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1. Introduction

The problem of identifying outliers in a data set has been subject of extensive research.

For a quite comprehensive study see, for example, Barnett and Lewis (1984). When

we deal with an univariate sample any outliers in the data are usually detected

regarding their extremeness relative to the basic model F from which all observations

came from. Tests of the discordancy of the outliers with respect to the fully specified

distribution F are then performed.

An observation xi can be judged through deviation/spread statistics, where a measure

of its distance to the whole data uses some measure of the central tendency in the

data and the spread of the sample. One of the extreme values from x1, x2, . . . , xn

could be declared a contaminant (an observation from some other distribution G) if

its extremeness disagrees to what it was expected from the basic model F . The usual

tests are of the form: declare unit i as an outlier if

u(xi) =
xi − x̄

s
> cα, (1)

where x̄ and s denote the sample mean and the sample deviation, and cα some appro-

priate cutoff with significance level α. The median deviation sm = median(|xi − x̄|
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may also be used as a sample measure of dispersion instead of the sample deviation s.

In the simple univariate case it is quite clear what the definition of extremeness means.

A large value for u(xi) is an indication that the observation xi may be an outlier or at

least a suspected unit in the sample. For data related to linear models in seeking outliers

it is generally common to examine the relative size of the residuals. For example, in

a simple linear regression like yj = β0 + β1xj + εj, where the set of n observations

y1, . . . , yn of independent random variables Yj has means depending linearly on values

x1, . . . , xn of X, the residuals εi can be estimated as

ε̂i = yi − ŷi = yi − (β̂0 + β̂1xi), (2)

where β̂0 and β̂1 are estimates usually provided by least squares. The studentized

residuals ei = ε̂i

si
, where

si = s

√√√√1− 1

n
− (xi − x̄)2/

n∑

i=1

(xi − x̄)2, (3)

and s2 =
∑

ε̂2
i /(n − 2) is an unbiased estimate of σ2, are then used to declare the

observation yi as an outlier when they are sufficiently large. For multivariate linear

response models, where Y = XT β + ε, regression outliers can be detected through

measures like the Mahalanobis distance

Di =

√
{(yi − ŷi(r))T Ŝ−1

(r) (yi − ŷi(r))}, i = 1, . . . , n, (4)

where ŷi(r) and Ŝ(r) are obtained from regression of Y on X based on the n observations

from the sample data.

Discordancy tests for outliers may suffer from the masking problem, in which a testing

procedure to identify a single outlier may be ineffective when the data set has several

suspected values. Usually the most suspected observations form small subgroups

and then it is difficult to locate the true outliers of the sample from that particular

subset. An outlying subset thus goes undetected because of the presence of another,

usually adjacent, subset. A swamping problem occurs when “good” observations are

incorrectly identified as outliers because of the presence of another, usually remote,

subset of observations. Since the outlying units attract the estimates towards them,

reasonable observations then become suspicious.
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It is possible to make tests consecutively in order to test first the most extreme or

most suspected observation to the last one from that subset. In case the most extreme,

x(n), is declared outlier when compared to the remaining n− 1 cases, we then move to

test the next one, x(n−1), where x(j) denotes an order statistic. Another approach is

to use a block test, where a group of k units are tested all together. If some statistic

Uk exceeds some critical value then the k units x(n−k+1), . . . , x(n) are declared outliers.

For multivariate sample problems it is much more difficult to locate outliers since

for univariate sample the definition of extremeness came from some form of ordering

the data. Now a multivariate observation can be an outlier without need to be an

extreme in any of its components. A common principle is specified in terms that the

most extreme observation xi yields the largest incremental increase in the maximized

likelihood under the model F for the remaining data, when it was omitted from the

sample x1, . . . ,xn. If that increase was very large it then leads to the declaration of

xi as outlier.

Following this idea, a sensible criterion suggested by Wilks for declaration of an outlier

is to choose the observation whose omission leads to the least value for

R(j) =

∣∣∣A(j)
∣∣∣

|A| , (5)

where A is the matrix of sum of squares and cross products of the observations about

the component sample means, and A(j) a similar matrix omitting unit j; see, Barnett

and Lewis(1994).

We can also look for a set of k outliers through R(k) = |A(k)|/|A|, k ≥ 1 when seeking

outliers in a multivariate data through the use of such “leave-one-out” methods. In

this case we evaluate the effect the deletion of one unit or block of unit vectors may

cause on the remaining matrix. However, for a large data set it may not be feasible to

look for all sets of reasonable sizes of potential outlier observations. The computational

complexity for this kind of search may limit the use of the method to only small data

set problems or to a case where the number of suspected observations in a large sample

is quite small.

2. Proposed methods for multivariate outlier detection

From the brief overview of some approaches for multivariate outlier detection the
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complexity for applying the Wilks’ criterion (5) is clear, specially for large datasets.

We then suggest three alternative approaches to deal with the general problem of

identifying multivariate outliers.

The first approach for the detection of outliers is to use forward methods, which start

from a small subset of the data and observations are added to the subset until finally

all the sample is included. The starting subset of size m, (m < n) is chosen to be

clean(free from outliers) and this kind of algorithm monitors the effect that each new

observation causes in the estimates of the parameters. The aim is to avoid the masking

effect of multiple outliers possibly present in the sample that can be a disadvantage

and provide a poor performance for backward methods. Hadi and Simonoff(1993)

and also Riani and Atkinson(2000) provide algorithms to perform this “include in”

searches, where the outlier–free data set is found by starting from small subsets and

moving to larger subsets containing only observations that have small residuals and

thus are unlikely to be outliers.

Generally the identification has to be carried out relative to some assumed model for

the conditional distribution of Y given X in the sample. The standard linear model

Y = Xβ + ε is a natural option but we also want to structure the outlier identification

process so that it makes minimal assumptions about the nature of the model relating

Y to X.

A non–parametric option is to work with regression trees; see, for example, Breiman,

Friedman, Olshen and Stone (1984), and Tsai and Chambers (2000). In this second

approach a vector of categorical variables X is used to build a regression tree that

describes the distribution of the response variable in terms of the categories of the

explanatory variables. The tree is built in a way that terminal nodes, defined by

classes of X, tend to group together homogeneous values for the response variable.

Methodology and experimental results for this approach are reported in Xinqiang and

Chambers (2002).

Finally, the third proposed approach uses the M–quantile idea (Breckling and Cham-

bers, 1998; Lübke, Kokic and Breckling, 2001), where the modelling of the data is

associated with extreme points in a sample. This algorithm can be designed in a way

to detect the local behaviour of the data either in the centre of the sample or in the

tails. Ideally, this method for identifying outlying points should be able to relate each

sample unit to a certain probability and direction, which has an orientation within the

whole data set. From the sets of probabilities associated to the n sample units, the

outliers could be then located through some degree of outlyingness. Methodology for
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this approach is described in Kokic (2002).

3. The forward search method

When masked multiple outliers are present in the data generally it is difficult to locate

the true outlying units. Classical identification methods do not always find those

observations since they are generally based on the sample mean and covariance matrix,

which are estimates already affected by the outliers. A relatively small cluster of

outliers may attract the estimate of the location and then would inflate the estimation

of the variability in its direction. Outliers would not then have a large value for the

usual Mahalanobis distance. In the case of regression data the ordinary least squares

approach may mask the outliers in a similar way.

Robust methods are then necessary to overcome this problem since robust distances

suit better to expose the true outliers in the data. Some approaches are designed in

that way. Rousseuw (1984) uses standardized least median of squares (LMS) residuals

ri

σ̂
=

yi − xT
i β̂

k
√

median(r2
1, . . . , r

2
n)

(6)

where k is a positive constant. The estimator β̂ is defined by

min(β) median(r2
i (β̂), i = 1, . . . , n) (7)

where ri(β̂) = yi − xT
i β̂ is the residual for the i–th observation. Large standardized

residuals (6) may indicate the regression outliers. Unbiased estimates of the regression

line are still provided by the LMS method for large n, even if almost half of the

data are outliers or come from some other model. The LMS has then an asymptotic

breackdown point of 50%.

In multivariate data, for a dataset Y = (y1, . . . ,yn) of n points in p dimensions, the

sample mean and the sample covariance matrix may be not adequate as estimators for

the center and scatter of Y. Rousseuw and Zomeren (1990) define robust distances to

identify multivariate outliers. The measure RDi is obtained by inserting the minimum

volume ellipsoid (MVE) estimates for the sample mean and covariance matrix on the

classical Mahalanobis distance,
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RDi =
√

(yi − Ȳ(mve)) S−1
(mve) (yi − Ȳ(mve)). (8)

The minimum volume ellipsoid estimator is defined as the pair (A, B) such that the

determinant of B is minimized subject to

#{i; (yi − A) B−1 (yi − A)T ≤ a2} ≥ h (9)

where h is the integer part of (n + p + 1)/2, A is a p–vector and B is a positive

semidefinite p–by–p matrix. The number a2 is a fixed constant, usually chosen as

χ2
(p;0.5) when it is expected the majority of the data come for a normal distribution.

Small samples will require a factor c2
(n,p), which depends on n and p. The MVE has

also a breakdown point of nearly 50%, which means that the location estimate A will

remain bounded and the eigenvalues of B will stay away from zero and infinity when a

little less than half of the data are replaced by arbitrary values. Even if those arbitrary

values contains outliers, robust estimates would still be provided by the MVE method.

Although the RDi is a robust measure to detect the outlying observations, it is com-

putationally expensive to be computed. Even for modest sample sizes it may not

be feasible to find the MVE since we need to select the ellipsoid with the minimum

volume from all the n!/(h!(n − h!)) possible combinations from the n observations.

Approximate algorithms for the MVE may be used to overcome the computational

cost using resampling methods. By drawing subsamples of p + 1 different observations

{i1, . . . , ip+1}, indexed by J, the mean and covariance matrix are then

Aj =
1

p + 1

∑

j

y and Bj =
1

p

∑

j

(yi − Aj)
T (y − Aj). (10)

We then compute

m2
j = {(yi − Aj) B−1

j (yj − Aj)
T ) }h (11)

as the corresponding ellipsoid should contain exactly h points. The squared volume of

the j–th resulting ellipsoid is proportional to m2p
j det(B

¯ j), of which the smallest value

is recorded. Finally, the best j selected subset provides

Â = Aj and B̂ = (χ2
(p,0.5))

−1 c2
(n,p) m2

j Bj (12)



7

as approximation for the MVE estimators. A weighted mean,

A1 = (
n∑

i=1

wi)
−1

n∑

i=1

wiyi, (13)

and a weighted covariance matrix,

B1 = (
n∑

i=1

wi − 1)−1
n∑

i=1

(yi − A1)
T (yi − A1), (14)

where the weights wi = w(RD) depend on the robust distances (8), are computed

later in a reweighting step.

The implementation of the MVE method via resampling may be also very expensive

since it demands a lot of different samples to reach good estimates.

Starting with the full sample and removing sequentially all the suspected units untill

no more outliers are present in the data may be an appealing method. However,

the swamping problem may also be present in the sample, affecting discordancy test

for blocks of two or more suspected units. A carefull investigation of all possible

combinations of suspected units at some particular stage, through tests like (5), in

order to get a clean data and move to the next trimming step, may also become not

feasible. Although the underlying idea is simple, the combinatorial explosion of the

number of cases of potential outliers to be considered at once is a severe drawback of

such backward approach.

Many methods for the detection of multiple outliers therefore use very robust methods

to split the data into a clean part and the potential outliers. One option is the forward

search method, which seems to overcome the problems faced by for one single–step

search or a backward outlier detection; see, for example, Hadi (1992), Hadi and

Simonoff (1993), Atkinson (1994), Hadi (1994), and Riani and Atkinson (2000) .

The basic idea is to start with a relatively clean data set of size m, defined from a

robust method, and include observations until only the outlying units remain out.

As Atkinson (1994) points, the forward algorithm rapidly leads to the detection of

multiple outliers. The exact calculation of robust parameter estimates, like the MVE

method attempts to do, does not seem to be necessary for outlier detection.

Variants of this idea include the BACON (Blocked Adaptive Computationally efficient
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Outlier Nominators algorithm; Billor, Hadi and Veleman, 2000), starting with one

initial subset and iterating until the data is separated in two parts, the outlier–free

subset and the outlying units. The Kosinski algorithm (Kosinski, 1999; and De Boer

and Feltkamp, 2000) follows the same principle, where several small subsets are selected

as starting points of a two levels iterating algorithm, ending with the partition of the

dataset in two parts, the good points and the outliers. Hulliger (2000) presents an

algorithm starting from a randomly chosen point. The epidemic then spreads through

the data and eventually all points are infected, the outliers usually are infected late

in this process due to their outlying isolation. A general comparison of the available

methods is not the focus of this work at this stage and then these last mentioned

algorithms will not be explored.

3.1. The initial clean subset

Let

C(m) = {(yi,xi), i = 1, . . . , m (m < n)} (15)

be the initial clean data, supposedly outlier–free, and (y,x) the sample values of the

multivariate response variable Yp and the covariate vector Xq. Usually the size m is

chosen as the integer part of h = (n + k − 1)/2, where k is the number of parameters

in the model.

This starting subset of data may be defined in different ways. Hadi and Simonoff

(1993) suggests two procedures: the first, by fitting a regression model to the full data

and then ordering the n observations by an appropriate diagnostic measure. The first

k + 1 units form the initial basic subset. A regression model is then fitted to this basic

subset and all n observations are again arranged in ascending order according to

di =





yi − xT
i β̂(m)√

1 − xT
i (XT

(m)
X(m))

−1 xi

, if i ∈ B

yi − xT
i β̂(m)√

1 + xT
i (X(m))

−1 xi

, if i /∈ B.
(16)

where B is the basic subset with the k + 1 starting units. The new subset will then

include the first (k + 1) + 1 and will grow up this way until the basic subset contains

h observations, becoming the initial clean data C(m).
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The second method involves a backward selection by constructing a single linkage

clustering tree and ordering the clusters from most to least extreme by the order of

joining. The principle is that the later a cluster joins, the more extreme it is. At each

joining, the cases in the smaller cluster are identified as the more outlying. When

the number of the most extreme identified cases reaches n− h, the h remaining cases

constitute the initial clean data C(m).

Riani and Atkinson (2000) start the forward search in the univariate case with the

selection of a subset of size q + 1 units, equal to the number of parameters in the

model, where X is the n × q matrix of explanatory variables. For moderate sample

size n, the choice of the best clean subset of size q + 1 can be performed by exhaustive

enumeration of all
(

n
q+1

)
distinct subsets. The initial clean data is defined by the

subset which provides the minimum median for the least squares residuals from

regression. A larger number of samples is required for the definition of this starting

subset as the best initial clean data if
(

n
q+1

)
is too large. This criterion gives a least

median of squares (LMS) approach for regression models with independent errors but

may be very expensive in computational terms.

For multivariate data from a p–dimensional population, Hadi (1992) defines the basic

subset by selecting the first p+1 observations from the n units arranged in an ascending

order according to a robust distance, using

Di(LR, SR) =
√
{(yi − LR)T S−1

R (yi − LR)}, i = 1, . . . , n, (17)

where LR and SR are robust location and covariance matrix estimators from the fit in

the full sample. Riani and Atkinson (2000) define a larger initial subset than m = p+1.

After transforming the data they perform a robust analysis of the matrix of bivariate

scatterplots and take as the initial subset those observations that are not outlying on

any scatterplot. The selected units to compose C(m) are found as the intersection of

all points lying within a robust contour containing a specified proportion of the data.

3.2. The main algorithm

Suppose a clean subset C(m) is already available. The forward search then moves

from m observations to m + 1 by choosing the m + 1 observations with the smallest

residuals from the fit on data of C(m). Standardized residuals from the estimate β̂ for

the linear regression model E(Y) = Xβ are computed by Hadi and Simonoff (1993) in

the univariate case (p = 1) as
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di =





yi − xT
i β̂(m)

σ̂(m)

√
1 − xT

i (XT
(m)

X(m))
−1 xi

, if i ∈ C(m)

yi − xT
i β̂(m)

σ̂(m)

√
1 + xT

i (XT
(m)

X(m))
−1 xi

, if i /∈ C(m),
(18)

where β̂(m) are the estimated least squares regression coefficients computed from fitting

the linear model to C(m) and

σ̂2
(m) =

∑m
i=1 (yi − xT

i β̂(m))
2

m− q
(19)

the corresponding residual mean square. When i ∈ C(m), di is then the internally

studentized residual and when i /∈ C(m), di is the scaled prediction error based on the

subset C(m).

Atkinson (1994) uses almost similar residuals, except that for i ∈ C(m) di is defined

as the least squares residuals but in their comparison no evidence was found in favor

of one type. For p > 1, Riani and Atkinson (2000) uses the squared Mahalanobis

distances

d2
i = {(yi − ŷi(m))

T Ŝ−1
(m) (yi − ŷi(m))}, i = 1, . . . , n, } (20)

to order observations for the forward search, where ŷi(m) and Ŝ(m) are obtained

from regression of Y on X based on the m observations from the basic clean data

C(m). Similarly, Hadi (1994) performs the forward search based on the Mahalanobis

distances calculated from the residuals from the regression.

The observations are rearranged in ascending order according to similar measure based

on L(m) and S(m), the mean and covariance matrix of the basic subset. At the next

step the clean data increases its size to m+1 using the n distances obtained from C(m).

Observations can leave the subset for fitting as well as joining it as m increases as n

distances are evaluated and ordered to define each move from m to m + 1. However,

from our computational experience with different data sets (Hentges, 2001–b) it seems

that for a few s steps ahead the clean data C(m+s) keeps all the former (m + s − 1)

units, just including a new one, and then becomes very stable in its composition.

Instead of growing the size of the clean data C(m) by just u = 1 unit at each step the

algorithm remains basically the same if the clean data is increased by more than one
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observation. For large sample sizes in the first moves the value of u could be large in

the beginning and smaller (or equal to 1) by the end, when changes in the distance

measures are more likely to appear.

When some stopping criterion is met at some particular stage s∗, then all the units not

included on C(s∗) are declared outliers and the algorithm stops. If the search augments

C(m) up to the full sample size n without a stopping requirement being met then the

data is declared outlier free.

3.3. Outlier identification and stopping rules

Under the assumption that the random errors εi in the general linear model

Y = XT β + ε

are iid N(0, σ2) for the univariate response variable case (p = 1), then the residuals

d2
i in (18) would follow a t distribution. However, as they involve the estimate β̂

they are dependent. Using σ̂(m) (19) to scale the residuals, assuming normality and if

β̂(m) and σ̂(m) were independent, then di would have a Student’s t distribution with

s − p degrees of freedom for each subset of size s for i /∈ C(m). Although β̂(m) and

σ̂(m) are dependent, Hadi and Simonoff (1993) use the t distribution as a benchmark

from witch to determine cutoff values. The residuals di in (18) are then compared to

t(α/(2(s+1)),s−p) in the main algorithm in order to point out the outlying units.

A stopping criterion is used for Hadi and Simonoff (1993) in the forward search. For

p = 1, d(s+1) is defined as the (s + 1)–th order statistic of the n absolute residuals |di|,
where s is the size of the current subset C(m). If

d(s+1) ≥ t(α/2(s+1),s−q) (21)

then all observations satisfying |di| > t(α/2(s+1),s−q) are then declared outliers and the

forward search finishes.

For p > 1, Hadi (1992) suggested two possible stopping rules when the basic data set

is increased. The first criterion is to stop when min{Di(Lb, Sb); i /∈ C(b)} ≥ cα where

the critical value cα can be chosen such that Pr[min{Di(Lb, Sb); i /∈ C(b)} ≥ cα|Y
contains no outliers] = 1 − α. The problem is that cα depends on the distribution

of Di(Lb, Sb), which is difficult to obtain. The other rule stops when the basic subset
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C(b) is augmented and contains h observations. However, both rules need to work with

resampling for the MVE since the covariance matrix Sb used to evaluate Di(Lb, Sb) in

(17) has a correction factor depending on mj.

With a modification on his former algorithm, Hadi (1994) orders the n evaluated

squared Mahalanobis measures D2
i (Lb, Sb), where now Sb does not depend on mj, and

defines D2
(s+1) as the (s + 1)–th order statistic of the D2

i . In a regression model, resid-

uals from fitting of Y on X are used to evaluate D2
i . The multivariate search stops if

D2
(s+1) ≥ χ2

(p,α/n), (22)

and then and all observations with D2
i ≥ χ2

(p,α/n) are identified as outliers. If the basic

data set increases to C(m) = C(n), without the stopping criterion being met, then the

data set is declared outlier free.

Atkinson (1994) and Riani and Atkinson (2000) perform forward searches but without

a stopping rule. The emphasis there is analyzing plots of the residuals obtained from

a full search, starting from the clean data and increasing up to the full sample size.

At each particular stage m,m + 1, m + 2, . . . , n each observation yi is tested if it is

an outlier according to the Mahalanobis distances from (20). The cuttof value used is

the maximum expected value from a sample of n chi–squared random variables on p

degrees of freedom, approximated by

E(max χ2
p) = χ2

p {(n− 0.5)/n}. (23)

When the full search ahead is performed, the units which have been identified as

outliers in most of the steps can have a close examination. Empirically we define a set

of outliers by taking the observations which are not on the current clean data when

the relative “jump” on the residual variance on the fit on C(m) is maximum. Let

τj =
det(S(j)) − det(S(j−1))

det(S(j−1))
, j = 2, . . . , n, (24)

where S(m) = (m−q)−1 ∑m
i=1 (yi− ŷi)

T (yi− ŷi) is the estimated residual covariance

matrix based on the clean data with current size m and det(S) its determinant. Since

the search is based in Mahalanobis distances in ascending order, the most important
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outlier to join the clean data at some stage should cause a breakdown for S(m). At

some step j where τj is maximum we declare the unit joining the clean data and

all those not included yet as outliers. The distribution of τj is not available and

depends on the sequence S(m), S(m+1), . . . , S(n) with dependent components, since

generally units included in the clean data at step m should be present at step m+1 too.

Also, considering the number of times each sample unit was declared outlier in the

whole search, we apply a binomial test to define a set of outlying units. For example,

suppose πi is the true probability that sample unit i is an outlier in the population.

Let δi =
∑n−m

k=1 Iik be the number of times the unit was identified as outlier based

on the n−m steps performed, where Iik is equal 1 when residual di is outlying on the

k–th step of the search and 0 otherwise.

Assume now that δi ∼ B(n − m,πi), at least approximately since the Iik are not

independent. Defining p̂i = δi/(n − m) we then declare unit i as a true outlier (by

specifying πi = 1) if

√
(n−m)− 1 (1− p̂i)√

p̂i (1− p̂i)
< c(α), (25)

where c(α) is the cutoff given by the asymptotical normal N(0, 1) distribution.

These two empirical procedures will be performed just to have some comparison be-

tween the outliers defined by the precise stopping rule from Hadi, in a way to use

results from the full search and check the if the outlying sets agree.

3.4. Graphical examination for outlier detection

Having performed n − m steps in the full forward search algorithm it is possible to

analyze the behaviour of the sequence of the n residuals. Units with a clear outlying

pattern could be detected through the analysis of those residuals. Atkinson (1994) and

Atkinson and Riani (2000) use stalactite plots, displaying standardized residuals for all

n sample units throughout the n−m steps of the forward search. For most of the search

the largest residuals expose the outliers and on the last steps some dramatic changes

happen when outliers are present on the data, since those units are finally included

in the augmented clean data and then creates a breakdown of the quite monotonic

behaviour of the residuals.
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By performing a number of simulations, in each one defining at random a clean starting

subset C(m), Atkinson (1994) finds the average value σ̄(m), the mean of the LMS variance

estimate σ̃2
(m) = median(e2

i ). The stability of the search can be seen from confidence

intervals for the average σ̄(m) for different starting sizes m. The smooth increase of

σ̂(m) (19) is typical of what is expected when the data agree with the model and are

correctly ordered by the forward search. Although those graphical procedures do not

provide a formal test for outlier detection they are a powerful aid to indicate which

units are potential outliers and its influence on the breakdown of the clean residual

variance σ̂(m).

3.5. Transformations on the data

Outliers in the raw original data may not be outliers in another transformed scale

and vice versa. If the data are analyzed using the wrong transformation the possible

outliers present into it may not be detected or even enter the search well before the end.

Generally the forward search for outliers in regression models are based on the classical

linear model Y = XT β + ε. For transformation on just the response variable Y, Box

and Cox (1964) analyzed the normalized power transformation

z(λ) =

{
(yλ − 1)/λ ỹλ−1 , λ 6= 0
ỹ log(y) , λ = 0

where the geometric mean of the n observations is written as ỹ = exp(
∑

log yi/n).

The model fitted in this transformation is multiple regression with response z(λ),

z(λ) = XT β + ε. (26)

When λ = 1 there is no transformation. Another values usually used for λ and

supported by empirical reasoning on the analysis of real data sets are: λ = 1/2, the

square root transformation; λ = 0, the log transformation and λ = −1, the reciprocal.

In this analysis the aim is to find an estimate of λ which provides errors in (26) at

least approximately normal distributed with constant variance and for which a simple

linear model reasonably fits the data.

Atkinson and Riani (2000) present approximate score test statistics for testing the

transformation parameter λ by
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z(λ)
.
= z(λ0) + (λ− λ0)w(λ0), (27)

where λ0 is the hypothesized value for λ. The approximate score statistic for testing the

transformation, Tp(λ0), is the t statistic regression on w(λ0) in (27). Riani and Atkinson

(2000) monitor the score statistic for transformation as the number of observations of

the clean data used to fit the model is increased. The fan plot displays the influence

of each individual observation and the evidence for a transformation.

Although some transformation on the data may be appropriate to expose the true

outliers the main point is that outliers identified in that new scale for some λ value,

are not necessarily outlying observations in the raw scale (λ = 1). After the outlier

identification is performed, usually inference moves to estimation. If the estimates are

evaluated on the transformed data, using robust methods that decrease the impact

of those suspected values, it is not straightforward to convert it to the original scale.

The possible bias involved in this back transformed estimates may bring an additional

complication to the analysis and must be carefully corrected. It may be necessary to

transform the data through sophisticated ways but perhaps a simple transformation

can be adequate in case it provides a good linear model to be used within the forward

search approach, when the main concern is outlier detection.
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