Euredit WP 4.3:

Editing of UK Annual Business Inquiry

Final Version

Christian Harhoff

Peter Linde

Lene Pedersen

Morten Wild

Statistics Denmark

Date 1.3.2002
Contents

Summary
3

1
Introduction and aims
4

2
Theory of multi-layer perceptrons network
6

3
Clementine
13

4
Stepwise examination of the data editing method
17

5
UK Annual Business Inquiry
19

6
Editing the short questionnaires
20

7
Results
26

8
The use of software
36

Reference
41

Appendix A. Variable descriptions and contents of dataset
42

Appendix B. Checks of additive constraints
43

Appendix C. Charts

Appendix D. ROC-curves

Summary

This paper describes how MLP and RBF networks are used for identifying errors that are difficult to locate. The paper provides the reader with a short overview of the theory behind neural networks and it offers a suggestion of how to edit data using neural networks.

The method is applied on the dataset UK Annual Business Inquiry. The result of the analysis showed that it is necessary to work hard with neural networks if they have to perform better than linear regression.

1 Introduction and aims

This report is a part of the so-called Euredit project, which is financed by Eurostat. The aim of the Euredit project is to compare methods of data editing (Error Localization) and imputation of representative sets of data from the national statistical agencies.

The purpose of this report is to examine the efficiency of both the MLP (Multi Layer Perception) and the RBF (Radial Basis Function) networks when applied or used in data editing by the national statistical agencies. In this report we apply Artificial Neural Networks (ANN) in order to data edit data from the UK Annual Business Inquiry.

In the data editing process we distinguish between to types of errors, namely critical errors and suspicious errors, see Granquist [2]. Critical errors are, for example, found by using a logical test based on a priori relationships in the data, or a variable is assumed to have the wrong type, or that the variable takes an invalid value, such as a negative number of employees. Suspicious errors are, for example, identified by an examination of whether the ratio of certain variables in the dataset exceeds a defined threshold value. It is important to minimize the number of variables that are defined as suspicious.

ANN, for example, multi-layer perceptron networks are suitable when the aim is to determine complex relationships between a large numbers of variables simultaneously. This ability is one of the areas of difference in data editing using ANN compared to using the standard data editing methods. ANN is preferred to standard linear methods because of its ability to handle non-linearity, as many of the relationships between the variables are non-linear. If we are to data edit a dataset where the relationship between the variables is linear only, then there is no advantage in using ANN. Data editing using neural networks has, furthermore, an advantage in demanding a low level of knowledge of the structure of the dataset.

In this paper we apply ANN in data editing by, first training ANN in order to determine the structure in a dataset containing no errors, thereafter we apply this structure in order to imputate new values for a certain variable in a dataset with errors. The difference between the estimated value and the observed value is used as an indication of whether the observation is a suspicious error.

Another method was described by Nordbotten [4,5,6]. He applies a standard MLP network with one hidden layer. All variables are input variables before the data editing, and all variables are output variables after the data editing. An advantage of this method is that you need only to estimate one single model compared to one model for each variable. The disadvantage of this method is that it is highly demanding in processing power, it takes quite an effort to estimate one single big model than to separate models for each variable. Nordbotten concludes that his methods are better at imputing missing values than data editing is. The methods of Nordbotten are also described by Roddick [8,9].

The difference between the analysis performed in this paper and Nordbottens method of analysis applied on continuous variables is, that Nordbotten uses the original value for the variable that is to be edited and then he substitutes it with the value estimated by the neural network. The consequence of this method for continuous variables is that, Nordbotten will correct all observations.

This paper uses CLEMENTINE from SPSS in order to solve the neural part of the problem. The programme is relatively cheap and very user-friendly, these are important features for the programme when the aim is to use it in national statistical agencies. An alternative to CLEMENTINE would be Matlab, which could probably generate better results, but this programme is for specialists only.

2 Theory of multi-layer perceptrons networks

The terminology of neural networks has developed from a biological model of the brain. A neural network consists of a set of connected cells: The neurons. The neurones receive impulses from either input cells or other neurons and perform some kind of transformation of the input and transmit the outcome of the transformation to other neurons or to output cells. The neural networks considered in this paper are built from layers of neurons connected so that one layer receives input from the preceding layer of neurons and passes the output on to the subsequent layer. Networks where the information runs in one direction only are called feed forward networks or multi-layer perceptrons (MLP).

The neurons are built as shown in figure (2.1). The neuron is a real function of the input vector
[image: image116.png]Input Neuroner Hidden Neuroner Qutput Neuroner

a
e A

. The function consists of a calculation of the weighted sum
[image: image2.wmf]å

=

+

=

k

i

j

ij

j

j

y

w

x

1

a

, where
[image: image3.wmf](

)

kj

j

w

w

,

,

1

K

 is a set of weights connected to the neuron, and a transformation of the net input
[image: image4.wmf]j

x

 by some function
[image: image5.wmf]j

f

called the activation function. The value
[image: image6.wmf](

)

j

x

f

 is the value of the neuron and is transmitted forward in the network.

Figure 2.1 An artificial neuron

[image: image7.png]sumination nonlinearity

— Z___l w,jyz Yi = f(xj)

In a multi-layer perceptron the neurons are gathered in layers as shown in figure (2.2). The feed forward structure is illustrated by the arrows, which point in one direction only. The number of input neurons equals the dimension of the input vector and they transmit the input values ahead.

Figure 2.2. MLP with one hidden layer.

[image: image1.wmf](

)

k

y

y

,

,

1

K

When using the brain analogy: The input neurons get their input from the senses, the hidden neurons describe the contents of the input and the output neurons pass the description on into the system. Training a neural network with a given dataset consists of finding a set of weights so that the network connects the input vectors with the associated output vectors.

2.1 Introduction to MLP neural network

The models of the MLP networks were developed in the late fifties, but the lack of computer power made it impossible to use the models until the middle of the eighties, where it became possible to use MLP networks for practical purposes. The MLP networks are the most used neural networks and they are often referred to simply as neural networks.

In the following we will give a mathematical description of a MLP with one hidden layer. It is discussed how the set of weights is found on the basis of a training dataset. This is done by finding a set of weights that minimizes an error function. The algorithm used for this is an iterative process called back-propagation. For a more complete treatment of the subject we refer to Riply [7] chapter 5 or Bishop [1]. The following notation will be used:
[image: image8.wmf]
· The total number of neurons is
[image: image9.wmf]K

,

·
[image: image10.wmf]in

K

 the number of independent variables or input neurons

·
[image: image11.wmf]out

K

 the number of dependent variables or output neurons

·
[image: image12.wmf]hidden

K

 the number of hidden neurons.

Using this terminology the relation
[image: image13.wmf]hidden

out

in

K

K

K

K

+

+

=

 holds. Let the neurons be numbered such that input neurons are indexed from
[image: image14.wmf]1

 to
[image: image15.wmf]in

K

, the hidden neurons are indexed from
[image: image16.wmf]1

+

in

K

 to
[image: image17.wmf]out

K

K

-

, and the output neurons are indexed from
[image: image18.wmf]1

+

-

out

K

K

 to
[image: image19.wmf]K

. To each neuron will we assign a variable
[image: image20.wmf]i

y

,
[image: image21.wmf]K

i

,

,

1

K

=

 and to the neurons that are not input neurons we will assign an activation function
[image: image22.wmf]i

f

,
[image: image23.wmf]K

K

i

in

,

,

1

K

+

=

. The activation functions are real functions of the input to the neuron.

The variables assigned to the input neurons are simply the independent variables. The values of
[image: image24.wmf]K

K

y

y

in

,

,

1

K

+

are obtained as function values of the activation functions of the output neurons and are the values that the neurons pass on.

The MLP network is a function from
[image: image25.wmf]in

K

R

 to
[image: image26.wmf]out

K

R

defined on the basis of neurons and a set of weights of the connections between them. This function will now be described.

The input to the
[image: image27.wmf]k

´th hidden neuron, i.e.
[image: image28.wmf]out

in

K

K

K

k

-

+

=

,

,

1

K

, is given by
[image: image29.wmf]å

=

+

=

in

K

j

j

jk

k

k

y

w

x

1

a

. To ease notation a zero term is often added to the sum with the value
[image: image30.wmf]1

0

=

y

and
[image: image31.wmf]k

k

w

a

=

0

. Thereby the net input to the
[image: image32.wmf]k

´th hidden neuron is
[image: image33.wmf]å

=

=

in

K

j

j

jk

k

y

w

x

0

. Then the output
[image: image34.wmf]k

y

from the
[image: image35.wmf]k

'th hidden neuron is

[image: image36.wmf],

0

÷

÷

ø

ö

ç

ç

è

æ

=

å

=

in

K

j

j

jk

k

y

w

f

y

[image: image37.wmf]out

in

K

K

K

k

-

+

=

,

,

1

K

.

The output from the output neurons i.e. the output of the network, is found analogously:

[image: image38.wmf],

1

÷

÷

ø

ö

ç

ç

è

æ

=

å

-

+

=

out

in

K

K

K

j

j

jk

k

y

w

f

y

[image: image39.wmf]K

K

K

k

out

,

,

1

K

+

-

=

.

The activation function can in principle be any function. Mostly the logit function or a linear function is used i.e.

[image: image40.wmf])

exp(

1

)

exp(

)

logit(

)

(

x

x

x

x

f

+

=

=

or

[image: image41.wmf]b

x

a

x

f

+

×

=

)

(

.

Another often used activation function is the hyperbolic tangent. The models where the logit function and the hyperbolic tangent are used as activation functions are equivalent since hyperbolic tangent is a linear transformation of the
[image: image42.wmf]logit

function
. For the same reason we could use the identity function instead of the linear functions. Whether one chooses the logit function or the hyperbolic function depends on which function minimizes computing time.

If the linear activation functions are used the statistical model of the MLP is a linear model since compositions of linear functions are linear. If the logit functions are used the model of the MLP is not a logit model since the composition of two logit functions is not a logit function.

In Bishop[1] (page 130, paragraph 4.3.2) references are given to several papers where it is proven that a MLP network with one hidden layer can approximate any continuous function defined on a space of final dimension.

It is well known that any continuous function given on a closed and bounded interval can be approximated by a polynomium or a piecewise linear function. The task of approximating is quite more difficult in the case of functions of more than one variable. For instance, if a function of ten variables was to be approximated by a polynomium of fifth degree it would take more than 510 (≈ 9,7 Millions) parameters. One of the forces of the MLP neural networks is that they can approximate functions of several variables by a limited number of parameters.

As mentioned, the learning of a neural network consists of finding a set of weights so that an error function is minimized. We now turn to this problem.

2.2 The Parameters in a MLP network

To determine the set of weights for a neural network we will use a training data set. A training dataset consists of pairs of vectors
[image: image43.wmf])

,

(

t

x

, where
[image: image44.wmf]in

K

R

x

Î

and
[image: image45.wmf]out

K

R

t

Î

[image: image46.wmf]x

is observed input and
[image: image47.wmf]t

is observed output. The point is to determine the weights so that the network yields the best possible guess of the vector
[image: image48.wmf]t

on the basis of
[image: image49.wmf]x

 for all
[image: image50.wmf])

,

(

t

x

in the training dataset. The best possible guesses are defined as the set of guesses that minimizes an error function. An error function is a function of the weights connected to the training data set and is a measure of the neural network's performance e.g. the sum of the squared errors:

[image: image51.wmf](

)

ˆ

)

E(

2

å

-

=

p

p

p

t

t

w

,
(5)

Here
[image: image52.wmf]w

is a vector of weights,
[image: image53.wmf]p

is the index of an ordering of the training data set,
[image: image54.wmf]p

t

ˆ

be the value which is estimated by the network when
[image: image55.wmf]p

x

is the input vector and
[image: image56.wmf]p

t

is the observed output vector.

In the following we will do the calculations on a network with a single output neuron, but everything would work just as well if we had considered several output neurons. Moreover, it will be assumed that the training dataset consists of a single pair of vectors.

We want to minimize E. The method used for this is the steepest descent method. That is, stepwise changing each weight in the direction of the fastest decrease of
[image: image57.wmf]E

:

[image: image58.wmf]]

[

]

[

]

1

[

E

n

ij

ij

n

ij

n

ij

w

w

w

w

¶

¶

-

=

+

h

.

Here
[image: image59.wmf]h

 is a positive number called the learning rate
.

2.3 Estimation by back-propagation

In this section we describe a method to find
[image: image60.wmf]ij

w

¶

¶

E

. Finding
[image: image61.wmf]ij

w

¶

¶

E

 is a crucial step in the back- propagation algorithm and is in some literature also called back-propagation. The main idea is to use the chain rule.

We define
[image: image62.wmf]j

d

 by
[image: image63.wmf]j

j

x

¶

¶

=

E

d

, where
[image: image64.wmf]å

=

i

i

ij

j

y

w

x

, the net input to the
[image: image65.wmf]j

´th neuron. If we consider
[image: image66.wmf]E

as a function of the weights the chain rule will give

[image: image67.wmf]i

j

i

j

ij

j

j

ij

y

y

x

w

x

x

w

d

=

¶

¶

=

¶

¶

¶

¶

=

¶

¶

E

E

E

.
(9)

The first equality holds since
[image: image68.wmf]E

is only influenced by
[image: image69.wmf]ij

w

 through
[image: image70.wmf]j

x

only. The problem of finding
[image: image71.wmf]ij

w

¶

¶

E

 is solved if we find
[image: image72.wmf]j

d

. The number
[image: image73.wmf]i

y

is the output from the
[image: image74.wmf]i

´th neuron and is considered known. Using the chain rule once more yields

[image: image75.wmf])

´(

E

E

E

j

j

j

j

j

j

j

x

f

y

x

y

y

x

¶

¶

=

¶

¶

¶

¶

=

¶

¶

=

d

.
(10)

The first equality holds by definition, the second holds since the influence on
[image: image76.wmf]E

from
[image: image77.wmf]j

x

is through
[image: image78.wmf]j

y

only. If
[image: image79.wmf]f

is a known function with a known differential quotient we can write out explicit expressions for
[image: image80.wmf]´

f

. When we consider the output neurons, that is when
[image: image81.wmf]K

K

K

j

out

,

,

1

K

+

-

=

, then
[image: image82.wmf]j

y

¶

¶

E

 can by calculated directly from (10) and the expression for
[image: image83.wmf]E

. If
[image: image84.wmf]out

in

K

K

K

j

-

+

=

,

,

1

K

, i.e. we consider one of the hidden neurons, the chain rule yields

[image: image85.wmf]å

å

+

-

=

+

-

=

=

¶

¶

¶

¶

=

¶

¶

=

K

K

K

l

jl

l

j

K

K

K

l

j

l

l

j

j

j

j

out

out

w

x

f

y

x

x

x

f

x

f

y

1

1

)

´(

E

)

´(

)

´(

E

d

d

. (11)

This equation shows that
[image: image86.wmf]j

d

, where
[image: image87.wmf]j

is the number of a hidden neuron, depends on the
[image: image88.wmf]d

's of the output layer.

It is now shown that for any set of weights we can find
[image: image89.wmf]j

d

 by (10) when
[image: image90.wmf]K

K

K

j

out

,

,

1

K

+

-

=

. When these are found we can find
[image: image91.wmf]j

d

for
[image: image92.wmf]out

in

K

K

K

j

-

+

=

,

,

1

K

 by (11). In other words: We can find the
[image: image93.wmf]d

's of the output layer and use them to find the
[image: image94.wmf]d

's of the hidden layer. This backwards procedure is the reason for the name back-propagation.

2.4 Minimizing the error function

As mentioned before, our aim is to find a set of weights that minimizes the error function and that the method used for this is the steepest decent method. The idea of the algorithm is to change the weights in the direction of the fastest direction of decrease of
[image: image95.wmf]E

: If the set of weights is given as the vector
[image: image96.wmf]w

the
[image: image97.wmf]n

'th choice of the weights is denoted
[image: image98.wmf][

]

n

w

 and is given by
[image: image99.wmf]1

-

n

'th choice of the weights by the following expression

[image: image100.wmf][

]

[

]

ú

û

ù

ê

ë

é

Ñ

-

-

=

n

n

n

w

w

w

E

1

h

.

Here, the entries of the gradient vector are calculated by the algorithm discussed in the previous subsection. The positive number
[image: image101.wmf]h

 is called the learning rate. The starting vector
[image: image102.wmf]]

1

[

w

is chosen randomly.

The choice of
[image: image103.wmf]h

 is non-trivial: If it is chosen too small the computing time grows unacceptably, if it is chosen too large the algorithm might not lead to convergence. The problem of choosing a learning rate has been discussed in several papers and many computer programs do not use a constant learning rate, but vary the learning rate.

One way to modify the algorithm is to add an extra term called a momentum term. This is in Bishop [1] given by

[image: image104.wmf][

]

[

]

[

]

[

]

(

)

2

1

E

1

-

-

-

+

Ñ

-

-

=

ú

û

ù

ê

ë

é

n

n

n

n

n

w

w

w

w

w

m

h

.

The extra term is a positive number
[image: image105.wmf]m

 times the change in the weights between the
[image: image106.wmf]2

-

n

'th and the
[image: image107.wmf]1

-

n

'th iteration. The idea of the momentum term is that if the weights change successively in the same direction the change in that direction is speeded up, but if the change in some direction alternates the momentum term slows down the changes.

2.5 Concluding remarks

If the number of hidden neurons is arbitrary one can find a network that fits the training dataset arbitrarily well. But this does not imply that the statistical model of the network represents a good model, it might not generalize, i.e. describe what generally happens in data of the studied kind. This is in analogy with regression models where a polynomium of a degree too high is used. The complexity of the model is diminished by reducing the number of hidden neurons.

To test the ability of generalization of a network one often uses two datasets. One where the parameters are estimated, the training dataset, and one where the ability of generalizing is examined, this dataset is called a validation set. After checking different models i.e. different configurations neural networks, one chooses the network that fits the validation set best. This configuration need not be the same as the one that fits the training set best.

In standard statistical modelling one removes the insignificant parameters on the basis of statistical testing. In Clementine it is possible to use pruning, i.e. to remove insignificant parameters of neurons. This is done by removing the neurons with the smallest parameters, but as for linear models, small parameters need not be insignificant. It is not possible to prune on the basis of statistical tests, since no test statistics are connected to the weights.

3 Clementine

Clementine is a computer programme developed by SPSS for data mining. The focus of data mining is to determine models that predict well. In Clementine there are procedures for MLP networks, cluster analyses, linear regression and logistic regression.

3.1 Clementine's interface

Clementine contains a very large number of statistical models. With a few clicks you can via menus set up very complicated models. The disadvantage of this user-friendly surface is that it restricts the flexibility in the models available to Clementine. We see, for example, that Clementine only works with quadratic error functions, and these are only optimal when the error term is normally distributed. Clementine is indeed very user-friendly, and for someone who already has some computer knowledge it only takes a couple of hours in order to get to know Clementine.

3.2 Clementine’s MLP procedure

The MLP network of Clementine can handle up to 3 hidden layers. This limitation has no significance, practically speaking, as models with 4 hidden layers or more rarely occur in empirical analyses, furthermore, these models will be very slowly processed. As mentioned in section 2.1, we have a neural network with only one hidden layer that approximates any continuous function on a closed and bounded set well.

There is no explicit limit to the number of neurons in each layer, but since the processing time increases with the number of neurons we have an empirical maximal limit. Models with a large number of neurons demand a large amount of memory in order to process it in a limited amount of time. Each layer of neurons is completely connected, i.e. all input neurons are completely connected to the first layer and all neurons in the first layer are connected to the second layer etc.

3.2.1 Topology of the MLPs in Clementine

Clementine has four different methods it can apply when analysing MLP networks, the choice of method depends on different issues, such as how much influence on the model choice does one want, and also on the availability of time and processing power.

Quick - This method creates a one-hidden-layer network, where the number of hidden units is determined according to several factors relating to the quantity and type of training data. The user can also specify the number for hidden units.

Dynamic - This method uses a ”dynamically growing” network, starting with two hidden layers of two units each. Training is then monitored to detect overtraining and lack of improvement, which triggers the network to grow. When the network grows, one unit is added to each layer and the training continues to determine which alternative yields the best results. This continues until no benefit has derived for a number of growing attempts. This option is expensive in time, but often yields good results.

Multiple - Many networks are created each with a different topology, some with one hidden layer, and some with two hidden layers, and with a varying number of hidden units. The networks are trained pseudo-parallel. This option is also very time consuming.

Prune - This method “prunes” neurones from both the hidden and the input layers. Unlike the standard pruning, where each weight (parameter) is removed one at a time, Clementine is only able to remove a whole neuron at the same time. It starts off with a large two-layer network, and whilst training, discards the weakest hidden neurons. After selecting the optimum size neurons for the hidden layers, Clementine starts to remove the weakest input neurons to find the optimum input neurons. Clementine's prune models frequently take a long time to converge.

3.2.2 Training of the MLPs in Clementine

For training of the MLP's, that is estimation of the parameters, Clementine applies back-propagation with updates as in section 2.3.

Researchers have in numerous ways tried to improve MLP models, see e.g. Russell & Marks [10] : Neural Smithing. This book contains primarily an examination of all the improvements that have been tested. Russell & Marks [10, page 180] concludes that against the background of these analyses ”back-propagation is the second-best method for everything”. By this they mean that for most neural problems it is possible to determine a training algorithm performing better than back-propagation, but in contrast to the more specialized algorithms you can be sure of always obtaining a usable solution using ”back-propagation” within a short period of time.

3.2.3 Learning Rate

The learning rate is the parameter that is used in order to decide how much the weights are to be changed in each iteration, see section 2.4. The standard in Clementine is to apply a user-defined learning rate. The user defines a starting value, a restart value, a minimum value and the length of the cycle. The learning rate is initialized at the starting value, and decreases exponentially to the minimum value, thereafter the learning rate is reset to the restart value. As in the first phase the learning rate then decreases to the minimum value, and thereafter the learning rate is reset to the restart value. The length of the cycles indicates the number of iterations that is necessary in order for the learning rate to decrease from the restart value to the minimum value. The figure below illustrates the process:

[image: image110.wmf]1

)

x

(

it

log

2

1

)

x

exp(

1

)

x

exp(

)

x

tanh(

)

x

(

f

-

×

=

+

-

=

=

3.2.4 Stop criteria for Clementine MLP’s

It is possible in Clementine to set 4 different criteria enabling you to stop the search for the best possible network if you choose not to make the decision to stop the search simultaneously during the analysis. The four different criteria are the following;

· A specified amount of CPU time.

· A given number of iterations

· When the error of validation of the dataset goes below a certain defined threshold value

· When convergence is obtained.

The search for a neural network resulting in overtraining. The concept overtraining means that one has determined a too specific model to the dataset, a model that cannot be applied to any other set of data. Clementine has a build-in cross-validation option in order to avoid overtraining. The cross-validation option works as follows; The dataset is split up into two parts; an estimation dataset and a validation dataset. Back-propagation only uses the estimation dataset in order to customize the weights. After each iteration, that is customisation of the weights, it is determined how well the model fits the test data. The model fitting the test data best is then applied.

3.3 Clementine’s Radial Basis Function network

This method creates a Radial Basis Function (RBF) Network (instead of back-propagation MLP). RBF networks works by first creating a K-means clustering model (the cluster “centres” forming the single “hidden layer” of the network), and then training the output layer as a “single layer perceptron” using the “least mean squares” method. The data fed into the output layer are the activation levels of the clusters; these are a function of the distance of the example from cluster centre.

Formally speaking, an RBF in Clementine is a MLP with one hidden layer, and it has the following activating function in the hidden layer:

x = fi (x) =
[image: image108.wmf]÷

÷

ø

ö

ç

ç

è

æ

s

×

-

-

2

i

2

i

2

c

x

exp

,
where ci is the centre of the i'th cluster, and σi is the standard deviation of the cluster.

Each of the hidden neurons corresponds to a cluster.

Figure 3.3.1 MLP with a hidden layer
 Figure 3.3.2 RBF with a hidden layer

[image: image111.png]Input Neuroner Hidden Neuroner Qutput Neuroner

a
e A

[image: image112.png]Input Neuroner Hidden Neuroner Qutput Neuroner

N\

AN S
AN

>

The same quadratic error function is applied for the RBF networks as for the MLP networks. The back-propagation algorithm can be used for determining the parameters in an RBF network in exactly the same manner as in the MLP networks.

4 Stepwise examination of the data editing method

4.1 Step 1: Validation of data

The first step in a process of data editing is to examine the marginal distributions for all variables in order to determine whether any variable takes invalid values, i.e. values not in the domain of definition, or whether simple logical constraints are respected, for example, that certain figures add up to something else than the sum. A neural network is capable of determining these types of errors, but the point is that the neural network should not be a substitution for simple data editing.

If possible, it would be useful to examine the marginal distributions in order to clarify whether they seem probable. If an equivalent dataset (for example, the same type of dataset for an earlier year) exists, then one could examine whether the two marginal distributions have any similarities. Graphs are often useful when the aim is to illustrate the marginal distributions, and graphs are therefore a good tool when we want to perform such an examination.

A problem with neural networks is that they will not necessarily recognize errors where the relations between variables seem reasonable, an example is a situation where a producer has reported erroneous data over two consecutive months, instead of just one erroneous data report. Alternatively, one could use the variables from the previous years in the training of a neural network, but this comparison would obviously complicate the application of the method.

4.2 Step 2: Training dataset

The neural network needs training data with no errors. This training data can be obtained by, for example, manual data editing of a part of the data, for example, 1,000 records. The determination of the size of this dataset with no errors depends on different factors, for example, on the available resources, and analyses of how large datasets are needed in order to train the neural network. An alternative would be to use a similar corrected dataset referring to the previous calendar year. If large differences between the data that is to be trained and the training data from the previous year occur, then we have a situation where the neural network does not work optimally.

If the data that is to be edited is a very heterogeneous set, then it will sometimes be an advantage if one splits up the data into more homogeneous groups, and then data edit the groups separately.

4.3 Step 3: Training of ANN

A neural network is trained by using the variable that is to be edited as target, and using all other variables as explanatory variables. The neural network is evaluated on the basis of a validation dataset. When one wants to set up the MLP network, one could choose the default Quick model suggested by Clementine. Alternative possibilities are suggested in section 6.7.

4.4 Step 4: Comparison of the predicted and the observed values

The model that is estimated in step 3, estimates the target variable in the data that is to be edited. If the difference between the observed and the predicted (expected) values for a variable is large, then the variables are classified as erroneous. The exact magnitude of the difference cannot be defined generally, as this widely depends on the specific situation, often one chooses a difference of 5 times the standard deviation. The choice depends on the tolerance levels of errors in the data material, and also on an analysis of the most efficient use of the resources, which have to be used when evaluating whether a potential error in fact is a real error.

4.5 Strategy of the analysis

Even though the focal point in this report is on the MLP and the different versions of MLP mentioned in section 3.2.1, we consider the strategy with respect to analysis as equally important. In connection with the realization of the different steps we have subsequently posed a number of specific questions that have to be clarified.

· How is the training performed?

· How does one choose the best ANN?

· How is the treatment of missing values?

· When does one have an advantage in analysing the data?

· How is the treatment of extreme observations?

5 UK Annual Business Inquiry

The dataset consists of a sample from the retail section of the U.K. Annual Business Inquiry from 1997 and 1998. For each business the dataset contains 20 variables on aspects of purchase costs and employment costs rounded to nearest 1000£, and the number of employees. All variables are continuous expect for the industry category. The dataset also contains the turnover and the number of employees for the previous year given both as continuous variables and as categorized variables.

 The dataset contains responses to selected questions from the UK Annual Business Inquiry for 2 sectors and 2 years. Most questions are the same for both sectors and years. However, there are some differences in the treatment of the "other" categories with more detail in 1998. In sector 2 one further question on taxes and export duties is asked compared to sector 1.

There are 2 questionnaires, a "short" version and a "long" version. In the short version only some of the more summary questions are asked. The short form is for smaller companies and the long is for bigger companies.

Euredit's UK Annual Business Inquiry thus comprises 8 different datasets.
Table 5.1 Data sets

Year
Section
Form
No. of observations

1997
1
Short
4.618

1997
1
Long
1.481

1997
2
Short
3.149

1997
2
Long
1.176

1998
1
Short
3.970

1998
1
Long
2.263

1998
2
Short
3.304

1998
2
Long
2.290

There are three versions of the dataset:

1. One with errors and missing values

2. One with missing values only

3. One containing neither errors nor missing values

For the year 1998 only two datasets are available for section 1, namely the first and the second type, the third type, i.e. the one with no errors and no missing values is used for evaluation of the different methods in Euredit.

Details of the variables in each dataset and for each questionnaire are shown in appendix A.

6 Editing the short questionnaires

This section describes how the editing of the short questionnaires is done. There is, in principle, no difference between editing the long and the short questionnaires, except from the fact that the number of variables in the long questionnaire is larger than in the short questionnaire, and that implies obviously a longer duration of the editing process for the long questionnaire. Given in table 6.1 below are the variables used for editing the short questionnaire. The complete list of variables is given in appendix A.

Table 6.1 Variables used for editing the short questionnaire

 Variable name
 Variable label

 EMPLOY
 Total number of employees

 CLASS
 Anonymised industrial classification

 EMPREG
 Category version of number of employees

 TURNREG
 Registered turnover

 ASSACQ
 Total cost of all capital assets acquired

 ASSDISP
 Total proceeds from capital asset disposal

 STOCKBEG
 Value of stocks held at beginning of year

 STOCKEND
 Value of stocks held at end of year

 EMPTOTC
 Total employment costs

PURTOT
 Total purchases of goods and services

 PURESALE
 Purchases of goods bought for resale

 PUROTHAL
 All other purchases of goods and services

 TURNOVER
 Total turnover

 TAXTOT
 Total taxes paid

With the purpose of evaluating the neural network we have used a section of the 1997 data, section 2 in order to edit the 1998 data, as the complete information is best utilized in this approach. The short and the long questionnaires are edited separately, since there are differences in the questions and also because there is a large difference between the companies that have answered the two types of questionnaires. The results from the analysis are used to determine the possible errors in the 1998 data, section 1.

6.1 Missing values

One of the fundamental issues that have to be raised in connection with ANN analysis, is the treatment of missing values. The neural network includes a large number of variables simultaneously, and therefore there will quite often be seen with a large number and missing values. The problem with missing values could be treated using one of the three approaches below.

1. For each variable with missing values we add a 0-1 variable to data. This variable equals one whenever the corresponding variable has a missing value, and it equals zero otherwise. The next step is to replace the missing values with the value 0.

This method is not elegant when it comes to handling missing values, but the method is simple, and it is one of the few methods that Clementine can handle.

In a linear regression framework, this solution would be implemented as adding a common level constant whenever the explanatory variable was missing, and that the slope is estimated only on the basis of the observations where no explanatory variables are missing. This implies that predictions are too low when the dependent variable takes a high value, and vice versa.

2. ANN includes only variables that are non-missing for all observations. This solution only makes sense if the variables that are non-missing for all observations are sufficiently effective in order to form a well-performing ANN.

3. Missing values are imputed before the data editing occurs. This solution implies possibly another problem, namely that the imputation is performed on the basis of some erroneous observations, and therefore one possibly conceals the specific error. If there exist variables from the previous year that have been edited, then they could be used for the imputation process, using for example an ANN, but this process is indeed complex.

The steps 1. and 2. have been evaluated using the ABI data. A general conclusion on the performance of the two methods cannot be drawn here, since the conclusions that can be drawn in this set-up depend strongly on the data used.

6.2 Handling obvious errors

Some companies had variables that took values around 100.000.000.000. If one variable for a certain company has taken on such a large erroneous value, then this error must be found by the ANN. Such a large error could possibly affect the data editing of the other variables for this specific company. The extent to which such an error affects the estimation of other possible errors depends on the weight of the variable in the ANN. The fact that an obvious large error occur for a specific company implies that other variables for this company are wrongly classified as possible errors are not a problem as such. One would probably have to contact the company in order to examine the first large error anyway.

The problem that concerns obvious large errors can be treated using the same approach as the one that concerns missing observations when data editing is carried out with respect to other variables. This means that large obvious errors are defined as equal to zero, and the simultaneously a 0-1 dummy variable is created. The dummy takes the value 1, if the observation is an obvious large error and zero otherwise.

6.3 Check on additively constraints

As described in section 4.1, the first task is to carry out a simple data editing examining data for logical errors. The only examination of additive constraints that is performed on the variables corresponding to the short questionnaire, is the following:

PURTOT = PURESALE + PUROTHAL

If errors are present in this additive constraint, we have for certain an error in at least one of the three variables in the equation.

The purpose of the data editing determines the contents of the data editing process using an ANN. If one wants an in-depth examination of the background of the error, it is then meaningful to use an ANN with the purpose of determining which of the three variables is the most likely error. For example, one might choose to edit the error oneself by, for example, imputation. If the company is contacted with the purpose of correcting an error, then there is no meaning in applying an ANN, as the error can be determined using a simple checking procedure.

The training of the neural network has to be carried out differently whenever there are linear constraints between some of the variables in the dataset and the focus variable.

If training is performed on the other variables that are included in the linear constraint on a data set with no errors, then the structure that will be determined by the ANN is the linear constraint itself. If the ANN afterwards is applied on an erroneous dataset, then the errors that will be determined are primarily errors that do not satisfy the linear constraint. But these errors would have been determined anyway using a simple check procedure, and hence it is meaningless to apply an ANN in order to determine such simple errors. The conclusion to be drawn here is therefore, that other variables that are included in the linear constraint have to be eliminated from the training.

In appendix B we have given an overview showing all the additively constraints that were examined in the long questionnaires.

6.4 Extreme values

It is seen from table 6.4.1 below, that all variables that have to be edited have very long right-end tails.

Table 6.4.1. Mean, Minimum, 25%-, 50%-, 75&-, 90%-, 95%- 99%- fractiles and maximum.

Variable name
Mean
Min
P25
P50
P75
P90
P95
P99
Max

TURNOVER
11409,55
0
58
1905
8093
23475,6
42746,4
129120,52
1264082

EMPTOTC
766,3671
0
0
233
898
2191,8
3142
6086,24
60563

PURESALE
8851,475
0
2
1028
5076
16500,8
31996,4
104192,08
1257348

PUROTHAL
1018,673
0
6
180
833
2396,2
4207,8
11165,48
152814

PURTOT
9870,148
0
38
1444
6412
19360,4
36425,6
117906,56
1258837

TAXTOT
206,443
0
0
7
36
108,2
201,8
1126,12
206327

STOCKBEG
890,9152
-9
0
104
707
2596,4
4368,4
9077,52
55484

STOCKEND
930,2607
-9
0
107
725
2634
4661,2
10071,48
54037

ASSACQ
145,8742
-9
0
20
103
321
623
2040,08
17942

ASSDISP
33,97142
-9
0
0
15
56
121,2
625,56
2956

EMPLOY
36,7974
0
0
13
46
106
154
249,52
689

TURNREG
10542,66
0
62,8
1876
7341
21759,2
37514,8
114288,52
2153714

If very large outliers are present in data, then these outliers will have a large impact on the parameters estimated in the neural network, this is especially due to the fact that Clementine only uses a quadratic error function. The problem occurring here is, that there is a risk of undertraining the network, so that the structure of the dataset remains undetermined. In the ideal world you obtain a model describing all observations well, but the world is in this sense not always ideal, so the point is, that we would rather choose a model describing, say 98 % of all observations well, than a model describing the 2 % corresponding to the largest outliers. If it were possible to change the error function in Clementine to, for example, the Cauchy-distribution then this problem could be solved.

Rather than trying to solve this impossible problem, we have examined the consequences of determining the largest outliers and then removing them from the data. Outliers are, for example, defined as variables, which are further from the empirical mean than 5 standard deviations. An attempt of excluding all observations where there were at least one variable that had been determined as an outlier, was thereafter made. A total of about 2 %, were in this way removed from the training datasets and the consequences of the training of the ANN have been evaluated.

6.5 Transforming the variables

Clementine transforms all variables linearly on the basis of the minimum and maximum values of the variables into the interval between 0 and 1. This occurs both because of the pruning procedure in Clementine and also because the logit function only takes values in this interval. In other MLP's, but not Clementine, there is a linear output layer transforming the output from the]0;1] interval to the specific interval where the values actually lie. The choice of transforming data linearly will therefore not influence the results, since Clementine performs an automatic rescaling into the]0;1] interval.

6.6 Methods

The following methods have been used in order to determine the structure in the
ABI data:

· Quick - 2 MLP with a hidden layer with 2 neurons

· Quick - 20 MLP with a hidden layer with 20 neurons

· Dynamic MLP

· Multiple MLP

· Prune MLP

· RBF

· Linear regression with stepwise variable choice

The first step was using the training data in Clementines Quick MLP with one hidden layer and 2 neurons. We used a stopping criterion, which was from 10 minutes to 1 hour of processing time, and a 50%, 50% split in the training data and the validation data in order to avoid overtraining. As output variables were in the first run chosen, the variable TURNREG (Registered turnover) and all other variables were then used as explanatory variables. We have therefore estimated a model on the basis of observations without errors for 1997. This model describes the turnover as a function of the number of employees, salary expenses, tax payments and other variables as well. The model was used on the 1998 section 2 data in order to estimate the registered turnover. The third step was to calculate the absolute difference between the observed and the estimated turnover values. The same procedure was carried out using the other variables that were to be edited, that is the variables ASSACQ, STOCKBEG, STOCKEND, EMPTOTC, PURTOT, PURESALE, PUROTHAL and TAXTOT, the examination was carried out on one variable at the time.

The next step was then to replace the first Quick MLP model with a new MLP equivalent to the first one, the only difference is that it uses 20 neurons instead of 2, and then estimate models, produce estimates for each variable on the basis of each of the estimated models.

The same procedure was then carried out using Clementine's multiple MLP model, Clementine's Pruning MLP model and Clementine's dynamical MLP, Linear regression with stepwise variable selection and finally using RBF network.

6.7 Quality measure

The records in the dataset that are imported into excel are sorted by the descending difference between the predicted and observed values of the focus variable. Total success of the method is achieved when the erroneous observations are the first observations in the dataset. The quality measure shall therefore be a measure of to which degree the erroneous observations are the first observations.

To get such a measure we generates two counters. To each record the first counter is the number of nonerrors and the second counter is the number of errors that we have passed at that record, when we run through the dataset. When plotted with the number of nonerrors as first coordinate and the number of nonerrors as the second coordinate we can get a ROC-curve similar to the one in appendix D. The quality measure used is the area beneath the curve. This number equals 1 if the run leads to total success, it equals 0 if the erroneous observations are the last observations, and if the errors are distributed randomly the measure will be near to 0,5.

A derived measure from this is the measure where the counter concerning the errors is weighted by the numeric difference between the observed and the true value of the focus variable. A ROC-curve counting the numeric errors given by this set up is drawn in appendix D. The data used is the same for both curves.

7
Results

In this chapter the main results of the data editing using MLP are given. The basis is the questions posed and discussed in chapter 6. Finally, an overall evaluation of the data editing process that has been performed will be given.

7.1
Handling missing data

The approach used when solving the problem of missing values is essential for the performance of the MLP network. In section 6.1 a number of possibilities was described in order to handle the problem. The focal points in this report have been:

1. Data set with missing values and dummies. The dataset that is defined as all observations with at least one missing value in the variables that are used as independent variables in the data editing procedure. The training is conducted on this data in 1997 and the evaluation is performed on the equivalent data from 1998. When a value is missing, the value is assigned to the value 0, and the dummy variable is set equal to 1.

2. Only non-missing variables are used. As in the previous section one considers only observations with at least one missing value, but only the variables with no missing values, i.e. TURNREG, EMPLOY and EMPREG, are used for the data editing

3. The complete data set and dummies. Instead of training only on observations with at least one missing value (as above), the training is conducted on the complete dataset from 1997 with dummies for the missing values. The evaluation in 1998 is only with respect to observations with at least one missing value.

In table below the results are the percentage of the ROC curve that lies beneath the curve. Two curves have been made: One measures the number of errors and one measures the total numerical error. Detailed results are given in appendices C and D. In the table below is included the result of the data editing with respect to the variables TURNOVER and STOCBEG in the short questionnaire.

An unambiguous conclusion cannot be given as to the question of how to treat the missing values in the best possible way in the ABI data.

With respect to the MLP methods, it seemed as if method 2 and method 3 had generally the best performance when the measurement is the number of errors. Method 2 and partially method 1 were superior when it came to the magnitude of the total error.

When the data editing was conducted with respect to TURNOVER, not surprisingly, method 2 was superior, since the registered turnover from the previous year was used as training variable in the data editing.

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,86708
0,881832
0,891929
0,887387
0,843656
0,856607
0,921396

stockbeg 2
0,862538
0,886712
0,869895
0,856456
0,862087
0,848348
0,90259

stockbeg 3
0,883896
0,855255
0,910435
0,831832
0,871359
0,882432
0,939039

Area

Numerical errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,999643
0,999521
0,999657
0,999696
0,999548
0,999396
0,994563

stockbeg 2
0,999619
0,999717
0,999618
0,999646
0,999666
0,999355
0,999744

stockbeg 3
0,999685
0,998501
0,999626
0,999472
0,999531
0,999574
0,995663

Number of observations 706 number of errors 40

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,891292
0,878578
0,903823
0,887885
0,779299
0,882441
0,926849

turnover 2
0,889497
0,871278
0,893299
0,889741
0,915108
0,846397
0,921374

turnover 3
0,90136
0,882775
0,882654
0,864738
0,892661
0,878639
0,947653

Area

Numerical errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,999655
0,998719
0,998439
0,999606
0,992714
0,998587
0,984356

turnover 2
0,999773
0,999766
0,999704
0,99976
0,999814
0,999433
0,999856

turnover 3
0,999064
0,999025
0,99903
0,999506
0,998854
0,999548
0,988178

Number of observations 882 number of errors 39

The fine results for the standard linear regression compared to the ANN might depend on the duration of the training of the ANN, the size of the dataset that is trained and obviously on the structure of the data.

Conclusively, method 2 is preferred when the data editing is conducted on variables that are closely connected to variables without missing observations. In method 2 the non-missing variables are included in the data editing. Alternatively, we would expect method 1 to be the most robust.

7.2
Extreme values

The dataset is quite heterogeneous in the sense that the distributions of the variables have long right end tails. The dataset that is primarily used for training is the data coming from the questionnaire in sector 2, 1997. The mean value and some fractiles for variable in this dataset are given in the table below.

Min, max values and some fractiles.

Variable name
Mean
Min
P25
P50
P75
P90
P95
P99
Max

TURNOVER
11409,55
0
58
1905
8093
23475,6
42746,4
129120,52
1264082

EMPTOTC
766,3671
0
0
233
898
2191,8
3142
6086,24
60563

PURESALE
8851,475
0
2
1028
5076
16500,8
31996,4
104192,08
1257348

PUROTHAL
1018,673
0
6
180
833
2396,2
4207,8
11165,48
152814

PURTOT
9870,148
0
38
1444
6412
19360,4
36425,6
117906,56
1258837

TAXTOT
206,443
0
0
7
36
108,2
201,8
1126,12
206327

STOCKBEG
890,9152
-9
0
104
707
2596,4
4368,4
9077,52
55484

STOCKEND
930,2607
-9
0
107
725
2634
4661,2
10071,48
54037

ASSACQ
145,8742
-9
0
20
103
321
623
2040,08
17942

ASSDISP
33,97142
-9
0
0
15
56
121,2
625,56
2956

EMPLOY
36,7974
0
0
13
46
106
154
249,52
689

TURNREG
10542,66
0
62,8
1876
7341
21759,2
37514,8
114288,52
2153714

To examine the influence of the extreme values on the estimated models we trained some models where records having values more than 5 times away from the mean value in one or more variables are removed. In order to see the effect of this we compare neural network trained with the following datasets:

1. All variables are given in every record. This means that records where a variable takes the value –9 are deleted from the training data.

2. All variables are given in every record and records where a variable is more than 5 times away from the mean value are deleted.
Both models are evaluated with data where all variables are given in every record. In other words, there is no influence from missing values.

The result of these examinations for the variables "turnover" and "stockbeg" is given in the table below.

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,793145
0,84046
0,853704
0,824555
0,804172
0,848122
0,883844

stockbeg 2
0,835879
0,83221
0,859798
0,853087
0,836682
0,863322
0,876628

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,999845
0,999885
0,999841
0,999895
0,999849
0,999866
0,997611

stockbeg 2
0,999917
0,99992
0,999913
0,999884
0,999918
0,999841
0,995149

Number of observations 2398 number of errors 121

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,864698
0,860009
0,867879
0,874468
0,858052
0,844916
0,880506

turnover 2
0,876846
0,882866
0,898283
0,868492
0,886451
0,867125
0,889774

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,999217
0,999257
0,999503
0,999783
0,999246
0,999695
0,989153

turnover 2
0,999924
0,999861
0,999911
0,99993
0,999909
0,999803
0,995037

Number of observations 2398 number of errors 98

It seems that the structure of the data is better estimated if the training datasets are truncated. This is probably a consequence of the more homogeneous structure of the data.

7.3
Partitioning of the dataset in training and validation datasets

Clementine splits the training dataset that is prepared in SAS into two dataset. One is used for estimating the parameters and one to estimate the accuracy. It is possible to set the proportion between the sizes of these datasets. To investigate the influence of this partition, which by default is 50/50, three networks were studied.

1.
All variables are given in every record. The dataset is the same as in model 1 in the section about extreme values. The split is 50/50.

2.
As in 1. The split is 67% for training and 33% for validation.

3.
As in 1. The split is 33% for training and 67% for validation.

The results are seen in the tables below:

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,793145
0,84046
0,853704
0,824555
0,804172
0,848122
0,883844

stockbeg 2
0,846401
0,834028
0,867184
0,790681
0,841048
0,8238
0,883844

stockbeg 3
0,849374
0,830087
0,78071
0,786206
0,838064
0,83617
0,883844

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,999845
0,999885
0,999841
0,999895
0,999849
0,999866
0,997611

stockbeg 2
0,999905
0,999888
0,999902
0,999856
0,999911
0,999835
0,997611

stockbeg 3
0,999888
0,999677
0,999679
0,999833
0,999865
0,999822
0,997611

Number of observations 2398 number of errors 121

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,864698
0,860009
0,867879
0,874468
0,858052
0,844916
0,880506

turnover 2
0,865776
0,852791
0,877471
0,85177
0,876309
0,825444
0,880506

turnover 3
0,858873
0,863984
0,878083
0,844858
0,856074
0,82051
0,880506

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,999217
0,999257
0,999503
0,999783
0,999246
0,999695
0,989153

turnover 2
0,999581
0,9992
0,999603
0,999445
0,999234
0,998386
0,989153

turnover 3
0,999767
0,999507
0,999575
0,999651
0,998504
0,998078
0,989153

Number of observations 2398 number of errors 98

It is seen that the results do not change dramatically by changing the partition.

7.4
Training time

The stop criterion for the training of the investigated neural networks is the training time. In most cases the training was stopped after 10 minutes. This is justified by the results below where the variables "turnover" and "stockbeg" were investigated. Two different models of training the networks were set up and trained in respectively 10 minutes and one hour. The models were:

1.
All records have missing values and dummies are assigned to all variables. The training dataset is the same as the training dataset in model 1 in the section about the handling of missing values.

2.
All variables are given in every record. The training dataset is the same as the training dataset in model 1 in the section about extreme values.

The results are seen from the tables below:

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1 10min
0,86708
0,881832
0,891929
0,887387
0,843656
0,856607
0,921396

stockbeg 1 60 min
0,858033
0,893881
0,911224
0,846734
0,913964
0,871922
0,921396

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1 10min
0,999643
0,999521
0,999657
0,999696
0,999548
0,999396
0,994563

stockbeg 1 60min
0,999556
0,999711
0,999696
0,999518
0,998988
0,999336
0,994563

Number of observations 706 number of errors 40

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 2 10min
0,835879
0,83221
0,859798
0,853087
0,836682
0,863322
0,876628

stockbeg 2 60min
0,840358
0,845984
0,87546
0,850706
0,852644
0,839331
0,876628

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 2 10min
0,999917
0,99992
0,999913
0,999884
0,999918
0,999841
0,995149

stockbeg 2 60min
0,999862
0,999932
0,999938
0,999912
0,999854
0,99987
0,995149

Number of observations 2398 number of errors 121

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1 10min
0,891292
0,878578
0,903823
0,887885
0,779299
0,882441
0,926849

turnover 1 60min
0,890136
0,878121
0,906165
0,858503
0,790309
0,896098
0,926849

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1 10min
0,999655
0,998719
0,998439
0,999606
0,992714
0,998587
0,984356

turnover 1 60min
0,998268
0,998625
0,999071
0,999433
0,953894
0,998174
0,984356

Number of observations 882 number of errors 39

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 2 10min
0,876846
0,882866
0,898283
0,868492
0,886451
0,867125
0,889774

turnover 2 60min
0,874836
0,892844
0,899068
0,899068
0,886318
0,861965
0,889774

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 2 10min
0,999924
0,999861
0,999911
0,99993
0,999909
0,999803
0,995037

turnover 2 60min
0,99993
0,999857
0,999894
0,999894
0,999874
0,999782
0,995037

Number of observations 2398 number of errors 98

These results give an indication that there is no advantage in training the neural network for 60 minutes instead of 10 minutes.

7.5
Partition of the data

In section 7.1 outlining missing observations, there was a discussion of whether data should be partitioned into two parts, namely:

· Observations without missing values

· Observations with missing values, as in the training of an ANN

In section 7.1, it was clarified how to train a network with 0-1 dummy variables when values are missing.. By a partition of the data one obtains, on the one hand that there are fewer observations to base the training on and, on the other hand one determines an ANN describing the data more efficiently. In this section the discussion of partitioning data will also be brought up when training an ANN that data edits a part of the data with has no missing observations.

1. The training is only conducted on parts of the data where all variables have no missing observations.

2. The training is conducted on all data. 0-1 dummy variables are inserted when an observation is missing. The evaluation is only performed on the part of the data where all observations are non-missing.

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,793145
0,84046
0,853704
0,824555
0,804172
0,848122
0,883844

stockbeg 2
0,787621
0,846721
0,875481
0,7794
0,832297
0,81207
0,884181

Area

Numerical errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,999845
0,999885
0,999841
0,999895
0,999849
0,999866
0,997611

stockbeg 2
0,999816
0,999712
0,999939
0,999836
0,999806
0,999834
0,997591

Number of observations 2398 number of errors 121

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,864698
0,860009
0,867879
0,874468
0,858052
0,844916
0,880506

turnover 2
0,860537
0,867183
0,865821
0,871406
0,861437
0,84004
0,859445

Area

Numerical errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,999217
0,999257
0,999503
0,999783
0,999246
0,999695
0,989153

turnover 2
0,999483
0,999587
0,999471
0,999072
0,998561
0,999679
0,981621

Number of observations 2398 number of errors 98

Model 1 has a slightly better general performance if the ROC area for numerical errors is considered. The result for the number of numerical errors is more diffuse.

A conclusion to be drawn here, is that the ANN is preferably trained on a sub-dataset, that is in the same manner as the data set that is subsequently data edited.

7.6
The size of the training dataset

One can ask if the size of the training dataset is important. It is of course not possible to find structures against the background of a very small dataset. The influence of the size of the dataset was examined by generating neural networks with the following models:

1.
All variables are given in every record. The dataset is the same as the one used in model 1 in the section about extreme values. The dataset contains 2960 observations.

2.
The same as in 1 but every second record is deleted. This dataset contains 1480 records.

The result of the examination is shown in the tables below.

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,793145
0,84046
0,853704
0,824555
0,804172
0,848122
0,883844

stockbeg 2
0,81436
0,823564
0,82045
0,774195
0,80909
0,784242
0,895484

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

stockbeg 1
0,999845
0,999885
0,999841
0,999895
0,999849
0,999866
0,997611

stockbeg 2
0,999891
0,999893
0,999886
0,999775
0,999884
0,999592
0,996011

Number of observations 2398 number of errors 121

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,864698
0,860009
0,867879
0,874468
0,858052
0,844916
0,880506

turnover 2
0,869765
0,84638
0,864978
0,851659
0,852369
0,841451
0,896131

Area

Numerical error
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

turnover 1
0,999217
0,999257
0,999503
0,999783
0,999246
0,999695
0,989153

turnover 2
0,999289
0,999268
0,999598
0,999792
0,999503
0,999208
0,990238

Number of observations 2398 number of errors 98

It is seen that the results are a slightly better when the large training dataset is used. The two datasets were both trained for 10 minutes. The result indicates also that there is nothing gained from the training time by cutting down the size of the training data.

7.7 Linear restrictions

There is only one linear restriction in the short questionnaire:

PURTOT = PURESALE + PUROTHAL,

but more in the long questionnaire. All linear restrictions in the ABI dataset are described in appendix B.

It was described in chapter 6 that the inclusion of the variables PURESALE and PUROTHAL in the data editing of PURTOT implies that mainly observations, which do not satisfy the linear constraints are classified as erroneous. This is not necessarily so in ANN, but this is certainly the case, when the data editing is conducted by a linear regression.

Below is given the result of the analysis of the consequences of the linear restrictions when the variable PURTOT is data edited, in order to illustrate the problem.

1. All variables have values in all observations, and the training is conducted using all variables, also the ones included in the linear restrictions, i.e. PURESALE and PUROTHAL. The data editing is conducted on all types of errors.

2. All variables have values in all observations, and the training is conducted using all variables except PURESALE and PUROTHAL. The data editing is conducted on all types of errors.

3. All variables have values in all observations, also PURESALE and PUROTHAL. The data editing is only for errors not found by hard editing.

4. All variables have values in all observations, and the training is conducted using all variables except PURESALE and PUROTHAL. The data editing is only for errors not found by hard editing.

The fundamental question is now, to what extent, the two models have the ability to determine the two types of errors. The result of this analysis is given below.

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

purtot01
0,712337
0,716373
0,716627
0,691132
0,711048
0,722688
0,6204

purtot02
0,700885
0,696861
0,712673
0,677151
0,672684
0,713383
0,769589

Area

Numerical errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

purtot01
0,999474
0,999652
0,999669
0,999643
0,999658
0,999622
0,843163

purtot02
0,999743
0,999686
0,999749
0,999638
0,999156
0,999247
0,994591

Number of observations 2398 number of errors 241

Area

Number of errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

purtot03
0,70846
0,707189
0,715755
0,694174
0,701867
0,729377
0,558751

purtot04
0,696807
0,693601
0,711124
0,681925
0,66964
0,725133
0,758183

Area

Numerical errors
quick 2
quick 20
dynamic
multiple
prune
rbfn
linreg

purtot03
0,999519
0,999793
0,999781
0,99973
0,99971
0,999672
0,851387

purtot04
0,999791
0,999717
0,999798
0,999757
0,999195
0,999343
0,994472

Number of observations 2311 number of errors 201

From the table above is seen that the ANN in general works well in both models, and that it is not as sensitive to linear constants as the linear regression analysis is. Obviously, it is not possible to determine whether this result holds when another dataset and other linear constraints are used. Every time an analysis is to be conducted, one should therefore examine concretely for the best approach. Even though the two models above for all main issues perform equally well , one would generally say that the most robust approach is to exclude the variables from the linear constraints with the variable that is to be data edited by the ANN.

7.8
General conclusion

On the basis of the analyses that have been performed earlier in this chapter, having used the variables TURNOVER, STOCBEG and PURTOT, it is difficult to draw any unambiguous conclusion. The most robust results when using ANN are expectedly obtained if:

· Missing observations and variables with all observations are treated separately

· Variables with missing observations are omitted in the training of the ANN, as long as there are relevant variables with all observations for all variables. Alternatively, the variables can be included using 0-1 dummy variables as it has been described earlier in the report

· Extreme values are omitted from the analysis

· The training is conducted on 50% of the material

· Linear constraints are taken into account

· The largest possible proportion of the data is used for the training

Another conclusion that can be drawn form the analyses performed is that the duration of the training is of no importance.

The different ANNs do not always perform better than the standard linear regression. The dynamic and the multiple methods are generally the most convincing methods for determination of a neural network that can be used for data editing.

7 The use of software

The examination of a dataset consists of several steps. First one needs to prepare datasets that are suitable for training the ANN.

7.1 Preparing datasets for training and evaluation

A preparation of a training data set consists of 3 steps:

1. Reading the data file containing the data that is to be used in the training dataset into SAS. This could be the true data of 1997 or the true data of 1997, containing missing values.

2. Performing necessary transformations on the dataset, so that it becomes suitable for training.

3. Exporting the dataset to a file that can be read by Clementine.

Each of these steps is done by a macro. The nontrivial part, this is the transformation of the dataset.

As an example, one of the transformations performed on the data containing missing values in the short questionnaire, is as follows:

A. Select the short questionnaire.

B. Remove records that have a –9 or are missing in the focus variable.

C. Add dummy variables for each variable. The dummy contains information whether the variable is missing (this include cases where the value is –9) or not.

D. The sum of the dummies is estimated and the records containing no missing values are deleted.

The preparation of datasets for evaluation i.e. datasets containing missing values and errors, are prepared for the ANN model in much the same way as the training datasets. The main factors are the evaluation of the dummies and partitioning of the dataset. This needs to be done, so the structure of evaluation of dataset matches the structure of the training dataset.

The preparation of datasets is done in SAS. In theory, it could all have been done in the framework of Clementine, but the graphical user interface makes it very hard to follow what actually happens.

7.2 The use of Clementine

Clementine is a software product that can be used for data analysis and statistical modelling. The user surface is menu driven and it is a visual programming interface. This means that a given model is chosen by pointing and clicking on different icons that each have a well-defined function.

A screen print, seen below, gives an example of how a stream is defined in Clementine. In the bottom of the screen a suitable icon is chosen, that is the one activating the desired action. The chosen icon is then inserted on the drawing area. The editing is carried out in the desired way, for example, defining the relevant dataset, by clicking on the icon. The different icons are then connected by arrows showing the direction of the data flow. When the defined model has been executed a new icon is shown. This icon represents the estimated model, and it is placed in the 'Generated Models' window. This new icon can then be used for testing a new dataset.

Figure 8.1
[image: image109.png]upertiode

@ — 0

Neural netuark.

.L i

Data for traning Variable tupe

N Etinated netuork
—_— D —

Hodel results

°ee _> AA & Q B oo |

Var. File| Select Merge | Filter Ierive | Plot Histogran|Train Nt Build (5.0 Table Anslysis

O0Q0O@LAAD i

OBC | Sawple Balance | Twpe Filler [istribution Heb [ain Kohoninear Res| Matrix Statistics

T K1 | 2l | 2ld | 2| 2l | 2l
[.. [[ose of ctamentine.str

Local flode

In this specific project on the ABI data only the icons shown on the drawing area in the screen print above have been used.

The definition of a neural network has been carried out in three steps, or equivalently, using three icons:

1. The first icon is "Data for training". This icon is the one taking the data that the network has to train. A file browser can be used in order to specify the type of file.

2. The next icon is "Variable type". This icon is used for variable definitions, for example, whether the variable is an integer or whether the variable is an input or an output variable.

3. The third icon is the "Neural network" icon. This icon trains and creates a neural network for prediction of the output variable. In this icon, one of the five possible training methods is defined: Quick, Dynamic, Multiple, Prune or RBFN. These five different methods are described in section 3.2. In this icon, one furthermore defines the stop criteria that have to be used. Finally, the proportion of data that has to be used for training is defined here.

The three chosen icons are connected and executed. When the execution has been completed, an icon that contains the optimal network resulting from the training is created. This icon has the ability to predict the given output variable in a data set with the same structure as the one used in the training exercise. The prediction is carried out by connecting the icon containing the generated model to a data file icon "Data for training" equivalent to the one that was used on the training data. The predicted values are finally written into a file that has an output file icon "Model results". In this icon, it is possible to browse the location of the path (file and directory)

The menu-based user surface provides a relatively easy access for the untrained user to a large number of different statistical tools, as Clementine does not demand prior knowledge of any programming language. One problem connected to this menu-based user surface is that it gets rather heavy and slow when used as a working tool. The advantages of replications of routines or the ability of repeating processes, as it is possible when doing macro programming in traditional software products, are not possible in Clementine.

Another problem of this interactive structure is that the consequences are not obvious, when changes are made in some stream of the system. It is, for example, not given in any logical sense in the programming language at what point data is read and thereafter treated.

Given the reasoning above, Clementine has only been used in this project for modelling of the neural networks and linear regression and for testing the networks on the given evaluation data. Data editing and treatment of the results have been performed using other software products.

7.3 Comparing the modelled data with true data

After the run of the neural network the dataset containing the variables of the evaluation dataset and the values of the variable estimated by the neural network are imported into SAS. Here, the absolute difference of the predicted value and the observed value of the focus variable are calculated. The dataset is then sorted by descending this difference.

In the process of investigating neural networks' performances, the observed values and the true values are imported and compared with the observed values. For each record a dummy marks if the focus variable has an error. A dataset containing relevant variables is exported to a file that can be read by Excel. The relevant variables are: The case reference number (REF), the observed, the true, and the predicted value of the focus variable, the dummy that marks the errors, and the difference between observed and true values. This dataset is sorted by descending difference.

7.4 Evaluating the quality of the generated neural networks

The quality of a neural network is estimated by the discussed quality measure. The calculation of the values is done in Excel. The dataset sorted by descending difference is imported into Excel where the quality measures are calculated. The curves connected to the quality measures are drawn, so it is possible to obtain a graphical view of the quality of the network. All this is done by a series of simple macros. These macros are designed specifically for the data handling structure that is used for these examinations and are therefore of no general interest.

References

[1] Bishop M. C. (1995) Neural Networks for Pattern Recognition Oxford University Press,

[2] Granquist, L. "On the Current Best Methods Document: Edit Efficiency" Statistics Sweden

[3] Larsen, B. S. and Madsen, B, (1999). Error identification and imputations with neural networks. Statistical Journal of UN/ECE.
[4] Nordbotten, S. (1995): Editing Statistical Records by Neural Networks. Journal of Official Statistics, Vol. 11, No. 4, pp. 391-411.

[5] Nordbotten, S. (1996a): Neural Network Imputation Applied to the Norwegian 1990 Census Data. Journal of Official Statistics, Vol. 12, No. 4, pp. 385-401.

[6] Nordbotten, S. (1996b): Editing and Imputation by Means of Neural Networks. Statistical Journal of UN/ECE, Vol.13, No. 2, pp. 119-129.

[7] Ripley B.D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press

[8] Roddick, L. H. (1993) Data Editing Using Neural Networks. Ottawa: Statistics Canada

[9] Roddick, L. H. (1995) Editing Monthly Survey Data Using Neural Networks
ASA Proceedings of the Statistical Computing Section

American Statistical Association (Alexandria, VA), pp. 114-118

[10] Russell D. Reed & Robert J. Marks II (1999) Neural Smithing, Supervised learning in Feedforward Artificial Neural Networks, Massachusetts Institute of Technology

[11] Clementine data mining system, (1995) Clementine User Guide version. Integral Solutions Limited.
Appendix A. Variable descriptions and content of dataset.

No
 Variable name
Variable label
 Datasets

1
 REF
 Case reference number
 All

2
 FORMTYPE
 1 = long form, 2 = short form
 All

3
 EMPLOY
 Total number of employees
 All

4
 CLASS
 Anonymised industrial classification

 Sector 1 is 1,2,3,..,7

 Sector 2 is 9,10,11,..,14
 All

5
 WEIGHT
 Design weight (N/n) classified after EMPLOY

 (0-9, 10-24, 25- 49, 50- 99, 100 – 249, 250+)

and first digit in CLASS
 All

6
 TURNOVER
 Total turnover
 All

7
 TURNREG
 Registered turnover
 All except Sec2 in 1997

8
 ASSACQ
 Total cost of all capital assets acquired
 All

9
 ASSDISP
 Total proceeds from capital asset disposal
 All

10
 CAPWORK
 Value of work of a capital nature
 All except Short in 1998

11
 STOCKBEG
 Value of stocks held at beginning of year
 All

12
 STOCKEND
 Value of stocks held at end of year
 All

13
 E EMPTOTC
 Total employment costs
 All

14
 E1 EMPWAG
 Wages and salaries paid
 Long

15
 E2 EMPNIOTH
 Employers NI contributions and other employment costs
 Long 1997

16
 E2.1 EMPNI
 Employers NI contributions
 Long 1998

17
 E2.2 EMPENS
 Contributions to pension funds
 Long 1998

18
 E2.3 EMPRED
 Redundancy and severance payments to employees
 Long 1998

19
 P PURTOT
 Total purchases of goods and services
 All

20
 P1 PURESALE
 Purchases of goods bought for resale
 All

21
 P2 PUROTHAL
 All other purchases of goods and services
 Short

22
 P2.1 PURHIRE
 Payments of hiring, leasing or renting
 Long

23
 P2.2 PURINS
 Commercial insurance premiums paid
 Long

24
 P2.3 PURTRANS
 Purchases of road transport services
 Long

25
 P2.4 PURTELE
 Purchases of telecommunication services
 Long

26
 P2.5 PURCOMP
 Purchases of computer and related services
 Long

27
 P2.6 PURADV
 Purchases of advertising and marketing
 Long

28
 P2.7 PUROTHSE
 Other services purchased
 Long

29
 P2.8 PUREROTH
 Other purchases of goods and services
 Long 1997

30
 P2.8.1 PUREN
 Purchases of energy, water and materials
 Long 1998

31
 P2.8.2 PURCOTH
 Purchases of other goods and materials for own consumption
 Long 1998

32
 T TAXTOT
 Total taxes paid
 All

33
 T1 TAXRATES
 Amounts paid for national non-domestic rates
 Long

34
 T2 TAXOTHE
 Other amounts paid for taxes and levies
 Long Sec 1

35
 T2.1 TAXDUTY
 Amounts paid for export duty
 Long Sec 2

36
 T2.2 TAXOTHD
 Other amounts for taxes and levies excluding duty
 Long Sec 2

Variable numbers 6 to 36 are not given in total units 1000 £ per year.

All: Variables are in all datasets

Long: Variables are only in long form datasets.

Short: Variables are only in short form datasets.

Long 1997: Variables are only in the long form datasets from 1997.

Long 1998: Variables are only in the long form datasets from 1998.

Long Sector 1: Variables are only in sector 1 of the long form datasets.

Long Sector 2: Variables are only in sector 2 of the long form datasets.

All except sector 2 1997: Variables are in all datasets except sector 2 from 1997.

All except short 1998: Variables are in all datasets except short form from 1998.

The first 5 variables are in all datasets and have no missing values.

Appendix B. Check of additive constraints

In the data there are constraints on the variables concerning summations, for the three types of variables, cf appendix A, the constraints are as follows:

The 6 employment costs variables
The short form only has the total E.

The long form from 1997 has E and E1 and E2.

The long form from 1998 has E and E1 and E2.1-E2.3

There are the following relations in the employment cost variables:

1)
E = E1 + E2

2)
E2 = E2.1 + E2.2 + E2.3

The 13 purchases of goods and service variables

The short form only has the total P and subtotals P1 and P2.

The long form from 1997 has P, P1 and P2.1-P2.8

The long form from 1998 has P, P1, P2.1-P2.7, P2.8.1- P2.8.2.

There are the following relations in the purchases of goods and service variables:

3)
P = P1 + P2

4)
P2 = P2.1 + P2.2 + P2.3 + P2.4 + P2.5 + P2.6 + P2.7 + P2.8

5)
P2.8 = P2.8.2 + P2.8.1

The 6 tax variables

The short form only has the total T.

The long form from 1997 has T and T1-T2.

The long form from 1998 has T and T1 and T2.1-T2.2

There are the following relations in the tax variables:

6)
T = T1 + T2

7)
T2 = T2.1 + T2.2

If one of the 7 hard checks fails then there must be an error. For companies that have answered the short form only, the first tax relation can be checked.

� EMBED PBrush ���

� EMBED PBrush ���

�

�EMBED Equation.3���

� It is assumed that the Error function has partial derivatives. This assumption is satisfied if the activation functions are differentiable.

�PAGE \# "'Side: '#'�'" ��

PAGE
2

[image: image113.png]

[image: image114.png]Initial

High
Eta

Low

1

Exponential decay

Eta Decay cycles |

Cycles

[image: image115.png]Input Neuroner Hidden Neuroner Qutput Neuroner

N\

AN S
AN

>

_1060768776.unknown

_1061369707.unknown

_1061369826.unknown

_1061373401.unknown

_1061374031.unknown

_1061374096.unknown

_1061374325.unknown

_1061374058.unknown

_1061373833.unknown

_1061373228.unknown

_1061373267.unknown

_1061373202.unknown

_1061369789.unknown

_1061369811.unknown

_1061369760.unknown

_1061121045.unknown

_1061122665.unknown

_1061211550.unknown

_1061211910.unknown

_1061212746.unknown

_1061280976.unknown

_1061281067.unknown

_1061369630.unknown

_1061281045.unknown

_1061280816.unknown

_1061212410.unknown

_1061212690.unknown

_1061211997.unknown

_1061211793.unknown

_1061211862.unknown

_1061211611.unknown

_1061123402.unknown

_1061124950.unknown

_1061195690.unknown

_1061125134.unknown

_1061123419.unknown

_1061123083.unknown

_1061123144.unknown

_1061123187.unknown

_1061121689.unknown

_1061122483.unknown

_1061121752.unknown

_1061121174.unknown

_1061121670.unknown

_1061121064.unknown

_1060770930.unknown

_1061041047.unknown

_1061117874.unknown

_1061120877.unknown

_1061042431.unknown

_1061116935.unknown

_1061117060.unknown

_1061116858.unknown

_1061041203.unknown

_1060776385.unknown

_1061040780.unknown

_1061040817.unknown

_1061029963.unknown

_1060771014.unknown

_1060769098.unknown

_1060769402.unknown

_1060769707.unknown

_1060769375.unknown

_1060768985.unknown

_1060769044.unknown

_1060768872.unknown

_1060606064.unknown

_1060676515.unknown

_1060682802.unknown

_1060693468.unknown

_1060694049.unknown

_1060684755.unknown

_1060693429.unknown

_1060683392.unknown

_1060681789.unknown

_1060681978.unknown

_1060676539.unknown

_1060677730.unknown

_1060675606.unknown

_1060675839.unknown

_1060670963.unknown

_1060671300.unknown

_1060675230.unknown

_1060671014.unknown

_1060606094.unknown

_1060604062.unknown

_1060604775.unknown

_1060604836.unknown

_1060605279.unknown

_1060604353.unknown

_1060604699.unknown

_1060603101.unknown

_1060603735.unknown

_1060602682.unknown

_1060602965.unknown

_1060602878.unknown

_1057822394.unknown

_1057839907

_1057839662

_1055879970.unknown

