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1. Overview of the Approach
1.1 The WAID Toolkit

WAID is software for building regression and classification trees. The original
version of this software was intended for automatic imputation of missing data in
censuses and surveys, and was developed as a C++ Windows application under the
AUTIMP project (R.L. Chambers, J. Hoogland, S. Laaksonen, D.M. Mesa, J.
Pannekoek, P. Piela, P. Tsai and T. De Waal, 2001, The AUTIMP-Project: Evaluation
of Imputation Software. Report, Statistics Netherlands, Voorburg). Under the
EUREDIT project a "toolkit" of Splus programs has been created that emulates and
extends the capabilities of WAID. These programs work both under Splus and under
R, a public domain statistical software package that is compatible with Splus.
Availability of this toolkit means that it is now easy to create statistical applications
that "build” on the WAID algorithm. Similar software products are CART from
Salford Systems, the Splus tree() function and the CHAID module in SPSS. The code
for the programs in the WAID toolkit is set out in Appendix 1.

The basic idea behind WAID (and other tree modelling software packages) is to
sequentially divide the original data set into subgroups (or nodes) that are increasingly
more homogeneous with respect to the values of a response variable. The splits
themselves are defined in terms of the values of a set of categorical covariates. The
WALID splitting algorithm is described in the next section. By definition, WAID is a
nonparametric statistical procedure. It also has the capacity to implement outlier
robust splitting based on M-estimation methodology. In this case outliers are
downweighted when calculating the measure of within node heterogeneity (weighted
residual sum of squares) used to decide whether a node should be split or not. The
weights used for this purpose are themselves based on outlier robust influence
functions.

1.2 QOuitlier Identification using WAID

The basic idea behind the WAID outlier identification strategy is straightforward.
Each time WAID splits the data set to create two new nodes it creates a new set of
robust weights for the units making up those nodes. These weights are scaled so that
they sum to the number of observations in the node, with outliers receiving weights
close to zero and inliers receiving weights around one. These weights reflect distance
from a robust estimate of location for the values in the node. Consequently a value
that is not immediately identifiable as an outlier within "larger” nodes is more likely
to become identified as such as it is classified into smaller and smaller nodes. In
effect, the weights associated with such units tend to move towards zero. The WAID
outlier identification algorithm defines an outlier as an observation with an average
weight over all node splits that is less than a specified threshold. This threshold is
defined as the value at which the most observations that are "real™ errors are identified
as outliers and where the least number of error-free observations are classified as
outliers. See Section 2 for details. The process itself can be defined in terms of the
following three steps.

Step 1:  Build a robust tree using WAID.
Step 2: Define a weight "threshold".



Step 3: Identify outliers as those with average weights less than this threshold.

In practice of course we do not know which data values are errors and which are not.
Consequently it is difficult to identify the optimal threshold. Where historical data are
available on errors, the threshold can be defined in terms of this historical
information. This is the approach taken with the ABI application reported on in
section 3. An alternative approach is to randomly peturb the current data and to then
define the optimal threshold in terms of maximal correct identification of peturbed
values and minimal incorrect identification of non-peturbed values. Such a
perturbation scheme could be created based on the residuals generated by the robust
WALID tree. This is an area that needs further investigation.

1.3 Outlier and Missing Data Imputation using WAID

Once a set of outliers have been identified, the robust tree structure generated by the
WAID algorithm can be used to impute replacement values for these units. These
imputed values can be derived in many different ways. However, the lessons learned
in the AUTIMP project indicate that two imputation methods in particular are suited
for use with WAID trees. These are mean imputation and random donor imputation
within terminal nodes. In the context of outlier contaminated data, these imputation
methods need to be modified as follows:

Use a robust weighted mean within a terminal node as the "mean" imputation.
Identify a donor within a terminal node by randomly selecting a value from those
cases within the node whose average weights are greater than a specified
threshold.

Note that imputation for missing (rather than outlier) values proceeds in exactly the
same way. That is, the record with a missing value is "dropped" down the WAID tree
until it reaches a terminal node. It is then imputed using either the weighted mean for
the node or via a donor value obtained from a non-outlier in the node.

2. The WAID Outlier Identification Algorithm
2.1 Introduction

In this section we describe the three main components of WAID outlier identification
methodology. The first is the algorithm used to build a robust regression tree in
WAID. The second is the procedure for identifying potential outliers based on a
robust WAID tree. The last component describes the algorithm used to find the weight
threshold.

WAID assumes a rectangular data set containing n observations, values {y;} of a
scalar response variable Y and values {Xg;j, ..., Xpi} of p covariates X, ..., Xp. The

values of Y are assumed to contain outliers. In contrast, the covariates Xt ..., Xp are
all assumed to be categorical. No missing X-values are allowed in the current R
version of WAID. For a scalar response variable WAID builds a regression tree. If the
response variable is categorical, WAID builds a classification tree. The only
difference between these two types of trees is the heterogeneity measure used to



determine tree splitting behaviour. Since our focus is outlier identification, we are
concerned with scalar response variables only and so we restrict consideration to
WAID's regression tree algorithm.

2.2 The WAID Regression Tree Algorithm

The basic idea used in WAID (as well as other tree-based methods) is to split the
original data set into smaller subsets or nodes in which the Y-values are more
homogeneous. In WAID this is accomplished by sequential binary splitting. At each
step in the splitting process, all nodes created up to that point are examined in order to
identify the one with minimal homogeneity. An optimal binary split of this "parent"
node is then carried out. This is based on identifying a set of values of one of the

covariates Xg, ..., Xp such that a split of the parent node into one child node
containing only cases possessing these values and another child node containing the
remaining cases maximes (minimises) the homogeneity (heterogeneity) of these child
nodes. The measure of heterogeneity used is the weighted sum of squares of residuals
(WSSR) defined with respect to a robust measure of the location of the Y-values in
the parent node. The splitting process continues until a suitable stopping criterion is
met. At present this is when either (i) all candidate parent nodes are effectively
homogeneous; (b) all candidate parent nodes are too small to split further; or (c) the
maximum number of nodes is reached. There is no attempt to find an "optimal™ tree.
The set of nodes defining the final tree are typically referred to as the terminal nodes
of the tree.

The two key algorithms used to determine a node split are the algorithm for
calculating the robust weight (used in calculation of WSSR) and the algorithm for
finding the optimal split. We describe them below.

2.2.1 Calculation of WSSR and Robust Weights

We denote the values of the response variable Y in node k by y;,---,y,, , where n is
the number of observations in node k. The weighted sum of squared residuals within
this node (WSSR() can be written as follows
Ny
2 5 2
WSSRy =a Wi(Yi - Ywk)
i=1

where wij is the weight attached to i case in node k and y,,, is the weighted mean of
Y in node k,

_ % %
Yak =AW/ aw;.

i=1 i=1

The weight wj is calculated as the ratio



w; = Yi Ywid.
Yi- Ywk

where y (x) denotes an appropriately chosen influence function. The Splus/R toolkit
version of WAID computes these weights by first calling the robust regression
function rim() in the MASS robust statistics library (available for both R and Splus).
This function returns weight values which are then rescaled within WAID to sum to

the number ny of cases within node k.

A standard (nonrobust) regression tree in WAID uses the Ordinary Least Squares

(OLS) influence function, y (X) = X, in which case w; = 1. Besides OLS, WAID
currently has three robust weighting schemes, corresponding to the weighting options
available for rim(). These correspond to use of Huber's Min/Max, Tukey's Biweight
and Hampel's Redescending influence functions . These are defined as follows:

Huber's Min/Max: y (X) =min(Id,c)
where ¢ is a tuningconstant. With ¢ = 1.345 this influence function achieves 95%
efficiency when estimating the mean of a normal distribution.

_— é
Tukey's Biweight: y (t) = tél -

where R is a tuning constant. The value R = 4.685 gives 95% efficiency at the normal
(Ripley, 1994).

it kI£ a
: Tasgn(t) a<klEb
Hampel's Redescending: =i
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where a b and c are tuning constants (Hampel, 1986). In passing we observe that it is
a straightforward matter to add extra weight functions for use by rIm() and hence by
WAID.

2.2.2 Optimal Splitting

Without loss of generality, we consider optimal splitting of the kth parent node.
Suppose there are ny observations in this node and p covariates X, ..., Xp. The best

split for each covariate Xj, j = 1, ..., p is defined by the subset of values of Xj that
generates child nodes with a WSSR value smaller than that generated by any other
split of the parent node based on Xj. The optimal split overall is then defined as the
best (in terms of minimising the WSSR value generated by the resulting child nodes)
among these covariate-specific optimal splits.

For convenience, we let Vj denote the set containing the m;j unique values of X; for

the cases in the parent node. The search procedure for the best split based on X; is
then as follows.



Step 1: Sort the mj values in Vj. WAID allows a covariate to be declared as monotone
or non-monotone. If Xj is monotone then the values in Vj are sorted in ascending
order. If Xj is non-monotone, then the values in Vj are sorted as {Vy, Vo,V }

where ywk(Vl) <37wk (VZ) <. < ywk(ij) and

il node k il node k
X{=Vq X{=Vq

Yuk(Vg) = a Wiyi/ aw.
Let Lgj denote the values in Vj that are to the "left" of vgq with Rg; denoting the
corresponding set of values in Vj that are to the "right” of vg. We can then split the
parent node into two child nodes at this value vg. This split corresponds to a left child
node (Node_qkj) and right child node (Noderqk;) defined by

Node, o; ={iT node k,x;; =vs 1£s £}
Nodegqy; ={iT node k, x;; = v¢,q <s £m;}.

Step II: Calculate a WSSR value for each of the m;j - 1 possible splits of Vj. For each
Vg ] Vj the WSSR values for the child nodes corresponding to a split at this value are

WSSR qj = a wily; - 37|_w|<j)2

il Node,
- A . 2
WSSRgraj = @ WiYi - Yrwkj)
il Nodegg;
- o} o - . . .. ey -
where ¥ = @ Wiy; aw; and gy is defined similarly. The within-
il Node, ; il Node, g

group WSSR associated with a split at vq ] Vj is then

WSSquJ = WSSR Lkij +WSSR Rakj

Step I11: Find the best splitting value vgq i Vj. This is the value v that generates the
minimum value of WSSRkj among all values vq in Vj. The overall best split among
the candidate best splits defined by each covariate is then the split that generates the
minimum value of WSSRq; over both g and j.

2.3 Outlier identification using WAID

We can calculate an "average" weight for every case in the original data set by
averaging its weight over all splits defining the final tree. If a case is not involved in a
particular split (it is not in the node that is selected for splitting) its weight remains
unchanged from the last split in which it was involved. Outlier identification using a



robust WAID tree is then based on the fact that outliers are likely to have small
weights in most of the nodes in which they appear in such a tree. Consequently they
will also have small average weights across all node splits, and we therefore can
identify them as outliers on the basis that their average weight lies below a defined
threshold. Note that we do not distinguish between outliers that appear early on in the
construction of the tree and then gradually become "less" outlier-like because of
progressive refinement by the tree-building process and outliers that are "hidden"
early on in the tree-building process and then become more and more outlying relative
to their within-node comparators in later stages of the tree.

The task is therefore one of finding a threshold value such that "important” outliers
are identified as having average weights less than this threshold. The set of identified
outliers for a given threshold w can be denoted

out(w) = {i, W, <w, i=1, ..., n}

m
where W; = 1 a w%k) is the average weight of the i case, with Wi(k) denoting the
k=1
weight of the ith unit at the kth split, and m is the total number of splits defining the
tree.

The main problem with this approach therefore reduces to finding a threshold w that
successfully identifies outliers without also mis-identifying non-outliers. The optimal
threshold value w is therefore the one that maximises the proportion of "true™ outliers
identified and minimises the proportion of "false” outliers identified. This requires
information about true outliers to be available. In practice this information will not be
available. However, information is often available about known errors in the data,
most of which are associated with outlying values. Consequently, we can choose the
optimal value of w to optimise identification of these errors.

Put Nerrors €qual to the total number of true errors, and, for a given threshold w, put
Noutliers(W) equal to the total number of outliers identified by WAID on the basis of
the specified threshold w, ngrors(W) equal to the corresponding number of errors

identified as outliers, and Npon-errors(W) equal to the total number of non-errors

identified as outliers. The proportion of error-generated outliers identified by WAID
is then

Ry(W) = Nerrors (W)

NEI‘I’OI’S

while the proportion of non-errors identified as outliers using the threshold w is

R,(W) = N non- errors (W) ~1- Nerrors (W) .
Noutliers (W) Noutliers (W)

We denote the optimal threshold value as wWqy, Where



Wopt = argmaRy (w)(L- Ry (w))]-

This definition is a simple implementation of the idea that at the optimal threshold
value WAID identifies most of the error-generated outliers as well as minimises the
number of non-errors identified as outliers. In the next section we illustrate this
approach using the 1997 ABI data.

3. An Evaluation Using ABI Data
3.1 The ABI data

There are five ABI datasets available for evaluation in EUREDIT. See abimeta.xls for
a general description of these datasets. Three of them are derived from 1997 ABI data.
The remaining two are derived from 1998 ABI data. The first of these 1997 datasets
(sec197(true)) is contains true values. The second (sec197(y2)) is derived from
sec197(true) and only contains missing values. The third dataset (sec197(y3))
contains both missing values and adding errors. Similarly, one of the two evaluation
datasets for the 1998 survey is a dataset containing only missing values, while the
other is a dataset with missing value and errors.

In this section we focus on the 1997 ABI dataset that contains both missing values
and errors (sec197(y3)). We present results from an empirical study based on this
dataset that evaluates the error and outlier identification and imputation performance
of a WAID-based approach. The dataset has a total of 6099 records, with 30 variables.
The descriptions of these variables (from abimeta.xIs) are given in Table 1.

Our interest is in the variables corresponding to totals in this dataset. There are seven
such variables in the ABI dataset, TURNOVER, EMPTOTC, PURTOT, TAXTOT,
ASSACQ, ASSDISP and EMPLQY. Initially, however we focus on total business
turnover (TURNOVER), which we select as our response variable. Similarly, we
consider two covariates corresponding to the register size information available on the
ABI dataset. These are TURNREG (a positive-valued continuous variable
corresponding to the register value of total turnover for a unit) and EMPREG (a
ordinal variable corresponding to the employee size band of a unit). Both these
covariates, being register variables, have no missing values and no errors and
therefore could be considered as "natural” covariates for explaining variation in ABI
variables. There are 42 missing values and 241 "error" values (i.e. values different
from the corresponding "true"™ values in secl97(true)) for TURNOVER in
sec197(true). In what follows the 42 missing values are excluded, to be imputed after
the tree is formed. As an aside we note that the version of WAID implemented in the
toolkit cannot handle missing values in the covariates used to define a tree.
Consequently records containing one or more missing values in the covariates need to
be excluded from the dataset used to build a WAID tree.



Table 1. Variable descriptions

\Variable name |Variable label

REF Case reference number

CLASS IAnonymised industrial classification. The classification is hierarchical with the first
digit indicating the higher level of classification. Numerically adjacent digits do not
indicate similarity between classes/subclasses e.g. 3.1 is similar to 3.2 but not
necessarily closer to 3.2 than 3.3.

WEIGHT Design weight (N/n) for category (st digit of CLASS) and employment size band
(EMPREG)

TURNOVER [Total turnover

EMPWAG \Wages and salaries paid

EMPNI Employers NI contributions

EMPNIOTH Employers NI contributions and other employment costs

EMPENS Contributions to pension funds

EMPRED Redundancy and severance payments to employees

|[EMPTOTC Total employment costs

PUREN Purchases of energy, water and materials

PURENOTH  |Purchases of energy and other goods for own consumption

PURCOTH Purchases of other goods and materials for own consumption

PURESALE Purchases of goods bought for resale

PURHIRE Payments of hiring, leasing or renting

PURINS Commercial insurance premiums paid

PURTRANS  |Purchases of road transport services

PURTELE Purchases of telecommunication services

PURCOMP Purchases of computer and related services

PURADV Purchases of advertising and marketing

PUROTHSE Other services purchased

PUROTHAL  |All other purchases of goods and services

PURTOT Total purchases of goods and services

TAXRATES  |Amounts paid for national non-domestic rates

TAXDUTY Amounts paid for export duty

TAXOTHE Other amounts paid for taxes and levies

TAXOTHD Other amounts for taxes and levies excluding duty

TAXTOT Total taxes paid

STOCKBEG  [Value of stocks held at beginning of year

STOCKEND  [Value of stocks held at end of year

IASSACQ Total cost of all capital assets acquired

ASSDISP Total proceeds from capital asset disposal

CAPWORK \Value of work of a capital nature

|[EMPLOY Total number of employees

TURNREG Register turnover

EMPREG Employment size group from register: 1 = 0 to 9 employees, 2 = 10 to 19 employees,
3 = 20 to 49 employees, 4 = 50 to 99 employees, 5 = 100 to 249 employees, 6 = 250
or more employees

FORMTYPE |1 =long form, 2 = short form




3.2 Numerical Results
3.2.1 Tree Fitting

WAID assumes all covariates are categorical. Consequently, before building a WAID
tree using TURNREG as a covariate, this variable was categorized into its 100
percentile classes. Furthermore, since the distribution of TURNOVER is highly
skewed (see Figure 1) the tree was built using log(TURNOVER + 1) as the response
variable. The addition of one to the observed TURNOVER value was to ensure that
all non-missing cases, including the three businesses with zero values for
TURNOVER, were used in building the tree.

Figure 2 shows the "nodemean tree" defined by WAID for non-missing values of
log(TURNOVER + 1) from the error and missing contaminated dataset sec197(y3).
This plot shows the robust means of the log-transformed response variable for the
nodes defined at each split of the tree-fitting process. The tree was fitted using a
maximum of 50 terminal nodes, with robust weights defined using Tukey's Biweight
weighting scheme. No nodes containing less than 5 cases were allowed to be created
in the fitting process. A maximum of 100 iterations were used in the iterative
procedure rim() that calculates the robust means shown in this plot. Also, both
covariates TURNREG and EMPREG were declared as "monotone™ in the tree-fitting
process. In practice, this means that any splits defined using the categories of these
variables must be in terms of contiguous categories, i.e. into subgroups defined by X
£ x and X > x. Also, virtually all the splits in the tree were determined by TURNREG,
with only the 17th split determined by EMPREG. This shows clearly on the
nodemean plot.

For comparison, Figure 3 shows the corresponding WAID tree defined by the "true"
values of TURNOVER in the file sec197(true). It is clear that the outliers and errors
in the dataset sec197(y3) have little or no effect on the robust tree structure, as one
would expect.
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3.2.2 Finding an Optimal Weight Threshold for TURNOVER

In Table 2 we illustrate the error detection performance of the robust regression tree
displayed in Figure 2. For a range of values of a threshold w this table shows:

The number Ngt of outliers identified using that threshold
The number Ngpror Of errors identified using that threshold. There are a total of
241 errors in this dataset.

The number Njq of "significant” errors contained in these identified errors, where
a "significant” error is one whose relative difference from its corresponding true
value is greater than one. There are a total of 208 such significant errors in this
dataset.

The proportion Rq of errors contained in the identified outliers

The proportion Rsjq of significant errors contained in the identified outliers.
The proportion Ro of "non-errors” identified as outliers at this value of w
The value R1(1-R»)

For TURNOVER we see that the optimal threshold (in terms of minimising R1(1-R>2)
then lies between 0.015 and 0.016. These values are highlighted in Table 2. Observe
that at this optimum over 80% (90%) of errors (significant errors) are detected. The
3% of identified outliers that are not errors are essentially "true outliers”, which, in
normal survey processing, would definitely need to be queried.
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Table 2 Qutlier and error detection performance for different threshold values

W | Nout | Nerro Nsig R1 Rsig R2 R1(1-R)
r

0.001 35 35 35 0.145 0.168 0.000 0.145228
0.002 65 65 65 0.270 0.312 0.000 0.269709
0.003 83 82 82 0.340 0.394 0.012 0.336150
0.004 101 100 100 0.415 0.481 0.010 0.410829
0.005 121 120 120 0.498 0.577 0.008 0.493810
0.006 145 142 142 0.589 0.683 0.021 0.577021
0.007 163 160 159 0.664 0.764 0.018 0.651681
0.008 172 169 168 0.701 0.808 0.017 0.689014
0.009 186 182 180 0.755 0.865 0.022 0.738946
0.010 189 185 183 0.768 0.880 0.021 0.751389
0.011 193 189 187 0.784 0.899 0.021 0.767979
0.012 194 190 188 0.788 0.904 0.021 0.772126
0.013 197 192 190 0.797 0.913 0.025 0.776460
0.014 198 192 190 0.797 0.913 0.030 0.772539
0.015 199 193 191 0.801 0.918 0.030 0.776684
0.016 199 193 191 0.801 0.918 0.030 0.776684
0.017 202 193 191 0.801 0.918 0.045 0.765149
0.018 202 193 191 0.801 0.918 0.045 0.765149
0.019 203 193 191 0.801 0.918 0.049 0.761380
0.020 204 193 191 0.801 0.918 0.054 0.757648
0.021 207 193 191 0.801 0.918 0.068 0.746667
0.022 207 193 191 0.801 0.918 0.068 0.746667
0.023 207 193 191 0.801 0.918 0.068 0.746667
0.024 211 195 192 0.809 0.923 0.076 0.747773
0.025 212 196 193 0.813 0.928 0.075 0.751899
0.026 212 196 193 0.813 0.928 0.075 0.751899
0.027 212 196 193 0.813 0.928 0.075 0.751899
0.028 214 197 194 0.817 0.933 0.079 0.752492
0.029 214 197 194 0.817 0.933 0.079 0.752492
0.030 215 197 194 0.817 0.933 0.084 0.748992
0.035 221 198 194 0.822 0.933 0.104 0.736073
0.040 225 202 194 0.838 0.933 0.102 0.752494
0.045 228 202 194 0.838 0.933 0.114 0.742593
0.050 233 203 195 0.842 0.938 0.129 0.733870
0.055 242 208 199 0.863 0.957 0.140 0.741813
0.060 248 211 201 0.876 0.966 0.149 0.744897
0.065 252 211 201 0.876 0.966 0.163 0.733073
0.070 259 212 201 0.880 0.966 0.181 0.720037
0.075 265 215 204 0.892 0.981 0.189 0.723792
0.080 275 216 204 0.896 0.981 0.215 0.703976
0.085 292 217 205 0.900 0.986 0.257 0.669144
0.090 300 218 206 0.905 0.990 0.273 0.657317
0.095 309 220 206 0.913 0.990 0.288 0.649935
0.100 315 221 207 0.917 0.995 0.298 0.643364
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In Figure 4 we show the behaviour of both Rq and R1(1-R») as the threshold value w
changes. Here we see that if a more conservative approach to error detection is
required, then the optimal threshold would be set higher in order to detect more errors,
even if this leads to more "correct” values being identified as outliers. Based on an
inspection of Figure 4 a reasonable conservative optimal threshold for TURNOVER
is then 0.08, at which (see Table 2), nearly 90% (98%) of all errors (significant errors)
are detected. The cost, of course, is that this leads to the identification of a much
larger number of correct TURNOVER values as outliers (59 compared with 6).
However, it is clear from inspection of the TURNOVER data that these values are
ones that we would want to query anyway.

Figure 4 Plot of R1(w) and Rq(w)(1-R2(w)) for TURNOVER
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3.2.3 Imputing for Missing, Error and Outlier values in TURNOVER

There are 42 records with missing TURNOVER in the dataset sec197(y3).
Furthermore, if we set the outlier detection threshold at w = 0.02 in the robust WAID
tree constructed for the non-missing values in this dataset then there are 204 identified
outliers, out of which 193 are errors. All these values can be imputed by identifying
their terminal nodes and then replacing them by TURNOVER values donated by
randomly selected “inliers" in the node, or by the robust estimates of the
corresponding node means for TURNOVER. These two options are denoted
"Random™ imputation and "Mean" imputation in what follows. Note that the Random
imputation option requires specification of what constitutes an inlier in a terminal
node. The default option for this is observations with average tree weight of one or
greater, and this is the approach that was taken to obtain the results set out below.
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Missing Data Imputation

Table 3 shows the Reference number , TURNREG class, EMREG class, true value of
log(TURNOVER+1) and corresponding imputed value under both Random and Mean
imputation for the 42 records in sec197(y3) with missing values for TURNOVER. In
the original scale, the unweighted mean error of imputation for these cases is 114 for
Random imputation and -16 for Mean imputation. The corresponding unweighted root
mean square error values are 1409 for Random imputation and 1189 for Mean
imputation.

Error Values Imputation

Table 4 shows Reference number , TURNREG class, EMREG class, true value of
log(TURNOVER+1) and corresponding imputed value under both Random and Mean
imputation for the 193 records with errors in TURNOVER in sec197(y3) that were
identified as outliers using a threshold of w = 0.02. In the original scale, the
unweighted mean error of imputation for these cases is 60670 for Random imputation
and 54506 for Mean imputation. The corresponding unweighted root mean square
error values are 881109 for Random imputation and 858946 for Mean imputation.
Inspection of these records showed that one of them (Reference number 17816) is
clearly an outlier as well as an error. When this record is excluded, the unweighted
mean error of imputation drops sharply to -2703 for Random imputation and to -7209
for Mean imputation. The corresponding unweighted root mean square error values
are then 39787 for Random imputation and 60006 for Mean imputation

"Correct" Outlier Imputation

Table 4 shows Reference number , TURNREG class, EMREG class, true value of
log(TURNOVER+1) and corresponding imputed value under both Random and Mean
imputation for the 11 records with correct values for TURNOVER in sec197(y3) that
were identified as outliers using a threshold of w = 0.02. In the original scale, the
unweighted mean error of imputation for these cases is 46518 for Random imputation
and 46543 for Mean imputation. The corresponding unweighted root mean square
error values are 89834 for Random imputation and 89882 for Mean imputation. Note
that we expect to generate large mean errors and large root mean square errors for
these imputations, since the comparisons in this case are with outlying true values of
TURNOVER.
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Table 3 Imputations for missing y3 values of log(TURNOVER+1)

REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

788 97 5 10.7011 10.6339 10.5759
4064 88 4 7.9983 8.1173 8.0892
5403 96 6 9.9889 10.0297 10.1933
8348 93 5 8.8343 9.3270 9.1466
9816 36 1 5.0814 5.0304 5.0955
9844 54 2 5.5175 5.8406 5.7337
9866 78 2 7.3232 6.9147 7.0157
10141 85 2 7.5735 7.8034 7.7851
10781 86 3 7.9424 7.9306 7.7851
11164 71 1 6.3886 6.4265 6.5741
11670 38 1 5.0239 5.0938 5.0955
12058 9 1 4.0254 3.7612 4.0141
12138 67 2 6.3154 6.2005 6.3690
12757 40 1 4.9972 5.2149 5.1875
12793 24 1 4.8040 4.5643 4.6375
12902 2 1 5.6630 2.5649 3.2615
12995 33 1 5.3845 5.0814 4.8907
14185 43 1 5.3613 5.2523 5.3080
14198 78 3 7.3957 7.1253 7.0157
14843 63 2 6.4184 6.0730 6.1132
14953 44 1 5.2311 5.4638 5.3080
15086 74 2 6.8855 6.7154 6.7356
15494 19 1 4.5747 4.4427 4.4676
15809 42 1 5.0876 5.3033 5.3080
15826 42 1 5.3327 5.3083 5.3080
16014 60 1 6.0753 6.1203 6.0088
16281 12 1 4.2627 4.1109 4.2034
16334 43 1 5.2311 5.4249 5.3080
16685 19 1 3.4965 4.3944 4.4676
16806 81 3 7.5569 7.1546 7.2567
16894 65 1 6.2025 6.2166 6.2344
17113 20 1 2.5649 4.3944 4.5513
17201 57 1 5.8021 5.8861 5.8261
17222 24 1 5.4931 4.7185 4.6375
17339 11 3 4.1744 4.2341 4.2034
17681 19 1 4.5109 4.2627 4.4676
17794 69 2 6.7405 6.3835 6.3690
18084 59 1 5.8608 5.9480 6.0088
18107 67 2 6.2860 6.2166 6.3690
18188 96 4 10.1914 9.9637 10.1933
18894 24 1 4.3041 4.4427 4.6375
18963 16 1 4.4773 4.2767 4.3603
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Table 4 Imputations for identified errors in y3 values of log(TURNOVER+1)

REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

284 95 6 9.5599 9.5932 9.7412
303 98 6 10.9272 11.0953 11.1149
709 98 6 10.8215 10.8881 11.1149
775 96 5 9.9404 10.1301 10.1933
1315 96 6 10.3678 10.2942 10.1933
2497 90 4 8.4000 8.4029 8.4258
2902 87 3 8.3195 8.2022 8.0892
3011 80 4 7.4448 7.1709 7.2567
3097 100 6 12.7652 13.6733 13.6365
3489 96 6 10.1254 10.2583 10.1933
3572 71 2 6.4118 6.5610 6.5741
3676 84 4 7.5585 7.6971 7.5587
4052 98 6 10.7908 11.1701 11.1149
4370 100 6 16.3603 13.1454 13.6365
5803 94 5 9.2641 9.5485 9.4123
5937 91 5 8.8471 8.8051 8.8157
6155 76 4 6.9187 6.8967 6.8667
6326 97 6 10.5906 10.6339 10.5759
6629 79 3 7.1693 7.3784 7.1014
7009 99 6 11.9795 12.1266 12.0154
7022 100 6 12.7164 13.0603 13.6365
7125 97 6 10.3577 10.4862 10.5759
7912 69 3 6.3953 6.3986 6.3690
8593 100 6 12.8892 12.6550 13.6365
9651 30 1 4.8283 4.8828 4.8907
9714 53 1 5.6768 5.7652 5.5979
9754 48 1 5.4510 5.3613 5.4603
9826 32 1 5.8608 4.8903 4.8907
9863 71 5 6.9460 6.5917 6.5741
9938 46 1 4.8752 5.1475 5.3080
10215 17 1 4.5326 4.3041 4.3603
10420 44 1 5.3799 5.1705 5.3080
10532 91 4 8.5960 8.7751 8.8157
10559 36 1 5.1417 4.9127 5.0955
10635 22 1 4.5643 4.4067 4.5513
10763 85 4 7.6714 7.7820 7.7851
10829 93 4 9.2265 9.0508 9.1466
10893 62 2 5.7301 6.2324 6.1132
10903 50 2 5.5452 5.3566 5.5979
10992 41 1 5.0173 5.1874 5.1875
11089 90 4 5.3230 8.3772 8.4258
11119 12 1 4.2627 4.2485 4.2034
11143 93 5 8.8557 8.9274 9.1466
11174 29 1 4.2627 4.7005 4.7833
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REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

11225 73 1 6.8438 6.9930 6.7356
11269 67 1 6.3630 6.2823 6.3690
11374 17 1 4.3944 4.2627 4.3603
11382 89 4 8.2340 8.3624 8.4258
11400 52 1 5.6971 5.5568 5.5979
11418 o1 1 5.6384 5.5872 5.5979
11419 77 1 6.9903 7.1381 7.0157
11476 90 4 8.4532 8.3347 8.4258
11485 13 1 4.0604 4.3041 4.2559
11581 37 1 4.9488 5.0562 5.0955
11631 72 1 6.3456 6.5352 6.5741
11695 71 3 6.0822 6.5058 6.5741
11710 20 1 4.1897 4.5326 4.5513
11776 36 1 4.8828 5.2983 5.0955
11784 40 1 5.0562 5.3230 5.1875
11814 74 2 5.9269 6.4313 6.7356
11913 99 6 12.3400 11.9281 12.0154
11924 8 1 2.8904 3.9703 4.0141
11992 58 1 5.8551 5.8111 5.9028
12116 20 1 4.6250 4.6151 4.5513
12172 38 1 4.9345 5.1985 5.0955
12193 43 2 7.2591 5.3279 5.3080
12305 64 2 6.4102 6.3190 6.2344
12351 59 1 6.0913 6.0426 6.0088
12372 17 1 4.3820 4.4543 4.3603
12420 11 1 4.3944 4.3694 4.2034
12425 72 3 6.3699 6.6412 6.5741
12428 54 1 5.6904 5.5835 5.7337
12437 42 1 5.5255 5.2883 5.3080
12460 77 4 7.0707 7.1131 7.0157
12530 41 1 4.4308 5.2470 5.1875
12685 36 1 4.7362 5.2311 5.0955
12701 51 2 5.7104 5.4806 5.5979
12742 30 1 4.7622 4.7274 4.8907
12935 39 1 5.4723 5.3706 5.1875
12970 31 1 4.8828 4.6821 4.8907
12988 14 1 4.4067 4.3307 4.3603
13045 49 2 5.0434 5.5568 5.5979
13150 79 3 7.2542 7.1317 7.1014
13194 56 1 5.8111 5.7398 5.8261
13239 3 1 3.4340 3.5264 3.5262
13251 83 2 7.5126 7.5000 7.5587
13333 59 2 5.5491 5.8665 6.0088
13392 15 1 3.7377 4.3175 4.3603
13449 5 1 3.8067 3.9318 3.7430
13562 41 1 5.0304 5.1240 5.1875

19




REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

13599 15 1 4.2485 4.4308 4.3603
13680 78 3 6.9976 6.9344 7.0157
13861 20 1 4.5643 4.6151 4.5513
13894 2 1 2.8904 2.7081 3.2615
13964 64 1 6.2166 6.1675 6.2344
14086 17 1 4.4886 4.3041 4.3603
14131 53 2 5.7203 5.6454 5.5979
14188 49 1 5.5607 5.6490 5.5979
14225 o1 1 5.7398 5.5491 5.5979
14379 7 1 5.5759 3.8712 4.0141
14451 73 1 6.0981 6.6958 6.7356
14460 40 1 5.6021 5.1985 5.1875
14473 28 1 4.9972 4.9836 4.7833
14486 4 1 3.5835 3.9703 3.7430
14490 91 4 9.0101 8.7178 8.8157
14496 3 1 3.4657 3.4965 3.5262
14535 50 1 5.7071 5.5452 5.5979
14564 46 1 5.1180 5.2523 5.3080
14649 85 3 7.6123 7.7341 7.7851
14699 73 2 6.6214 6.7534 6.7356
14713 55 1 5.8319 6.0014 5.8261
14728 8 1 4.1431 4.0431 4.0141
14847 9 1 3.9512 3.9120 4.0141
14858 17 1 4.4188 4.3944 4.3603
14901 2 1 8.1259 3.2189 3.2615
14961 23 1 4.5951 4.5850 4.6375
15003 85 2 7.7437 7.7231 7.7851
15007 61 2 5.8636 6.1312 6.0088
15017 37 1 5.0434 5.0499 5.0955
15068 75 2 7.2284 6.9537 6.8667
15072 25 1 4.0073 4.6052 4.7053
15078 49 1 5.4337 5.6131 5.5979
15094 6 1 3.8501 4.1897 3.9152
15222 59 1 5.8081 5.9965 6.0088
15226 50 1 5.6384 5.4931 5.5979
15239 79 3 6.5525 7.2218 7.1014
15263 41 1 5.1818 5.2204 5.1875
15276 40 1 4.6151 5.1120 5.1875
15300 S7 1 5.9940 5.8230 5.8261
15333 60 1 5.8777 6.1924 6.0088
15377 71 2 6.6567 6.5280 6.5741
15462 3 1 3.4965 3.5835 3.5262
15501 26 1 4.1897 4.7536 4.7053
15513 / 1 3.9703 4.2195 4.0141
15541 21 1 4.6250 4.5951 4.5513
15588 64 1 6.2364 6.1549 6.2344
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REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

15594 54 1 5.9940 5.8721 5.7337
15674 95 5 9.5331 9.7092 9.7412
15749 69 2 6.6606 6.3172 6.3690
15972 13 1 4.2047 4.3944 4.2559
16011 34 1 5.0938 5.0039 5.0040
16028 56 1 5.5607 6.0450 5.8261
16057 37 1 4.7536 5.0938 5.0955
16087 2 1 4.0431 4.1109 3.2615
16134 59 1 6.0426 6.0403 6.0088
16181 18 1 4.4998 4.3820 4.4676
16200 68 1 5.2149 6.4313 6.3690
16239 47 1 5.2983 5.4249 5.4603
16278 17 1 4.4067 4.3567 4.3603
16292 11 1 4.3307 4.4773 4.2034
16400 62 1 4.6728 6.2538 6.1132
16479 66 1 6.2166 6.1612 6.2344
16526 3 1 2.9444 3.4340 3.5262
16531 41 2 5.2523 5.2627 5.1875
16564 58 1 6.0137 5.8665 5.9028
16678 48 2 5.4116 5.6276 5.4603
16853 73 2 6.6958 6.9622 6.7356
16952 49 1 5.5568 5.4848 5.5979
16959 54 1 5.6384 5.7071 5.7337
16985 13 1 4.4659 4.2047 4.2559
17055 11 1 4.1897 4.0943 4.2034
17104 31 1 4.8752 5.0304 4.8907
17148 25 1 4.5539 4.6821 4.7053
17210 7 2 6.8298 7.2027 7.0157
17317 29 1 4.7622 4.8828 4.7833
17397 37 2 4.9904 4.8752 5.0955
17528 2 1 3.5264 4.1109 3.2615
17559 15 1 4.4308 4.5109 4.3603
17816 11 1 10.9331 4.0073 4.2034
17875 62 1 6.0638 6.0981 6.1132
17920 13 1 4.2767 4.3567 4.2559
18015 1 1 41271 2.4849 2.5510
18102 67 2 6.2344 6.3630 6.3690
18113 76 3 6.1862 6.9187 6.8667
18175 80 3 7.2862 7.2682 7.2567
18182 1 1 4.6151 1.9459 2.5510
18203 72 2 6.4599 6.5889 6.5741
18334 10 1 3.7842 4.1109 4.0913
18340 57 1 5.9687 5.9713 5.8261
18428 36 1 3.9120 5.3279 5.0955
18434 32 1 4.8283 4.7958 4.8907
18469 2 1 3.8286 2.5649 3.2615
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REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

18478 71 3 6.6503 6.7696 6.5741
18535 41 2 5.2575 5.1648 5.1875
18554 68 2 6.3886 6.2672 6.3690
18696 59 1 5.9738 5.9713 6.0088
18697 17 1 4.8203 4.2767 4.3603
18707 40 1 5.3706 5.2204 5.1875
18720 34 1 4.8978 5.0689 5.0040
18770 91 5 8.9141 8.7038 8.8157
18798 42 1 5.2523 5.1705 5.3080
18861 50 1 5.4848 5.6240 5.5979
18886 88 2 7.9700 8.2825 8.0892

Table 5 Imputations for identified "correct” outliers in y3 values of log(TURNOVER+1)

REF | TURNREG EMPREG TRUE | RANDOM MEAN
CLASS CLASS VALUE IMPUTE IMPUTE

3555 73 6 12.2534 6.6933 6.7356
3997 34 6 12.1357 4.9904 5.0040
8982 84 6 11.5517 7.8071 7.5587
9609 80 4 0.0000 7.0397 7.2567
10379 2 1 9.0091 3.2958 3.2615
14100 3 1 0.6931 3.4012 3.5262
15052 55 1 1.3863 5.9940 5.8261
15546 4 3 9.1144 3.7136 3.7430
16421 59 1 0.0000 5.9940 6.0088
17162 9 1 1.0986 3.7612 4.0141
18050 25 1 1.3863 4.8442 4.7053

3.2.3 Finding the Optimal Weight Thresholds for other ABI Variables

The approach outlined in the previous subsection was applied to the other 1997 ABI

total

variables EMPTOTC, PURTOT, TAXTOT, ASSACQ, ASSDISP and

EMPLOY. Below we discuss results for each of these variables in turn. In each case a
robust WAID tree based on the register covariates TURNREG and EMPREG was

fitted.
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EMPTOTC

There are 41 missing values of EMPTOTC in the 1997 ABI dataset. Of the remaining
6058 values, 658 are zero. These values were not treated specially in fitting the robust
WAID tree for this variable. Figure 5 shows the values of R1 and R1(1-R2) generated

by this tree. We note that in this case the optimal and conservative choices for the
optimal threshold w are the same, corresponding to w = 0.385. At this value, 75% of
errors in EMPTOTC are detected and 16% of identified outliers are correct values.

Figure 5 Plot of Rq(w) and R1(w)(1-Ro(w)) for EMPTOTC
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PURTOT

There are 28 missing values of PURTOT in the 1997 ABI dataset. Of the remaining
6071 values, 5 are zero. These values were not treated specially in fitting the robust

WAID tree for this variable. Figure 6 shows the values of R1 and R1(1-R2) generated
by this tree. For this variable there is a clear distinction between the optimal and
conservative values for the outlier detection threshold. The optimal threshold is w =
0.018, where 37% of errors in PURTOT are detected and 4% of identified outliers are
correct values. The conservative threshold is w = 0.067, where 43% of errors are
detected and 18% of identified outliers are correct values. This can be seen in Figure 5
where the increase in the rate of detection of errors slows down considerably after this
conservative threshold value.

Figure 5 Plot of Rq(w) and R1(w)(1-Ro(w)) for PURTOT
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TAXTOT

There are 45 missing values of TAXTOT in the 1997 ABI dataset. Of the remaining
6054 values, 435 are zero. These values were not treated specially in fitting the robust

WAID tree for this variable. Figure 6 shows the values of R1 and R1(1-R2) generated
by this tree. In this case there is a degree of uncertainty about the choice between the
optimal and conservative choices for the weight threshold for outlier detection based
on this tree. The optimal threshold is w = 0.559, where 68% of TAXTOT errors are
detected, with 4% of identified outliers corresponding to true values. In contrast, at w
= 0.750, 80% of errors are identified, with 39% of identified outliers corresponding to
true values of TAXTOT.

Figure 6 Plot of R1(w) and Rq(w)(1-Ro(w)) for TAXTOT
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ASSACQ

There are 57 missing values of ASSACQ in the 1997 ABI dataset. In addition, there
are 908 records with ASSACQ = -9. Both types of record were ignored when fitting
the robust WAID tree for this variable. Of the remaining 5134 values, 2106 are zero.
This high proportion of zero values is quite different from the preceding ABI total
variables, On the basis that so many zero values cannot all be outliers, we therefore
also excluded records with ASSACQ = 0 from the tree fitting process.

When zero values excluded, we obtain the plots for R1 and R1(1-R») shown in Figure
7. Here the optimal threshold is w = 0.565, where 76% of non-zero errors are
identified, with 7% of identified outliers corresponding to true values. We also see
that there is no difference between the optimum and conservative thresholds in this
case.

Since in practice some of the zero values in ASSACQ can be errors, it is necessary to
have a strategy that can deal with these. However, since only four of the 248 errors in

this variable corresponded to zero values in 1997, there seems little lost by ignoring
these errors.

Figure 7 Plot of Rq(w) and R1(w)(1-Ro(w)) for positive values of ASSACQ
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ASSDISP

There are 63 missing values of ASSDISP in the 1997 ABI dataset. In addition, there
are 1389 records with ASSDISP = -9. Both types of record were ignored when fitting
the robust WAID tree for this variable. Of the remaining 4647 values, 3208 are zero.
This very large number of zero values made it impossible to fit a robust WAID tree
that included them. The same argument as used with ASSACQ led to records with
ASSDISP = 0 being excluded from the tree fitting process. Figure 8 shows the values

of R1 and R1(1-R») generated by these positive values of ASSDISP. Here the optimal

and conservative thresholds are clearly identical, at w = 0.773. At this value 59% of
errors are identified, with 16% of identified outliers corresponding to true values.

Note that, as with ASSACQ), the problem then becomes one of how to identify errors

in the zero values of ASSDISP. However, since there are only 2 such cases in 1997,
there does not seem to be too much lost by ignoring them.

Figure 8 Plot of R1(w) and Ry (w)(1-Ro(w)) for positive values of ASSDISP
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EMPLOY

This variable contained just 49 errors and 35 missing values in 1997. With missing

values excluded, Figure 9 shows the values of R1 and R1(1-R») generated by the
robust tree defined by the remaining non-missing cases. Here again we see that
optimal and conservative thresholds are identical, at w = 0.312. At this value 61% of
errors are identified. However, then 69% of identified outliers also correspond to true
values.

Figure 9 Plot of Rq(w) and Rq(w)(1-Ro(w)) for EMPLOY
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In theory a robust WAID tree for a particular ABI variable can be constructed using
any or all of the other ABI variables, including the register variables TURNREG and
EMPREG. It is therefore of interest to investigate the outlier and error detection
performance of alternative robust WAID treees based on different covariate
combinations Table 6 shows the values of outlier and error detection performance
measures (the same as in Table 2) generated by these trees. Both single covariate trees
and multiple covariate trees were investigated, with "A" defining the tree based only
on the EMPLOY variable, "B" defining the tree based on all the other ABI total
variables (except the analysis variable) and "C" defining the tree based on all the ABI
total variables plus the two register variables TURNREG and EMPREG. Note that
when other ABI total variables are used as covariates these variables are used with
their observed (y3) values, with missing values coded to -1.

The results in Table 6 show that of the three types of trees A, B, C, those based on
EMPLOQOY alone (A) is invariably the better performer, with outlier/error detectino
performance similar to that of robust trees based on the register variables TURNREG
and EMPREG. Furthermore, in almost all cases trees based on a "bigger" set of
covariates perform worse (sometimes considerably worse) than trees based on a
"smaller” set of covariates. This is an interesting result. However, since all trees were
constrained to 50 terminal nodes, it may be due to the fact that more terminal nodes
are required when constructing a tree based on multiple covariates. This is currently
being investigated.
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Table 6 Outlier identification performance of robust WAID trees based on different covariate combination. Here "A" denotes a tree built using
EMPLOY as the only covariate, "B" denotes a tree built using the other total variables as the covariates, and "C" denotes a tree based on the
register covariates TURNREG and EMPREG plus all the other total variables. Note that where another total variable is used as a covariate, it is
categorized into its percentile groups, based on observed (y3) values and with missing values coded to -1. Note also that zero values were
excluded when building the trees for ASSACQ and ASSDISP.

y TREE w Nout Nerror Nsig R1 Rsig R2 R1(1-R2)
type
TURNOVER | A 0.0307 196 190 187 0.7884 0.8990 0.0306 0.7642
B 0.0949 52 40 32 0.1660 0.1538 0.2308 0.1277
C 0.1432 112 61 49 0.2531 0.2356 0.4554 0.1379
EMPTOTC A 0.3635 275 251 245 0.7560 0.9176 0.0873 0.6900
B 0.6179 227 108 94 0.3253 0.3521 0.5242 0.1548
C 0.4606 139 83 73 0.2500 0.2734 0.4029 0.1493
PURTOT A 0.0487 245 234 231 0.3720 0.9094 0.0449 0.3553
B 0.2326 169 110 71 0.1749 0.2795 0.3491 0.1138
C 0.2201 166 111 73 0.1765 0.2874 0.3313 0.1180
TAXTOT A 0.3588 300 272 271 0.5643 0.6145 0.0933 0.5116
B 0.7255 503 247 241 0.5124 0.5465 0.5089 0.2516
C 0.7246 502 248 243 0.5145 0.5510 0.5060 0.2542
ASSACQ A 0.5590 202 186 186 0.7620 0.7980 0.0790 0.7019
B 0.4900 61 48 48 0.1970 0.2060 0.2130 0.1548
C 0.5940 96 60 59 0.2460 0.2530 0.3750 0.1537
ASSDISP A 0.7674 149 136 136 0.6154 0.6326 0.0872 0.5617
B 0.7293 98 51 51 0.2308 0.2372 0.4796 0.1201
C 0.7085 96 53 53 0.2398 0.2465 0.4479 0.1324
EMPLOY B 0.0924 27 13 13 0.2653 0.4333 0.5185 0.1277
C 0.1148 34 17 17 0.3469 0.5667 0.5000 0.1735

30



4. Further Research

The influence of tree size on outlier and error detection performance is being
investigated using the 1997 ABI dataset. In addition, application of the WAID-based
outlier detection and imputation approach to the Swiss EPE dataset is being carried
out. Finally, the extension of the WAID algorithm to allow trees based on multivariate
response variables is being implemented.
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Appendix A The WAID Toolkit

This appendix contains a complete listing of the Splus/R code for the different functions that make up the WAID Toolkit. Appendix B illustrates the
use of this Toolkit to carry out an edit and imputation analysis for the TURNOVER variable in the sec197(y3) ABI dataset.

RTWaid.basic <-
function(y,x,xlabels,mono,delta=0.00001,minn=5,maxnogroups=20,robust=TRUE,method="M",psi=psi.bisquare,c=4.685,maxit=10,verbose=0) {
# This function fits a robust regression tree
#y =response variable data values (numeric, interval scaled)
# x = predictor variable values (numeric, categorical), in matrix form (rows = observations, columns = variables)
# each distinct value in x is taken as defining a category
# there is a limit of 10 categories for any non-monotone x-variable (otherwise GenerateAllSamples function needs modification)
# xlabels = vector of column numbers (or column names) for x-variables
# mono = logical vector identifying which of the x-variables is monotone (TRUE) or non-monotone (FALSE)
# delta = minimum heterogeneity (relative to input y) required before a node can be split
# minn = minimum size of node that can be created
# maxnogroups = maximum number of terminal nodes that can be created
# robust = logical flag (TRUE = use robust WSS to split, FALSE = use unweighted WSS to split)
# method, psi, ¢, maxit = parameters used to control robust fit (type help(rim.default) for details).
# verbose = control value for printing out of results

if(robust==TRUE) library(MASS)

y <-c(y)

if(lis.matrix(x)) x <- matrix(x,ncol=1)

N <- length(y)

P <- maxnogroups*2+1

SplitHistory <- vector("list",length=maxnogroups)

ObsNodeNo <- vector(mode="integer",length=N)

ObsWit <- vector(mode="double",length=N)

NodeHetero <- vector(mode="double",length=P)

NodeSplit <- vector(mode="integer",length=P)

NodeSize <- vector(mode="integer" ,length=P)

NodeLoc <- vector(mode="integer",length=P)
# Initialise variables

ParentNodeNo <- 1

NumberNodes <- 1

NodeSize[1] <- N

NodeSize[-1] <- 0

ObsNodeNo[ ] <-1

ObsWi[ ] <-1

Finish <- FALSE
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TermHistory <-1
NodeHistory <- rep(1,N)
WitHistory <- NULL
# GO
if(verbose>0) cat("Starting Regression Tree Analysis\n")
for (nstep in 1:maxnogroups) {
if (Finish == TRUE) break
NewNode <- NumberNodes-1
if (nstep ==1){
NewNode <- 1
}

for (j in NewNode:NumberNodes) {
NodeSize[j] <- sum(ObsNodeNo==j)
Fit <- WeightedSumSquares(x=y[ObsNodeNo==j],robust=robust,method=method,psi=psi,c=c,maxit=maxit)
NodeHetero[j] <- Fit$wss
NodeLoc]j] <- Fit$loc
ObsWt[ObsNodeNo==j] <- Fit$w
# Test if node is allowed to be split
if (nstep <= maxnogroups) {
# Check that node has at least twice the minimum number of cases allowed in a node
if (NodeSize[j] >= (2*minn)) {
NodeSplit[j] <- 1
}

if(NodeSplit[j] == 0) {
if(verbose>2) cat("Node " j," cannot be split, since it is too small\n")

# If not write message

# Check NodeHetero fraction for node
if (zdiv(NodeHetero[j],NodeHetero[1]) <= delta) {
NodeSplit[j] <- 0
# NodeHetero fraction is too small, so write message
if(verbose > 2) cat("Node " ,j," cannot be split, since it is too homogeneous\n")
}

# Print statistics if node cannot be NodeSplit
if (NodeSplit[j] == 0) {
if(verbose > 2) {
cat("Node N Heterogeneity\n")
cat(j," " ,NodeSizel[j]," " ,NodeHetero[j],"\n")

# End SplitCriteria
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}
}
candidates <- unique(ObsNodeNo)
repeat {
Finish <- TRUE
for (j in candidates) {
if (NodeSplit[j] == 1) {
Finish <- FALSE
}

}

if(Finish == TRUE) {
if(verbose > 1) cat("There are no parent nodes left to split\n");
break

. . }
# Parent group statistics

if(verbose > 1) cat("Candidate nodes are as follows - \n")

if(verbose > 1) cat("Node N Heterogeneity\n")

for (k in candidates) {
if (NodeSplit[k] == 1) {

}

# After first split find splittable group with maximum NodeHetero
if(NumberNodes > 1) {
WSSM <- 0.0
for (k in candidates) {
if (NodeSplit[k] ==1) {
if (NodeHetero[k] >= WSSM) {

ParentNodeNo <- k
WSSM <- NodeHetero[k]

if(verbose > 1) cat(k," " ,NodeSize[k]," " ,NodeHetero[k],"\n")

}

if(verbose > 0) cat("Step ",nstep,” New parent node =" ,ParentNodeNo,"\n")
# Find best split of new parent group based on each X-variable
xsplit <- vector("list",length=ncol(x))
if(verbose > 2) cat("Predictor Best Split Heterogeneity Left Codes
for(k in 1:ncol(x)) {
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ksplit <-
BestRTSplit(y=y[ObsNodeNo==ParentNodeNo],x=x[ObsNodeNo==ParentNodeNo,k],mono=mono[k],w=0bsWt[ObsNodeNo==ParentNodeNo],min=minn,ws
s=NodeHetero[ParentNodeNo],loc=NodeLoc[ParentNodeNo])
xsplit[[K]] <- ksplit
if(verbose > 2) {
if(xsplit[[k]]$split == FALSE) {
cat("Cannot split on predictor " ,xlabels[k],"\n")
}

else {

}

cat(xlabels[k]," " xsplit[[k]]$wss," " xsplit[[k]]$left," " xsplit[[k]]$right,"\n")

}

# Find the overall best split, if one exists
splitok <- FALSE
for(k in 1:ncol(x)) {
if(xsplit[[k]]$split == TRUE) {

splitok <- TRUE
best.xsplit <- xsplit[[k]]
best.x <- k
break

}

# Where no predictor can be used to split the parent node, flag this parent and try next parent
if(splitok == FALSE) {
NodeSplit[ParentNodeNo] <- 0;
if(verbose > 2) cat("Group ",ParentNodeNo," cannot be split. Decrease in heterogeneity or child node size is always too
small\n")
}
else {
if((ncol(x) > 1) & (best.x < ncol(x))) {
for(k in (best.x+1):ncol(x)) {
if(xsplit[[k]]$wss < best.xsplitdwss) & (xsplit[[k]]$split == TRUE)) {
best.xsplit <- xsplit[[k]]
best.x <- k

}

if(verbose > 1) cat("Best split is on predictor " ,xlabels[best.x],"\n")

}
if(NodeSplit[ParentNodeNo] == 1) {
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for(k in best.xsplit$left) {
ObsNodeNo[(ObsNodeNo==ParentNodeNo)&(x[,best.x]==k)] <- NumberNodes+1
}

for(k in best.xsplit$right) {
ObsNodeNo[(ObsNodeNo==ParentNodeNo)&(x[,best.x]==k)] <- NumberNodes+2
}

NumberNodes <- NumberNodes+2
break
}
}
TermHistory <- TermHistoryUpdate(x=TermHistory,p=ParentNodeNo,c1=NumberNodes-1,c2=NumberNodes)
NodeHistory <- chind(NodeHistory,ObsNodeNo)
WtHistory <- chind(WtHistory,ObsWt)

SplitHistory[[nstep]] <- list(parent=ParentNodeNo,child.left=NumberNodes-
1,child.right=NumberNodes,predictor=xlabels[best.x],codes.left=best.xsplit$left,codes.right=best.xsplit$right)

}
if (Finish = TRUE) {
# End of splitting since maximum number of terminal nodes has being reached
if(verbose > 0) cat("End of run since number of terminal nodes >=", maxnogroups,"\n")
}

NumberTerminals <- nrow(TermHistory)
TerminalHistory <- vector("list",length=NumberTerminals)
for(i in L:NumberTerminals) {
TerminalHistory[[i]] <- unique(TermHistory(i,])
}

# Output results
list(nodes = NodeHistory, splits = SplitHistory, terminals = TerminalHistory, weights = WtHistory)
}

CTWaid.basic <- function(y,x,xlabels,mono,delta=0.00001,minn=5maxnogroups=20,g9ini=TRUE,verbose=0) {

# this function fits a classification tree

#y =response variable data values (numeric, categorical)

# x = predictor variable values (numeric, categorical), in matrix form (rows = observations, columns = variables)
# each distinct value in y (and x) is taken as defining a category

#there is a limit of 10 categories for any non-monotone x-variable (otherwise GenerateAllSamples function needs modification)
# xlabels = vector of column numbers (or column names) for x-variables

# mono = logical vector identifying which of the x-variables is monotone (TRUE) or non-monotone (FALSE)

# delta = minimum heterogeneity (relative to input y) required before a node can be split

# minn = minimum size of node that can be created

# maxnogroups = maximum number of terminal nodes that can be created

# gini = logical flag (TRUE = use Gini heterogeneity index, FALSE = use Kullback-Leibler heterogeneity index)
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# verbose = control value for printing out of results
y <-c(y)
if(Yis.matrix(x)) x <- matrix(x,ncol=1)
N <- length(y)
P <- maxnogroups*2+1
SplitHistory <- vector("list",length=maxnogroups)
ObsNodeNo <- vector(mode="integer",length=N)
NodeHetero <- vector(mode="double",length=P)
NodeSplit <- vector(mode="integer",length=P)
NodeSize <- vector(mode="integer" length=P)
# Initialise variables
ParentNodeNo <- 1
NumberNodes <- 1
NodeSize[1] <- N
NodeSize[-1] <- 0
ObsNodeNo[] <-1
Finish <- FALSE
TermHistory <- 1
NodeHistory <- rep(1,N)
# GO
if(verbose>0) cat("Starting Classification Tree Analysis\n")
for (nstep in 1:maxnogroups) {
if (Finish == TRUE) break
NewNode <- NumberNodes-1
if (nstep ==1) {
NewNode <- 1

for (j in NewNode:NumberNodes) {
NodeSize[j] <- sum(ObsNodeNo==j)
if(gini == TRUE) {
NodeHetero[j] <- GiniCoefficient(y[ObsNodeNo==j])$gini
}

else {
NodeHetero[j] <- GiniCoefficient(y[ObsNodeNo==j])$info

}
# Test if node is allowed to be NodeSplit
if (nstep <= maxnogroups) {
# Check that node has at least twice the minimum number of cases allowed in a node
if (NodeSize[j] >= (2*minn)) {
NodeSplit[j] <- 1
}
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# If not write message
if(NodeSplit[j] == 0) {
if(verbose>2) cat("Node " ,j," cannot be split, since it is too small\n")

# Check NodeHetero fraction for node
if (zdiv(NodeHetero[j],NodeHetero[1]) <= delta) {
NodeSplit[j] <- 0
# NodeHetero fraction is too small, so write message
if(verbose > 2) cat("Node ",j," cannot be split, since it is too homogeneous\n")

# Print statistics if node cannot be NodeSplit
if (NodeSplit[j] == 0) {
if(verbose > 2) {

cat("Node N Heterogeneity\n")
cat(j," " ,NodeSizel[j]," " ,NodeHetero[j],"\n")
}
}
# End SplitCriteria
}

}

candidates <- unique(ObsNodeNo)

repeat {

Finish <- TRUE
for (j in candidates) {
if (NodeSplit[j] == 1) {
Finish <- FALSE
}

}
if(Finish == TRUE) {
if(verbose > 1) cat("There are no parent nodes left to split\n");
break
}
# Parent group statistics
if(verbose > 1) cat("Candidate nodes are as follows -\n")
if(verbose > 1) cat("Node N Heterogeneity\n")
for (k in candidates) {
if (NodeSplit[k] ==1) {
if(verbose > 1) cat(k," " ,NodeSize[k]," " ,NodeHetero[k],"\n")
}

# After first split find splittable group with maximum NodeHetero
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if(NumberNodes > 1) {
TGINIM <- 0.0
for (k in candidates) {
if (NodeSplit[k] == 1) {
if (NodeHetero[k] >= TGINIM) {
ParentNodeNo <- k
TGINIM <- NodeHetero[k]

}

if(verbose > 0) cat("Step ",nstep," New parent node =" ,ParentNodeNo,"\n")
# Find best split of new parent group based on each X-variable
xsplit <- vector("list",length=ncol(x))
if(verbose > 2) cat("Predictor Best Split Heterogeneity Left Codes Right Codes\n")
for(k in L:ncol(x)) {
ksplit <-
BestCTSplit(y=y[ObsNodeNo==ParentNodeNo],x=x[ObsNodeNo==ParentNodeNo,k],mono=mono[k],min=minn,gini=gini,gini.all=NodeHetero[ParentNodeNo
)i
xsplit[[K]] <- ksplit
if(verbose > 2) {
if(xsplit[[k]]$split == FALSE) {
cat("Cannot split on predictor ", xlabels[k],"\n")

else {

}

cat(xlabels[k]," " xsplit[[k]]$gini," " xsplit[[k]]$left," " xsplit[[k]]$right,"\n")

}

# Find the overall best split, if one exists
splitok <- FALSE
for(k in L:ncol(x)) {
if(xsplit[[k]]$split == TRUE) {

splitok <- TRUE
best.xsplit <- xsplit[[k]]
best.x <- k
break

}

# Where no predictor can be used to split the parent node, flag this parent and try next parent
if(splitok == FALSE) {
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small\n")

}

NodeSplit[ParentNodeNo] <- 0;
if(verbose > 2) cat("Group ",ParentNodeNo," cannot be split. Decrease in heterogeneity or child node size is always too

}

else {
if((ncol(x) > 1) & (best.x < ncol(x))) {
for(k in (best.x+1):ncol(x)) {
if((xsplit[[k]]$gini < best.xsplit$gini) & (xsplit[[k]]$split == TRUE)) {
best.xsplit <- xsplit[[k]]
best.x <- k

}

if(verbose > 1) cat("Best split is on predictor " ,xlabels[best.x],"\n")

}
if(NodeSplit[ParentNodeNo] == 1) {
for(k in best.xsplit$left) {
ObsNodeNo[(ObsNodeNo==ParentNodeNo0)&(x[,best.x]==k)] <- NumberNodes+1
}

for(k in best.xsplit$right) {
ObsNodeNo[(ObsNodeNo==ParentNodeNo)&(x[,best.x]==k)] <- NumberNodes+2
}

NumberNodes <- NumberNodes+2
break

}

TermHistory <- TermHistoryUpdate(x=TermHistory,p=ParentNodeNo,c1=NumberNodes-1,c2=NumberNodes)

NodeHistory <- cbind(NodeHistory,ObsNodeNo)

SplitHistory[[nstep]] <- list(parent=ParentNodeNo,child.left=NumberNodes-
1,child.right=NumberNodes,predictor=xlabels[best.x],codes.left=best.xsplit$left,codes.right=best.xsplit$right)

}
if (Finish != TRUE) {
# End of splitting since maximum number of terminal nodes has being reached
if(verbose > 0) cat("End of run since number of terminal nodes >=", maxnogroups,"\n")

}

NumberTerminals <- nrow(TermHistory)
TerminalHistory <- vector("list",length=NumberTerminals)
for(i in 1:NumberTerminals) {

TerminalHistory[[i]] <- unique(TermHistory[i,])

}
# Output results
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list(nodes = NodeHistory, splits = SplitHistory, terminals = TerminalHistory)

}

WeightedSumSquares <- function(x,robust=TRUE,method="M" ,psi=psi.bisquare,c=4.685,maxit=10) {
# this function computes within node heterogeneity for regression trees
n <-length(c(x))
if(robust==TRUE) {
meanfit <- rim.default(x=rep(1,n),y=c(x),method=method,psi=psi,c=c,maxit=maxit)
w <- meanfit$w
w <- w*zdiv(n,sum(w))
loc <- zdiv(sum(x*w),n)

}
else {
w <-rep(1,n)
loc <- mean(x)
}

wss <- sum(w*x”"2)-n*loc"2
list(loc =loc, wss = wss, w = w)

}

GiniCoefficient <- function(x) {
# this function computes within node heterogeneity for classification trees
n <- length(x)
values <- unique(x)
p <- rep(0, length(values))
gini <-0
info <-0
for(i in 1l:length(values)) {
freq <- sum(x==valuesli])
p[i] <- freg/n
gini <- gini + (p[i]*(1-p[i]))
info <-info - (p[i]*log(p[i]))
}
gini <- n*gini
info <- n*info
list(p = p, gini = gini, info=info)
}

BestRTSplit <- function(y,x,v=unique(x),mono=FALSE,w=rep(1,length(y)),min=5wss=0,loc=0) {
# this regression tree function determines the optimal split of a node based on the values of a covariate
splittable <- FALSE
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best.split <- list(left=v,right=NULL)
best.split.wss <- 0
if(length(v) > 1) {

if(mono==TRUE) {
v.sort <- sort(v)
}

else {
v.ybar <- rep(0,length(v))
for(i in L:length(v)) {
v.ybarli] <- zdiv(sum(y[x==v[i]]*w[x==Vv[i]]),sum(w[x==v]i]]))

v.sort <- v[order(v.ybar)]
}
left <- v.sort
right <- NULL
best.split <- list(left=left,right=right)
best.split.wss <- wss
for(i in 1:(length(v)-1)) {
left <- v.sort[1:i]
y.left <- Subset(y=y,x=x,v=left)
w.left <- Subset(y=w,x=x,v=left)
n.left <- sum(w.left)
ybar.left <- zdiv(sum(y.left*w.left),n.left)
right <- v.sort[-(1:i)]
y.right <- Subset(y=y,x=x,v=right)
w.right <- Subset(y=w,x=x,v=right)
n.right <- sum(w.right)
ybar.right <- zdiv(sum(y.right*w.right),n.right)
if((length(y.left) >= min) & (length(y.right) >= min)) {
split.wss <- wss-(n.left*(ybar.left-loc)*2)-(n.right*(ybar.right-loc)* 2)
if(split.wss < best.split.wss) {
best.split <- list(left=left,right=right)
best.split.wss <- split.wss
splittable <- TRUE

}

list(left=best.split$left,right=best.split$right,wss=best.split.wss,split=splittable)
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BestCTSplit <- function(y,x,v=unique(x),mono=FALSE,min=5,gini=TRUE,gini.all=0) {
# this classification tree function determines the optimal split of a node based on the values of a covariate
splittable <- FALSE
best.split <- list(left=v,right=NULL)
best.split.gini <- 0
if(length(v) > 1) {
if(mono==TRUE) {
v.sort <- sort(v)
left <- v.sort
right <- NULL
gini.left <- gini.all
gini.right <-0
best.split <- list(left=left,right=right)
best.split.gini <- gini.left+gini.right
for(i in 1:(length(v)-1)) {
left <- v.sort[1:i]
y.left <- Subset(y=y,x=x,v=left)
right <- v.sort[-(1:i)]
y.right <- Subset(y=y,x=x,v=right)
if((length(y.left) >= min) & (length(y.right) >= min)) {
if(gini==TRUE) {
gini.left <- GiniCoefficient(y.left)$gini
gini.right <- GiniCoefficient(y.right)$gini

else {
gini.left <- GiniCoefficient(y.left)$info
gini.right <- GiniCoefficient(y.right)$info
}
split.gini <- gini.left+gini.right
if(split.gini < best.split.gini) {
best.split <- list(left=left,right=right)
best.split.gini <- split.gini
splittable <- TRUE

}
}
}
}
else {
split <- GenerateAllBinarySplits(v=v)
left <-v
right <- NULL

44



gini.left <- gini.all
gini.right <-0
best.split <- list(left=left,right=right)
best.split.gini <- gini.left+gini.right
for(i in 1:length(split)) {
left <- split[[i]]
y.left <- Subset(y=y,x=x,v=left)
right <- Delete(s=left,v=v)
y.right <- Subset(y=y,x=x,v=right)
if((length(y.left) >= min) & (length(y.right) >= min)) {
if(gini==TRUE) {
gini.left <- GiniCoefficient(y.left)$gini
gini.right <- GiniCoefficient(y.right)$gini

}
else {
gini.left <- GiniCoefficient(y.left)$info
gini.right <- GiniCoefficient(y.right)$info
}

split.gini <- gini.left+gini.right

if(split.gini < best.split.gini) {
best.split <- list(left=left,right=right)
best.split.gini <- split.gini
splittable <- TRUE

}

list(left=best.split$left,right=best.split$right,gini=best.split.gini,split=splittable)
}

GenerateAllBinarySplits <- function(v) {
# this classification tree function generates all candidate splits of a non-monotone covariate
# note that there is a limit of 10 categories for the covariate at present

maxsize <- floor(length(v)/2)

number <- rep(0, maxsize)

for(k in 1:maxsize) number[k] <- choose(length(v),k)

n <- sum(number)

splits <- vector("list",length=n)

count<-0

for(k in L:maxsize) {
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groups <- GenerateAllSamples(v,k)
for(j in 1:length(groups)) {
count <- count+1

splits[count] <- list(groups|[j1])

}

splits

}

GenerateAllSamples <- function(x,n) {

# function called by GenerateAllBinarySplits
if(n > 5) stop("Sample size >5")
N <- length(x)

sample.matrix <- matrix(0,nrow=choose(N,n),ncol=n)

count<-0
for(ilin 1:N) {
if(n==1) {

count <- count+1

sample.matrix[count,] <- x[i1]

}

else {
if(i1<N) {
for(i2in (i1+1):N) {
if(n==2) {

count <- count+1
sample.matrix[count,] <- c(x[i1],x[i2])

}

else {
if(i2<N) {

for(i3in (i2+1):N) {
if(n==3) {

}

else {

count <- count+1
sample.matrix[count,] <- c(x[i1],x[i2],x[i3])

if(i3<N) {
for(i4 in (i3+1):N) {
if(n==4) {
count <- count+1
sample.matrix[count,] <- c(x[i1],x[i2],x[i3],x[i4])
}
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else {
if(i4<N) {
for(i5in (i4+1):N) {
count <- count+1
sample.matrix[count,] <- c(x[il],x[i2],x[i3],x[i4],x[i5])

}
}
out <- vector("list",length=nrow(sample.matrix))
for(i in 1:length(out)) out[i] <- list(sample.matrix][i,])
out

}

Delete <- function(s,v) {

# utility function
unique(c(s,v))[-(1:length(s))]

}

Subset <- function(y,x,v) {
# utility function

out <- NULL
for(i in 1l:length(v)) out <- c(out,y[x==v[i]])
out

}
zdiv <- function(x,y{
# utility function
if(y==0.0||is.na(x)||is.na(y))
0.0

else
xly
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}

TermHistoryUpdate <- function(x,p,c1,c2) {
# function that creates the "history" of the tree splitting process
if(lis.matrix(x)) x <- matrix(x[1],nrow=1,ncol=1)
n <- ncol(x)
if(n==1){
x1 <- NULL
X2 <- X
}
else {
x1 <- x[x[,n] '=p,]
if(lis.matrix(x1)) x1 <- matrix(x1,nrow=1)
x2 <- x[x[,n] ==p,]
}
out <-rbind(x1,x2,x2)
out <- chind(out,c(x1[,n],c1,c2))
out

}

TerminalDefinition <- function(t,SplitHistory, TerminalHistory) {
# function that returns the sequence of splits that lead to a particular node
for(i in 1l:length(TerminalHistory)) {
count <- length(TerminalHistory[[i]])
if(TerminalHistory|[[i]][count]==t) {
trace <- TerminalHistory/[[i]]
definition <- vector("list" ,length=(length(trace)-1))
for(j in 2:length(trace)) {
k <- trace(j]
split <- ceiling((k-1)/2)
right <- TRUE
if((k-1)/2 < split) {
right <- FALSE
}

if(right == FALSE) {
definition[[j-1]] <-
list(nodes=c(SplitHistory[[split]]$parent,SplitHistory[[split]]$child.left),x=SplitHistory[[split]]$predictor,codes=SplitHistory[[split]]$codes.left)
}

else {

definition[[j-1]] <-
list(nodes=c(SplitHistory[[split]]$parent,SplitHistory[[split]]$child.right),x=SplitHistory[[split]]$predictor,codes=SplitHistory[[split]]$codes.right)
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}
break
}
}
definition

}

TerminalFinder <- function(x,xlabels,SplitHistory) {
# function that returns the terminal node in a WAID tree given a set of values for the covariates that define the tree
node <-1
for(i in 1:length(SplitHistory)) {
if(SplitHistory[[i]]$parent==node) {
xval <- x[xlabels==SplitHistory[[i]]$predictor]
if(is.element(xval,SplitHistory[[i]]$codes.left)) {
node <- SplitHistory[[i]]$child.left

}
else {
node <- SplitHistory[[i]]$child.right
}
}
}
node

}

NodeMeans <- function(y,nodes,weights) {
# function that calculates the weighted mean values for all nodes in a WAID regression tree
nodematrix <- nodes
nsplits <- ncol(weights)
if(ncol(nodes) > nsplits) nodematrix <- nodes|[,1:nsplits]
if(ncol(nodes) < nsplits) stop("incompatible node and weight matrix")
nodemeans <- nodematrix
for(i in L:nsplits) {
nodeset <- unique(nodematrix[,i])
for(j in nodeset) {
sumwj <- sum(weights[nodematrix[,i]==j,i])
meanj <- sum(weights[nodematrix[,i]==j,i]*y[nodematrix[,i]==j])/sumwj
nodemeans[nodematrix[,i]==j,i] <- meanj
}
}

nodemeans
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}

NodeMeanPlot <- function(nodes,means,splits=1:ncol(means),points=TRUE,title="NODEMEAN TREE") {
# function that plots the nodemean tree corresponding to a WAID regression tree
if(ncol(nodes) < max(splits)) stop("incompatible nodes matrix")
if(ncol(means) < max(splits)) stop("incompatible means matrix")
nodematrix <- nodes[,sort(splits)]
meanmatrix <- means|[,sort(splits)]
plot(x=c(min(splits),max(splits)),y=c(min(meanmatrix),max(meanmatrix)),type="n" xlab="SPLIT" ,ylab="NODEMEAN")
if(points) {
for(i in L:ncol(nodematrix)) {
y <- unique(meanmatrix[,i])
m <- length(y)
points(x=rep(splits[i],m),y=y)

}
}
else {
terminals <- unique(nodematrix[,ncol(nodematrix)])
for(i in sort(terminals)) {
nodeindices <- (L:nrow(nodematrix))[nodematrix[, ncol(nodematrix)]==i]
lines(x=splits,y=meanmatrix[nodeindices[1],])
}
}
title(title)

}

Treelmputer <- function(ximp,xlabels,yvalues,treesplits,treenodes,treeweights,minwt=1,random=F) {
# function that returns imputed values from terminal nodes associated with input values of covariates
X <- Ximp
weights <- treeweights
nodes <- treenodes
splits <- treesplits
if(ncol(nodes)!=ncol(weights)) {
if(ncol(nodes)==(ncol(weights)+1)) {
nodes <- nodes[,1:(ncol(nodes)-1)]
splits <- splits[1:(length(splits)-1)]
}

else stop("node matrix and weight matrix dimensions incompatible")

if(lis.matrix(x)) x <- matrix(x,nrow=1)
imputes <- rep(0, nrow(x))
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for(i in L:nrow(x)) {
terminal <- TerminalFinder(x=x[i,],xlabels=xlabels,SplitHistory=splits)
ydoners <- yvalues[nodes[,ncol(nodes)]==terminal]
wdoners <- weights[nodes[,ncol(nodes)]==terminal,ncol(weights)]
mean <- sum(ydoners*wdoners)/sum(wdoners)
imputes[i] <- mean
if(random) imputesJi] <- sample(ydoners[wdoners>=minwt],size=1)

cbind(imputes,x)

}

CatMap <- function(x,bounds,groups) {
# function that maps covariate values to a given set of groups
if(length(bounds)!=(length(groups)-1)) stop("Incorrect number of groups")
m <- length(groups)
xcat <- rep(0, length(x))
for(i in 1L:length(x)) {
if(x[i] <= bounds][1]) xcat[i] <- groups[1]
if(x[i] > bounds[m-1]) xcat[i] <- groups[m]
for(j in 2:(m-1)) {
xcat[i] <-j
if(x[i]>bounds[j-1]) & (x[i]<=bounds[j])) break

Xxcat
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Appendix B Example WAID Outlier Identification and Imputation Analysis

Read in values of total variables for sec197(true+y3) data
abidata <- matrix(scan("totals197(merged).dat",na.strings = "."),ncol=38,byrow=T)

Create individual data vectors that exclude missing values of TURNOVER (these have abidata[,8]==3)
Identifiers

abidata.ref3 <- abidata[(abidata[,8]==1)|(abidata[,8]==2),1]

Values of TURNREG

abidata.turnreg3 <- abidata[(abidata[,8]==1)|(abidata[,8]==2),2]
Values of EMPREG

abidata.empreg3 <- abidata[(abidata[,8]==1)|(abidata[,8]==2),3]
Values of true TURNOVER

abidata.tturnover3 <- abidata[(abidata[,8]==1)|(abidata[,8]==2),4]
Values of observed (with error) TURNOVER

abidata.oturnover3 <- abidata[(abidata[,8]==1)|(abidata[,8]==2),7]
Values of true(1)/error(2) flag for TURNOVER
abidata.turnover.error3 <- abidata[(abidata[,8]==1)|(abidata[,8]==2),8]

Calculate percentiles of TURNREG
abidata.turnreg3.tile <- quantile(abidata.turnreg3,probs=(1:99)/100)

Create classification variable based on TURNREG percentile groups
abidata.turnreg3.class <- cut(abidata.turnreg3,breaks=c(-1,abidata.turnreg3.tile,max(abidata.turnreg3)+1),labels = FALSE)

Calculate robust WAID tree for TURNOVER using TURNREG and EMPREG as covariates

abi.turnover3.waid.wls <-

RTWaid.basic(y=log(abidata.oturnover3+1),x=cbind(abidata.turnreg3.class,abidata.empreg3),xlabels=c("TURNREG" ,"EMPREG"),mono=c(TRUE,TRUE),mi
nn=5maxnogroups=50,robust=TRUE,maxit=100)

Calculate robust mean values for all nodes in the tree
abi.turnover3.waid.wtmeans <- NodeMeans(y=log(abidata.oturnover3+1),nodes=abi.turnover3.waid.wls$nodes,weights=abi.turnover3.waid.wls$weights)

Create a nodemean plot for the tree (see Figure 2)

NodeMeanPlot(nodes=abi.turnover3.waid.wls$nodes,means=abi.turnover3.waid.wtmeans,points=FALSE title="Figure 2: Robust nodemean tree for y3
values of log(TURNOVER+1)")
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Calculate average weights for each record defining the tree
abi.turnover3.waid.avwt <- apply(abi.turnover3.waid.wls$weights,1,mean)

Grid search for an optimal threshold weight identifying outliers/errors (This code generates the values in Table 2)
abidata.turnover3.rdiff <- abs(abidata.oturnover3-abidata.tturnover3)/abidata.tturnover3
abidata.turnover3.rdiff[abidata.tturnover3==0] <- 0
TE <- sum(abidata.turnover.error3==2)
TBE <- sum(abidata.turnover3.rdiff>1)
for(i in 1:100) {

w <-i/1000

N <- sum(abi.turnover3.waid.avwt<w)

M <- sum(abi.turnover3.waid.avwt<w & abidata.turnover.error3==2)

Mbig <- sum(abi.turnover3.waid.avwt<w & abidata.turnover3.rdiff>1)

R1 <- M/TE

R1big <- Mbig/TBE

R2 <- 1-M/N

C <- R1*(1-R2)

print(c(w,N,M,Mbig,R1,R1big,R2,C))
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Create random imputations for missing values of TURNOVER. Note that donors are selected fom cases with average weight > 1

temp <-
chind(log(abidata[abidata[,8]==3,4]+1),Treelmputer(ximp=cbind(CatMap(x=abidata[abidata[,8]==3,2],bounds=abidata.turnreg3.tile,groups=1:100),abidata[
abidata[,8]==3,3]),xlabels=c("TURNREG","EMPREG"),yvalues=log(abidata.oturnover3+1),treesplits=abi.turnover3.waid.wls$splits,treenodes=abi.turnover
3.waid.wls$nodes,treeweights=abi.turnover3.waid.wls$weights,random=T))

Plot distribution of imputation errors (log scale and raw scale)
hist(temp[,1]-temp[,2])
hist(exp(temp[,1])-exp(temp[,2]))

Histogram of templ, 11 - templ, 21 Histogram of expltempl, 11} - expiempl, 21}
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Create mean imputations for missing values of TURNOVER

temp <-
chind(log(abidata[abidata[,8]==3,4]+1),Treelmputer(ximp=cbind(CatMap(x=abidata[abidata[,8]==3,2],bounds=abidata.turnreg3.tile,groups=1:100),abidata[
abidata[,8]==3,3]),xlabels=c("TURNREG","EMPREG"),yvalues=log(abidata.oturnover3+1),treesplits=abi.turnover3.waid.wls$splits,treenodes=abi.turnover
3.waid.wis$nodes,treeweights=abi.turnover3.waid.wls$weights,random=F))

Plot distribution of imputation errors (log scale and raw scale)
hist(temp[,1]-temp[,2])
hist(exp(temp[,1])-exp(temp[,2]))

Histogram of templ, 11 - templ, 21 Histogram of templ, 11 - templ, 21
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