results. 

Method
Variable 
alfa
beta
delta

IMAI
Turnover
   0.675
   0.014
   0.071


Emptotc
   0.593
   0.008
   0.064


Purtot
   0.723
   0.011
   0.117


Taxtot
   0.724
   0.020
   0.104


Assacq
0.700
0.015
0.067

Note


Method  = Logistic regression using data from 1997 as the editing model, the cut point decided based on the training set of year 1997 assuming that the error structure remains the same. No edit rules used in any experiment (if used, the results would e better).

The training data set, from year 1997,  differs much from the 1998 data. Hence, the evaluation results are not as good as the results from the training data set. As noted in the table text, we did not exploit edit rules or any other logical rules in the error localisation. We just modelled the error mechanism for year 1997 and used these results for year 1998. When using such logicalities, the results would have been improved definitely. There are no dramatic differences in these figures between variables.   

4.2. Imputation for INCOME and HHINCO 1991-96 from the GSOEP

As earlier explained, we had difficulties in additional editing, and it was not obviously made perfectly. There are the two table annexes which show how we have imputed logically some missing values before the real imputation step. The methodology for this panel data, although not so realistic, was rather simple. We started from the first year, that is, 1991, and imputed the missing values for personal income, symbolised by INCOME91. Next, we applied the sequential approach as for the ABI. Thus, the completed variable of INCOME91 was used as an additional explanatory (auxiliary) variable when estimating the model for INCOME92. And so on, continuing until 1996. 

For the first year model, we chose a number of variables from the data set. We could not tried all possible variables, or their different transformations. This would have been needed more time. But because we only tested RBNN method, this is not so important because it does not require any very well fitting mode, although this absolutely would be useful. Secondly, there would have been possible to take more benefit of income structures within households, but we were not concentrating on such techniques here. 

After imputing all missing items for individual household members, the just summed up these over each household and obtained HHINCO91, …, HHINCO96.  

4.3. Imputation for INCOME in the Danish Labour Force Survey (DLFS)

It is good start by looking the analogous scatter plot to Figures 1 and 2 in case of the DLFS, Figure 3. This is derived from the paper by Piela (2001), and based on a certain SOM-based method, but all respective scatter plots are rather similar in this rather big data set consisting of 200,000 persons. The value of variable INCOME was missing for 53,677 persons (23.8%). 

We compare the results from the four types of methods with each other in Table 4: (i) regression or MLP types of model-donor techniques, (ii) SOM-based methods using NDAEI software, (iii) RBNN methods, (iv) random hot decking or real-donor method with random draw.

First, we want to note that the last method is done for benchmarking in the sense, that it is expected that all good method will give better results than this. This is a rather demanding method for benchmarking because it should give quite similar results as derived from available units. If the missingness mechanism is missing completely at random (MCAR), it should succeed well. Thus, if any good imputation model cannot be built, that is, the random hot decking should be as good as the other methods.

Graph 4. Imputed values against true values in the Danish Labour Force Survey, a specific case SOM NN Layer 0, see Table 4. 

[image: image3.png]The R-squares for linear income are as in case of the ABI higher than those for log-linear income, around 35-40 percent in the former ones and around 10 percent for the latter ones. We cannot explicitly tell how well the SOM models are fitting, but we have looked several specifications in these cases too, and some of these have been included in Table 4.  

Table 4 includes several indicators for the quality of imputations, since one indicator is not enough, for example such as the mean absolute error which seems to work best for direct model-donor method. This is due to the fact that no does well fitting, and hence the average types of model values which are somewhere in the middle are not far from any true value. On the contrary, such imputation techniques do not give any correct distributional figures (CV’s, quartiles) which are extremely important for the users of this type of survey. Hence we cannot recommend these methods although they are good in one criterion.

When taking into account the distributional requirements the SOM-based methods and the RBNN methods, respectively, are best. There are no differences between each other. However, if the number of neurons is very big, and the layer level respectively, the results are not automatically improving, maybe worsening. This is due to the problem that the imputation cells will be smaller and smaller and there are less opportunities to find near real donors. This was also observed when using standard the tree-based methodology (Piela and Laaksonen 2001). The optimum number of layers or terminal nodes is very big, but enough big. It is not easy to find an objective criterion for this decision.

It is finally interesting that the RBNN methods are somewhat better than SOM methods for the absolute mean square error. Obviously, this technique is a bit better to exploit poor auxiliary data. The reason for this results should have been further investigated.

Table 5 gives the results of the evaluation data set. The latest experiment is just for benchmarking. Usually all good methods should succeed better than this in most respects. Now, the best results are based on log-log-linear modelling. It is quite expected although this was not clear, surprisingly, when using the development data set. Note that we applied exactly the same model specification for the evaluation data set than was used for the development data set. This was not obviously ideal since the evaluation data set was much smaller and differed in some other aspects too. It follows that our results could have been better if we would have taken more time for model specifications.

Table 4. Results for Linear Regression (using SOLAS 3.0), Nearest Neighbour, Cluster Centroid and MLP imputations of INCOME variable, Random hot decking (random draw) and RBNN. 

Imputation
Quality Indicators

Model
Task
Mean
CV % 
95% 
75% 
MD
25% 
MAE

True values
158108
67.8
362639
221423
140971
76691
      0

Linear Regression
Pre-

dicted
170287


36.1


272202


215989


168978


122344


73678



SOM, 4th Layer
Cent-

roid
169177


33.6


259743


204815


173937


122951


73079



MLP


Model-donor
166806


41.3


277061


219764


162920


109096


67279



SOM, 0th Layer
NN


158068


68.2


363148


220904


140105


77004


90865



SOM, 1st Layer
NN


158094


68.2


362674


221534


139715


76869


91072



SOM, 2nd Layer
NN


159799


67.8


363374


224541


141657


77914


91593



SOM, 3rd Layer
NN


159408


67.9


363712


223804


141616


77779


91639



Linear, no random term 
RBNN


159441


67.5


360779


223921


142718


77601


87592



Linear, random term
RBNN


159448


68.0


363389


224346


142403


76785


88208



Log-linear, no random term
RBNN


160465


67.1


362812


224090


143236


79232


89334



Random term


Real donor
176056


66.1


390072


248847


160464


86722


124964



Note


NN = Nearest Neighbour, 95% = 95% Quantile, and respectively for 75% and 25%, MD = Median, MAE = Mean Absolute Error. MAXE = Maximum Error. 

Table 5. DLFS evaluation results for INCOME. 

Method
Variable 
m1
m2
K-S
DL1
DLinf
Slope
R2

IMAI1
Income
8338
1,31E+09
0,077
69398
847395
0,808
0,197

IMAI2
Income
7678
7.99E+08
0.078
68156
895074
0.814
0.213

IMAI3
Income
4344
3,75E+06
0.052
64607
880970
0.834
0.250

IMAI4
Income
30713
1.26E+10
0.169
162215
971755
0,562
0,169

Notes


IMAI1 = Linear multivariate model without noise, RBNN


IMAI2 = Linear multivariate model with noise, RBNN


IMAI3 = Log-linear multivariate model without noise, RBNN


IMAI4 = Model with noise, random draw (often called overall random hot decking)
4.4. Imputation for the UK SARS data 

The experiment FS20002 presents classical methods chosen for imputation of three variables in the UK SARS evaluation data, namely, person’s age, sex and relationship to household head (RELAT). Here, the best classical methods are shortly presented with the evaluation result tables. Naturally these three methods have been chosen from large set of different tested methods. 

Imputation for RELAT

Relationship to household head is imputed only within households. First, there has to be exactly one household head for each household. If breadwinner is not found then it is given to the missing one as imputed value. Then if there are not any spouse, we first impute missing value as RELAT=1 (spouse) if person’s age is over 23. This boundary is chosen due to many tests for the development data. If there are several missing observations within a household then the oldest person is chosen to be a breadwinner or a spouse. Otherwise RELAT is imputed as RELAT=3 (son/daughter). Any other classes of RELAT are not used.

Results can be seen in table 7. They seem to be very fine with D value as low as 0.13. 

Imputation for SEX

Sex is imputed within imputation classes. These classes are created by grouping the data so that classes are very homogenous. This is is done by two variables: RELAT and ISCO1. Within these new groups the proportions of the known values of SEX are calculated. If there are more men that belongs to a group in question then each missing value of SEX is imputed as SEX=1 (man) within this group otherwise as SEX=2 (woman). Any random mechanism is not used. In such a binary case the D value as shown in table 7 straightly gives the percentage of miss-imputed values. It is rather low here.

Imputation for AGE

63.7% of the missing values of AGE can be imputed by following classical method. Others are imputed by TS-SOM (tree-structured self-organising map). We chose here a nearest neighbour method within the household – when possible – by using RELAT as a sorting variable. In this method, data are first divided into two parts (part 1: likely younger people [RELAT in (0,1,2,9,10,15)], part 2: likely older people) and then if the nearest neighbour imputation within household is possible, in other words, if there is at least one known value of AGE for the missing one from the same household, we impute.

Table 6. SARS evaluation results for AGE. 

Variable
m1
m2
K-S
DL1
Slope
R2

AGE
0,15
4,86
0,01
4,57
0,99
0,89

Results are very good at the distribution level as well as the unit level; K-S and DL1 are both very small.       

Table 7. SARS evaluation results for RELAT and SEX. 

Variable
W
D
Eps

RELAT
1596,50
0,13
0,12

SEX
277,77
0,28
0,27

Here values of W are surprisingly high. But otherwise unit level values are again very good.

4.4. Imputation for the German SOEP data 

The experiments based on the evaluation data set of the German socio-economic panel are presented in Table 8. We made thus some logical editing work before starting the imputations. This kind of missingness is not available in a real data set. In Table 4, there are two different pre-editing, but none of these has not been done completely. We do not include the results for household income (Hhinco) for both experiments. Most results are rather good, although we wonder why some results were not available from the Nag software. We believe that it is a problem of the software. We also cannot know whether all missingness has been taken into account, e.g. the definitely correct values based on the logical imputation. On other hand, we cannot know what are the correct values in the case when within a same household are two different household incomes, since this is not logically possible. A peculiar value is also concerned the year 1995 and the criterion DL1, which gives the extremely high errors. It seems that there are in the data set, in its missing part, one person and household, who’s income is very high, but our methods cannot be able to recognise it. This value seems to be much higher than any other income during the whole period.         

Table 8.  GSOEP evaluation results. 

Method
Variable 
m1
m2
K-S
DL1
Slope
R2

A Some edits
Income91
85
3.4E+07
0.021
7183
1.00
0.661

A More edits 
Income91
345
2.8E+07
0.019
6519
1.00
0.691

B More edits
Hhinco91
1029
2.2E+08
0,025
10654



A Some edits
Income92
12
8.3E+07
0.034
7196



A More edits
Income92
272
1.6E+07
0.017
5515
1.00
0.830

B More edits
Hhinco92
1880
3.7E+08
0.028
9129
1.00
0.833

A Some edits
Income93 
483
1.7E08
0.025
6730



A More edits
Income93
16
8.9E+07
0.013
5759
1.00
0.808

B More edits
Hhinco93
723
7.8E+07
0.016
8802



A Some edits
Income94
230
8.5E+07
0.020
7238



A More edits
Income94
66
1.5E+06
0.014
5711
1.00
0.833

B  More edits
Hhinco94
2070
5.4E+08
0.025
10644
1.00
0.837

A Some edits
Income95
950
9.9E+08
0.024
7282



A More edits
Income95
624
8.7E+08
0.012
6696



B More edits
Hhinco95
129
1.4E+09
0.019
9110



A Some edits
Income96
152
9.1E+07
0.020
7566



A More edits
Income96
152
9.1E+07
0.020
7566



B More edits
Hhinco96
226
5.3E+07
0.017
8148



Notes


Method A = Log-linear multivariate model without noise plus RBNN, imputed auxiliary variables added after year 1991.  


Method B = Summing up of member incomes

5. Conclusions

In this paper, we consider imputation in a broader framework as ordinarily done. A key point is that when speaking about imputation we need pay much attention to the imputation model behind this imputation task. Moreover, it is often difficult to well estimate the parameters of this model in order to succeed in imputation. The basic target for estimating the model is its good predictability. A specific problem is that it is difficult to estimate the model over the whole range of true observations, especially for typical business survey variables with skew distribution. This has been demonstrated in the examples based on the UK ABI data.  

These examples also show that if the model is well fitting, it is possible to succeed with model-donor methods so that the predicted values of the model are used as imputed values. Whereas if the model is not so good, the real-donor techniques are often superior, or at least, these are not as sensitive and thus as risky as model-donor techniques. Special values may be problematic in all cases, however, and it is better to try to collect such values than to impute, but this is not unfortunately always possible. 

The examples based on the Danish LFS are simpler in the sense that there are no hard outliers. On the other hand, the imputation models are much worse. The data set is very big which helps in finding reasonably good real donors. From these both reasons, real-donor techniques succeed much better than model-donor ones do. We do not exclude possibility to find a good model-donor technique for such a case. It requires to exploit excellently the information about the estimated random noise term of the model. If we could know its behaviour completely, for example, if it would be normally distributed with a known mean and variance, we surely would succeed, but this does not occur often in real life. 

As a conclusion, it is awkward that there are always some uncertainties or black boxes in the data which have been completed by imputations. This is sometimes a reason even to avoid this technique, but this is not necessarily a good solution, since the quality of the data may be much worse in such a case. The criticism against imputation is much derived from the fact that imputation is not always successful at individual value level. This is demonstrated well in the paper. Fortunately, our best results in these cases are good at distributional level. It should be noted that the income distribution is just of highest interest for users, and hence we may be happy with our results. On the contrary, it is correct not to recommend to use the imputed data for individual level analysis in some cases. Instead, the best results may be used in such analyses too.   
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