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Summary 

The aim of work package 4.1 of the EUREDIT project is to implement and evaluate selected currently used methods for error localisation to establish best practice methods. At CBS we have implemented selective editing strategies, and have developed software for automatic edit and imputation. This paper briefly describes the selective editing approaches. Furthermore, it focuses on two prototype computer programs that have been developed by CBS for automatic edit and imputation. One computer program, Cherry Pie, has been designed to find errors in data sets. The other computer program, EC System, has been designed to modify imputed values such that all edits become satisfied. Supplemented with an imputation module, the three modules form a small software suite for automatic edit and imputation based on the Fellegi-Holt paradigm. 

1 Introduction

The aim of Work Package (WP) 4.1 of the EUREDIT project is to implement and evaluate selected currently used methods for error localisation to establish best practice methods. The current best practice methods will serve as a benchmark for the evaluation of new methods for error localisation, such as error localisation methods based on neural networks.

The following edit methods are described in present-day literature: manual or computer-assisted editing, selective editing, automatic editing and (graphical) macro-editing. Manual or computer-assisted editing is the traditional approach to edit data. The aim of manual or computer-assisted editing is to correct all data in every detail. Errors are detected either by subject-matter specialists or by computer programs. Subsequently, subject-matter specialists correct the errors by consulting the form, or by re-contacting the supplier of the information. Manual (computer-assisted) editing can be applied to both categorical and continuous data. In EUREDIT we assume that manual (computer-assisted) editing gives absolutely correct data.

A selective editing approach based on a score function is often used to split the records into a critical stream and a non-critical stream (see e.g. Hidiroglou and Berthelot, 1986). The records in the critical stream are subsequently edited in the traditional manual or computer-assisted manner. The records in the non-critical stream are either not edited or are edited automatically. Selective editing is usually only applied to numerical data.

When automatic editing is applied, error localisation is carried out completely automatically by a computer once all necessary data and metadata (edit rules and certain parameters to tune the error localisation method) have been provided. Because of the speed and the low costs involved, automatic editing is, in principle, a very attractive editing technique for national statistical institutes. However, for influential errors in numerical data automatic editing usually does not lead to good results. For this reason automatic editing of numerical data is often applied in combination with selective editing in practice. Automatic editing can be applied to both categorical and numerical data.

Macro-editing offers a solution to some of the problems of micro-editing. Particularly, macro-editing can deal with editing tasks related to the distributional aspect. We distinguish between two forms of macro-editing. The first form is sometimes called the aggregation method (see e.g. Granquist, 1990). It formalises and systematises what every statistical agency does before publication: verifying whether figures to be published seem plausible. This is accomplished by comparing quantities in publication tables with the same quantities in previous publications. Only if an unusual value is observed, a micro-editing procedure is applied to the individual records and fields contributing to the quantity in error. A second form of macro-editing is the distribution method. The available data are used to characterise the distribution of the variables. Then, all individual values are compared with the distribution. Typically, measures of location and spread are computed. Records containing values that could be considered uncommon (given the distribution) are candidates for further inspection and possibly for editing. Graphical techniques are often used to implement the distribution method. 

Three data sets are used in WP 4.1 to evaluate selected currently used error localisation methods, namely:

· Sample of Anonymised Records (SARs) from UK Census 1991;

· Annual Business Inquiry (ABI);

· Swiss Environment Protection Expenditures (EPE).

The first of these data sets contains mainly categorical data, the other two mainly numerical data.

In WP 4.1 CBS is currently evaluating automatic editing on the three data sets mentioned above. Besides, selective editing strategies, possibly in combination with automatic editing, for the ABI and the EPE data sets are being examined. CBS will not use (graphical) macro-editing nor computer-assisted editing, because for these two techniques detailed subject-matter knowledge is usually required. Such subject-matter knowledge is lacking at CBS for the above-mentioned data sets.

The next section gives an overview of developed methodology and software.

2 Overview of developed methodology and software

2.1 Selective editing

CBS has implemented selective editing strategies based on three different approaches. The implemented selective editing strategies aim to find the records with the most influential errors for a given variable. Unfortunately, all papers are only available in Dutch at the moment. Below we give a brief overview of these papers. Pannekoek, Vonk and De Waal (2002) provide more details on the implemented selective editing techniques.

The first approach is of a traditional nature, and is similar to selective editing strategies CBS has implemented several times before for its own surveys (see e.g. Van de Pol and Molenaar, 1996). In this approach, the implemented selective editing strategies are based on a so-called OK index. Such an OK index is computed by multiplying the “importance” of a record by the “risk” of the record. The “importance” of a record is measured by, e.g., the product of its raising weight and the value of an important variable, such as Turnover in case of the ABI data set. The “risk” of a record is measured, e.g., by the ratio of the variable under consideration to a class median of this variable. See Goudriaan (2001) for more details. 

The second and third approach assume that there is a training data set available for which the errors are known. The second approach is based on logistic regression. The probability that the variable under consideration contains a (large) error is formulated as a logistic regression model. The parameters of this model are fitted by maximising a maximum likelihood, using the training data. See Van Langen (2002) for more details. 

The third approach is based on constructing classification and regression trees. Classification and regression trees can be grown either for single variables or for entire records. When a classification tree is built we try to explain the probability of a (large) error in the variable (or record) under consideration in terms of a number of auxiliary variables. When a regression tree is built we try to explain the error in the variable (or record) under consideration itself in terms of a number of auxiliary variables. See Sanders (2002) for more information on this approach.

2.2 Automatic editing

Under the EUREDIT project CBS has improved and extended its software for automatic edit and imputation. This has resulted in a small suite of related software modules. To develop this suite automatic edit and imputation has been subdivided into three separate problems:

· the error localisation problem: given a data set and a number of edits, determine which values should be adjusted; 

· the imputation problem: given a data set with missing data, impute these missing data in the best possible way;

· the consistent imputation problem: given an imputed data set and a number of edits, adjust the imputed values such that all edits become satisfied.

As regards error localisation, only the first and the last problem are interesting. The second problem is (by definition) purely an imputation problem. Work done by CBS with respect to imputation is discussed in a separate report for WP 5.1.

For the error localisation problem a prototype computer program has been developed. It determines the implausible fields in each record, i.e. data of an individual unit, using the well-known Fellegi-Holt paradigm. This paradigm says that the data in each record should be made to satisfy all edits by changing the fewest possible (weighted) number of fields (see Fellegi and Holt, 1976). At present the developed program is called Leo. It can be considered as an improved version of CherryPi, a computer program for automatic editing of continuous data (see De Waal, 1996). Leo is planned to be renamed Cherry Pie, because users at CBS have grown accustomed to this name. In the rest of this paper we will therefore refer to this program as Cherry Pie. Cherry Pie is discussed in some detail in Section 4.

The output of Cherry Pie is simply a list of all optimal, in the sense of the generalised Fellegi-Holt criterion, solutions. One of these optimal solutions should be selected for imputation. Section 5 describes our methodology to select one of the solutions generated by Cherry Pie.

For the consistent imputation problem a prototype computer program called EC System (pronounced as: “easy system”) has been developed. EC System stands for Edit Check System. EC System is discussed in Section 6.

Because the same kinds of edits play an essential role in both Cherry Pie as well as EC System, a separate section is devoted to describing the edits that can be handled by these programs. Section 3 gives a formal description of the edits that can be handled. This formal description is illustrated by means of several examples.

When used in combination with an imputation module, Cherry Pie and EC System form a complete Fellegi-Holt based system for automatic edit and imputation. The user is free in his choice for the imputation module. He can hence select the imputation method that he considers to be the most appropriate one from a statistical point of view. As long as first Cherry Pie is used, then the selected imputation module, and finally EC System, the system always changes the fewest possible (weighted) number of fields while ensuring that the final records satisfy all edits.

Both Cherry Pie and EC System can handle categorical and continuous data. Integer-valued data have to be treated as continuous data, and may therefore not always be handled in the appropriate manner.

3 Edits

3.1 Mathematical formulation of edits

The edits that can be handled by Cherry Pie and EC System conceptually have the following form:

IF
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(3.1)

Here m denotes the number of categorical variables, n the number of continuous variables, and 
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 stands for either “(” or “=”. The categorical variables are denoted by 
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 (i=1,…,n). Index j in (3.1) means that this is the j-th edit. For categorical data the domain, i.e. the set of allowed values, of variable i is denoted by 
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By the notation “
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In this way we will often denote the IF-condition of (3.1). In case a set 
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The IF-condition in standard form (3.1) involves only categorical variables, the THEN-condition only continuous ones. If the IF-condition is not satisfied, i.e. if “
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 for all i=1,…,m” is a false statement, then we consider the edit to be satisfied, irrespective of the values of the continuous variables. This is in accordance with both the standard conventions of mathematical logic (see e.g. Ben-Ari, 2001) as well as with the practices at statistical offices (e.g. “a set of numerical edits should hold only for enterprises with a certain activity code and a certain size”).

If the set mentioned in the THEN-condition of (3.1) is empty, then the edit is violated by any record for which the IF-condition holds true, i.e. by any record for which “
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for all i=1,…,m”. In other words, this particular combination of categorical values is not allowed. The edit can hence be seen as a purely categorical edit.

We assume that none of the values of the variables may be missing. A missing value is therefore considered an error. All edits of form (3.1) have to be satisfied simultaneously. It is assumed that all edits can indeed be satisfied simultaneously. 

3.2 Examples of edits

The standard form (3.1) in which the edits for Cherry Pie and EC System must be formulated is quite abstract. Below we illustrate the edits that can be expressed in the form (3.1) by means of a number of examples. These examples will show that (3.1) encompasses a very general and natural class of edits.

1.
Profit + Costs = Turnover.





(3.3)

This is an example of a purely numerical edit. For every combination of categorical values the edit should be satisfied. Note that from a more formal point of view we should write (3.3) as

IF
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for all i=1,…,m 


THEN
Profit + Costs = Turnover.




(3.4)

Like we already mentioned, for ease of notation we usually do not write “
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2.
IF (Gender = “Male”) AND (Pregnant = “Yes”)


(3.5)

THEN (.

This is an example of a purely categorical edit. The edit can also be formulated as:

 
IF (Gender = “Male”) THEN (Pregnant = “No”).


(3.6)

We prefer formulation (3.5) here, because this is our standard form (3.1).

3. 
IF (Activity = “Chemical Industry”)




(3.7)

THEN (Turnover ( 1,000,000 Euro).

This is an example of a mixed edit. Given certain values for the categorical variables, certain numerical constraints have to be satisfied.

4. 
IF (Activity = “Chemical Industry”) THEN



(3.8)

IF (Size = “Large”) THEN (Turnover ( 1,000,000 Euro)

ELSE (Turnover ( 500,000 Euro)

ENDIF

ENDIF

This is an example of an edit with nested IF-statements. This edit is not in form (3.1), but can be replaced by two edits that are in that standard form. Assuming that the domain of Size is given by {Small, Medium, Large}, we can re-write (3.8) as


IF (Activity = “Chemical Industry”) AND (Size = “Large”)

(3.9)

THEN (Turnover ( 1,000,000 Euro)

and


IF (Activity = “Chemical Industry”) AND (Size ( {Small, Medium})
(3.10)

THEN (Turnover ( 500,000 Euro).

5.
IF (Tax on Wages > 0) THEN (Number of Employees ( 1).

(3.11)

This is a bit more complicated example. Edit (3.11) is not in standard form (3.1), because the IF-condition involves a continuous variable. The algorithms that have been developed for Cherry Pie and EC System cannot handle such an edit directly. 

To handle such an edit, some pre-processing is required. For instance, one can introduce an additional categorical variable TaxCond that has the value “Zero” if Tax on Wages = 0, and the value “Not Zero” if Tax on Wages > 0. The domain of this variable is {“Zero”, “Not Zero”}. The variable TaxCond needs to be added to the raw data set during a pre-processing step. After pre-processing we can then replace (3.11) by three edits:


IF (TaxCond = “Zero”) THEN (Tax on Wages = 0),


(3.12)

 
IF (TaxCond = “Not Zero”) THEN (Tax on Wages ( ()


(3.13)

and

 
IF (TaxCond = “Not Zero”)
 




(3.14)

THEN (Number of Employees ( 1).

Here ( is a sufficiently small positive number. This number needs to be introduced, because neither Cherry Pie nor EC System can handle strict inequalities.

Edits (3.12) to (3.14) are in standard form (3.1).

4 Cherry Pie

4.1 Description

Cherry Pie is a prototype computer program that determines implausible values in a data set. The guiding principle for identifying these implausible fields is the generalised Fellegi-Holt paradigm, which says that the data in a record should be made to satisfy the specified edits by changing the fewest (weighted) number of fields. To each variable a non-negative weight is assigned that indicates how trustworthy one considers the values of this variable. The higher the weight of a variable, the more trustworthy the corresponding values are considered to be. In case all weights are equal, the generalised Fellegi-Holt paradigm reduces to the original Fellegi-Holt paradigm (see Fellegi and Holt, 1976).

The program can handle a mix of categorical and continuous data. The specified edits must be in format (3.1). As input Cherry Pie needs: 

· the raw data set to be edited;

· metadata, such as the name, type and weight of each variable;

· a set of edits;

· the maximum number of fields that may be changed. Any record that requires more changes will not be edited automatically, because the quality of such a record is deemed too low for automatic editing.

The most important output of Cherry Pie consists of a file that contains for each record a list of all optimal (in the Fellegi-Holt sense) solutions to the error localisation problem. Such a solution itself simply consists of a list of all variables that should be modified. After Cherry Pie has finished, per record an optimal solution may be selected from the corresponding list. The variables involved in this list can then be set to missing and subsequently be imputed for.

Cherry Pie also generates a file with records for which it could not find a solution, because more fields in these records have to be modified than the specified maximum allows. These records either need to be edited in another way, or have to be discarded. In the latter case the contributions of the corresponding respondents need to be estimated during the weighting phase rather than the editing phase.

4.2 Brief description of the mathematical algorithm

To determine all optimal solutions to the error localisation problem, Cherry Pie generates a binary tree. In each node of this tree a branching variable is selected. After selection of a variable two branches are constructed. In one branch it is assumed that the original value of the selected variable is correct. The original value of this selected variable is filled in into the current set of edits. In this way we obtain a set of edits for the new node.

In the other branch it is assumed that the original value of selected variable is incorrect. In other words, it is assumed that the value of this variable needs to be modified. We eliminate the selected variable from the set of current edits to obtain a set of edits for the new node. The resulting set of edits for the new node should be satisfied by the remaining variables.

In the above manner, the entire binary tree is, in principle, generated. Some branches may, however, be fathomed, because these branches: 

· would surpass the maximum allowed number of fields to be modified;

· could only generate non-optimal solutions to the error localisation problem;

· could not generate a feasible solution at all.

Such a binary tree can be generated by means of a recursive algorithm. This most complicated step is the elimination of variables from a set of edits. For more details on the implemented algorithm we refer to Quere and De Waal (2000) and De Waal (2002a). The latter paper is a deliverable of the EUREDIT project.

5 Selection of Cherry Pie solutions

In practice it is quite common that application of the Fellegi-Holt paradigm yields several optimal solutions. Cherry Pie simply returns all these solutions. After Cherry Pie has returned all solutions, one of them should be selected for further processing. The variables involved in this solution will later be imputed in such a way that all edits will become satisfied.

In principle, one could use sophisticated imputation models and EC System to all solutions returned by Cherry Pie. Once that has been done, one could then immediately select the “best” imputed record. This, however, implies that many different imputation models should be specified. Even per record several imputation models for the same response variable may have to be specified, depending on which Cherry Pie solution is considered.

We have therefore implemented an alternative, simpler approach where a (stratified) ratio estimator is used to impute for each variable in all solutions returned by Cherry Pie. Subsequently, we have computed a sum of normalised absolute differences between the observed values and the imputed values in a record, i.e.
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where 
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where 
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where the bar symbol implies that the mean is taken over all clean records.

The predictions under this model are hence given by the ratio-estimator, i.e. by
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The prediction error for variable i in record r can be written as
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Its variance is given by
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We can estimate 
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and
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(5.8)

where the summations are taken over the set of all clean records C.

Alternatively, we have also experimented with changing the confidence weights of the variables in order to avoid having to select a solution from several solutions returned by Cherry Pie. Variables that are considered trustworthy are given a high confidence weight, variables that are considered not so trustworthy are given a low confidence weight. The trustworthiness of the values of a variable is determined by comparing the raw, unedited values of the variable with the clean values.

6 EC System

6.1 Description

EC System is a prototype computer program that modifies the imputed values in a record so that the resulting record passes all specified edits. For each imputed record that does not satisfy all edits it constructs a (synthetic) record that differs only slightly from the imputed record and that does satisfy all edits. Original, i.e. not imputed, values in a record are not modified by EC System. EC System assumes that the imputed values can be modified such that all edits become satisfied. This is the case if the fields to be imputed were determined by using a system like Cherry Pie.

To compare a change in one variable to a change in another variable, non-negative weights are assigned to all variables. The higher the weight of a variable, the more serious a change in value is considered to be. Note that these weights may differ from the weights used in Cherry Pie.

In principle, one should also assign weights to each pair of categories of a categorical variable. These category weights measure the costs of changing one category of this pair into the other category. In the present prototype version of EC System, however, the categories of a categorical variable are numbered from 1 to its total number of categories, and the weight of changing category with number s into category with number t is given by |s – t|. In other words, in some sense it is implicitly assumed that all categorical variables are ordinal rather than nominal.

The program can handle a mix of categorical and continuous data. The specified edits must be in format (3.1). As input EC System needs:

· a complete data set that may (partly) consist of imputed values;

· metadata, such as name, type and weight of each variable;

· a flag data set, where for each record is indicated which fields have been imputed for;

· a set of edits.

The output of EC System is a complete data set of which each record passes the specified edits.

6.2 Mathematical problem

To measure how close a record is to another record, a suitable distance function has to be defined. EC System considers distance functions of the type



[image: image43.wmf]å

å

=

=

+

-

+

m

i

n

i

i

i

i

m

i

i

i

x

x

w

v

v

a

w

1

1

|

~

|

)

~

,

(

,




(6.1)

where the record after the imputation phase is given by 
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 for variables (categorical and continuous, respectively) that have not been imputed, because EC System only modifies imputed values. 

In the present prototype version of EC System 
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Note that for purely continuous data (6.1) reduces to 
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(6.2)

The consistent imputation problem that EC System tries to solve can be formulated as: minimise (6.1) by modifying the imputed values such that all edits become satisfied.

6.3 Brief description of the mathematical algorithm

Minimising (6.1) subject to the constraint that all edits become satisfied is a complicated mathematical problem. In technical terms: it is an NP-complete problem. This implies that solving this problem to optimality may require (too) much computing time and computer memory for some problem instances. Therefore, we decided not to solve the problem to optimality, but instead use a heuristic that yields a good, but possibly suboptimal, solution. Below we sketch the implemented algorithm.

For each record, the heuristic starts by filling in the values for the non-imputing fields into the set of edits. This results in a reduced set of edits that should be satisfied by the fields that have been imputed. In case no categorical variables were imputed but only continuous ones, a linear programming algorithm can be applied to minimise objective function (6.2) subject to the constraint that all edits become satisfied.

In case categorical variables were imputed, all variables (categorical and continuous ones) except one categorical variable are eliminated from the reduced set of edits. This results in a set of edits for the remaining categorical variable. The imputed value of this variable is changed as little as possible such that the new value satisfies all edits for this variable. Given the new value for this variable, the value of another imputed categorical variable is modified slightly such that all edits for these two categorical variables become satisfied. This process continues until all edits that should hold for all imputed categorical variables become satisfied. Given the new values for the imputed categorical variables, a set of edits for the imputed continuous variables can be derived. Finally, (6.2) is minimised subject to the constraint that the set of edits for the imputed continuous variables becomes satisfied.

Again the most difficult step of the algorithm is the elimination of variables from a set of variables. For more details on the implemented algorithm we refer to Kartika (2001) and De Waal (2002b). The latter paper is a deliverable of the EUREDIT project.

7 Discussion

The main achievement of CBS with respect to WP 4.1 of the EUREDIT project is the development of a flexible Fellegi-Holt based framework for automatic edit and imputation. The framework can process categorical and continuous data simultaneously. Moreover, it does not depend on specific choices for the imputation method. Any imputation methods that one would like to use can indeed be used within this framework. Selection of one solution to the error localisation problem from several optimal, in the sense of the (generalised) Fellegi-Holt criterion, ones can also be done by any method one favours. We have implemented two such selection methods that seem reasonable. 
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