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Abstract

This paper discusses adaptive censoring for both i.i.d. situations and stratified simple random sampling designs in order to deal with representative outliers. Based on the influence function approach the design mean squared error of these estimators is calculated and compared with the design variance of their classical design unbiased counterparts. Roughly, for populations that have few isolated outliers adaptive censoring plainly gives better results than their classical counterparts. Adaptive censoring also performs better for populations that are smoothly skewed. The results are only slightly worse for populations that contain no outliers. 
Keywords: Adaptive censoring; Adaptive weighting; Influence function; Finite population 

    sampling; Resistant estimators. 

1. Introduction

The problem considered in this paper is to find a practical way to deal with large observations that practitioners of sampling theory may encounter in their sampled data. In order to state the problem more precisely, we follow Chambers (1986) and distinguish between representative and non-representative outliers. A representative outlier is a sample unit with a value that has been correctly recorded and that cannot be regarded as unique; the non-sampled part of the population may contain similar units. A non-representative outlier is typically associated with a sample unit whose values are incorrectly measured (gross errors) or with a sample unit whose values are unique in the sense that there are no other units like them in the finite population. In this paper, it is assumed that all gross errors are corrected at the editing stage. At this stage, robust multivariate outlier detection methods as discussed in Beguin and Hulliger (2001) could be very useful to detect irregularities in the data. Once these irregularities have been detected, the next step is to decide whether the causing observations have been measured correctly or not. Ideally, this check is done by re-contacting the supplier of the sampled data. Otherwise, one could consult a subject matter specialist and/or make use of external sources. 

There remains the problem of treating outliers that are correctly measured. Often, if prior information about such observations is available, they are sampled with inclusion probability one and considered as non-representative, i.e. they obtain a sample weight of one and are excluded from the weighting process. If the prior information is lacking, they may pop up as representative outliers with some inclusion probability smaller than one. Lee (1995) gave an overview of the several proposals that have been made in literature to treat such outliers. He distinguished between basically three approaches, namely lowering the (sample) weights of outliers, reducing the outlier values, or make use of robust estimation techniques. For heavy tailed distributions these proposals will generally decrease the design variance. For skewed populations, however, they also imply an increase of design bias. Inspired by the results of Searls (1966), Ernst (1980), and Kokic and Bell (1994) this paper uses the censored estimator as a starting point to deal with representative outliers in survey sampling. 

In case of i.i.d. sampling, Searls (1966) already showed that the mean squared error of the sample mean can be actually lowered by censoring large observations at some (optimal) cut-off point. Although the derivation is quite cumbersome, the obtained result is surprisingly simple. As expected, the optimal cut-off point depends on the sample size, namely it increases as the sample size increases. Ernst (1980) proved that censoring observations at the optimal cut-off point is at least as efficient as trimming or winsorising observations, i.e. it was shown that the censored estimator with optimal cut-off point has no larger mean squared error than the one-sided (-trimmed mean and the one-sided (-winsorised mean for any (. In a certain sense, the results of Searls were extended to stratified designs by Kokic and Bell (1994). Namely, they examined an optimal winsorised estimator in a stratified context, where the notion ‘optimal’ is defined by minimising a mean squared error criterion as a function of the stratum cut-off points. They concluded that winsoring outliers may lead to a considerable improvement over the classical estimator, especially when there is only a small proportion of extreme outliers present in the sample. 

For the practitioner of sampling theory the applicability of these results remains limited as the optimal cut-off points not only depend on the sample size but also on unknown population parameters. In an ideal situation, these parameters can be accurately estimated from the past. When such information is lacking, they have to be estimated from the sample itself. Naturally, this changes the statistical behaviour of the censored estimator. Kokic and Bell (1994) mentioned this possibility, however, they did not elaborate on this. This paper uses the results of Searls (1966) as a starting point and discusses both for i.i.d. situations and stratified designs several types of censored estimators with estimated optimal cut-off points. We emphasis that, according to these estimators, it is quite well possible that observations that are identified as outliers at the editing stage should not be censored at the estimation stage. Based on the influence function approach (see e.g. Hampel et al., 1986), the variances and mean squared errors of these estimators are approximated. Unlike the censored estimator with known optimal cut-off point, the estimator with estimated cut-off point may be less efficient than the sample mean. In case of simple random sampling, a comparison of the mean squared error of our (one-sided) censored estimator with the variances of the sample mean gives some insight under which circumstances the use of censored estimators with estimated cut-off point may be fruitful. Roughly, samples that contain few isolated outliers are worthwhile to be censored. We note that this conclusion parallels the conclusion of Kokic and Bell (1994). 

The outline of this paper is as follows. Section 2 deals with one-sided censored estimators in i.i.d. situations. In Section 2.1 the results of Searls (1966) are briefly repeated and the one-sided censored estimator with (known) optimal cut-off point is defined. When the optimal cut-off point unknown it may be estimated from the current sample. This gives an adaptive censored estimator. In Section 2.2 some statistical properties of this adaptive censored estimator are discussed. Among others, its design bias and design variance are approximated. In Section 2.3 the results are applied to pps-sampling and in Section 2.4 to simple random sampling without replacement. Some numerical results are given in Section 2.5. Section 3 deals with two-sided censoring in an i.i.d. situation. The two-sided censored estimator with (known) left and right cut-off points is defined in Section 3.1, while the adaptive two-sided censored estimator is discussed in Section 3.2. One-sided censored estimators for stratified design are discussed in Section 4. Extending the results of Searls (1996) in an obvious way, an ‘optimal’ set of stratum cut-off points is defined. Similarly as in the i.i.d situation, if this set is estimated by the current sample, we obtain an adaptive censored estimator for stratified designs. Section 4 is ended by a small simulation study for both the Neyman allocation and proportional allocation in order to get an insight into the gain of adaptive censoring under different allocations. Section 5 discusses adaptive censoring when auxiliary information is used, and finally in Section 6 a strategy is presented to deal with the so-called level of robustification. 

The treatment of representative outliers in finite population sampling has been the subject of several papers. In an i.i.d. situation, Searls (1966) showed the existence of an (optimal) cut-off point such that the censored estimator has smaller mean squared error than the sample mean. Ernst (1980) extended this result by showing that this estimator is not only at least as efficient as the sample mean, but also as any of six competitive estimators that are supposed to reduce the effect of large observations. Hidiroglou and Srinath (1981) considered various methods for reducing the weights of outliers once they have been identified. Fuller (1991) investigated the mean squared error of the once-winsorised estimator for the mean of the Weibull distribution, and Kokic and Bell (1994) discussed an ‘optimal’ winsorised in a stratified context. Clarke (1995) and Chambers and Kokic (2000) discussed the censored estimator from a model-based point of view. They suggested to adjust the value (weight) of observations that are significantly larger than the fitted values implied by some estimation model, where the notion ‘significant larger’ is defined by means of a threshold parameter that is calculated on past survey information. Chambers (1986), Gwet and Rivest (1992), and Hulliger (1995, 1999) used M-estimation techniques to define resistant estimators that implicitly take account of outliers. In fact, the MER-estimator defined by Hulliger (1995) resembles our censored estimator with estimated cut-off point in the sense that the involved 
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-function has estimated tuning constant. Hulliger, however, gave no approximation formulas for the variance of MER-estimators. We finally mention Duchesne (1999), who used M-estimation techniques to define robust calibration estimators. 
2. One-sided censored estimators for i.i.d. sampling

2.1 One-sided censored estimators with fixed cut-off point

Let 
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where 
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 that is (more) resistant against representative outliers than the ordinary sample mean. In literature, many resistant estimators have been proposed to deal with outliers in sampling theory, see e.g. Lee (1995) or Hulliger (1999). In this paper we limit ourselves to censored type estimators and start with one-sided censored estimators for i.i.d. sampling 
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where 
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 values larger than t are replaced by t. We note that such one-sided censored estimators are of particular interest if the population distribution function F is skewed to the right. Let 
[image: image11.wmf])

(

t

p

p

m

m

=

 denote the population fraction of the non-truncated values, 
[image: image12.wmf])

(

t

m

m

m

m

=

 the population mean of the non-truncated values, 
[image: image13.wmf])

(

t

q

q

r

r

=

 the population fraction of the truncated values, 
[image: image14.wmf])

(

t

r

r

m

m

=

 the population mean of the truncated values, and 
[image: image15.wmf])

(

2

2

t

m

m

s

s

=

 the population variance of the non-truncated values, and define 




[image: image16.wmf]î

í

ì

>

£

=

t

Y

t

Y

t

Y

Y

i

i

i

i

  

if

if

  

*

.

Then, the variance, bias, and mean squared error of (2.2) can be expressed as 
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When considering this point as a function of  n, we have by the implicit function theorem 
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So, the optimal cut-off of the one-sided censored estimator increases as the sample size n increases. This makes sense because, by increasing sample size, the bias component of the MSE will more and more dominate the variance component. 

Although the derivation of (2.3) assumes the differentiability of F , (2.3) itself does not depend on the density function, and it makes sense to use (2.3) to define the cut-off value for finite populations as well. Below we show that this cut-off value is well defined. Consider 
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the optimal cut-off point given by (2.3) is known, then the minimised mean squared error of the censored estimator can be written as 
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Indeed, (2.4) is smaller than the variance of the ordinary sample mean: 
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where 
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 denotes the population variance of the truncated values. Unfortunately, in practice the optimal cut-off point will be unknown and hence, it has to be estimated. Ideally, one may use past surveys to approximate the unknown distribution and to guess the optimal cut-off point for the given sample size. By means of a numerical example, Searls (1966) showed that this guess needs not be very accurate for gains to be achieved. 

We emphasis, however, that (2.4) is no longer valid for sub-optimal t, and that a theoretical foundation of this claim is lacking. Especially, when t is accidentally chosen too small, we expect that the reduction of variance is largely exceeded by an increase of bias. Therefore, as an alternative, we suggest to estimate t from the sample itself and to define a censored estimator with estimated cut-off point. Naturally, we have to re-consider the mean squared error, as (2.4) is derived for fixed t. 

2.2 Adaptive censoring; one-sided censored estimators with estimated cut-off point

If past information is lacking, one may estimate the optimal cut-off point (and the other population parameters) from the sample: 
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where 
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We note that Hulliger (1995) suggested a similar idea in a M-estimation context. His idea was to take an M-estimator, to estimate the mean squared error from the sample for a set of tuning constants, and to choose the tuning constant with least estimated mean squared error. He called the resulting estimators Minimum Estimated Risk estimators (MER-estimators). 

It is easy to see that 
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we observe that (2.6) actually up-weights (down-weights) inliers (outliers), where the set of inliers (outliers) is determined by the estimated optimal cut-off point. 

In the following we show under which circumstances (2.6) has a smaller mean squared error than the ordinary sample mean. To that purpose we first calculate its influence function:
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see appendix Ia. This influence function is continuous and consists of two linear pieces with a crack at 
[image: image65.wmf]0

t

y

=

. It is unbounded, which is due to the fact that all observations are used to estimate the optimal cut-off value. By means of (2.8) we can approximate the variance of 
[image: image66.wmf]0

ˆ

ˆ

t

m

:


[image: image67.wmf]»

)

ˆ

(

0

ˆ

t

nVar

m



 EMBED Equation.3  [image: image68.wmf]2

2

2

2

2

2

2

)

(

1

1

m

r

r

m

r

r

m

r

m

r

m

r

r

m

r

r

m

r

m

r

m

nq

p

nq

nq

p

nq

p

q

p

nq

p

nq

q

nq

p

nq

p

m

m

s

s

-

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+





[image: image69.wmf]2

2

2

2

2

2

2

2

2

)

(

)

(

1

1

1

m

r

r

m

r

m

r

m

r

r

m

m

r

m

r

m

r

m

nq

p

nq

p

q

p

nq

p

p

q

nq

p

q

p

m

m

s

s

-

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

. 

A term-wise comparison with the variance of the ordinary sample mean that is given by (2.4) shows that the first term is larger, the second term smaller, and the third term smaller (larger) if 
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If this squared bias is added to the (third term of) variance, then, again on account of the third term, we expect gain, i.e. a reduction in mean squared error, if 
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(2.9)

The fulfilment of (2.9) depends on the sample size in combination with the shape of the (finite) population. If the population contains a few number of isolated outliers to the right and the sample size is not too large, then (2.9) is probably satisfied. In particular, (2.9) is satisfied if 
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2.3 Application to PPS-sampling

In sample surveys, many samples are drawn according to some complex design. In order to study the impact of unequal probabilities on our one-sided censoring strategy we devote a separate sub-section to pps-sampling. Let 
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Now, if the population mean of the y-values is still the parameter of interest, we can adapt our censoring strategy by replacing the population values 
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respectively. We note that this cut-off point can be alternatively defined as 
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where the order in both the numerator and denominator is determined by the order of 
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It is well known that pps-sampling is efficient as the 
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2.4. Adaptation to SRWHR-Sampling

In case of simple random sampling without replacement, one may simply adapt (2.5) to take account of the finite population correction factor: 
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 is given by (2.7). By means of this influence function, we can approximate the variance of this adapted estimator: 
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As we see, in each term the effect of censoring is softened by the factor 1-f. On account of the third term, we still expect variance reduction if 
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to the (third term of) variance, we obtain an expression for the mean squared error. On account of the third term of this expression, we expect a reduction in this mean squared error if 
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Clearly, this inequality is satisfied under the same conditions as (2.9), i.e. we may expect a reduction in mean squared error under exactly the same conditions that apply for the one-sided censored estimators that are defined for simple random sampling with replacement. 

2.5. Some numerical results

In order to illustrate the behaviour of our one-sided censored with estimated cut-off point numerically, we have calculated its variance and mean squared errors in some specific situations and compared it with the variance of the ordinary sample mean. The data sets stem from a production survey. The variable of interest is total turnover. We distinguish three different size classes and consider each size class as a population. The first size class consists of 788 units. Its population mean is approximately 358 (thousand guilders). Furthermore its maximum value is 5600, which might be considered as an outlier. The second and third largest values are approximately 3000 and it is unclear whether they should be considered as an outlier or not. The second size class consists of 774 units, its population mean is 1353, and it has one obvious outlier with a value of 17000. Finally, the third size class consists of 544 units, it has a mean of 1488, and has no clear (isolated) outliers. Its largest value is approximately 5600. For each of these populations we have calculated the variance and mean squared error of our one-sided censored estimator with estimated cut-off point in a simple random sampling without replacement setting with sample sizes of n = 20, 50, 100, 200, 500, and 1000. To that purpose we have used the influence function approach. The results are given in table 2.5.1. 

As expected, the largest gain of our estimator is achieved in the second size class as this class contains one clear outlier. The influence of this outlier with respect to the population mean remains limited as the population size is rather large, however if this outlier is accidentally sampled it may have a rather large impact on the sample mean. Naturally, the influence on the sample mean becomes smaller as the sample size increases. For sufficiently large sample sizes, say n = 1000, the effect of adaptive censoring becomes negligible. In the third size class the variances of the sample mean and the mean squared errors of our one-sided censoring estimator are more or less the same for all sample sizes. There is neither much gain nor much loss if there are no obvious outliers. The first size class, which can be considered as ‘smoothly’ skewed population to the right, shows some gain in favour of our one-sided censored estimator. 

Table 2.5.1: 

Sample size
Size class 1: Mean = 358
Size class 2; Mean = 1353
Size class 3; Mean = 1488
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Especially for small sample sizes, say n 
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 20, the gain of censoring seems to be considerable. However, it should be noted that this gain is somewhat deceptive as for very small sample sizes even the estimator with the smallest mean squared error may have mean squared error that is probably too large for publication purposes. 


Till now, we have considered populations that are skewed to the right. We note that the performance of our one-sided censored estimator compared to that of the sample mean is worse for populations that also contain outliers to the left. Therefore, we consider in the next section two-sided censored estimators, which should be able to handle outliers on both sides. 

3. Two-sided censored estimators for i.i.d. sampling

3.1. Two-sided censored estimators with fixed cut-off point

Let 
[image: image143.wmf]n

Y

Y

,...,

1

 be n independent identically distributed random variables according to some unknown distribution function F. For given s and t, satisfying 
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Similarly as in the one-sided case, one could consider the mean squared error as a function of s and t, and define the optimal cut-off points by minimising this function. However, by taking 
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  we obtain a zero bias and a zero variance, and we conclude that the optimal cut-off values in the two-sided case, i.e. the values that minimise the mean squared error, offer us nothing to go on. Instead we suggest to minimise 
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as a function of s and t. Note that the cross-product of the squared bias is deleted in this minimisation function in order to avoid the aforementioned trivial solution. By taking the partial derivatives with respect to s and t and setting these derivatives at zero, we obtain that the optimal solution satisfies the following two equations: 
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(3.2)

A  comparison with (2.3) shows that (3.1) defines the (one-sided) optimal cut-off value at the left, where, for fixed t, all values larger than t have been replaced by t, while (3.2) defines the (one-sided) optimal cut-off value at the right, where, for fixed s, all values smaller than s have been replaced by s. Clearly, the simultaneous solution of (3.1) and (3.2) defines the two-sided optimal cut-off values. 

In the following we will show that these cut-off values are well defined, that is, we will show that there exists a unique solution of (3.1) and (3.2). Let 
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and define the map 
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It is easily seen that this Jacobian is a P-matrix
, so the map is one-to-one (see Gale and Nikaido, 1965). It follows that the solution to (3.1) and (3.2), if it exists, is unique.  

For finite populations, however, the differentiability condition of F is not met, and consequently the result is not applicable. Instead, we proceed as follows. Similar as in the one-sided case it holds that, for each fixed 
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where, according to the implicit function theorem, 
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3.2.  Adaptive censoring; two-sided censored estimators with estimated cut-off points

Until now, we have discussed the two-sided censored estimator with fixed cut-off points satisfying some optimality condition. Similarly as in the one-sided case, in many practical situations, these cut-off points are unknown. Therefore we suggest to estimate them from the sample, that is, 
[image: image192.wmf])

 

,

(

0

0

t

s

 is estimated by solving 



[image: image193.wmf]0

)

(

ˆ

)

(

ˆ

)

(

ˆ

=

-

+

-

-

-

-

l

l

r

m

m

y

s

q

s

t

n

q

s

y

n

p







(3.4)

 
[image: image194.wmf]0

)

(

ˆ

)

(

ˆ

)

(

ˆ

=

-

-

-

+

-

t

y

q

s

t

n

q

y

t

n

p

r

r

t

m

m







(3.5)

for 
[image: image195.wmf])

,

(

t

s

, where 
[image: image196.wmf])

,

(

ˆ

ˆ

t

s

p

p

m

m

=

 is the sample fraction of non-truncated values, 
[image: image197.wmf])

,

(

t

s

y

y

m

m

=

the sample mean of the non-truncated vales, 
[image: image198.wmf])

(

ˆ

ˆ

s

q

q

l

l

=

the sample fraction of the truncated values to the left, and 
[image: image199.wmf])

(

ˆ

ˆ

t

q

q

r

r

=

 the sample fraction of the truncated values to the right. We denote this estimate by 
[image: image200.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

.

Naturally, the existence and uniqueness of 
[image: image201.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 can be shown similarly as the existence and uniqueness of 
[image: image202.wmf])

 

,

(

0

0

t

s

. For the sake of brevity, if we denote 



[image: image203.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

+

+

-

-

+

+

=

r

l

m

l

r

l

r

m

q

n

q

n

p

n

q

n

q

q

n

q

n

p

t

s

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

)

,

(

ˆ

J

  and  
[image: image204.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

+

+

=

r

r

m

m

l

l

m

m

y

q

y

n

p

y

q

y

n

p

t

s

ˆ

ˆ

ˆ

ˆ

ˆ

)

,

(

ˆ

b

,

then 
[image: image205.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 is the unique value that satisfies 
[image: image206.wmf])

,

(

ˆ

)

,

(

ˆ

)

,

(

1

t

s

t

s

t

s

t

b

J

-

=

. In the following we shortly discuss a practical method to find 
[image: image207.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

. First, observe that the domain of 
[image: image208.wmf])

,

(

t

s

 can be divided into a finite number of rectangular sub-domains, say 
[image: image209.wmf])

,

[

]

,

(

)

(

)

1

(

n

j

y

y

y

y

S

´

Ì

, 
[image: image210.wmf]K

j

,...,

1

=

, such that 
[image: image211.wmf])

,

(

ˆ

t

s

J

 and 
[image: image212.wmf])

,

(

ˆ

t

s

b

 are constant within 
[image: image213.wmf]j

S

. An example of such a sub-domain is 
[image: image214.wmf])

,

[

]

,

(

)

(

)

1

(

)

2

(

)

1

(

1

n

n

y

y

y

y

S

-

´

=

. For each sub-domain, we may calculate 
[image: image215.wmf])

,

(

ˆ

)

,

(

ˆ

1

t

s

t

s

b

J

-

. Denote these outcomes by 
[image: image216.wmf]j

j

b

J

ˆ

ˆ

1

-

, 
[image: image217.wmf]K

j

,...,

1

=

. Obviously, 
[image: image218.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 corresponds to one of those outcomes. However, since 
[image: image219.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 is unique, this is the only outcome that satisfies 
[image: image220.wmf]j

j

j

S

Î

-

b

J

ˆ

ˆ

1

. So, 
[image: image221.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 can be found by checking on this condition. In doing so, we propose to start checking on 
[image: image222.wmf])

,

[

]

,

(

)

(

)

1

(

)

2

(

)

1

(

j

n

j

n

i

i

y

y

y

y

-

-

-

+

+

´

 with 
[image: image223.wmf])

0

,

0

(

)

,

(

=

j

i

, and then gradually increase 
[image: image224.wmf]i

 and 
[image: image225.wmf]j

. For example, the next series of candidates could be 
[image: image226.wmf])

1

,

0

(

, 
[image: image227.wmf])

1

,

1

(

, and 
[image: image228.wmf])

0

,

1

(

; then 
[image: image229.wmf])

2

,

0

(

, 
[image: image230.wmf])

2

,

1

(

, 
[image: image231.wmf])

2

,

2

(

, 
[image: image232.wmf])

1

,

2

(

, and 
[image: image233.wmf])

0

,

2

(

; etc.. If there are 
[image: image234.wmf]l

n

 (
[image: image235.wmf]r

n

) observations that should be truncated to the left (right), then it suffices to check no more than 
[image: image236.wmf]]

,

max[

2

2

r

l

n

n

 sub-domains. 

The location equivariance of 
[image: image237.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 can be demonstrated as follows. Denote 
[image: image238.wmf]a

y

z

i

i

+

=

 for some constant 
[image: image239.wmf]a

. Given 
[image: image240.wmf])

,

(

t

s

, let 
[image: image241.wmf]a

y

z

l

l

+

=

, 
[image: image242.wmf]a

y

z

r

r

+

=

, and 
[image: image243.wmf]a

y

z

m

m

+

=

 be the means of the z-values that are truncated to the left, the z-values that are truncated to the right, and the non-truncated z-values, respectively. Furthermore, let 
[image: image244.wmf])

(

ˆ

ˆ

s

w

w

l

l

=

, 
[image: image245.wmf])

(

ˆ

ˆ

t

w

w

r

r

=

, and 
[image: image246.wmf])

,

(

ˆ

ˆ

t

s

v

v

m

m

=

, denote the fractions of the z-values that are truncated to the left, the z-values that are truncated to the right, and the non-truncated z-values, respectively, and note that 
[image: image247.wmf])

(

ˆ

)

(

ˆ

s

q

a

s

w

l

l

=

-

, 
[image: image248.wmf])

(

ˆ

)

(

ˆ

t

w

a

t

w

r

r

=

-

, and 
[image: image249.wmf])

,

(

ˆ

)

,

(

ˆ

t

s

p

a

t

a

s

v

m

m

=

-

-

. By means of these considerations, it is readily seen that, if 
[image: image250.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 is the unique solution to (3.4) and (3.5), then 
[image: image251.wmf])

ˆ

 

,

ˆ

(

0

0

a

t

a

s

+

+

 is the unique solution to (3.4) and (3.5), where 
[image: image252.wmf]l

q

ˆ

, 
[image: image253.wmf]r

q

ˆ

, 
[image: image254.wmf]m

p

ˆ

, 
[image: image255.wmf]l

y

, 
[image: image256.wmf]r

y

, and 
[image: image257.wmf]m

y

 are replaced by 
[image: image258.wmf]l

v

ˆ

, 
[image: image259.wmf]r

v

ˆ

, 
[image: image260.wmf]m

w

ˆ

, 
[image: image261.wmf]l

z

, 
[image: image262.wmf]r

z

, and 
[image: image263.wmf]m

z

, respectively. Similarly, we can show the scale equivariance of 
[image: image264.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

. 

Now, by means of 
[image: image265.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 we define our two-sided censored estimator with estimated cut-off point as 



[image: image266.wmf]0

0

ˆ

,

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

0

0

`

t

q

y

p

s

q

y

r

m

m

l

t

s

+

+

=

,






(3.6)

where the parameters 
[image: image267.wmf]l

q

ˆ

, 
[image: image268.wmf]r

q

ˆ

, 
[image: image269.wmf]m

p

ˆ

, and 
[image: image270.wmf]m

y

 are determined by 
[image: image271.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

, i.e. 
[image: image272.wmf])

ˆ

,

ˆ

(

ˆ

ˆ

0

0

t

s

q

q

l

l

=

, 
[image: image273.wmf])

ˆ

,

ˆ

(

ˆ

ˆ

0

0

t

s

q

q

r

r

=

, 
[image: image274.wmf])

ˆ

,

ˆ

(

ˆ

ˆ

0

0

t

s

p

p

m

m

=

, and 
[image: image275.wmf])

ˆ

,

ˆ

(

0

0

t

s

y

y

m

m

=

. The location equivariance of (3.6) follows from the following series of observations. First, if a constant value a is added to each observation, then, since 
[image: image276.wmf])

ˆ

 

,

ˆ

(

0

0

t

s

 is location equivariant, 
[image: image277.wmf])

ˆ

 

,

ˆ

(

0

0

a

t

a

s

+

+

 is the new estimated optimal cut-off point. Second, at this new cut-off point we have 
[image: image278.wmf])

ˆ

(

ˆ

)

ˆ

(

ˆ

0

0

s

q

a

s

v

l

l

=

+

, 
[image: image279.wmf])

ˆ

(

ˆ

)

ˆ

(

ˆ

0

0

t

q

a

t

v

r

r

=

+

, and 
[image: image280.wmf])

ˆ

,

ˆ

(

ˆ

)

ˆ

,

ˆ

(

ˆ

0

0

0

0

t

s

p

a

t

a

s

w

m

m

=

+

+

, i.e. the fractions of left-truncated, right-truncated, and non-truncated observations remain unaltered. Third, since the fraction of non-truncated observations remains unaltered, it holds that 
[image: image281.wmf]a

t

s

y

a

t

a

s

z

m

t

m

+

=

+

+

)

ˆ

,

ˆ

(

)

ˆ

,

ˆ

(

0

0

0

. We conclude that each term on the right-hands-side of (4.6) is increased by a, and so (4.6) is location equivariant. Again, the scale equivariance can be demonstrated similarly. If 
[image: image282.wmf])

ˆ

,

ˆ

(

ˆ

)

ˆ

,

ˆ

(

ˆ

)

ˆ

,

ˆ

(

0

0

0

0

1

0

0

t

s

t

s

t

s

t

b

J

-

=

is elaborated as 



[image: image283.wmf])]

ˆ

ˆ

(

ˆ

)

ˆ

1

)(

ˆ

ˆ

[(

)]

ˆ

,

ˆ

(

ˆ

det[

1

ˆ

0

0

0

l

l

r

r

r

r

l

l

m

m

y

q

y

q

n

q

q

n

y

q

y

n

p

t

s

s

-

+

+

+

=

J





(3.7)



[image: image284.wmf])]

ˆ

ˆ

(

ˆ

)

ˆ

1

)(

ˆ

ˆ

[(

)]

ˆ

,

ˆ

(

ˆ

det[

1

ˆ

0

0

0

l

l

r

r

l

l

r

r

m

m

y

q

y

q

n

q

q

n

y

q

y

n

p

t

s

t

-

-

+

+

=

J

,



(3.8)

where 
[image: image285.wmf])]

ˆ

,

ˆ

(

ˆ

det[

0

0

t

s

J

 denotes the determinant of 
[image: image286.wmf])

ˆ

,

ˆ

(

ˆ

0

0

t

s

J

, and (3.7) and (3.8) are substituted into (3.6), we obtain 


[image: image287.wmf]=

0

0

`

ˆ

,

ˆ

t

s

y



 EMBED Equation.3  [image: image288.wmf])]

ˆ

1

)(

ˆ

ˆ

[(

ˆ

]

ˆ

det[

1

ˆ

)]

ˆ

1

)(

ˆ

ˆ

[(

ˆ

]

ˆ

det[

1

l

r

r

m

m

r

m

m

r

l

l

m

m

l

q

n

y

q

y

n

p

q

y

p

q

n

y

q

y

n

p

q

+

+

+

+

+

+

J

J

,

which can be further elaborated as 


[image: image289.wmf]=

0

0

`

ˆ

,

ˆ

t

s

y



 EMBED Equation.3  [image: image290.wmf]]

)

ˆ

1

(

ˆ

)

ˆ

1

)(

ˆ

1

(

ˆ

)

ˆ

1

(

ˆ

[

]

ˆ

det[

1

2

2

r

l

r

m

l

r

m

l

r

l

y

q

n

q

y

q

n

q

n

p

y

q

n

q

+

+

+

+

+

+

J

 

          
[image: image291.wmf]r

r

r

m

m

m

l

l

l

y

q

y

p

y

q

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

l

l

l

+

+

º

.






(3.9)

This last expression facilitates a comparison with the ordinary sample mean: 
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and substituting (3.11) into (3.9) gives a formal expression of (3.9) as a weighted mean with weights depending on the sample. By (3.10) we have 
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This last expression resembles very much our censored estimator for the one-sided case; compare (2.6). We close this section by giving the influence function of the functional form of (3.6) or (3.9): 
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see appendix Ib, where 
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By the derivation of this influence function, it is tacitly assumed that the underlying distribution function F is differentiable. This influence function typically consists of three linear pieces with a crack at both 
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. The continuity of the influence function at these points is easily verified. It gives an heuristic tool to approximate the variance of (3.6) or (3.9). By estimating this influence function, we obtain a heuristic tool to estimate this variance. We will not elaborate hereon. 

4. One-sided censored estimators for stratified designs

In stratified sampling designs the population is divided into, say 
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, mutually exclusive sub-populations (strata) of 
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 respectively. Cochran (1977, page 89) gave a number of reasons to apply stratified designs, including the following one. Stratification may increase the efficiency of estimates of characteristics of the whole population. It may be possible to derive a heterogeneous population into strata, each of which is internally homogeneous. If each stratum is homogeneous, a precise estimate can be made of any stratum mean, which can be combined into a precise estimate for the whole population. As is well-known, in comparison with simple random sampling, the efficiency gain of such an estimator is strongly related to differences in the population stratum means. 


In view of treating outliers in case of stratified designs, one could apply a censored estimator for each stratum separately, and then combine these estimators to obtain a censored estimator for the whole population. However, the accuracy of this combined estimator may be unnecessarily low, as, in the end, too many observations may be censored. To overcome this problem, an obvious alternative is to combine the separate samples and to replace all outlying observations by some cut-off point that is determined by means of the combined sample. For example, in case of proportional allocation this combined sample corresponds to the so-called self-weighting sample. In case of disproportional allocation one could weight each observation in the combined sample to compensate for differences in sampling fractions. This alternative is unattractive too, as it disregards any differences in the population stratum means. The problem of treating outliers in case of stratified designs is to identify influential observations at the level of the whole population, taking into account the sub-division of this population into (homogeneous) strata. 

Before we give our approach, we shortly discuss a third alternative. Given a preliminary robust estimate of each stratum mean, one may define residuals per stratum and apply the censored estimator on these residuals. This gives a cut-off point on the level of the residuals. If this cut-off point is added to each of the preliminary estimates we obtain a cut-off point on the level of the original observations for each stratum. Based on these cut-off points one may define a censored estimate per stratum and subsequently combine these estimates to obtain a censored estimate for the whole population. We note that this estimator resembles robust post-stratification, which will be discussed as a special case of the robustified regression estimator in the next section. Intuitively, it also resembles the estimator to be discussed below. However, the latter estimator does not need preliminary estimates. 
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(4.1)

as a one-sided censored estimator for stratified designs, 2) to take the derivative of the mean squared error of (4.1) with respect to 
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and
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(4.3)

respectively. Hence the mean squared error of (4.1) can be expressed as 



[image: image328.wmf]2

1

1

2

2

2

)

(

)

(

)

(

)

ˆ

(

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

+

=

å

å

=

=

L

h

h

hr

hr

h

L

h

h

h

hm

hr

hm

hm

hm

h

t

q

N

N

n

t

q

p

p

N

N

MSE

m

m

s

q

t

,

(4.4)

where 
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(4.5)

As we will show below, this cut-off point gives a mean squared error that is smaller than the variance of the ordinary stratified estimator. First we elaborate a bit on (4.5). 

For differentiable stratum distribution functions, it can be shown that the Jacobian of the map 
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In the following of this section we frequently need an expression of the form 
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with 
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For example (4.7) is useful to find an expression for the mean squared error at the cut-off point defined by (4.5). First note that this cut-off value can be written as 
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Furthermore, inserting 
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It follows that the mean squared error at 
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(4.8)

Decomposing the variance of the ordinary stratified estimator as 
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(4.9)

and subtracting (4.8) from (4.9) gives 
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The right-hand-side of (4.10) clearly is larger than or equal to zero if we can show that the quadratic form is semi-definite positive. Now, we only show that 
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Again, by using the theory of partitioned matrices (Rao, 1973, problem 2.4), we have
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giving the result. It is interesting to note that (4.10) suggests that the gain of censoring depends on the homogeneity of the strata. The more homogenous the strata are, i.e. the more efficient the stratified design is, the less will be the effect of censoring. 

The cut-off point as defined by (4.5) depends on unknown population parameters. The last step of our approach is to estimate this value by the sample. In an obvious notation, the estimated cut-off value satisfies 
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. For stratified designs we finally arrive at the following censored estimator with estimated cut-off point:
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and so
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(4.10)

Similarly as in section 2 we see that the inliers according to the estimate cut-off value are up-weighted, while the outliers according to this value are down-weighted. A weighting type from of  our censored estimator is given by 
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depending on the sample. It is easy to verify that 
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. In appendix IIa we have calculated the influence function of the functional form of (4.10), by means of which the variance of (4.10) can be approximated. 

Naturally, since the cut-off value is estimated instead of fixed, (4.4) and (4.8) are not valid for (4.10) 
. In order to simulate its mean squared error of (4.10) for a specific population we have performed a small simulation study. The population consists of 2665 units, which are divided into 6 strata. The first three of these strata are already discussed in section 2.5. The population sizes of these strata are 
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. From this population we have drawn ten times 500 stratified samples with replacement. The first five times we have applied a proportional allocation for sample sizes n = 50, 100, 200, 500, and 1000. The last five times we have applied the Neyman allocation for the same sample sizes. For each replicate we have calculated the ordinary stratified estimate and the censored estimate given (4.10). Based on these replicates we have estimated the variance of the ordinary stratified estimator and the bias and mean squared error of our censored estimator. The results are given in tables 4.1 and 4.2. 

Table 4.1. Some simulation results concerning the censored estimator; proportional allocation.
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Table 4.2. Some simulation results concerning the censored estimator; Neyman allocation.



[image: image430.wmf])

(

st

y

Var



[image: image431.wmf])

ˆ

(

ˆ

t

q

Bias



[image: image432.wmf])

ˆ

(

ˆ

t

q

MSE



[image: image433.wmf]Var

MSE

/




[image: image434.wmf]50

=

n


21860
-47
20982
0.96


[image: image435.wmf]100

=

n


11299
-33
10852
0.96


[image: image436.wmf]200

=

n


5722
-21
5615
0.98


[image: image437.wmf]500

=

n


2256
-11
2215
0.98


[image: image438.wmf]1000

=

n


1171
-9
1175
1.00

A number of comments are of interest. First, the Neyman allocation gives for both the ordinary stratified estimator and the censored stratified estimator smaller mean squared errors than the proportional allocation. Second, the gain of censoring is larger in case of proportional allocation than in case of the Neyman allocation. This makes sense as the Neyman allocation is an efficient way to deal with outliers, leaving less space for the censored estimator to deal with outliers. Third, the gain of censoring becomes smaller as the sample size increases. Fourth, even in case of the Neyman allocation, the stratified censored estimator performs not worse than the ordinary stratified estimator for all sample sizes. 

5. Use of Auxiliary Information

In this section we associate with each element target variable 
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. It is assumed that there are no measurement errors and that the population total of the 
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-values is known or can be precisely estimated. When using auxiliary information, the following decomposition is a good starting point to define estimators: 
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where 
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 denotes the population mean of 
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To that purpose, it is important to have some idea about the skewness of the residuals. For example, for categorical 
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 it is reasonable to assume that the skewness of the original 
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We only consider the first situation and assume that the sample is simple random with replacement. Then, we can apply our one-sided censored estimator derived in section 2 on the 
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where the set of inliers / outliers is determined by means of the optimal cut-off point with respect to the residuals. This gives 
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(5.1)

with
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as an estimator for the population mean of y. This estimator assumes the form of the classical difference estimator. Since 
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 is fixed, its variance can be approximated along the lines of section 2. 

An important issue that deserves attention is the choice of 
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This choice, however, is non-robust and we prefer a robust version of the regression coefficient. Following Gwet and Rivest (1992), we take a Sweppe version, which is implicitly defined by
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After the weights 
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 are derived by means of a preliminary estimate 
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, one could also consider the following estimator:
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(5.2)

This estimator can be considered as a regression type estimator with starting weights 
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 that are determined by means of the (estimated) optimal cut-off point, which in turn is determined by means of a robust estimate of 
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. An explicit expression of the resulting regression type weights is given by 
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An important advantage of these weights is that, when applying them on the auxiliary variables 
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, we obtain the known population total 
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. For many statistical bureau’s this is an important tool to achieve consistent estimates between various sources.  
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6. Level of censoring

One practical problem that is not discussed yet is the level of censoring. Given the sampling strategy, i.e. a combination of sampling design and use of auxiliary information, we only have defined optimal cut-off values at the level of the whole universe. However, most statistical surveys are conducted to obtain estimates for many different sub-domains. If estimates are required for different sub-domains, then either the optimal cut-off points have to be recalculated or the cut-off points with respect to the whole universe have to be used. In the former case more efficient estimates for the sub-domains will result, however, these estimates will not sum up to the estimate of whole universe. In the latter case, the estimates of the sub-domains may be less efficient than those obtained using the re-estimated cut-off points. Kokic and Bell (1994) addressed this problem as the level of categorisation, Chambers and Kokic (2000) as the level of winsorisation, and Hulliger (1999) as the reference for robustification. 


Since it is impracticable to define a general estimation strategy to take account of all possible domains of interest, we restrict our attention to estimating a tabular form, which already plainly reflects the problem of the level of censoring. As an example, suppose we like to estimate total turnover for A sizes classes and that the union of these size classes constitutes the whole universe. In order to do so, we suggest a top-down approach. Namely, we suggest to estimate first total turnover for the whole universe. Then, the reference population for calculating the optimal cut-off point obviously is the whole universe. It results into an estimate, which is denoted by 
[image: image488.wmf]+

q

ˆ

. Next, we suggest to estimate total turnover for each size-class separately. To that purpose we have to calculate for each size class an optimal cut-off point by means of which the total turnover per size class can be estimated. Denote these size class estimators by 
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In order to fix this inconsistency we suggest to minimally adjust the estimates for the size classes. Denote 
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with respect to 
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. The symmetric positive definite matrix 
[image: image499.wmf]L

 defines a measure of closeness between the original and the adjusted estimates for the class totals. After some straightforward algebra we obtain as a solution
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This top-down approach is easily extended to higher dimensional tables; we first we estimate the total turnover for the whole universe; secondly its one-dimensional margins given the estimate for the whole universe; thirdly its two-dimensional margins given its one-dimensional margins etc. The Langrangean function to be minimised at each estimation step is extensively discussed in Boonstra (2002) and not repeated here. 

We end this section by discussing a number of interesting 
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Appendix I; Influence functions for i.i.d. situations

Let 
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Appendix Ia: Derivation of the influence function of (2.6)

In order to derive the influence function of (2.6), we first derive the influence functions of 
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Appendix Ib: Derivation of the influence function of (3.6)
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Finally, one may derive the influence functions of these parameters in a similar way the parameters that were defined for the one-sided censored estimator, see appendix Ia. 
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Using these preliminary results, we derive the influence functions of 
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 by solving simultaneously (for reasons of notational convenience, we have shortened the notation): 
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Inserting the involved influence functions for 
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We are ready to derive the influence function of (3.6). i.e. of 
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This can be recognised as the influence function of the double sided censored estimator with known cut-off values 
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Collecting terms we arrive at the following influence function for 
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Appendix II: An influence function for stratified designs

For stratified designs we have to adapt the definition of the influence function. Let 
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Appendix IIa. Deriving the influence function of (4.10)
In this appendix we derive the influence function of (4.10) with respect to the 
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Along the line of appendix Ia it can be shown that 
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Inserting the involved influence functions, we obtain for the first three terms: 
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The term within the first brackets at the left-hand side equals  
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and collecting terms, we arrive at the following system of equations: 
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 is non-singular (see Section 4) we obtain the desired result. 
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� A p(p matrix � EMBED Equation.3  ��� is said to be a P-matrix if all its principal minors are positive.  

� We have derived the influence function of (4.10), but not implemented yet. 
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