Deliverable 4.1.1:
An Algorithm for Error Localisation in Mixed Data

Ton de Waal – Statistics Netherlands

March 2002

Contents

Summary
3

1
Introduction
4

2
The error localisation problem for mixed data
4

3
The algorithm
6

4
Example
10

5
An optimality proof
13

6
Some computational aspects of the algorithm
18

References
22

Summary
In order to automate the data editing process the so-called error localisation problem, i.e. the problem of identifying the erroneous fields in an erroneous record, has to be solved. At Statistics Netherlands an algorithm for solving the error localisation problem for mixed data, i.e. a combination of continuous and categorical data, has recently been developed as part of the EUREDIT project. This algorithm is based on constructing a binary tree, and subsequently searching this tree for optimal solutions to the error localisation problem. In the present paper we provide a mathematical description of the algorithm, and rigorously prove that the algorithm determines all optimal solutions to the error localisation problem.

1 Introduction

An important problem that has to be solved in order to automate the data editing process is the so-called error localisation problem, i.e. the problem of identifying the erroneous fields in an erroneous record. Fellegi and Holt (1976) describe a paradigm for identifying errors in a record automatically. According to this paradigm the data of a record should be made to satisfy all edits by changing the values of the fewest possible number of variables. In due course the original Fellegi-Holt paradigm has been generalised to: the data of a record should be made to satisfy all edits by changing the values of the variables with the smallest possible sum of reliability (or confidence) weights. A reliability weight of a variable is a non-negative number that expresses the reliability of the values of this variable. A high reliability weight corresponds to a variable of which the values are considered trustworthy, a low reliability weight to a variable of which the values are considered not so trustworthy.

Fellegi and Holt (1976) also describe a method for solving the error localisation problem automatically, using their paradigm. The method is based on the generation of so-called implicit, or implied, edits. These implicit edits are logically implied by the explicitly specified edits. After the set of all implicit edits has been determined it is fairly straightforward to solve the error localisation problem. For each faulty record one begins by determining the violated (explicit and implicit) edits. Now any set of variables that covers the violated edits, i.e. any set of variables such that in each violated record at least one variable from this set is involved, can be imputed consistently, i.e. such that all edits become satisfied. According to the (generalised) paradigm of Fellegi and Holt the set of variables with the minimum sum of reliability weights among the sets of variables that cover the violated edits should be selected for imputation. A drawback of the method of Fellegi and Holt is that there may be extremely many implied edits. In such a case the method may be impractical to use.

In the present paper we consider the error localisation problem for mixed data, i.e. a combination of categorical (discrete) and numerical (continuous) data. Section 2 gives a mathematical description of this problem.

In Quere and De Waal (2000) an algorithm for solving the problem is described. This algorithm is based on constructing a binary tree, and subsequently searching this tree for optimal solutions to the error localisation problem. The algorithm uses implied edits, just like the Fellegi-Holt method. We give a mathematical description of this algorithm in Section 3.

Section 4 illustrates the algorithm by means of an example. In Section 5 we prove that the algorithm is correct and terminates after a finite number of steps. This proof is taken from De Waal (2000). Finally, Section 6 focuses on some computational aspects of the algorithm.

2 The error localisation problem for mixed data

In this section we give a mathematical formulation of the error localisation problem for mixed data. We start by introducing some notation and terminology. We denote the categorical variables by
[image: image1.wmf]i

v

 (i=1,…,m) and the continuous variables by
[image: image2.wmf]i

x

 (i=1,…,n). For categorical data we denote the domain, i.e. the set of the possible values, of variable i by

. We assume that every edit

 (j=1,...,J) is written in the following form: edit

 is satisfied by a record
[image: image3.wmf])

,

,

,

,

,

(

1

1

n

m

x

x

v

v

K

K

 if the following statement holds true:

IF

[image: image4.wmf]j

i

i

F

v

Î

for i=1,…,m

THEN
[image: image5.wmf]}

0

|

{

)

,

,

(

1

1

1

>

K

K

j

n

nj

j

n

b

x

a

x

a

x

x

+

+

+

Î

x

,

(2.1)

where
[image: image6.wmf]>

 denotes either “(” or “=”.

All edits given by (2.1) have to be satisfied simultaneously. We assume that the edits can indeed be satisfied simultaneously.

The condition after the IF-statement, i.e.
[image: image7.wmf]j

i

i

F

v

Î

 for all i=1,…,m, is called the IF-condition of the edit. The condition after the THEN-statement, i.e.
[image: image8.wmf]}

0

|

{

)

,

,

(

1

1

1

>

K

K

j

n

nj

j

n

b

x

a

x

a

x

x

+

+

+

Î

x

, is called the THEN-condition. If the IF-condition does not hold true, the edit is always satisfied, irrespective of the values of the continuous variables.

A categorical variable
[image: image9.wmf]i

v

 is said to enter an edit

 given by (2.1) if
[image: image10.wmf]i

j

i

D

F

Ì

 and
[image: image11.wmf]i

j

i

D

F

¹

, i.e. if
[image: image12.wmf]j

i

F

 is strictly contained in the domain of variable i. That edit is then said to be involved with this categorical variable. A continuous variable
[image: image13.wmf]i

x

 is said to enter the THEN-condition of edit

 given by (2.1) if
[image: image14.wmf]0

¹

ij

a

. That THEN-condition is then said to be involved with this continuous variable.

We assume that none of the values of the variables entering the edits may be missing. That is, we assume that for each variable entering the edits a value has to be filled in. Any field for which the value is missing is hence considered to be erroneous.

The set in the THEN-condition of (2.1) may be the empty set or the entire n-dimensional real vector space. If the set in the THEN-condition of (2.1) is the entire n-dimensional real vector space, then the edit is always satisfied. Such an edit may be discarded. If the set in the THEN-condition of (2.1) is empty, then the edit is failed by any record for which the IF-condition holds true, i.e. for any record for which
[image: image15.wmf]

F

v

j

i

i

Î

for i=1,…,m. Likewise,

 in (2.1) may be the empty set or equal to

.

For each record
[image: image16.wmf])

,

,

,

,

,

(

0

0

1

0

0

1

n

m

x

x

v

v

K

K

 in the data set that is to be edited automatically we now have to determine a synthetic record
[image: image17.wmf])

,

,

,

,

,

(

1

1

n

m

x

x

v

v

K

K

 such that (2.1) becomes satisfied for all edits j=1,…,J and such that

[image: image18.wmf]å

å

=

=

+

+

m

i

n

i

i

i

i

m

i

i

i

x

x

w

v

v

w

1

1

0

0

)

,

(

)

,

(

d

d

(2.2)

is minimised. Here

 is the reliability weight of variable i,
[image: image19.wmf]1

)

,

(

0

=

y

y

d

 if
[image: image20.wmf]y

y

¹

0

, and
[image: image21.wmf]0

)

,

(

0

=

y

y

d

 if
[image: image22.wmf]y

y

=

0

. The variables of which the values in the synthetic record differ from the original values together form an optimal solution to the error localisation problem.

Note that the above formulation is a mathematical formulation of the generalised Fellegi-Holt paradigm. Note also that there may be several optimal solutions to a specific instance of the error localisation problem. Our aim is to find all these optimal solutions.

3 The algorithm

In this section we give a mathematical description of our algorithm for solving the error localisation problem. We first assume that no values are missing. The basic idea of the algorithm is then that a binary tree is constructed. In each node of this tree a variable is selected that has not yet been selected in any predecessor node. If all variables have already been selected in a predecessor node, we have reached a terminal node of the tree.

After selection of a variable two branches are constructed: in one branch the selected variable is fixed to its original value, in the other branch the selected variable is eliminated from the set of current edits. In each branch the current set of edits is updated. A variable that has either been fixed or eliminated is said to have been treated. In our algorithm all continuous variables are selected before any categorical variable is selected.

Fixing a variable to its original value corresponds to temporarily assuming that this original value is correct, eliminating a variable from the set of current edits corresponds to temporarily assuming that the original value of this variable is incorrect and has to be modified.

Updating the set of current edits is the most important step in the algorithm. How the set of edits has to be updated depends on whether the selected variable was fixed or eliminated, and also on whether this variable was categorical or continuous.

Fixing a variable, either continuous or categorical, to its value is easy. We simply substitute this value in all current edits. Note that, given that we fix this variable to its original value, the new set of current edits is a set of implied edits for the remaining variables in the tree, i.e. the remaining variables have to satisfy the new set of edits. As a result of fixing the selected variable to its value some edits may become always satisfied, e.g. when a categorical variable is fixed to a value such that the IF-condition of an edit can never become true anymore. These edits may be discarded from the new set of edits. Conversely, some edits may become violated. In such a case this branch of the binary tree can never result in a solution to the error localisation problem.

Eliminating a variable is a relatively complicated process. It amounts to generating a set of implied edits that do not involve this variable. That set of implied edits becomes the current set of edits corresponding to the current branch of the tree.

If a continuous variable is to be eliminated, we basically apply Fourier-Motzkin elimination (see Duffin, 1974; Quere, 2000; Quere and De Waal, 2000) to eliminate that variable from the set of edits. Some care has to be taken in order to ensure that the IF-conditions of the resulting edits are correctly defined.

In particular, if we want to eliminate a continuous variable
[image: image23.wmf]r

x

 from the current set of edits, we start by copying all edits not involving this continuous variable from the current set of edits to the new set of edits.

Next, we consider all edits in format (2.1) involving
[image: image24.wmf]r

x

 pair-wise. Suppose we consider the following pair of edits:

IF

[image: image25.wmf]

s

i

i

F

v

Î

for i=1,…,m

THEN
[image: image26.wmf]}

0

|

{

)

,

,

(

1

1

1

>

K

K

s

n

ns

s

n

b

x

a

x

a

x

x

+

+

+

Î

x

(3.1)

and

IF

[image: image27.wmf]

t

i

i

F

v

Î

for i=1,…,m

THEN
[image: image28.wmf]}

0

|

{

)

,

,

(

1

1

1

>

K

K

t

n

nt

t

n

b

x

a

x

a

x

x

+

+

+

Î

x

.

(3.2)

We start by checking whether the intersection of the IF-conditions is non-empty, i.e. whether the intersections
[image: image29.wmf]t

i

s

i

F

F

Ç

 are non-empty for all i=1,…,m. If any of these intersections is empty, we do not have to consider this pair of edits anymore. So, suppose that all intersections are non-empty.

We now construct an implied edit. If the THEN-condition of (3.1) is an equality, we use the equality

[image: image30.wmf]÷

ø

ö

ç

è

æ

+

-

=

å

¹

r

i

i

is

s

rs

r

x

a

b

a

x

1

(3.3)

to eliminate
[image: image31.wmf]r

x

 from the THEN-condition of (3.2). Similarly, if the THEN-condition of (3.1) is an inequality and the THEN-condition of (3.2) is an equality, the equality in (3.2) is used to eliminate
[image: image32.wmf]r

x

.

If the THEN-conditions of both (3.1) and (3.2) are inequalities, we check whether the coefficients of
[image: image33.wmf]r

x

 in those inequalities have opposite signs. That is, we check whether
[image: image34.wmf]0

<

´

rt

rs

a

a

.

If that is not the case, we do not consider this pair of edits anymore. If the coefficients do have opposite signs, we generate the THEN-condition:

[image: image35.wmf]}

0

~

~

~

|

{

)

,

,

(

1

1

1

³

+

+

+

Î

b

x

a

x

a

x

x

n

n

n

K

K

x

,

(3.4)

where

[image: image36.wmf]is

rt

it

rs

i

a

a

a

a

a

´

+

´

=

|

|

|

|

~

for all i=1,…,m

(3.5)

and

[image: image37.wmf]s

rt

t

rs

b

a

b

a

b

´

+

´

=

|

|

|

|

~

.

(3.6)

Note that
[image: image38.wmf]r

x

 indeed does not enter the resulting THEN-condition.

This is the THEN-condition of a new implied edit. The IF-condition of this implied edit is given by the intersections
[image: image39.wmf]t

i

s

i

F

F

Ç

 for all i=1,…,m.

Note that if we eliminate a continuous variable in any of the ways described above, the resulting set of edits is, given that we allow the eliminated variable to attain any possible value, a set of implied edits for the remaining variables in the tree. That is, this resulting set of edits has to be satisfied by the remaining variables in the tree, given that the eliminated variable may in principle take any real value.

Repeatedly applying the above elimination process until all continuous variables have been eliminated results in a THEN-condition that is either true, e.g. “1 (0”, or a THEN-condition that is false, e.g. “0 (1”.

Categorical variables are only treated, i.e. fixed or eliminated, once all continuous variables have been treated. So, once the categorical variables may be selected the edits in current set of edits all have the following form:

IF

[image: image40.wmf]

s

i

i

F

v

Î

for i=1,…,m

THEN
[image: image41.wmf]Æ

Î

)

,

,

(

1

n

x

x

K

.

(3.7)

To eliminate categorical variable
[image: image42.wmf]r

v

 from the set of edits given by (3.7), we start by copying all edits not involving this variable to the set of implied edits.

Next, we basically apply the method of Fellegi and Holt to the IF-conditions to generate the IF-conditions of the implied edits (see Fellegi and Holt, 1976; Daalmans, 2000). In the terminology of Fellegi and Holt, field
[image: image43.wmf]r

v

 is selected as the generated field. We start by determining all index sets S such that

[image: image44.wmf]U

S

j

i

j

r

D

F

Î

=

(3.8)

and

[image: image45.wmf]I

S

j

j

i

F

Î

Æ

¹

for all i=1,…,r-1,r+1,…,m.

(3.9)

From these index sets we select the minimal ones, i.e. the index sets S that obey (3.8) and (3.9), but none of their subsets obey (3.8).

Given such a minimal index set we construct the implied edit given by

IF

[image: image46.wmf]r

r

D

v

Î

,
[image: image47.wmf]I

S

j

j

i

i

F

v

Î

Î

for i=1,…,r-1,r+1,…,m

THEN
[image: image48.wmf]Æ

Î

)

,

,

(

1

n

x

x

K

.

(3.10)

Note that if we eliminate a categorical variable in the way described above the resulting set of edits is, given that we allow the eliminated variable to attain any possible value in its domain, a set of implied edits for the remaining variables in the tree. That is, this resulting set of edits has to be satisfied by the remaining variables in the tree, given that the eliminated variable may in principle take any value in its domain.

In case values are missing in the original record, the corresponding variables only have to be eliminated (and not fixed) from the set of edits, because these variables always have to be imputed. At precisely what moment the variables with missing variables are eliminated is not important for obtaining all optimal solutions to the error localisation problem as long as all continuous variables are treated before any categorical variable is. However, a natural choice is to treat the variables in the following order:

· eliminate all continuous variables with missing values;

· fix or eliminate the remaining continuous variables;

· eliminate all categorical variables with missing values;

· fix or eliminate the remaining categorical variables.

After all categorical variables have been treated we are left with a set of relations without any unknowns. This set of relations may be the empty set. These relations may either be contradictions or not. A contradicting relation is given by

IF

[image: image49.wmf]i

i

D

v

Î

for i=1,…,m

THEN
[image: image50.wmf]Æ

Î

)

,

,

(

1

n

x

x

K

.

(3.11)

In case the set of relations is empty, it does not contain any contradictions. The relations contain no contradictions if and only if the variables that have been eliminated in order to reach the corresponding terminal node of the tree can be imputed consistently, i.e. such that all original edits can be satisfied. This statement is proved in Section 5.

In the algorithm we check for each terminal node of the tree whether the variables that have been eliminated in order to reach this node can be imputed consistently. Of all sets of variables that can be imputed consistently we select the ones with the lowest sums of reliability weights. In this way we find all optimal solutions to the error localisation problem.

The algorithm described in this section is a so-called branch-and-bound algorithm. In a branch-and-bound algorithm a tree is constructed and bounds on the objective function are to used cut off branches of the tree. In Section 6 we briefly describe these bounds and explain how branches can be cut off from our tree.

4 Example

In this section we illustrate the idea of the algorithm presented in the previous section by means of an example. This example is similar to an example given in Quere and De Waal (2000). We will not build the entire tree, because this would take too much space and would hardly teach us anything. Instead we will only generate one branch of the tree.

Suppose we have to edit a data set containing four categorical variables
[image: image51.wmf]i

v

 (i=1,…,4) and three continuous variables
[image: image52.wmf]i

x

 (i=1,…,3). The domains of the first two categorical variables are {1,2}, and of the last two categorical variables {1,2,3}. The set of explicit edits is given below.

IF (
[image: image53.wmf]1

1

=

v

 AND
[image: image54.wmf]}

3

,

1

{

4

Î

v

) THEN (

(4.1)
IF (
[image: image55.wmf]1

2

=

v

 AND
[image: image56.wmf]1

3

=

v

) THEN (

(4.2)

IF (
[image: image57.wmf]2

1

=

v

 AND
[image: image58.wmf]}

3

,

1

{

3

Î

v

 AND
[image: image59.wmf]}

3

,

1

{

4

Î

v

) THEN (

(4.3)

[image: image60.wmf]0

12

1

³

-

x

(4.4)

IF (
[image: image61.wmf]}

3

,

1

{

3

Î

v

) THEN
[image: image62.wmf]0

2

=

x

(4.5)

IF (
[image: image63.wmf]2

3

=

v

) THEN
[image: image64.wmf]0

1250

2

³

-

x

(4.6)

IF (
[image: image65.wmf]2

3

=

v

) THEN
[image: image66.wmf]0

12

875

2

1

³

+

-

x

x

(4.7)
IF (
[image: image67.wmf]2

3

=

v

) THEN
[image: image68.wmf]0

8

1250

2

1

³

-

x

x

(4.8)
IF (
[image: image69.wmf]}

3

,

1

{

3

Î

v

) THEN
[image: image70.wmf]0

1250

3

1

=

-

x

x

(4.9)
IF (
[image: image71.wmf]2

2

=

v

 AND
[image: image72.wmf]2

3

=

v

) THEN
[image: image73.wmf]0

1250

12

1250

3

2

1

=

+

-

+

x

x

x

(4.10)
IF (
[image: image74.wmf]1

2

=

v

 AND
[image: image75.wmf]2

3

=

v

) THEN
[image: image76.wmf]0

12

1250

3

2

1

=

-

+

x

x

x

(4.11)

Here, if a categorical variable is not mentioned in an IF-condition, this variable may take any value. For instance, edit (4.1) actually means

IF (
[image: image77.wmf]1

1

=

v

 AND
[image: image78.wmf]2

2

D

v

Î

 AND
[image: image79.wmf]3

3

D

v

Î

AND
[image: image80.wmf]}

3

,

1

{

4

Î

v

) THEN (,

(4.12)

where
[image: image81.wmf]i

D

 is the domain of categorical variable i.

Now, suppose that a record with values
[image: image82.wmf]1

1

=

v

,
[image: image83.wmf]2

2

=

v

,
[image: image84.wmf]2

3

=

v

,
[image: image85.wmf]1

4

=

v

,
[image: image86.wmf]25

1

=

x

,
[image: image87.wmf]3050

2

=

x

 and
[image: image88.wmf]90000

3

=

x

 is to be edited. Edits (4.1) and (4.10) are failed, so this record is inconsistent. We apply the algorithm described in the previous section and start by selecting a continuous variable, say
[image: image89.wmf]1

x

. In the algorithm two branches are generated: one branch where
[image: image90.wmf]1

x

 is fixed to its original value 25, and one branch where
[image: image91.wmf]1

x

 is eliminated from the current set of edits. Here we only consider the second branch and eliminate
[image: image92.wmf]1

x

 from the current set of edits.

For instance, if we combine (4.4) and (4.7), we first take the intersection of their IF-conditions. This intersection if given by “
[image: image93.wmf]2

3

=

v

”. This intersection is non-empty, so we proceed. We write (4.4) as a lower bound on
[image: image94.wmf]1

x

, i.e. as
[image: image95.wmf]12

1

³

x

, and the THEN-condition of (4.7) as an upper bound on
[image: image96.wmf]1

x

, i.e. as
[image: image97.wmf]2

1

12

875

x

x

£

. The THEN-condition of the resulting implied edit is then given by
[image: image98.wmf]12

875

12

2

´

³

x

, or equivalently by
[image: image99.wmf]875

2

³

x

. The resulting implied edit is hence given by

IF (
[image: image100.wmf]2

3

=

v

) THEN
[image: image101.wmf]0

875

2

³

-

x

(4.13)
The complete set of resulting (implicit) edits is given by (4.13) and:

IF (
[image: image102.wmf]}

3

,

1

{

3

Î

v

) THEN
[image: image103.wmf]15000

3

³

x

(4.14)
IF (
[image: image104.wmf]1

2

=

v

 AND
[image: image105.wmf]2

3

=

v

) THEN
[image: image106.wmf]0

16250

12

2

3

³

-

-

x

x

(4.15)
IF (
[image: image107.wmf]2

2

=

v

 AND
[image: image108.wmf]2

3

=

v

) THEN
[image: image109.wmf]0

15000

12

2

3

³

-

-

x

x

(4.16)
IF (
[image: image110.wmf]2

3

=

v

) THEN
[image: image111.wmf]0

2

³

x

(4.17)

IF (
[image: image112.wmf]2

2

=

v

 AND
[image: image113.wmf]2

3

=

v

) THEN
[image: image114.wmf]0

875

7

.

0

4

.

20

3

2

³

+

-

x

x

(4.18)
IF (
[image: image115.wmf]1

2

=

v

 AND
[image: image116.wmf]2

3

=

v

) THEN
[image: image117.wmf]0

7

.

0

4

.

20

3

2

³

-

x

x

(4.19)
IF (
[image: image118.wmf]1

2

=

v

 AND
[image: image119.wmf]2

3

=

v

) THEN
[image: image120.wmf]0

1250

20

3

2

³

-

+

-

x

x

(4.20)
IF (
[image: image121.wmf]2

2

=

v

 AND
[image: image122.wmf]2

3

=

v

) THEN
[image: image123.wmf]0

20

3

2

³

+

-

x

x

(4.21)
and (4.1), (4.2), (4.3), (4.5) and (4.6).

Note that some of the generated edits may be completely useless. For instance, implicit edit (4.17) is less strong than, is dominated by, edit (4.13). If edit (4.13) is satisfied, then automatically edit (4.17) is satisfied.

We select another continuous variable, say
[image: image124.wmf]2

x

, and again construct two branches: one branch where
[image: image125.wmf]2

x

 is fixed to its original value 3050, and one branch where
[image: image126.wmf]2

x

 is eliminated from the current set of edits. Here we only consider the first branch and fix
[image: image127.wmf]2

x

 to its original value. As a result, some of the current edits may become satisfied. Those edits can be discarded. In this case, e.g., edit (4.13) becomes satisfied and is discarded from the current branch of the tree. Some other edits may become violated. In such a case the current branch of the tree cannot lead to a solution to the error localisation problem. In our example none of the edits becomes violated.

The resulting set of implicit edits obtained by fixing
[image: image128.wmf]2

x

 to its original value is given by:

IF (
[image: image129.wmf]}

3

,

1

{

3

Î

v

) THEN (

(4.22)
IF (
[image: image130.wmf]1

2

=

v

 AND
[image: image131.wmf]2

3

=

v

) THEN
[image: image132.wmf]0

52850

3

³

-

x

(4.23)

IF (
[image: image133.wmf]2

2

=

v

 AND
[image: image134.wmf]2

3

=

v

) THEN
[image: image135.wmf]0

51600

3

³

-

x

(4.24)
IF (
[image: image136.wmf]2

2

=

v

 AND
[image: image137.wmf]2

3

=

v

) THEN
[image: image138.wmf]0

63095

7

.

0

3

³

+

-

x

(4.25)
IF (
[image: image139.wmf]1

2

=

v

 AND
[image: image140.wmf]2

3

=

v

) THEN
[image: image141.wmf]0

62220

7

.

0

3

³

+

-

x

(4.26)
IF (
[image: image142.wmf]2

2

=

v

 AND
[image: image143.wmf]2

3

=

v

) THEN
[image: image144.wmf]0

61000

3

³

-

x

(4.27)
IF (
[image: image145.wmf]1

2

=

v

 AND
[image: image146.wmf]2

3

=

v

) THEN
[image: image147.wmf]0

62250

3

³

-

x

(4.28)

and (4.1), (4.2), (4.3) and (4.14). Edit (4.22) arises from edit (4.5) by substituting 3050 for
[image: image148.wmf]2

x

. The resulting numerical THEN-condition is failed.

We select the final continuous variable,
[image: image149.wmf]3

x

, and split the tree into two branches: one where
[image: image150.wmf]3

x

 is fixed to its original value and one where it is eliminated. Here we only consider the branch where
[image: image151.wmf]3

x

 is fixed to its original value, 90000. Again some of the edits become satisfied and are discarded. None of the edits become violated in our case. The resulting set of implicit edits is given by:

IF (
[image: image152.wmf]1

2

=

v

 AND
[image: image153.wmf]2

3

=

v

) THEN (,

(4.29)

and (4.1), (4.2), (4.3) and (4.22). Edit (4.29) arises from edit (4.26) by substituting 90000 for
[image: image154.wmf]3

x

. The resulting numerical THEN-condition is failed.

All continuous variables have now been treated, either by fixing or by eliminating. We see that the current set of edits is given by the purely categorical explicit edits supplemented with categorical edits that have been generated when the continuous variables were treated. We now treat the categorical variables. We select a categorical variable, say
[image: image155.wmf]1

v

, and again split the tree into two branches: a branch where
[image: image156.wmf]1

v

 is fixed to its original value and a branch where it is eliminated. We only consider the branch where
[image: image157.wmf]1

v

 is eliminated. The resulting set of implicit edits is given by:

IF (
[image: image158.wmf]}

3

,

1

{

3

Î

v

AND
[image: image159.wmf]}

3

,

1

{

4

Î

v

) THEN (,

(4.30)

and (4.2), (4.22) and (4.29).

We select a categorical variable, say
[image: image160.wmf]2

v

. Fixing and eliminating this variable again results in two branches. We only consider the branch where
[image: image161.wmf]2

v

 is fixed to its original value, 2. We obtain only two implicit edits, namely (4.22) and (4.30).

Again, we select a categorical variable, say
[image: image162.wmf]3

v

. Fixing and eliminating this variable again results in two branches. We only consider the branch where
[image: image163.wmf]3

v

 is fixed to its original value, 2. The resulting set of implicit edits is empty.

This implies that the set of original, explicit edits can be satisfied by changing the values of
[image: image164.wmf]1

x

 and
[image: image165.wmf]1

v

, and fixing the other variables to their original values. In other words, a solution to the error localisation problem for this record is given by: change the values of
[image: image166.wmf]1

x

 and
[image: image167.wmf]1

v

. Possible values, the only ones in this case, are
[image: image168.wmf]2

1

=

v

 and
[image: image169.wmf]72

.

41

1

=

x

. It is easy to check that the resulting record indeed satisfies all explicit edits.

The other branches of the tree, which we have skipped, also need to be examined, because it is possible that they contain a better solution to the error localisation problem. By examining all branches of the tree one can arrive at all optimal solutions to the error localisation problem for the record under consideration.

5 An optimality proof

In this section we prove that the algorithm described in Section 3 indeed finds all optimal solutions to the error localisation problem. We do this in three steps. We start by showing that if the variables that have been eliminated in order to reach a certain node can be imputed in such a way that the set of edits corresponding to this node become satisfied, the variables that have been eliminated in order to reach the parent node can also be imputed in such a way that the set of edits corresponding to that parent node become satisfied. Using this result we show that if and only if the set of relations between numbers in a terminal node do not contradict each other, we can impute the variables that have been eliminated in order to reach this terminal node consistently, i.e. such that the original edits become satisfied. The final step consists of noticing that the terminal nodes correspond to all potential solutions of the error localisation problem, and hence that the algorithm indeed determines all optimal solutions to the error localisation problem. Steps 2 and 3 are trivial once the first step has been proved.

The proof of the first step is similar to the proof of Theorem 1 in Fellegi and Holt (1976). The main differences are our edits are more general than the edits considered by Fellegi and Holt, and that Fellegi and Holt assume that the so-called complete set of (explicit and implied) edits has been generated.

Theorem 5.1. Suppose the set of variables in a certain node is given by
[image: image170.wmf]0

T

, and the current set of edits corresponding to that node by
[image: image171.wmf]0

W

. Suppose furthermore that a certain variable r is either fixed or eliminated. Denote the set of resulting variables by
[image: image172.wmf]1

T

 and the set of edits corresponding to the next node by
[image: image173.wmf]1

W

. Then there exist values
[image: image174.wmf]0

i

u

 for the variables in
[image: image175.wmf]1

T

 that satisfy the edits in
[image: image176.wmf]1

W

 if and only if there exists a value
[image: image177.wmf]0

r

u

 for variable r such that the values
[image: image178.wmf]0

i

u

 for the variables in
[image: image179.wmf]0

T

 satisfy the edits in
[image: image180.wmf]0

W

.

Proof.
It is easy to verify that if there exist values
[image: image181.wmf]0

i

u

 for the variables in
[image: image182.wmf]0

T

 that satisfy the edits in
[image: image183.wmf]0

W

 then the same values (except the value of the variable that is fixed or eliminated) automatically satisfy the edits
[image: image184.wmf]1

W

 of the next node.

It is a bit more work to prove the other part of the proof. We have to distinguish between several cases. First, let us suppose that the selected variable is fixed. This is a trivial case. It is clear that if there exist values
[image: image185.wmf]0

i

u

 for the variables in
[image: image186.wmf]1

T

 that satisfy the edits in
[image: image187.wmf]1

W

, there exist values
[image: image188.wmf]0

i

u

 for the variables in
[image: image189.wmf]0

T

 that satisfy the edits in
[image: image190.wmf]0

W

. Namely, for the fixed variable r we set the value
[image: image191.wmf]0

r

u

 equal to the original value of r.

Let us now suppose that a categorical variable r has been eliminated. Suppose that there exist values
[image: image192.wmf]0

i

u

 for the variables in
[image: image193.wmf]1

T

 that satisfy the edits in
[image: image194.wmf]1

W

, but there does not exist a value
[image: image195.wmf]0

r

u

 for the selected variable r such that the variables in
[image: image196.wmf]0

T

 satisfy the edits in
[image: image197.wmf]0

W

. Identify a failed edit in
[image: image198.wmf]0

W

 for each possible value
[image: image199.wmf]k

r

v

 of variable r. The index set of these failed edits need not be a minimal one. We therefore remove some of these failed edits such that the corresponding index set S becomes minimal. We then construct the implied edit given by (3.10).

Edit (3.10) is an element of
[image: image200.wmf]1

W

. Moreover, the values
[image: image201.wmf]0

i

u

 for the variables in
[image: image202.wmf]1

T

 do not satisfy this edit. This contradicts our assumption that these values satisfy all edits in
[image: image203.wmf]1

W

. So, we can conclude that a value
[image: image204.wmf]0

r

u

 for the selected variable r exists such that the values
[image: image205.wmf]0

i

u

 for variables in
[image: image206.wmf]0

T

 satisfy the edits in
[image: image207.wmf]0

W

.

Finally, let us suppose that a continuous variable r has been eliminated. Suppose that there exist values
[image: image208.wmf]0

i

u

 for the variables in
[image: image209.wmf]1

T

 that satisfy the edits in
[image: image210.wmf]1

W

. Each edit in
[image: image211.wmf]1

W

 is either obtained from copying the edits in
[image: image212.wmf]0

W

 not involving variable r, or from two edits in
[image: image213.wmf]0

W

 involving variable r that have been combined.

It is clear that if the edits in
[image: image214.wmf]1

W

 that have been obtained from copying the edits in
[image: image215.wmf]0

W

 not involving variable r are satisfied by values
[image: image216.wmf]0

i

u

 for the variables in
[image: image217.wmf]1

T

, these edits in
[image: image218.wmf]0

W

 are also satisfied by the same values for the variables in
[image: image219.wmf]0

T

.

It remains to prove that if the edits in
[image: image220.wmf]1

W

 that have been obtained by combining two edits in
[image: image221.wmf]0

W

 are satisfied by the variables in
[image: image222.wmf]1

T

, there exists a value for variable r such that all edits in
[image: image223.wmf]0

W

 involving variable r can be satisfied. To show this we fill in the values
[image: image224.wmf]0

i

u

 for the variables in
[image: image225.wmf]1

T

 in the edits in
[image: image226.wmf]0

W

. As a result, we obtain a number of constraints of the following types for the value of the selected variable r:

[image: image227.wmf]E

k

r

M

x

=

(5.1)

[image: image228.wmf]L

k

r

M

x

³

,

(5.2)

and

[image: image229.wmf]U

k

r

M

x

£

.

(5.3)

Constraint (5.1) has been obtained from an edit k in
[image: image230.wmf]0

W

 of which the THEN-condition can be written in the following form

[image: image231.wmf]å

¹

¢

+

¢

=

r

i

k

i

ik

r

b

x

a

x

(5.4)

by filling in the values
[image: image232.wmf]0

i

u

 for the variables in
[image: image233.wmf]1

T

. Similarly, constraints (5.2) and (5.3) have been obtained from edits in
[image: image234.wmf]0

W

 of which the THEN-conditions can be written in the following forms

[image: image235.wmf]å

¹

¢

+

¢

³

r

i

k

i

ik

r

b

x

a

x

(5.5)

and

[image: image236.wmf]å

¹

¢

+

¢

£

r

i

k

i

ik

r

b

x

a

x

,

(5.6)

respectively, by filling in the values
[image: image237.wmf]0

i

u

 for the variables in
[image: image238.wmf]1

T

.

If the constraints given by (5.1) to (5.3) do not contradict each other, we can find a value for variable r such that this value plus the values
[image: image239.wmf]0

i

u

 for the variables in
[image: image240.wmf]1

T

 satisfy the edits in
[image: image241.wmf]0

W

.

So, suppose the constraints given by (5.1) contradict each other. These constraints can only contradict each other if there are constraints s and t given by

[image: image242.wmf]E

s

r

M

x

=

 and
[image: image243.wmf]E

t

r

M

x

=

 with
[image: image244.wmf]E

t

E

s

M

M

¹

,

(5.7)

[image: image245.wmf]E

s

r

M

x

=

 and
[image: image246.wmf]L

t

r

M

x

³

 with
[image: image247.wmf]L

t

E

s

M

M

<

,

(5.8)

[image: image248.wmf]U

s

r

M

x

£

 and
[image: image249.wmf]E

t

r

M

x

=

 with
[image: image250.wmf]E

t

U

s

M

M

<

,

(5.9)

or

[image: image251.wmf]U

s

r

M

x

£

 and
[image: image252.wmf]L

t

r

M

x

³

 with
[image: image253.wmf]L

t

U

s

M

M

<

(5.10)

In case 1 constraints s and t have been derived from edits in
[image: image254.wmf]0

W

 of which the THEN-conditions are equalities. The IF-conditions of these edits have a non-empty intersection, because both edits are triggered when we fill in the values
[image: image255.wmf]0

i

u

 for the categorical variables in
[image: image256.wmf]1

T

. So, these edits generate an implied edit in
[image: image257.wmf]1

W

 if we eliminate variable r. The THEN-condition of this implied edit can be written as

[image: image258.wmf]å

å

¹

¹

¢

+

¢

=

¢

+

¢

r

i

t

i

it

r

i

s

i

is

b

x

a

b

x

a

,

(5.11)

where we have used (5.4).

Filling in the values
[image: image259.wmf]0

i

u

 for the variables in
[image: image260.wmf]1

T

 in this implied edit, we find that
[image: image261.wmf]E

s

M

 should be equal to
[image: image262.wmf]E

t

M

. In other words, we have constructed an edit in
[image: image263.wmf]1

W

 that would be failed if we would fill in the values
[image: image264.wmf]0

i

u

 for the variables in
[image: image265.wmf]1

T

. This contradicts the assumption that these values satisfy all edits in
[image: image266.wmf]1

W

, and we conclude that the constraints given by (5.1) cannot contradict each other.

For cases 2, 3 and 4 we can show in a similar manner that we would be able to construct a failed implied edit in
[image: image267.wmf]1

W

. This contradicts the assumption that the values
[image: image268.wmf]0

i

u

 for the variables in
[image: image269.wmf]1

T

 satisfy all edits in
[image: image270.wmf]1

W

, and we conclude that the constraints given by (5.1) to (5.3) cannot contradict each other.

In turn this allows us to conclude that a value for variable r exists such that this value plus the values
[image: image271.wmf]0

i

u

 for the variables in
[image: image272.wmf]1

T

 satisfy the edits in
[image: image273.wmf]0

W

. This concludes the proof of Theorem 5.1.

(
Theorem 5.2. The set of edits corresponding to a terminal node, i.e. a set of relations involving only numbers, is consistent if and only if the variables that have been eliminated in order to reach this terminal node can be imputed in such a way that the original set of edits becomes satisfied.

Proof. This follows directly from a repeated application of Theorem 5.1.

(
Theorem 5.3. The algorithm determines all optimal solutions to the error localisation problem.

Proof. The terminal nodes of the tree correspond to all possible combinations of fixing and eliminating variables. So, according to Theorem 5.2 above, the algorithm checks which of all possible sets of variables can be imputed consistently. The algorithm simply selects all optimal sets of variables that can be imputed consistently from all possible sets. So, we can conclude that the algorithm finds all optimal solutions to the error localisation problem.
(
6 Some computational aspects of the algorithm

We have demonstrated in Section 5 that the developed algorithm, which is described in Section 3, determines all optimal solutions to the error localisation problem for mixed data. At first sight, however, the developed algorithm may seem rather slow because an extremely large binary tree has to be generated to find all optimal solutions, even for moderately sized problems. Fortunately, the situation is not nearly as bad as it may seem.

6.1 Reducing the size of the tree

First of all, if the minimum number of fields that have to be changed in order to make a record pass all edits is too large, the record should not be edited automatically. The quality of such a record is simply too low to allow for automatic correction. Such a record should either be edited manually, or be discarded completely. By specifying an upper bound for the number of fields that may be changed, the size of the tree can drastically be reduced.

To illustrate the effect of the total number of variables m + n and the upper bound
[image: image274.wmf]max

N

 for the number fields that may be changed on the maximum size of the generated tree, we calculate the total number of nodes, both internal ones and terminal ones, in such a binary tree. Denote the number of nodes in a tree involving t variables where at most s variables may be eliminated by
[image: image275.wmf])

,

(

t

s

F

. Note that this function also makes sense when
[image: image276.wmf]t

s

³

. It then equals 1. This function satisfies the following recurrence relation:

[image: image277.wmf])

1

,

(

)

1

,

1

(

1

)

,

(

-

+

-

-

+

=

t

s

F

t

s

F

t

s

F

for
[image: image278.wmf]1

,

³

t

s

,

(6.1)

with boundary conditions

[image: image279.wmf]1

)

0

,

(

=

a

F

(6.2)

and

[image: image280.wmf]1

)

,

0

(

+

=

b

b

F

.

(6.3)

After some puzzling we can find that the solution to this recurrence relation and boundary conditions is

[image: image281.wmf](

)

(

)

1

2

1

2

)

,

(

1

1

-

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

=

å

-

=

+

i

s

t

i

t

s

i

t

t

s

F

.

(6.4)

Some numerical results to illustrate the behaviour of this function are given in the table below.

Table 6.1: Total number of nodes in binary tree

[image: image282.wmf]max

N

= 1

[image: image283.wmf]max

N

= 2

[image: image284.wmf]max

N

= 5

[image: image285.wmf]max

N

= 10

[image: image286.wmf]max

N

= m + n

m + n = 10
66
231
1,485
2,047
2,047

m + n = 20
231
1,561
82,159
1.40(106
2.10(106

m + n = 50
1,326
22,151
2.06(106
6.42(1010
2.25(1015

m + n = 100
5,151
171,801
1.35(109
1.80(1014
2.54(1030

Note that for a large tree a very substantial part of the tree may be cut off by specifying an upper bound for the number of fields that may be changed.

The size of the tree can also be reduced during the execution of the algorithm, because it may already become clear in an intermediate node of the tree that the corresponding terminal nodes cannot generate an optimal solution to the problem. For instance, by fixing the wrong variables we may make the set of edits infeasible. This may be noticed in an intermediate node.

6.2 Using the value of the objective function as an incumbent

The value of the objective function can also be used as an incumbent in order to reduce the size of the tree. This value cannot decrease while going down the tree. So, if the value of the objective function exceeds the value of an already found (possibly suboptimal) solution, we can again conclude that the corresponding terminal nodes cannot generate an optimal solution to the problem. In other words, the value of the best already found solution is used as the bound in our branch-and-bound scheme. During execution of the algorithm the bound is updated.

6.3 The number of edits due to elimination of a continuous variable

One might suspect that the number of implied edits grows rapidly. Fortunately, this is not the case in most practical situations. In fact, it is quite simple to calculate an upper bound on the number of edits after elimination of a variable if we have only continuous data. Let the total number of current edits be given by t. Suppose the variable to be eliminated occurs in s of those edits. We denote the number of remaining edits by u, i.e. u=t-s.

In case the variable to be eliminated is involved in an equality the number of edits after elimination is given by: t-s (number of current edits not involving the variable under consideration) plus s-1 (the equality is used to eliminate the variable under consideration, and simultaneously reduce the number of edits by one), i.e. t-1. In other words, the total number of edits decreases by one.

In case the variable under consideration is only involved in inequalities, the number of new edits results is given by pq, where p is the number of inequalities that can be written as an upper bound on the value of the variable under consideration and q the number of inequalities that can be written as an lower bound. If u is even, the worst-case is given by p=q=u/2. If u is odd, the worst-case is given by p=(u+1)/2 and q=(u-1)/2, or vice versa. The maximum increase in the total number of edits due to elimination is hence given by:

·
[image: image287.wmf]u

u

-

4

2

if u is even;

(6.5)
·
[image: image288.wmf]u

u

u

-

-

+

4

)

1

)(

1

(

if u is odd.

(6.6)
Table 6.2 below shows the maximum increase in number of edits due to elimination of a continuous variable for several values of u.

Table 6.2: The maximum increase in number of edits due to elimination of a continuous variable.

u
Increase in number of edits

1
-1

2
-1

3
-1

4
0

5
1

6
3

7
5

8
8

9
11

10
15

20
80

50
575

100
2400

For high values of u, the maximum increase in number of edits due to elimination of a continuous variable grows quickly. In most practical applications, however, the number of times that a variable is involved in edits is rather low on the average. For a variable it is quite exceptional to be involved in six or more edits, let alone exclusively in six or more inequalities and none equalities. This means that the number of edits does not, or hardly, grows for most practical applications.

Assuming the natural probability model that, given that the variable to be eliminated is involved in a certain inequality, it is equally likely that this inequality provides an upper bound on the variable’s value as it is likely that the inequality provides an lower bound, we can also calculate the expected increase due to elimination of a continuous variable. Using the same notation as above, this expected increase, given that the variable under consideration is only involved in inequalities, is given by

[image: image289.wmf](

)

(

)

(

)

å

å

=

=

-

-

-

÷

÷

ø

ö

ç

ç

è

æ

=

-

-

÷

÷

ø

ö

ç

ç

è

æ

=

u

i

u

i

u

i

u

i

u

i

u

i

i

u

u

i

u

i

i

u

0

0

)

(

2

1

)

(

2

1

2

1

)

increase

E(

.

(6.7)

Table 6.3 below shows the expected increase in number of edits, given that the variable under consideration is only involved in inequalities, due to elimination of a continuous variable for the same values of u as in Table 6.2.

Table 6.3: The expected increase in number of edits due to elimination of a continuous variable.

u
Expected increase in number of edits

1
-1

2
-1.5

3
-1.5

4
-1

5
0

6
1.5

7
3.5

8
6

9
9

10
12.5

20
75

50
562.5

100
2375

The values in Table 6.3 are quite close to the values in Table 6.2, demonstrating that the “average”, i.e. expected, case is quite close to the worst-case. However, as we already remarked when discussing Table 6.2, in practice variables are unlikely to occur in many inequalities. Table 6.3 shows that as long as variables on the average occur in at most five inequalities, the number of edits can on the average be expected to decrease while eliminating continuous variables. If a variable occurs in six inequalities, the number of edits can be expected to increase slightly due to elimination of this variable.

6.4 Using good branching rules

Because the size of the tree, and hence the computation time of the algorithm, can be influenced by the order in which the variables are treated, this order is very important in practice. For purely categorical data Daalmans (2000) has tested several orders in which to treat the variables, namely:

a) select the variable that has not yet been eliminated and that appears first;

b) select a variable that has not yet been eliminated and that is involved in the largest number of failed edits;

c) select a variable that has not yet been eliminated and that is involved in the smallest number of failed edits;

d) select a variable that has not yet been eliminated, that is involved in the largest number of satisfied edits, and that is involved in at least one failed edit;

e) select a variable that has not yet been eliminated, that is involved in the smallest number of satisfied edits, and that is involved in at least one failed edit;

Although the “best” overall order could not be identified, Daalmans’ work suggests that order d is a good order in practice. In Daalmans’ implementations of the branch-and-bound algorithms, selected variables are first fixed and later eliminated.

References

Daalmans, J., 2000, Automatic Error Localisation of Categorical Data. Report, Statistics Netherlands, Voorburg.

Duffin, R.J., 1974, On Fourier’s Analysis of Linear Inequality Systems. Mathematical Programming Studies, 1, 71-95.

De Waal, T., 2000, An Optimality Proof of Statistics Netherlands’ New Algorithm for Automatic Editing of Mixed Data. Report, Statistics Netherlands, Voorburg.

Fellegi, I.P. and D. Holt, 1976, A Systematic Approach to Automatic Edit and Imputation. Journal of the American Statistical Association, 71, 17-35.

Quere, R., 2000, Automatic Editing of Numerical Data. Report, Statistics Netherlands, Voorburg.

Quere, R. and T. De Waal, 2000, Error Localization in Mixed Data Sets. Report, Statistics Netherlands, Voorburg.
18
19

_1027250188.unknown

_1041322206.unknown

_1041338824.unknown

_1041340390.unknown

_1041342037.unknown

_1078654621.unknown

_1078654749.unknown

_1078655197.unknown

_1078655240.unknown

_1078654697.unknown

_1054707464.unknown

_1054707525.unknown

_1054729707.unknown

_1078500560.unknown

_1078514918.unknown

_1078500548.unknown

_1054707541.unknown

_1054707493.unknown

_1054707261.unknown

_1054707384.unknown

_1054707111.unknown

_1041340576.unknown

_1041340763.unknown

_1041342014.unknown

_1041340587.unknown

_1041340422.unknown

_1041340430.unknown

_1041340409.unknown

_1041340414.unknown

_1041340398.unknown

_1041338891.unknown

_1041340365.unknown

_1041340379.unknown

_1041339080.unknown

_1041339102.unknown

_1041338901.unknown

_1041338846.unknown

_1041338869.unknown

_1041338832.unknown

_1041329533.unknown

_1041331718.unknown

_1041338524.unknown

_1041338531.unknown

_1041338675.unknown

_1041338425.unknown

_1041330580.unknown

_1041330909.unknown

_1041329824.unknown

_1041329832.unknown

_1041329580.unknown

_1041329236.unknown

_1041329411.unknown

_1041329429.unknown

_1041329282.unknown

_1041323339.unknown

_1041323658.unknown

_1041322368.unknown

_1041318681.unknown

_1041319478.unknown

_1041319628.unknown

_1041319850.unknown

_1041321276.unknown

_1041321390.unknown

_1041319885.unknown

_1041319637.unknown

_1041319599.unknown

_1041319616.unknown

_1041319587.unknown

_1041319053.unknown

_1041319441.unknown

_1041319451.unknown

_1041319070.unknown

_1041318950.unknown

_1041319003.unknown

_1041318877.unknown

_1041318737.unknown

_1041318790.unknown

_1041318332.unknown

_1041318441.unknown

_1041318490.unknown

_1041318639.unknown

_1041318464.unknown

_1041318350.unknown

_1027412485.unknown

_1027413929.unknown

_1041317970.unknown

_1041318210.unknown

_1041318227.unknown

_1041317982.unknown

_1027414061.unknown

_1041252054.unknown

_1027414045.unknown

_1027413633.unknown

_1027413653.unknown

_1027413547.unknown

_1027411501.unknown

_1027411529.unknown

_1027250203.unknown

_1024227353.unknown

_1027164041.unknown

_1027247739.unknown

_1027248277.unknown

_1027248540.unknown

_1027248624.unknown

_1027248626.unknown

_1027248627.unknown

_1027248625.unknown

_1027248554.unknown

_1027248622.unknown

_1027248623.unknown

_1027248621.unknown

_1027248606.unknown

_1027248547.unknown

_1027248290.unknown

_1027248536.unknown

_1027248284.unknown

_1027247869.unknown

_1027247962.unknown

_1027248096.unknown

_1027247932.unknown

_1027247789.unknown

_1027247826.unknown

_1027247759.unknown

_1027247576.unknown

_1027247656.unknown

_1027247687.unknown

_1027247693.unknown

_1027247667.unknown

_1027247593.unknown

_1027247611.unknown

_1027247587.unknown

_1027247426.unknown

_1027247443.unknown

_1027247497.unknown

_1027247434.unknown

_1027247350.unknown

_1027247400.unknown

_1027247334.unknown

_1024230149.unknown

_1024318404.unknown

_1024483505.unknown

_1024485661.unknown

_1024230157.unknown

_1024227549.unknown

_1024227705.unknown

_1024227633.unknown

_1024227543.unknown

_1018886538.unknown

_1024225902.unknown

_1024227331.unknown

_1024227347.unknown

_1024226422.unknown

_1024227269.unknown

_1024225908.unknown

_1024225930.unknown

_1024225952.unknown

_1024226372.unknown

_1024225941.unknown

_1024225916.unknown

_1018893100.unknown

_1024225878.unknown

_1024225888.unknown

_1024225894.unknown

_1019320522.unknown

_1019320312.unknown

_1018892336.unknown

_1018893021.unknown

_1018892131.unknown

_931947900.unknown

_1018376836.unknown

_1018377044.unknown

_1018808707.unknown

_1018808819.unknown

_1018808747.unknown

_1018382372.unknown

_1018808505.unknown

_1018377209.unknown

_1018376989.unknown

_940314195.unknown

_1018373927.unknown

_1018373954.unknown

_1018373968.unknown

_1018291053.unknown

_932297942.unknown

_934965380.unknown

_932297872.unknown

_931947899.unknown

