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1 Introduction

The purpose of this note is to describe how a simple Multi-Layer Perceptron (MLP) can
be used to impute missing values in financial time series.

The data examined in the Eur®dit project is confined to shares, European style
call and put options on certain of these shares, and bonds (non-callable), as well as
several indexes. Given that the best results out of the more sophisticated models tested
in Kokic (2002) was for the R.1 cross-sectional regression model, we will use the same
set of covariates as inputs for the MLP, that is the index variables. This considerably
simplifies the process of fitting the MLP, because the index data is complete. Also, as
for the R.1 model, all data will be pre-transformed by taking log-returns. Since MLPs
are highly flexible models, we would hope that they also work quite well for predicting
the prices of options (recall that the EM algorithm for the R.1 model did not converge
in this case).

In the following section we present the MLP model and then describe the method-
ology that was used to estimate the parameters in the model. Unlike the traditional
approach used in most Neural Network software and texts, see for example Schere (1997)
or Rehkugler and Zimmermann (1994), we present a very statistical approach which has
the advantage of clearly highlighting the modelling assumptions being made, as well as
leading to some worthwhile improvements in implementation and notation. In subse-
quent sections we present a heuristic algorithm for the estimation of the parameters,
and finally, a similar analysis of the imputed data to those performed in Kokic (2001)
and Kokic (2002) will be undertaken.

2 The MLP Model

What is distinct about the approach in this paper is that the MLP is presented as a
statistical model, and the estimation of the model parameters is done by minimising
a corresponding least-squares criterion. Note that the standard back-fitting algorithm
often applied to estimate parameters in MLPs need not necessarily minimise this ob-
jective function. Indeed it may only find a local minimum or it may implicity use some
other objective function. What is important to note here is that for the standard MLP
approach it is often unclear exactly what modelling assumptions are being made, in
which case one can not properly assess whether the model is valid in a statistical sense,
which means that its predictive ability cannot be relied upon.

We begin with the statistical specification of the MLP model. Suppose that there
are n observations in the dataset, and for the i** observation, i = 1,...,n, vy; is a
univariate response (output) variable, and z; = (%;1,...,%ip) is a p x 1 vector (p < n)
of explanatory (input) variables. We assume that y; is related to z; according to the
nonlinear model:

y; = f(z4]0) + i, (2.1)

where g; ~ NID(0, v?) (i.e. independent normal random variables), and v is a unknown
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constant. For a single layer MLP f is defined as:

K p N
Tii — fii
f(zi|0) = Y By tanh ZW—”& 21, (2.2)
k=1 j=1 J
where 8, and 5, k=1,..., K, j = 1,...,p, are the unknown parameters making up
6, and fi; and 6]2- are the mean and variance over the j* column of the n x p input
data matrix X = (z1,...,z,)’, respectively. Note that K is the number of nodes in the

single intermediate layer of this MLP. In vector notation,

f(2;]6) = B tanh (F'ﬁ]glﬂ(xi - ﬂ)) , (2.3)
where 5 = (B1,...,0k)" is a K x 1 vector and I" = (7;;)" is a p x K matrix of unknown
constants, and fi = (fi1,...,[p)" is a p x 1 vector and ¥y = diag(o?,... ,012,) isapXxp

matrix of known constants.
To significantly reduce the problem of collinearity during estimation and conse-
quently improve stability, in place of ¥y we will use the full covariance matrix of X:

S=(n—-1)"YX—4a)(X —4), where i =n 1'X. (2.4)
That is, we replace (2.3) by
f(2;]0) = B tanh (I'z) , (2.5)
where z; = 57 /*(X — i) and 6 = {T', 8}. Defining Z = (z1,...,2,)" = (X — @)571/2,
we may rewrite (2.5) as
£(Z10) = (f(21]0),..., f(zn]0))" = tanh(ZT)B.
Hence the model (2.1) may be specified in the more convenient vectorised form:

y = f(Z]0) + € = tanh(ZT")5 + ¢, (2.6)

where y = (y1,...,yn)", the n-vector e ~ N(0,v2I,) and I, is a n x n identity matrix.

It is straightforward to see how (2.6) can be generalised to a multi-layer perceptron.
For example, for a two-layer MLP f(Z|#) = tanh(tanh(ZT';1)I'2)3, where in this case
I'yispx Ky, Ig is K1 x Ko, B is K9 x 1, and 0 = {I'1,T'9, }. However, for reasons of
simplicity, we confine attention in this paper to the single-layer model (2.6).

3 Estimation of the Model Parameters and Imputation

3.1 Estimation of the parameters

We will assume throughout that there are no missing values in the input X data matrix.
However, there may be missing values in the output data vector y. The intention, of
course, is to use the MLP (2.6) to impute these values. Although it may be possible
to use the EM-algorithm to estimate the parameters in (2.6), we adopt the simpler, al-
though less efficient solution, of removing these observations entirely from the estimation
process.
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Since at (2.6) a normal assumption with constant error variance is made, it is most
appropriate to use the least-squares criterion:

6={I B} = argmingp g (y — tanh(ZT)B)" (y — tanh(ZT)p). (3.1)

The problem of estimating the these parameters is then reduced to a minimisation
problem, where a variety of standard approaches can be used. We shall not go into
details in this paper, but rather assume that an appropriate procedure can be applied
to the current situation. Note, however, that minimising (3.1) may not be entirely
straightforward because the objective function is potentially quite complex and could
have many local minima.

A short algorithm for estimation of the MLP parameters is as follows:

1. Let I'y be some starting estimate for I'. A sensible choice is to set up a matrix of
polynomial values, G, of dimensions p x K, with k' column equal to [1 : p]*. Since
many of the values in this matrix are likely to be too large, we should rescale it
by a suitable constant. We propose using the maximum eigenvalue of G'G, Amax
say. That is, set I'g = AL G.

max

2. Leti=1
3. Let X; | = tanh(ZT; 1)
4. Use the least squares estimate for the current value of 8: §; = (X! X )7 X .

5. Find the current estimate of T, I'; say, by minimising (3.1) while keeping 8 = B;
fixed.

6. Set 2 =4+ 1 and repeat from step 3 until convergence.

3.2 Cross validation and imputation

Perhaps a more difficult problem than estimation itself is the optimal choice for the
number of nodes K on the intermediate layer of the MLP. The total number of param-
eters in the model is (K + 1)p (plus 1 for the dispersion parameter v), which increases
quickly with K. Hence one quickly moves into a situation where over-fitting can become
a serious problem.

The approach we propose using here is to minimise a least-squares criteria for a pre-
selected subset of y-values, denoted by s, which are not used to estimate the parameters
themselves. In effect, imputation is being used in the cross-validation process. We
simply predict a particular y-value using:

i = £(0) = tanh(zT), (3.2)
where T' and § have been estimated from the observations in {1,...,n}\ s. The cross-
validation criterion is then,

> (yi — i) = () — tanh(Z2)T)B)' () — tanh(Z)T) ), (3.3)
1ES

where y(*) = (y;;4 € s)' is the vector of y-values in s, and Z(*) = (2/;i € s)' is the input
data sub-matrix obtained by selecting the rows ¢ € s from Z.
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3.3 Algorithm for cross-validation and estimation

Given the above discussion, it is quite simple to define an algorithm for estimating the
parameters in the MLP:

1. Using (2.4), pre-transform the input data X according to Z = S1/2(X — j).
2. Specify the cross-validation subset s C U = {1,...,n}.

3. Set K = 1.

4. Using the algorithm in subsection 3.1, estimate {I', 5} by minimising the objective
function:

(yU\) — tanh(ZWNIT)B) (5N — tanh(ZUN\IT)3).
Denote the estimated values by {T, 3}.
5. Compute CV using equation (3.3).
6. Repeat from step 3 for K = 2,3,4,5,6,7,8,9,103.
7. Set K € {1,...,10} to the value which minimises CV .

8. Estimate {I', 5} using all observations in U via the objective function (3.1).

3.4 Application of the MLP to the time series data

Let us denote the price or index time series (with missing data) by {Py;,t = 1,...,T}
where t is time (days) and ¢ = 1,..., [ is an instrument or index label, and let P = (P};)
be the matrix of all these values. In all cases P; € Rt U{-}, i.e. the values are either
positive real numbers, or missing, denoted by “-”. In the Eur¥dit project the dimension
of P is 1304 x 99, that is there are 1304 daily values for 99 time series.

Let W be the log-transformed data and W = WO, ..., W®), where W) are US
shares, W% are UK shares, W) are UK bonds (Gilts), W4 are UK derivatives and
W®) are stock indexes and exchange rates. The following algorithm specifies how we
can apply the MLP from the previous section in the current situation.

Specification MLP:

1. Perform the log-return pre-transformation as described in section 5.1 of Kokic
(2002) on P to obtain W = [W) ..., W®]. Let C be the number of columns in
W,and c=1.

2. Let y =W (:,c) and X = W®). Note that y may contain missing values because
it is constructed from the missing value dataset P.

3. Let s be the subset of y-indices where missing values occur in the first 3 years
of the y-time series. For ¢ € s, replace y; by its true value from the true-value
dataset. Remove the remaining missing values from y and the corresponding rows
of X. Let n be the number of observations in y, and U = {1,...,n}.

3A different set of K-values could be used if the one proposed does not prove appropriate
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4. Use the MLP algorithm described in subsection 3.3 to form estimates { K, I, B}

5. Using these estimates, X = W©®) and equation (3.2), impute the missing values
in W(,c).

6. Repeat from step 2 forc=2,...,C.

7. Perform the post-transformation described in section 5.1 of Kokic (2002) on W to
obtain the imputed price time series.

4 Assessment Results

4.1 Shares and Bonds

Analysis of the shares and bonds data was performed using the financial panel/time
series data from the Eur¥dit project. For a full description of this data and how missing
observations were generated see the associated documentation with these data. A total
of 51 daily time series covering the time period from the beginning of 1995 to the end
of 1999 were used in the analysis. The MLP method was applied to the data as well as
the simple last-value carried forward (LVCF), see Kokic (2001), and the non-parametric
(NP100) methods, see Kokic (2002), purely for purposes of comparison.

According to the statistical definition, MLPs are univariate because they model
a single response variable at a time, although one could easily derive a multivariate
generalisation from (2.6), this is not the purpose of the current paper. Consequently,
51 univariate MLPs were independently fitted to the shares and bonds time series data.
During each fitting process cross validation was performed, and in nearly all 51 cases
it produced an optimal K value of either 2 or 3. When K = 2 there are a total of 26
parameters in the MLP, and in the case K = 3 there are 39 parameters. Such a result is
interesting, and probably as one would expect, as it indicates that a more parsimonious
model is completely adequate for predicting the shares and bonds prices.

Assessment was performed on the basis of two criteria, distributional accuracy and
predictive accuracy as defined in Chambers (2000). Note that a fuller set of assessments
will be performed in a later stage of the Eur®dit project. In all cases assessment was
performed on the pretransformed log-return data because, on practical grounds, this is
the most sensible to use. In addition, observations where the log return of the non-
missing data equals zero were excluded from the analysis, because they have already
been imputed at their original source and it would bias the results in favour of the LVCF
technique if they were included in the assessment. In fact, excluding these observations
only had an impact on some of the distribution assessment results.

For the first assessment criterion the Wald statistic was used, see expression (14) of
Chambers (2000). Specifically, this statistic and the corresponding p-value, computed on
the basis of a x? approximation, was determined over all imputed observations separately
for each time series. The resulting set of p-values were then summarised using box plots
as shown in figures 1 — 2 in the appendix. Note that in these figures small values of
p close to zero indicate a significant departure from preservation of distribution. For
predictive accuracy expression (19) in Chambers (2000) with w; = 1 was used. This
statistic can be interpreted as the average error of imputation. In effective it is a relative
measure because the log-return data is a rate of change variable. Again the statistic was
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computed separately for each time series and then the set of results were summarised
using box plots (see figures 3 — 4).

The results indicate that the MLP and the NP100 approaches are both consider-
ably better than the LVCF method in terms of distributional accuracy, with the MLP
approach marginally better than the NP100 method. In particular, the slightly better
performance of the MLP approach is maintained consistently across degree of miss-
ingness categories (figure 2). In terms of predictive accuracy there is very little to
distinguish between the methods. If anything, the MLP method is slightly worse than
the other approaches, while the NP100 method is slightly better.

4.2 Options

In section 7 of Kokic (2002), for imputing missing option prices, it was found that the
sophisticated and complex EM algorithm (the so-called BSEM approach), produced lit-
tle if any improvement over the relatively simple BSLVCF approach, where the missing
implied volatilities were imputed by carrying the last observable implied volatility for-
ward in time. It was noted therein that this could be due to the modelling assumptions
implicit in the EM algorithm, i.e. either the assumption of multivariate normality or of
linearity between the log-return values of the implied volatilities.

The second of these two assumptions are considerably relaxed by the MLP model (as
it would indeed be by any other non-linear statistical model). Because of multivariate
normality, the EM-algorithm makes a strong assumption about linearity between the
dependent variables, whereas MLPs are reputably a very flexible class of non-linear
models*. Thus if the linearity assumptions is the reason for the poorer-than-expected
performance of the BSEM approach, then one would expect some improvement using
an MLP.

The way the MLP was applied in this situation is as follows. As for the other BS
methods, implied volatilities were computed where an option price was available, which
resulted in missing implied volatilities only where there are missing option prices. The
log returns of the implied volatilities were computed, and a single log-return implied
volatility time series was imputed at a time using the remaining log-return implied
volatility time series as explanatory (input) variables®. All values were transformed
back to the original scale using the approach described in section 5.1 of Kokic (2002).
Finally, the Black-Scholes pricing formula was used to impute the missing option prices
from the imputed implied volatilities. In the remaining part of this paper we refer to
this method of imputation as the BSMLP approach.

Results for the BSMLP approach, and for comparative purposes the BSEBASE,
BSLVCF and BSEM approaches, are presented in figures 5 - 6 in the appendix. These
results clearly show that, as predicted above, in terms of distributional accuracy the
BSMLP approach is superior to the BSEM method. Out of the four methods examined
here, for low and moderate degrees of missingness, distributional properties are best
preserved by the BSMLP approach, but the BSLVCF is slightly better for high degrees

“Note that by modifying the loss function used in 3.1, the normality assumption could also be
removed from the MLP model, although we do not pursue this idea here.

SWhere a missing value occurred in one of the explanatory variables, the LVCF approach was used
to input its value (strictly speaking a zero was imputed because the log-returns of the volatilities have
already been taken).
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of missingness. In terms of predictive accuracy, it is hard to tell any difference between
the BSLVCF and BSMLP approaches. However, for high degrees of missingness the
BSEM approach is superior to the other three approaches.

References

Chambers, R. (2000). Evaluation Criteria for Statistical Editing and Imputation.
EUREDIT working paper, University of Southampton, Southampton, UK.

Kokic, P. (2001). Standard methods for imputing missing values in financial
panel/time series data. Working paper 2, QANTARIS GmbH, Frankfurt am Main.

Kokic, P. (2002). The EM Algorithm for a Multivariate Regression Model: including
its application to a non-parametric regression model and a multivariate time series
model. Working paper 4, QANTARIS GmbH, Frankfurt am Main.

Rehkugler, H. and H.-G. Zimmermann (Eds.) (1994). Neuronale Netze in der
Okonomie. Miinchen: Verlag Franz Vahlen.

Schere, A. (1997). Neuronale Netze. Wiesbaden: Vieweg & Sohn.



EUREDIT deliverables D 5.7.1 and D 5.7.2 part C

A Figures

A.1 Wald statistics
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Figure 1: Distributional accuracy of the log-return imputed values

A.2 Distance statistics

A.3 Results for options
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Figure 2: Distributional accuracy of the log-return imputed values by degree of miss-
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Figure 3: Relative accuracy of the log-return imputed values by method of imputation
(log scale)
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Figure 4: Relative accuracy of the log-return imputed values by degree of missingness
(log scale)
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Figure 5: Distributional accuracy by degree of missingness and by method of imputation
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Figure 6: Relative accuracy by degree of missingness and by method of imputation (log
scale)



