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Summary
Automatic edit and imputation can be subdivided into three steps. The first step consists of solving the so-called error localisation problem, i.e. the problem of identifying the errors in the data. To identify these errors one often adopts (a generalised version of) the so-called Fellegi-Holt paradigm. The identified errors are set to missing. The second step is imputation of the missing values, both the values that were originally missing as well as the values that were set to missing in the error localisation phase. During the imputation step edit rules are often not taken into account. As a third and final step one can then modify the imputed values such that all edits become satisfied. In this paper we describe an algorithm for this third step that keeps the modified values close to the imputed values while ensuring that all edits become satisfied. This algorithm has been developed as part of the EUREDIT project.
1 Introduction

Statistical data editing is an important topic for national statistical institutes. The traditional approach is based on editing each record, i.e. data of an individual respondent, manually. The computer is only used interactively to help the subject-matter specialist who is cleaning the data. This traditional approach is rather expensive and time-consuming. To make the data editing process more efficient, part of the data is often edited and imputed automatically. The first step of automatic edit and imputation consists of solving the so-called error localisation problem, i.e. the problem of identifying the errors in the data. To identify these errors one often adopts (a generalised version of) the so-called Fellegi-Holt paradigm (see Fellegi and Holt, 1976). This (generalised) paradigm says that the data of a record should be made to satisfy all edits by changing the values of the fewest possible (weighted) number of variables.

De Waal (2002) describes an algorithm for solving the error localisation problem in mixed data, i.e. a mix of categorical and continuous data. This error localisation algorithm only sets erroneous data to missing. Subsequently, the missing data – both the values that were originally missing and the values that were set to missing by the error localisation algorithm – have to be imputed. We can do this in two steps. In the first step missing values are imputed using a statistical model, without taking the edits into account. In the second step the imputed values are modified so that the resulting data are consistent, i.e. so that they satisfy the edits. To maintain the statistical characteristics as well as possible the modified values should remain as close as possible to the imputed values. 

In this paper we describe an algorithm to impute a mix of continuous and categorical data in a consistent manner, i.e. such that all edits become satisfied. Section 2 describes the edits we consider in this paper, and Section 3 describes the mathematical problem we are trying to solve. Sections 4 and 5 discuss a heuristic algorithm to obtain consistently imputed data that is close to the data that have been imputed using a statistical imputation model. Section 6 concludes the paper with an example illustrating the proposed algorithm.

2 The edits

We denote the categorical variables by 
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 (i=1,…,m) and the continuous variables by 
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 (i=1,…,n). For categorical data we denote the domain, i.e. the set of the possible values, of variable i by 

. We assume that every edit 

 (j=1,...,J) is written in the following form: edit 

 is satisfied by a record 
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THEN 
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(2.1)

where 
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 denotes either “(” or “=”. 

All edits given by (2.1) have to be satisfied simultaneously. We assume that the edits can indeed be satisfied simultaneously.

The condition after the IF-statement, i.e. 
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 for all i=1,…,m, is called the IF-condition of the edit. The condition after the THEN-statement, i.e. 
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, is called the THEN-condition. If the IF-condition does not hold true for a particular record, the edit is always satisfied, irrespective of the values of the continuous variables. 

A categorical variable 
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 given by (2.1) if 
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 is strictly contained in the domain of variable i. That edit is then said to be involved with this categorical variable. A continuous variable 
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 is said to enter the THEN-condition of edit 

 given by (2.1) if 
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. That THEN-condition is then said to be involved with this continuous variable.

We assume that none of the values of the variables entering the edits may be missing. That is, we assume that for each variable entering the edits a value has to be filled in. Any field for which the value is missing is hence considered to be erroneous. 

The set in the THEN-condition of (2.1) may be the empty set or the entire n-dimensional real vector space. If the set in the THEN-condition of (2.1) is the entire n-dimensional real vector space, then the edit is always satisfied. Such an edit may be discarded. If the set in the THEN-condition of (2.1) is empty, then the edit is failed by any record for which the IF-condition holds true, i.e. for any record for which 
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for i=1,…,m. Likewise, 

 in (2.1) may be the empty set or equal to 

.

3 The consistent imputation problem

As we already described in Section 1, automatic edit and imputation can be carried out in three subsequent steps. During the error localisation phase firstly a solution to the error localisation problem is determined. The values of the variables involved in this solution are set to missing.

After the error localisation phase the missing values (both the values that were missing in the original record and the values that have been set to missing in the error localisation phase) are imputed. In this imputation step imputation methods can be used that preserve the statistical properties as well as possible. During this step the edits are not necessarily taken into account, as a result some edits may still be failed.

Finally, the imputed values are modified slightly such that all edits become satisfied. The non-imputed, original values are not modified. We try to ensure that the resulting, consistent, records preserve the statistical properties of the data as well as possible by keeping the final values as close as possible to the imputed values. This is the so-called consistent imputation problem.

We assume that the imputed values can indeed be modified in such a way that a consistent record results. This is, for instance, the case if the (generalised) Fellegi-Holt paradigm has been adopted in order to find a solution to the error localisation problem.

To measure how close a record is to another record, a suitable distance function has to be defined. In this paper we consider distance functions of the type
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where the record after the imputation phase is given by 
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, the final record by 
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’s are non-negative user-specified weights, and 
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 is a non-negative matrix satisfying 
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 for variables (categorical and continuous, respectively) that have not been imputed in the imputation step, because we only modify the imputed values. 

Note that for purely continuous data (3.1) reduces to 
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The consistent imputation problem can be formulated concisely as: minimise (3.1) by modifying the imputed values so that (2.1) is satisfied for all edits j=1,…,J.

4 Elimination of variables

An important part of our algorithm for solving the consistent imputation problem (see also Section 5) is elimination of variables. In this section we describe the elimination technique.

If a continuous variable is to be eliminated, we basically apply Fourier-Motzkin elimination (see Duffin, 1974; Chvàtal, 1983; Schrijver, 1986; Quere, 2000; Quere and De Waal, 2000) to eliminate that variable from the set of edits. Some care has to be taken in order to ensure that the IF-conditions of the resulting edits are correctly defined. 

In particular, if we want to eliminate a continuous variable 
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 from the current set of edits, we start by copying all edits not involving this continuous variable from the current set of edits to the new set of edits. 

Next, we consider all edits in format (2.1) involving 
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 pair-wise. Suppose we consider the following pair of edits:
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(4.1)

and

IF
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THEN 
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(4.2)

We start by checking whether the intersection of the IF-conditions is non-empty, i.e. whether the intersections 
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 are non-empty for all i=1,…,m. If any of these intersections is empty, we do not have to consider this pair of edits anymore. So, suppose that all intersections are non-empty. 

We now construct an implied edit. If the THEN-condition of (4.1) is an equality, we use the equality 
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to eliminate 
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 from the THEN-condition of (4.2). Similarly, if the THEN-condition of (4.1) is an inequality and the THEN-condition of (4.2) is an equality, the equality in (4.2) is used to eliminate 
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If the THEN-conditions of both (4.1) and (4.2) are inequalities, we check whether the coefficients of 
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If that is not the case, we do not consider this pair of edits anymore. If the coefficients of 
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where
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and
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Note that 
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 indeed does not enter the resulting THEN-condition.

This is the THEN-condition of a new implied edit. The IF-condition of this implied edit is given by the intersections 
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 for all i=1,…,m.

Categorical variables are only eliminated once all continuous variables involved in the edits have been eliminated. So, once the categorical variables may be selected for elimination the edits in current set of edits all have the following form:

IF
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To eliminate categorical variable 
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 from the set of edits given by (4.7), we start by copying all edits not involving this variable to the set of implied edits.

Next, we basically apply the method of Fellegi and Holt to the IF-conditions to generate the IF-conditions of the implied edits (see Fellegi and Holt, 1976). In the terminology of Fellegi and Holt, field 
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 is selected as the generated field. We start by determining all index sets S such that



[image: image48.wmf]U

S

j

i

j

r

D

F

Î

=








(4.8)

and
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(4.9)

From these index sets we select the minimal ones, i.e. the index sets S that obey (4.8) and (4.9), but none of their subsets obey (4.8).

Given such a minimal index set we construct the implied edit given by

IF
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After all categorical variables have been eliminated we are left with a set of relations without any unknowns. 

5 The algorithm

The problem of minimising (3.1) subject to the constraint that all edits (2.1) become satisfied can be formulated as a mixed integer programming problem (see Kartika, 2001). This mixed integer programming problem may be solved by using standard software. Unfortunately, this mixed integer programming problem is usually rather large, so solving it by means of standard mixed integer programming software is likely to be rather time-consuming. 

In this paper we will not make an attempt to solve the consistent imputation problem to optimality, and restrict ourselves to describing a heuristic that is likely to give acceptable results in practice. In any case the heuristic will lead to consistent data that satisfy all edits.

Denote the set of variables that have been imputed by S. We assume that the variables in S can be imputed consistently. We start by filling in the original values for all variables not in S in the set of explicit edits. This leads to a reduced set of edits involving only the imputed variables. We eliminate these variables from the reduced set of edits by applying the elimination technique described in Section 4.We keep track of the corresponding sets of (implicit) edits after i variables in S have been eliminated (i=0,…,|S|). We denote the set of (implicit) edits after i variables in S have been eliminated by 
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After all s=|S| variables in S have been eliminated, the set 
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 of relations not involving any unknowns is consistent, i.e. they do not contradict each other. This follows from our assumption that the variables in S can be imputed consistently and Theorem 5.2 in De Waal (2002). (
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 may be the empty set, which is consistent by definition). Hence, according to Theorem 5.1 in De Waal (2002), there is a value 
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 is minimal. For the (s-1)-th variable we apply the same approach, et cetera.

We continue this process until all values of imputed categorical variables have been modified in the above way. We are then left with a set of imputed continuous variables (if any) and a current set of (implicit) edits involving only these variables. The final values for these continuous variables are then found by minimising (3.2) subject to the constraint that the current set of implicit edits is satisfied. This minimisation problem can simply be formulated as an LP-problem, and can, e.g., be solved by means of the simplex algorithm.

Theorem 5.1. The heuristic described above leads to a record that satisfies all edits.

Proof. That the value of each imputed categorical variable can be modified in such a way that the imputed values that have not yet been modified can later be adapted in such a way that all explicit edits can be satisfied is a direct consequence of Theorem 5.1 in De Waal (2002). After the imputed values of the categorical variables have been modified, that theorem also implies that the remaining imputed continuous variables can be modified such that all explicit edits become satisfied. The problem of finding modified continuous values that are as close as possible, in the sense of (3.2), to the imputed values can be found by solving an LP-problem. (
When only continuous variables have been imputed, our method solves the consistent imputation problem to optimality. When categorical variables have been imputed, optimality of the method is not guaranteed, because the optimal modified value is sequentially determined for each individual categorical variable separately. Optimality of the method would only have been guaranteed if the optimal modified values would have been determined for all variables simultaneously. However, as we have already mentioned, this is a very difficult problem. The method described is “only” a heuristic. It is, however, much simpler and faster than an optimal method.

6 Example

To illustrate the algorithm we given a simple example involving only categorical variables. This example is taken from Kartika (2001).

Suppose we have four imputed, categorical variables with domains: 
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Here we use the convention that if a categorical variable is not mentioned in an IF-condition, this variable may take any value. The matrix element 
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=(3, 3, 2, 2). This vector fails edit (6.2). 

We apply our algorithm to obtain a consistent record. We start by selecting a variable, say 
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We again select a variable, say 
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, and eliminate this variable from the current set of edits. As a result, we obtain an empty set of implicit edits. This means that we may assign arbitrary values to 
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. Because our aim is to keep the final record close to the imputed record, we assign to both variables their original imputed values, i.e. 2. Now, a value has to be assigned to 
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 such that (6.1), (6.2) and (6.5) become satisfied given that to both the third and the fourth variable the value 2 has been assigned. Filling in the value 2 for both the third and fourth variable in (6.1), (6.2) and (6.5) gives the edit
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The only possibility to satisfy (6.6) is to assign the value 1 to 
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The only way to satisfy (6.7) is to assign the value 3 to 
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, which happens to be its original imputed value. So, we obtain a new record 
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If the variables would have been eliminated in a different order, one may arrive at a different solution with a different target value. To illustrate we now assume that we start by eliminating 
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 We now eliminate variable 
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We eliminate 
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as the only implicit edit. We eliminate 
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 and obtain the empty set as the set of implicit edits, which is consistent by definition. 

To satisfy (6.11) we have to change the value of 
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 equal to the feasible value nearest to its original imputed value, i.e. to 2. We now have to satisfy (6.8) and (6.10) given the value assigned to 
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. For this we do not have to change the value of 
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. Next, we have to satisfy (6.3), (6.8) and (6.9) by changing the value of 
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 given the values already assigned. We make 
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 equal to one of the feasible values nearest to its original value, say to 4. Finally, we have to satisfy (6.1) to (6.4) by changing the value of 
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 given the values already assigned. We make 
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 equal to the only feasible value, i.e. to 1.

So, we obtain a new record 
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=(4, 2, 2, 1) with target value 
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. This solution is clearly not optimal.
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