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EUREDIT Deliverables D4.4.1 and D5.4.1: Application of CMM techniques to editing and imputation 

 

Summary 

This report describes the general approach taken in applying Correlation Matrix Memory (CMM) neural 
network methods to data editing and imputation and represents deliverables D4.4.1 and D5.4.1 for the 
Euredit project.  This report also provides an update on edit results and experiments performed since an 
earlier version of Deliverable D4.4.1 was submitted at month 24 (at which time evaluation results were 
unavailable).  

CMM is a type of neural network that is “trained” to associate pairs of patterns. Most neural networks 
require many training cycles through training data, but CMM only requires a single pass through the training 
data to learn an association. Research at University of York is focused on a special binary version of CMM 
that uses only binary elements in the input and output patterns, and in the weights stored by the network. 
Binary CMM can be implemented very efficiently and the result is a very fast, scalable, pattern matching 
method that can deal with large data sets. Applications typically use the CMM as a kind of filter to remove 
patterns that do not match closely with the input pattern, so that a conventional (but possibly slow) algorithm 
can be applied to the relatively small number of remaining patterns. It is important to understand that CMM 
is trained to represent explicit features of the data, whereas most neural networks are trained to represent 
implicit features of some assumed model, which to some degree “explains” the data in a training set. This 
means that it is not necessary to provide a completely “clean” training set with the CMM method since no 
implicit model assumptions are made.  

The use of CMM for error localisation and imputation involves pre-processing the data to obtain a suitable 
binary pattern representation. The CMM is used to find a set of best matches for each data record. This best 
match set is then used to calculate Euclidean distances from the record to each match within this 
neighbourhood. 

For imputation, the best match set represents the empirical distribution in a local region in n-space, near to a 
record having missing values to be imputed. This set is used as the basis of a chosen imputation mode and 
currently five main modes are available: nearest neighbour, random neighbour, mean, weighted mean, and 
median. Each mode thus prescribes the method for selecting a suitable value for imputation from the local 
set. For error localisation, we compute a measure of Euclidean distance for each record to its kth neighbour 
(for a suitable preset value of k). Essentially, the larger this distance is, the more likely it is that the record in 
question is an outlier. We refer to this process as the DKN (“Distance to Kth Neighbour”) strategy.  

It is not possible to derive many general conclusions about the results presented here because they are based 
on the use of a single basic approach – CMM. Later during WP6 of the Euredit project these CMM results 
will be compared with the results obtained in other work packages using different methods, and then a 
clearer picture of performance in relative terms should be become available. For error localisation, it is 
apparent that there is some trade-off in which the cost of improving the error detection rate is an increase in 
the false-alarm rate. For imputation, the nearest-neighbour mode often performs good-to-best for 
preservation of distribution according to the Kolmogorov-Smirnov criteria, whereas the weighted-mean 
mode often performs good-to-best for preservation of values (criteria dL1, dL2, and dLinf). 

In working towards the objective of automatic edit and imputation, the York system has been developed as 
much as possible to minimise the need for effort or knowledge on the part of an end-user, with most system 
parameters having suitable default values. 
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1 Introduction 
1.1 Introduction 

This document describes the general approach taken in applying Correlation Matrix Memory neural network 
methods to data editing and imputation. In the Euredit project, the term “editing” was taken to mean “error 
localisation” from the outset, and these terms are used interchangeably throughout this report. Specifically, 
the techniques described here are intended to address only that part of data editing concerned with 
identifying errors or outliers.  

1.2 Background 

Correlation Matrix Memory (CMM) is a type of neural network that is “trained” to associate pairs of patterns 
(comprising an input pattern and an output pattern). Most neural networks require many training cycles or 
passes through a training pattern data, but CMM only requires a single pass through the training data to learn 
an association. Later, if the input pattern only is presented to the network, the corresponding output pattern is 
“recalled” (reproduced at the networks’ output). Additionally, if the input pattern presented is incomplete or 
contains errors, the output will typically comprise a number of “recalled” patterns representing partial-
matches with the corrupted input pattern.  

At University of York, a special binary version of CMM is under study and development. Binary CMM uses 
only binary elements in the input and output patterns, and in the weights stored by the network (unlike many 
neural networks which use real-valued elements in the input and output patterns and weights). In addition to 
the benefits described above, binary CMM can be implemented very efficiently in software (with supporting, 
dedicated hardware if required). The result is a very fast, scalable, pattern matching method which can deal 
with large data sets which may be beyond the practical scope of some other neural network methods.  

A typical approach taken with CMM applications involves using the CMM as a kind of filter to remove 
patterns that do not match closely with the input pattern, leaving just a smaller number of patterns that may 
be of interest. Then, a more conventional algorithm can be applied to the relatively small number of 
remaining patterns. Often, it is the case that using a conventional algorithm on the full data set would 
produce the desired results, but would take an unacceptably long time to process. Using a CMM first as a 
filter, the effect is to produce a smaller data set on which a conventional algorithm can produce the desired 
results in a more acceptable time.  

CMM forms a central part of AURA (Advanced Uncertain Reasoning Architecture). AURA is a family of 
techniques developed for the construction of high-speed pattern matching systems with a wide range of real-
world applications. AURA and CMM have been studied at University of York for over 15 years.  

AURA operation is different from most neural networks (though fundamental similarities remain). The 
AURA approach involves storing and comparing large numbers of features selected from the data. The core 
CMM component of AURA is based on a simple one-layer neural network that uses binary weights and 
Hebbian learning, with origins in the Learning Matrix (Steinbuch, 1961). Fundamentally, the memory 
associates an input pattern with an output pattern. For computational efficiency, a binary version of CMM is 
used that has binary weights and inputs. An important feature of CMM is a powerful partial-match 
mechanism, that supports search and match operations with incomplete and corrupt data either in the 
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unknown query or in the stored patterns. High-performance is achieved through the use of fast computations 
with binary-valued weights and states, together with “one-shot” training. Patterns are stored using a few 
simple logical operations. In contrast, most other neural networks are associated with long training times. 
The use of CMM drastically reduces the computational problem of managing large numbers of features in 
the training examples.  

AURA is currently implemented as a C++ class library for a range of platforms, and implementations using 
conventional digital hardware have been demonstrated (Austin, Kennedy, 1998).  

An earlier smaller-scale project at University of York investigated the use of CMM methods for imputation 
under contract to Eurostat (reference 8223008/SUP-COM) and is available as a Euredit report (Austin and 
O'Keefe, 1999).  

1.3 Approach in outline 

In applying CMM methods to editing and data imputation, the AURA software library is supplemented with 
functions for quantisation of real-valued data developed in a different project, with functions for finding the 
k nearest-neighbours developed in another project, and with functions developed specifically within the 
Euredit project. The latter perform actions specific to the needs of Euredit Work Packages 4.4 and 5.4 and 
adapt the behaviour of other functions to the differing requirements of data sources in Euredit. 

When used in Euredit for edit and imputation applications, CMM can be viewed as a highly flexible type of 
index system. For a given dataset, we first decide on the size and structure of the CMM according to the 
amount and types of data concerned. Next we train the CMM by setting certain bits to ‘1’, representing the 
presence of a particular value or range of values in each record. In this case, the trained CMM represents a 
mapping from possible data values to each individual record in the data file that contains those values. At 
this point, we may take another (possibly previously unseen) data record and, using the CMM, determine 
which other records are similar to this query record. In particular, if this data record has some missing values, 
the CMM will identify matches using only the non-missing values.  

The matching records produced by the CMM are identified in no particular order, but it is assumed that these 
matches lie within a region of space around the query record, which is approximately Euclidean in character 
(in practice, this assumption is not always correct – see section 1.4 below).  

Briefly, the use of CMM for error localisation involves pre-processing the data to obtain a suitable binary 
pattern representation for the CMM. After storing the binary pattern representations for all data records in a 
CMM using “train mode”, the CMM is used in “recall mode” to find a set of best matches for each record. 
This best match set is then used to calculate Euclidean distances from the record to each match within this 
neighbourhood, leading to a measure of Euclidean distance for each record to its kth neighbour (for a suitable 
preset value of k). Essentially, the larger this distance is, the more likely it is that the record in question is an 
outlier. We refer to this process as the DKN ( “Distance to Kth Neighbour”) strategy. 

Similarly, the use of CMM for data imputation involves pre-processing the data to obtain a suitable binary 
pattern representation for the CMM. After storing the binary pattern representations for all data records in a 
CMM using “train mode”, the CMM is used in “recall mode” to find a set of best matches for each record. 
This best match set is then used to calculate Euclidean distances from the record to each match within this 
neighbourhood. From this point, the best match set may be analysed further in a number of ways to select a 
suitable value to be imputed in place of the missing item. In the experiments described here five main 
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“modes” of selecting a suitable value are considered: nearest-neighbour, random neighbour, median, mean 
and weighted-mean. These imputation “modes” are described in more detail in section 3.3.  

The key steps in the process are shown in Table 1.  

1. Configure the system with suitable pre-processing from external data to binary patterns 

2. Train CMM using a binary pattern representation of every data record 

3. For each record P: 

3.1. Perform a recall from CMM using binary pattern representation of P as a query 

3.2. Find  the j best-matches, where j > k  
(since CMM matching can only approximate Euclidean-distance based matching) 

3.3. Compute the k-NN subset from the j best-matches as follows: 

3.3.1. Retrieve values from data file for every matching neighbour record 

3.3.2. Find Euclidean distance from P to each matching neighbour record 

3.3.3. Sort the matching neighbours according to distance to find true k-NN subset 

Then either: 

4. Store DKN – the distance from record P to it’s kth neighbour (value of k is preset – see 
below) in a table T 

5. Sort table T according to distance to obtain a ranked list (showing for every record the 
distance to that records’ kth neighbour) 

6. Determine a threshold cut-off distance based on the user-supplied parameter sd. Distances 
greater than sd indicate an error, while a distance equal to sd or less indicates an 
acceptable record. The error-status of each value in an error record is computed based on 
individual contribution to the DKN value.  

Or: 

4. Impute a suitable replacement for each missing value in P, using the user-selected mode. 

 

Table 1: Key steps in the use of CMM for edit and imputation 
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1.4 Improvements to CMM matching 

It was originally assumed that the binary matching process associated with CMM provides a “reasonable” 
approximation to the comparison of Euclidean distances. Thus, as long as it is ensured that the number of 
matches identified by the CMM includes a “safety” margin, it seemed reasonable to expect that the k nearest 
neighbours would be contained within a subset of the CMM matches. At a rather late stage, it was discovered 
(Hodge et al, 2002) that the original method being used was not always successful in identifying the true k-
NN subset, and more distant points were sometimes included instead of nearer points. This resulted in 
significant further investigation and development work to better understand the reasons for this and to 
remedy the situation. This is discussed in more detail later in section 2.4.6 but, essentially, substantial 
changes were required to the pre-processing stage. 

1.5 Performance and quality issues 

It is important to note that virtually all effort at York during the Euredit project has been focused on the 
development of additional software that implements edit and imputation techniques, around the core of the 
existing CMM software library. Thus, although the CMM software library is now a mature and efficient 
implementation the same is not true of the additional software produced during the project, which is 
necessarily of prototype quality only. In practice, this means that although fully functional, the system 
evaluated in the Euredit project does not necessarily use system resources as efficiently as one might expect 
from production-quality software in terms of memory use and speed of computation. The core CMM 
software is very efficient in speed terms but the system developed for Euredit does not always reflect this 
efficiency for the reasons given above.  

1.6 General approach 

Throughout the Euredit project, work at York has adopted a philosophy of following as closely as possible 
the spirit of the project as a whole, especially in terms of working towards an automatic edit and imputation 
system. In particular, the York system has been developed as much as possible to minimise the need for 
effort or knowledge on the part of an end-user. The York system requires little knowledge of the actual data, 
and needs only the preparation of a specification file which describes the basic elements of the data to be 
processed (such information would normally be found in the metadata accompanying a dataset).  
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2 CMM 
2.1 Description of CMM 

CMM can be viewed in terms of a correlation matrix M, comprising an array of binary elements, initially set 
to zero. The matrix is trained according to the values of binary input and output vectors, by computing an 
outer product between each input vector Qi  and output vector Ri. The result is bitwise-logically ORed with 
the existing matrix resulting in the following update equation: 
 

( )T
ii

kk RQMM ×∪= −1  1 

Here, Mk is the updated correlation (or weights) matrix after k pairs of input-output patterns have been 
trained, and RT is the transpose of column vector R. To prevent the memory becoming saturated, the input and 
output vectors are chosen to have a small, fixed bit density. To find the set of nearest-matching stored 
patterns, a recall operation is performed. The inner-product of the unknown input pattern with the matrix M is 
computed, forming integer-valued elements in an output vector G:  
 

kT
i

T
i MIG =   2 

For the work described here, a threshold function known as Willshaw thresholding (Willshaw et al, 1969) is 
used.  Willshaw thresholding operates by setting a ‘1’ in the final binary output when the corresponding 
element in the output vector G contains a value greater than or equal to a threshold value θ  determined as 
the number of bits set to ‘1’ in the input pattern ( in equation 2) presented during recall, since this 
represents the maximum response of any element in the output vector G. As a result, elements of G with 
values below the threshold are set to zero, and all others are set to one.  

TI

)

i

In summary, the final (binary) output vector R is obtained using: 
 

( T
thresh

T GfR =  3 
 

where: 

( )
( )







 ≥

=
0

,1 θg
gf ithresh  4 

 

and θ  is a positive integer representing the number of bits set to ‘1’ in the input pattern. Further details of 
both training and recalling with CMMs can be found in (Austin, 1996).  

2.2 CMM operation 

The AURA techniques provide methods to pre-process external data into a suitable binary pattern form for 
storage in a CMM. A simplified practical explanation of basic CMM operation is given below.  
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2.2.1 CMM Training 

In Figure 2.2.1(a) below, an input binary pattern (left vertical) is stored in the CMM by "associating" it with 
another "separator" pattern (left horizontal). The association is formed by making appropriate connections 
between the rows and columns that make up the grid. A simple (Hebbian) rule determines that a connection 
is made at the intersection between a row and a column, when a binary '1' appears in the corresponding 
positions of the two patterns to be associated. Thus if the input binary pattern contains two binary '1' values 
and the associated "separator" pattern also contains two binary '1' values, then four ‘1’s will be added to the 
CMM. New associations between pattern-pairs are superimposed with existing associations, so that existing 
connections remain unchanged once created. An example of a very simple CMM is shown below where only 
a single pair of patterns is stored. Note that most “real” CMMs typically have thousands of rows and 
columns, equivalent to several Megabytes of conventional storage.  
 

 
 a) pattern storage  b) pattern retrieval 

Figure 2.2.1: Correlation Matrix Memory 
 

2.2.2 CMM Recall 

Figure 2.2.1(b) above shows how the stored association is retrieved by applying only the input binary pattern 
(left vertical). Wherever a '1' appearing in the input pattern coincides with a connection in the corresponding 
row of the CMM, a count is incremented for the column connected to that row. The intermediate result 
produced comprises an array of raw output summations over the CMM columns (right horizontal) and is 
labelled “Summed Columns” in Figure 2.2.1(b).  

A single, global threshold is applied to the output summation values to obtain the binary "separator" pattern 
originally associated with the input pattern. Several methods exits for choosing a suitable threshold value, 
but a useful basic method is to simply count the number of rows containing a '1' value in the input pattern 
and use this as the threshold. In the example above the number of '1' values is 2 and this is the threshold 
value used.  

The “Thresholded Output” shown in Figure 2.2.1(b) is the results of applying a threshold, and is a binary 
pattern vector termed the “separator”. In general, the separator may represent the superposition of a number 
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of binary pattern vectors (each corresponding to a different match). Other AURA techniques are used to 
recover the individual patterns, translating these into the actual matching data items.  

2.3 Finding the k-nearest neighbours using CMM 

CMM can be used to implement a k-nearest neighbour (k-NN) approach to finding outliers for data editing 
applications. Some related work – the implementation of a classifier based on k-NN using AURA technology 

 determine the k-NN in a dataset directly, this is computationally 
expensive for large datasets. Instead, a CMM neural network (within the AURA framework) is used to find a 

rn 

dit, instead of using the k-NN method for direct classification, we use the k-NN as a localised 
sample (in Euclidean-distance terms) of the larger data space represented by the full dataset. This local 

. 
 

. 
Essentially, this involves assigning appropriate binary patterns for each value in an input data record, and 

 

 must 
l 

 techniques provide methods to pre-process external data into a suitable 
binary pattern form for storage in a CMM. Some of methods are integrated with the AURA software library 

 

en the training phase and the recall phase. During training, 
sparse binary input vectors are created which, for each variable, have just one

– was described in (Zhou et al, 1999).  

Although it would be straightforward to

smaller subset of records containing the k-NN, and then to apply the k-NN rule to the subset. The subset 
found by a CMM always contains the required data, together with a few unwanted records (Turner et al, 
1997). The latter are removed when the k-NN rule is applied to the subset. The scalable, high-speed patte
matching technology provided by AURA means that the k-NN are found very quickly by this indirect 
method. A detailed description of the implementation of a CMM k-NN classifier is given in (Zhou et al, 
1999).  

For Eure

neighbourhood sample contains much useful information about properties such as the local data density
Local data density can provide a useful heuristic guide to the presence of novelty or outliers in the data. 

Pre-processing is needed to extract suitable features from datasets for training in the CMM neural network

then combining these patterns to form a complete input pattern to the network. To simplify the mapping of 
continuous variables into binary patterns, continuous values are quantised using Robust Uniform Encoding
(RUE), which is detailed in (Zhou et al, 1999). RUE is optimal in the sense that the number of continuous 
values assigned to each bin is approximately constant for a given training set. This is a very desirable 
property because evenly distributed training patterns make best use of CMM storage by avoiding saturated 
regions which could otherwise result in excessive false matches during recall. Finally, a binary pattern
be allocated for each quantised bin, so that continuous input-space distances are approximated within a loca
region by corresponding distances in the binary patterns generated. Categorical data is encoded using a 
distinct binary pattern for each nominal category. Ordinal categories are also encoded using a distinct binary 
pattern, but using a process that partially preserves ordinality.  

2.4 CMM Pre-processing 

As mentioned previously, AURA

already but other methods are still to be incorporated and are currently implemented in separate functional
modules. Three main variable types are considered here: categorical, continuous, and discrete ordinal types. 
In addition, the method is implemented so that certain variables can be ignored completely during 
processing, and others can be ignored by the CMM processing but considered during the post-processing 
stages where Euclidean distances are calculated.  

Note that the pre-processing differs slightly betwe
 bit set. During recall where 
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edit and imputation processing is performed, it is sometimes preferable to set a number of adjacent bits in the 
binary input vectors to better approximate Euclidean distances in the data. This is discussed in more detail 
the sections below.   

2.4.1 CMM input 

in 

configuration issues (superposition vs. concatenation) 

is needed. For 
some applications, it is most efficient to separately encode each part (e.g. variable, attribute, etc.) of a single 
Before pre-processing is considered, a basic decision about configuration of the CMM inputs 

input as a set of binary vectors having the same length, and then to superimpose these vectors using a bitwise
logical OR operation. This is effective in cases where all input variables are very similar in type and 
cardinality (e.g. all continuous variables, or all categorical over a similar range). It is very efficient in 
memory terms, but at the cost of a loss of information whenever two corresponding vector elements a
‘1’ (because these are combined in the logical OR operation).  

When dealing with a range of data types as found in most edit a

 

re set to 

nd imputation applications, a different 
configuration that offers additional advantages is used. In this case, each part (e.g. variable, attribute, etc.) of 

ths. a single input is separately encodes as a set of binary vectors (as before), this time having different leng
These varying length vectors are now concatenated (i.e. end-to-end) rather than being superimposed as 
describes above. This implies a greater storage requirement than the superposition method described above, 
but allows more flexibility through the use of variable length vectors, and better preservation of input fe
information.  

In the Euredit project, a concatenated input confi

ature 

guration has been used. 

t of CMM pre-processing and is encoded 
directly into a unique sparse binary vector, for each unique category present in the data, for example: 

house type 

2.4.2 Pre-processing for categorical data types 

Categorical data is the simplest type of data from the viewpoin

 

detached semi-detached bungalow apartment 
0001 001 100 1000 0 0

Figure 2.4.2: Example encoding for categorical values 

2.4.3 Pre-proce

screte intervals or “bins” using the RUE 
algorithm (Zhou et al,1999). Finally the encoding process converts the corresponding bin values into a sparse 

le in 

he recall that data points lying near a 
boundary will be allocated to a certain bin, when in fact many near neighbours lie in the adjacent bin. To 

ssing for continuous data types 

For each continuous variable, the data is first quantised into di

binary vector which forms the CMM input. The RUE algorithm first scans all the values for each variab
the dataset to find the optimal position for bin boundaries, so that the variation in number of sample values 
allocated to each bin is minimised. This has three main benefits: it avoids problems due to “empty” bins, it 
distributes binary patterns more uniformly in the CMM, and it provides higher resolution for highly-
populated regions of the input data distribution (and vice-versa).  

Although this method appears to work well, there is a risk during t
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avoid this problem, initial experiments aimed to improve accuracy by setting bits adjacent to the bit 
representing the “central” bin (in which a given input data point lies). This additional step creates a binary
vector containing 3 (or more if required) adjacent bits set to ‘1’. For example: 

 

 

bin number income binary vector 

0 <£9,500 000000000011 

1 £9, 00 500-£21,0 000000000111 

2 £21,000-£28,000 000000001110 

3 £28,000-£35,000 000000011100 

4 £35,000-£41,000 000000111000 

5 £41,000-£51,000 000001110000 

6 £51,000-£62,000 000011100000 

7 £62,000-£65,000 000111000000 

8 £65,000-£95,000 001110000000 

9 £95,000-£105,000 011100000000 

10 £105,000-£150,000 111000000000 

11 >£150,000 110000000000 

Figure 2.4.3: Example encoding for continuous values 

2.4.4 Pre-proce

mbination of approaches used for 
categorical and continuous variables, except that quantisation is no longer necessary.  

ary vector. Possible 
neighbour points in Euclidean space are included by setting bits adjacent to the bit representing the “central” 

tors representing each variable are 
combined using concatenation as discussed above, to form a complete CMM input. Figure 2.4.5 below 

ssing for discrete ordinal data types 

For discrete ordinal variables, the approach taken is effectively a co

First, each unique value present in the data is encoded directly into a unique sparse bin

input value, resulting in a binary vector containing 3 (or more) adjacent bits set to ‘1’. 

2.4.5 Assembling the CMM input using concatenation 

When all necessary pre-processing is complete, the various binary vec

shows an example of a complete CMM input encoding during recall (note that the “income” variable wou
have only a single bit set during training). Also, in this example, the CMM has previously been trained u
a binary separator (or output vector) in which only one bit is set, so that each column of the CMM refers to a
different record in the dataset.  

 

ld 
sing 
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Variables Values Encoding     CMM      

  
     

                
0 0   0 0 1 0 0 1 0 1 1 0 1 1status 
1 1   1 1 0 1 1 0 1 0 0 1 0 0
0 0   1 0 0 0 1 0 0 0 0 0 0 1
1 0   0 1 1 0 0 1 1 0 1 1 0 0
2 1   0 0 0 1 0 0 0 0 0 0 1 0
3+ 0   0 0 0 0 0 0 0 1 0 0 0 0
<£10k 0   1 0 0 0 0 0 0 0 0 0 0 0
£10k-£20k 1   0 1 0 0 0 0 1 0 0 0 0 0
£20k-£40k 1   0 0 1 1 1 1 0 0 1 1 0 1
£40k-£60k 1   0 0 0 0 0 0 0 0 0 0 1 0
>£60k 0   0 0 0 0 0 0 0 1 0 0 0 0
                

 Summed c u n  0 1 2 2ol m s  1 2 1 3 2 1 2 1
                  
 Threshold t 3  0 0 0 0a  0 0 0 1 0 0 0 0
                  
 Threshold t 2  0 0 1 1a  0 1 0 1 1 0 1 0
                  

cars 

 
income 

  

Figure 2.4.5: CMM recall with concatenated inputs 

Figure 2.4.5 also shows the resulting binary output vector in the case of two different threshold values. A 
he 

und 

2.4.6 Recent enhancements to CMM pre-processing 

A recent study in a different project at York (Hodge et al, 2002) indicates some undesirable properties in the 

 

Although some of the neighbours generated by the CMM matching process are genuine members of the set 

r 

1. input data is not normalised during pre-processing (though it is normalised during post processing); 

2. sometimes (presumably in sparse data regions) the k nearest neighbours are not contained in the 
highest-ranked CMM matches – if the CMM threshold is reduced further matches are obtained but 
these do not approximate the required Euclidean metric as effectively as the original matches. 

slight variation is used on the thresholding procedure described earlier, where an initial threshold is set at t
value of the largest element in the summed columns vector, which can then be reduced incrementally to 
obtain the number of matches required. Thus, when a threshold value of 3 is applied, a single match is fo
in the 4th column, whereas when the threshold value is reduced to 2, near matches are also found in the 2nd, 
5th, 7th, 10th, and 11th columns.  

current pre-processing methods applied to continuous and discrete ordinal types. It was stated above that 
adjacent bits in the binary input vectors are set, with the aim of better approximating the Euclidean spatial
relationships in the data. However, it appears that this is not as effective as at first thought.  

of (Euclidean) k nearest neighbours, some others are not. The assumption was that all k nearest neighbours 
would be included as proper subset of the CMM matches so long as the number of CMM matches was large
than the required number k  by a small margin. This is not the case with the current pre-processing methods, 
and appears to be due to several factors including: 
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Thi c ors. 
Adding
Euclide tric 
is applied symmetrically in each dimension. This means that some near neighbours may be included while 

 
n 

 are set, an integer weight can also be supplied for each set bit. The 
first experiments used this method with a triangular weighting function centred on the value present in the 

 
ector may only take elements with the value ‘1’ or ‘0’ and the weighting 

factor is applied separately in the implementation. When this weighted binary vector is used as input to a 

s se ond factor can be offset to some extent by setting additional adjacent bits in the binary input vect
 further adjacent set bits has the effect of producing additional matches, which also approximate the 
an metric. However, the first factor also means that it is difficult to ensure that the Euclidean me

others are not, for some values of k.  

To overcome these problems a more sophisticated pre-processing scheme has been implemented. This relies
on a feature of the AURA system which allows weighted input vectors to be supplied during recall so that, i
addition to specifying that certain bits

query data for each continuous or discrete ordinal variable. Significant improvements in accuracy were 
observed (Hodge et al, 2002).  

To see the form of this weighting function and how it operates, the example used previously to illustrate 
continuous data encoding is modified in figure 2.4.6 below to show how the triangular weighting function is
applied. Clearly, a true binary v

CMM during recall, the result is that every bit set to ‘1’ in the corresponding CMM row is effectively 
increased in value by the weighting factor, and this increased value is used in the accumulation of the 
summed columns at the CMM output. 

 

bin number income “weighted” binary vector 

0 <£9,500 000000000123 

1 £9,500-£21,000 000000001232 

2 £21,000-£28,000 000000012321 

3 £28,000-£35,000 000000123210 

4 £35,000-£41,000 000001232100 

5 £41,000-£51,000 000012321000 

6 £51,000-£62,000 000123210000 

7 £62,000-£65,000 001232100000 

8 £65,000-£95,000 012321000000 

9 £95,000-£105,000 123210000000 

10 £105,000-£150,000 232100000000 

11 >£150,000 321000000000 

Figure 2.4.6: Ex ple o t enc tinuous values 

 

am f weighted inpu oding for con
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2.5 Th

he DKN ( “Distance to Kth Neighbour”) strategy  described here was devised independently at York but 
similar methods have been  described by other authors, for example (Byers et al, 1996). The strategy starts 

ysed comprises at least two clusters, one smaller and 
one larger by some amount, and that there is some degree of separation between any clusters representing 

er” 
 

hbouring data points, and 
this provides indirect information about cluster characteristics present in the data.  

nale for this approach is 
based on the observation that points in a sparse neighbourhood will tend to have a relatively large distance to 

 

 

e DKN strategy for error localisation 

T

from the rather weak assumption that the data to be anal

“outliers” and other “non-outlier” clusters. Presumably, a cluster would not be considered an “outlier clust
unless some degree of separation is present. In general, it is expected that better performance will result from
larger differences in cluster sizes and from greater cluster separation distances.  

Although the data is viewed in terms of clusters, the DKN strategy does not aim explicitly to identify 
clusters within the data to be analysed. Instead it aims to identify data points which are remote from other 
points, but possibly sharing this remoteness with a relatively small group of neig

The DKN strategy involves analysis of the density of data in the local neighbourhood of each point, by 
calculating a suitable distance metric from each point to it’s nearest neighbours, in particular noting the 
distance to the kth neighbour (the choice of parameter k is discussed later). The ratio

the kth neighbour, so long as the choice of k is not too large. (If k is too large, many points will have a 
relatively large distance to the kth neighbour.) 

Figure 2.5: Simple illustration of the DKN approach 

P 

Q

R
R4

Q4

P4 
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Figure 2.5 above shows a simple example of the DKN approach applied to a set of example points in a 2D 
plane. In this example, the value of k is set at 4, that is to say we are interested in finding the distance to the 
4th nearest neighbour of each point. For simplicity, we choose just three exemplar points P, Q, and R, to 
illustrate the approach.  

Point P has its 4th nearest neigbour at distance P4, point Q has its 4th nearest neigbour at distance Q4, while 
point R has its 4th nearest neigbour at distance R4. Choosing a standard Euclidean metric would result in the 
ranking R4 > Q4 > P4. The inference that could be drawn from this is that point R is more likely to be in a 
sparse region of the data space and, ultimately, more likely to be a remote or outlying data point. Although 
the choice of k is clearly important it is, in general, not critical. In this example, if k=3 had been chosen, the 
approach would not identify point R so clearly as an outlier, since the 3rd neighbour of point R is probably at 
a distance similar to that of the 3rd neighbour of many other points in the figure. However, choosing k=5  
would (as with k=4) result in a decision that R is a more likely outlier candidate.  

The heuristic adopted in the experimental work described here is that the value of k should be chosen to be 
greater than the number of points in the largest “outlier” cluster but less than the number of points in the 
smallest “normal” cluster. In practice, explicit information about cluster sizes is not usually available but the 
number of points (records or cases) in a dataset  is easily determined and, given a basic estimate of the error 
rate and some assumptions about outliers it is perhaps not too difficult to find a reasonable value for k.  

The distance to the kth neighbour is determined and stored in a distance list for every point. The distance list 
is then sorted in descending order so that the point with the largest value of distance appears at the head of 
the list. This ranked version of the list is effectively a ranking of the all points in the dataset in terms of  
“predicted outlyingness”.  

2.6 Error localisation decision threshold 

When performing error localisation in practice, we need to determine a threshold or cut-off distance so that 
larger values of DKN indicate a record containing errors while smaller values indicate records which are 
judged acceptable. In the experiments described in section 4 a user-specified parameter sd was used to vary 
this threshold. The value given for this parameter is interpreted as a threshold equal to sd standard deviations 
above the overall mean DKN value, so that sd = 1 will set the threshold at a distance equal to the mean + 1 
standard deviation.  

Finally, the error-status of each value in an error record is computed in an interval between 0 and 1 ( a 
pseudo probability) based on individual contribution to the DKN value, weighted by a score based on the 
actual DKN value. 
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3 Additional Pre- and Post-Processing 
3.1 System default parameters 

Appropriate default values are provided for almost all parameters used in the system so that an inexperienced 
user can obtain satisfactory results with a minimum of knowledge about the data to be imputed. The results 
described in sections 4 and 5 were produced using system defaults in almost all cases.  

3.2 Valid value checks 

The system checks non-real values in the input data file against user-specified ranges in the specification file 
to ensure these are consistent. During imputation, the system will halt and report the location of the first 
value in the input data file that fails this check, which must be corrected before imputation can proceed. 
Clearly, the availability of accurate metadata is an important factor in prescribing valid ranges in the 
specification file.  

Note that edit rule checks are not currently supported on input or imputed value data during imputation with 
the system. Edit rules could be added to the system in principle, but there was insufficient time in the Euredit 
project to implement this feature.  

3.3 Imputation modes 

The system currently provides five main imputation “modes” each of which operates by selecting a suitable 
value from the set of k-NN neighbourhood records, as determined by the CMM and subsequent Euclidean 
distance calculations.  

Nearest-neighbour mode simply replaces each missing value using the corresponding value copied from the 
neighbour that is nearest in terms of Euclidean distance.  

Random-neighbour mode simply replaces each missing value using the corresponding value copied from a 
neighbour selected at random in the k-NN neighbourhood.  

Mean mode replaces each missing value using the corresponding mean value computed over the k-NN 
neighbourhood.  

Weighted-mean mode replaces each missing value using the corresponding value of the Euclidean distance 
weighted-mean, computed over the k-NN neighbourhood. This gives greater weight to values belonging to 
closer neighbours.  

Median mode replaces each missing value using the corresponding median value computed over the k-NN 
neighbourhood.  

Clearly other “modes” that operate effectively over a local k-NN neighbourhood could be added to this list in 
principle (if time was available).  
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3.4 Household variables 

A special method was devised to ensure household variables were imputed properly for the SARs dataset. 
These variables are imputed in such a way as to maintain the same value for each member of the household 
as follows:  

• “parent” and “dependents” relationships are defined in the specification file 

• store the first record in each household and impute any missing values  

• additional records from same household inherit household values from the first record 

The current implementation of this method assumes that records for a given household are always adjacent in 
the input data file. 

3.5 Modified Euclidean distance calculation 

When a mix of categorical and continuous variables is present the calculation of Euclidean distance can 
become biased in favour of categorical variables if they are assigned distance values in the obvious way, i.e. 
using a distance of 0.0 for an exact match and a distance of 1.0 for any mismatch. Conversely, continuous 
variables usually have a distance value somewhere in the continuous range between 0.0 and 1.0. The net 
effect of this situation is to introduce a bias in which categorical variables have a larger overall effect on the 
calculation of distance than continuous variables.  

To counter this effect, a modified calculation of distance was introduced as an option by the setting of a flag 
in the specification file. The modified calculation is appropriate when a mix of continuous and categorical 
variables is present and treats all categorical variables as a single “pseudo variable”. The standard calculation 
for the Euclidean distance D between two records A and B (having elements ai and bi respectively 
representing the values of corresponding variables) is essentially:  

( )2∑ −=
i ibiaD  

The modified distance calculation we use is: 

( )
2

2 ,1)( 







+−= ∑∑

c
ccB

cr
rr baf

n
baD  

where:  

ar and br represent continuous type variables 

ac and bc represent categorical type variables 

nc is the number of categorical variables present in each record 

f   is a function which returns 0 when ac = bc and 1 otherwise 

The effect of introducing the new term is to treat categorical variables collectively as a single “pseudo 
continuous variable” whose value ranges between 0.0 when every pair of categorical variables between the 
two records matches, and 1.0 when all categorical variables between the two records are different.  

19 



EUREDIT Deliverables D4.4.1 and D5.4.1: Application of CMM techniques to editing and imputation 

 
Indications so far suggest that this modified distance gives a better ranking of near-neighbours than the 
standard distance calculation resulting in better overall system performance.  

3.6 Neighbourhood limit distance 

With realistic data it is usual that some regions of data space are more densely populated while other regions 
are more sparse. By choosing to define a local neighbourhood in terms of the k nearest neighbours, it is clear 
that the region of space defined by this neighbourhood will vary considerably in size, according to the local 
population density. One effect of this variation is that the kth neighbour could be quite distant when the 
region is sparse – possibly an extreme value which we might not wish to consider when calculating the mean 
(for example) of a particular variable over the neighbourhood.  

A way around this difficulty is to introduce a distance limit on the local region such that, at most k 
neighbours will be considered during imputation, but neighbours must also fall within the distance limited 
region. This avoids the unwanted influence of extreme values in sparse regions.  

The way this is currently implemented (for imputation only at present) requires a user-specified value,  
equivalent to the number of variables allowed not to match. Thus a value of 2.0 for this parameter means that 
a distance limit is imposed equivalent to the distance of a hypothetical neighbour record that differs in two 
values to the maximum degree possible (i.e. the normalised difference would be determined as 1.0 for each 
of two non-matching values). 

3.7 Merge external error data 

Although the current system at York does not support edit rules directly, an indirect method of including edit 
rule failure information is provided. This currently assumes a particular arrangement of error data to exploit 
the output of a software tool provided to the Euredit project by one of the partners (NAG). Basically, this 
tool provides a report for each of SARs, ABI and EPE datasets indicating the location of values which 
violate (so-called) hard edit rules (where there is no doubt that the value is in error). The presence of external 
error information is indicated by the user in the specification file, together with the name and location of the 
error information file. During error localisation, if the file is present, error information is taken from the 
external file and merged with errors found using the DKN method.  
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4 Error localisation results  
In this section we provide an update on previous experimental results (now moved to Appendix F) with 
results obtained using Euredit Y3 evaluation datasets (for which the true data is held back). The procedure 
used during error localisation experiments involved first creating a specification file for each dataset, and 
creating several copies of this file. Each copy was edited so that a different value of the parameter sd (see 
section 2.6) was requested in each case. A simple DOS batch file was used to repeat the error localisation 
experiment for each different value (as indicated in the corresponding specification file). In most cases the 
system was left to choose default values, but the value of k (i.e. as required to find the DKN) was specified 
as 10 for all experiments reported here. This value represents a reasonable guess which is assumed to be 
somewhere below the lower-bound on the number of nearby records for a non-error record, and somewhere 
above the upper-bound on the number of nearby records for a error record. With more time, experimentation 
could be used to determine this value more precisely.  

As always in situations like this, it is difficult to draw any firm conclusions on the basis of these results 
because they merely compare the effect of parameter changes but give no indication of performance relative 
to other methods studied in the Euredit project (relative comparisons will form the basis of WP6 in Euredit).  

Three experiments were performed using different values of a threshold parameter sd which is tested against 
the DKN value for each record in the dataset. In all cases, the value of k used was 10, so that he DKN value 
computed was the distance to the 10th neighbour, and a modified Euclidean distance measure was used (as 
described in the section 2 update).  

Below is a key to the evaluation criteria names used in the tables in sections 4.1 and 4.21: 

 
Name Meaning 

alpha estimates the probability that an incorrect value for the variable is not detected 
beta  estimates the probability that a correct value is incorrectly identified as an error
delta estimates the probability of an incorrect classification outcome for this variable
RAE   Relative Average Error
RRASE Relative Root Average Squared Error
RER   Relative Error Range
tj standardised measure of effectiveness in classifying this variable 
AREm1 Absolute Relative Error of the k-Mean (k=1)
AREm2 Absolute Relative Error of the k-Mean (k=2)

 
 

4.1 UK Annual Business Inquiry (Retail Section) 

The ABI dataset consists of a sample from the retail section of the U.K. Annual Business Inquiry (1999). For 
each business the dataset contains information on aspects of purchase costs and employment costs. The data 

                                                 
1 See (Chambers, 2000) for more details of the performance measures used here. 
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is based on responses for either of 2 possible questionnaires.  The larger questionnaire contains 17 retail 
questions.  The smaller one only asks for summary information and contains 5 retail questions.  Businesses 
on the dataset therefore either have 5 or 17 responses to individual questions. The results reported in this 
section are based on the Y3 version of the dataset, which contains both errors and missing values.  

The first table below shows the overall performance for each value of the sd parameter selected. As 
described in (Chambers, 2000) A represents the proportion of records with at least one incorrect value that 
are passed by all edits, B represents the proportion of records with all correct values that are failed by at least 
one edit, and C represents the proportion of incorrect error detections. G is an average taken over all cases to 
provide an overall error localisation performance measure and a smaller value indicates better performance.  

For the values of parameter sd chosen here the variation in performance is not very large, but there is an 
apparent trend for measure A to improve as sd becomes more negative between 0.0 and –0.1, while measure 
B seems to improve as the value of sd becomes more positive, as does C to a smaller extent. Measure G 
appears unchanged for the values of sd used here. 

 
OVERALL sd=0.0 sd=-0.07 sd=-0.1 
G     0.024822 0.024822 0.024822 
A     0.737052 0.694935 0.639158 
B     0.016756 0.03731 0.06412 
C     0.219798 0.222686 0.226215 

Table 4.1.1: Overall measures of error localisation performance for ABI data 

The tables below show the performance for each value of sd with each of the variables in turn TURNOVER, 
EMPTOTC, PURTOT, TAXTOT, ASSACQ, and ASSDISP. These variables are of primary interest as 
described in the Euredit evaluation handbook.  

 
TURNOVER sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.865421 0.786916 0.695327 
beta  0.025419 0.049956 0.082966 
delta 0.097903 0.113548 0.135806 
RAE   5.316682 3.762756 1.661336 
RRASE 0.101083 0.088003 0.048657 
RER   2254.207 2254.207 1536.526 
tj 39.58266 28.01369 12.36864 
AREm1 4.803999 3.210104 1.039363 
AREm2 0.15865 0.356818 0.800202 

Table 4.1.2: Error localisation results for ABI variable TURNOVER 
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EMPTOTC sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.836149 0.760135 0.675676 
beta  0.030206 0.053262 0.085433 
delta 0.107322 0.120899 0.14191 
RAE   6.398992 4.687782 2.227019 
RRASE 0.169812 0.151885 0.070905 
RER   3733.566 3718.676 1578.132 
tj 51.34303 37.61295 17.86874 
AREm1 6.027577 4.256292 1.690029 
AREm2 1.939754 1.403278 0.358619 

 Table 4.1.3: Error localisation results for ABI variable EMPTOTC 

 
PURTOT sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.791757 0.745119 0.673536 
beta  0.048891 0.070874 0.099678 
delta 0.159381 0.171157 0.18503 
RAE   6.548785 4.959322 2.312617 
RRASE 0.137193 0.127373 0.082219 
RER   4297.226 4297.226 4297.226 
tj 47.21318 35.75402 16.67271 
AREm1 6.348782 4.678612 1.84838 
AREm2 0.518544 0.323644 0.43428 

Table 4.1.4: Error localisation results for ABI variable PURTOT 

 
TAXTOT sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.865854 0.795393 0.718157 
beta  0.02619 0.048352 0.08022 
delta 0.12617 0.137302 0.156179 
RAE   38.20677 14.23315 6.640314 
RRASE 1.961451 0.444606 0.234901 
RER   61639.75 11195.08 6215.083 
tj 361.8918 134.8153 62.89658 
AREm1 38.36232 14.03185 6.268361 
AREm2 517.73 25.98912 6.654804 

Table 4.1.5: Error localisation results for ABI variable TAXTOT 
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ASSACQ sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.858672 0.770878 0.700214 
beta  0.022464 0.04563 0.078098 
delta 0.085807 0.100568 0.125223 
RAE   17.86242 4.727693 1.267213 
RRASE 0.979696 0.213779 0.077016 
RER   32770.43 7107.048 3386 
tj 90.86003 24.04816 6.445881 
AREm1 17.46726 4.054431 0.464201 
AREm2 36.83064 0.823234 0.759153 

Table 4.1.6: Error localisation results for ABI variable ASSACQ 

 
ASSDISP sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.832432 0.759459 0.686486 
beta  0.019446 0.042161 0.071244 
delta 0.068112 0.085099 0.108073 
RAE   21.40873 17.17507 5.421435 
RRASE 1.01857 0.768912 0.352492 
RER   7452.889 3838.111 3838.111 
tj 22.94304 18.40596 5.809977 
AREm1 19.813 15.45976 3.318977 
AREm2 0.766081 0.016506 0.783678 

Table 4.1.7: Error localisation results for ABI variable ASSDISP 
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4.2 Swiss Environment Protection Expenditures (EPE) 

The EPE dataset consists of a questionnaire distributed (in 1993) to enterprises in Switzerland chosen 
according to class of economic activity (usually with > 20 employees). For each enterprise the dataset 
contains information on expenditure relating to environmental issues. The results reported in this section are 
based on the Y3 version of the dataset, which contains both errors and missing values.  

The first table below shows the overall performance for each value of the sd parameter selected and is of the 
same form as table 4.1.1 for the ABI data shown in the previous section. As before, A represents the 
proportion of records with at least one incorrect value that are passed by all edits, B represents the proportion 
of records with all correct values that are failed by at least one edit, and C represents the proportion of 
incorrect error detections. G is an average taken over all cases to provide an overall error localisation 
performance measure and a smaller value indicates better performance. 

For the values of parameter sd chosen here the variation in performance is fairly small, but there is an 
apparent trend for measure A to improve as sd becomes more negative, while measure B seems to improve 
for more positive values of sd. No clear pattern is observable in measure C as sd is varied, and measure G 
appears virtually unchanged for the values of sd used here. In broad terms, the trends seems similar to those 
suggested by table 4.1.1 for the ABI dataset (see previous section). 

 
OVERALL sd=0.1 sd=0.0 sd=-0.07 sd=-0.1 
G     0.017578 0.017579 0.017579 0.017579 
A     0.789313 0.770992 0.751145 0.745038 
B     0.497396 0.536458 0.559896 0.575521 
C     0.681424 0.684312 0.680462 0.682387 

Table 4.2.1: Overall measures of error localisation performance for EPE data 

The tables below show the performance for each value of sd with each of the variables in turn TOTINVTO 
and TOTEXPT. These variables are of primary interest as described in the Euredit evaluation handbook.  

 
TOTINVTO sd=0.1 sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.5 0.5 0.5 0.5 
beta  0.159018 0.170758 0.173959 0.180363 
delta 0.16333 0.174921 0.178082 0.184405 
RAE   0.341322 0.341322 0.341322 0.341322 
RRASE 0.163342 0.163342 0.163342 0.163342 
RER   1393.857 1393.857 1393.857 1393.857 
tj 1.701787 1.701787 1.701787 1.701787 
AREm1 0.079452 0.075377 0.069128 0.066895 
AREm2 9.381622 9.568206 9.572234 9.598862 
MSE 1657.294 1657.294 1657.294 1657.294 

Table 4.2.2: Error localisation results for EPE variable TOTINVTO 
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TOTEXPTO SD=0.1 sd=0.0 sd=-0.07 sd=-0.1 
alpha 0.571429 0.571429 0.571429 0.5 
beta  0.162353 0.171765 0.172941 0.177647 
delta 0.168981 0.178241 0.179398 0.18287 
RAE   -0.00114 -0.00114 -0.00114 -0.00104 
RRASE 0.000366 0.000366 0.000366 0.000366 
RER   2.345455 2.345455 2.345455 2.345455 
tj -0.00629 -0.00629 -0.00629 -0.00576 
AREm1 0.044353 0.053333 0.063145 0.065808 
AREm2 0.041279 0.043044 0.043998 0.04056 
MSE 36.42854 36.42854 36.42854 34.55382 

Table 4.2.2: Error localisation results for EPE variable TOTEXPTO 
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5 Imputation results  
 
The procedure used during imputation experiments involved first creating a specification file for each 
dataset, and creating five copies of this file. Each copy was edited so that a different imputation mode (from 
NN, RANDOM, MEAN, WEIGHTED-MEAN, and MEDIAN) was selected in each case (for the SARs 
dataset only two imputation modes were investigated due to lack of time). A simple DOS batch file was used 
to repeat the imputation experiment five times each time using a different imputation mode (as indicated in 
the corresponding specification file). In most cases the system was left to choose default values for k (i.e. the 
k-NN) and the other parameters. An exception to this was the SARs dataset where the value of k was 
specified as 50 since the system default would have been larger than necessary in this case.  
 
With the exception of section 5.2 (see that section for details), all the tables in section 5 are arranged in the 
same format with five results columns, one for each imputation mode as described earlier. Shading is used to 
highlight the better-scoring values in each row, with the darker shading used for the best scoring value(s) and 
lighter shading used for the second best scoring value(s). The table below provides a brief guide to the 
measured criteria for continuous variables used in each table.  
 
 

Criteria measured Reference  Additional comments 

Slope   See page 19 in (Chambers, 2000). Huber M estimate used.  
 Ideally should be close to 1. 

t-val   Ideally close to 0. Measures how far Slope is from 1. 
mse   Mean squared error, ideally 0. 
R^2   Squared correlation coefficient, ideally close to 1. 
dL1 equation 19  
dL2 equation 20   
dLinf equation 21  
K-S equation 25  Kolmogorov-smirnov 

K-S_1 equation 26  alpha = 1 
K-S_2 equation 26  alpha = 2 
m_1 equation 28  k = 1 
m_2 equation 28  k =2 
MSE equation 30   

 
 

Table: Measured criteria for continuous variables 
 

In section 5.2 some tables use criteria for categorical variables instead, as shown below:  
 

Criteria measured Reference Additional comments 
W     equation 14 Measures preservation of marginal distribution
D     equation 15 Measures preservation of true values. 
Eps  equation 16  

 
Table: Measured criteria for categorical variables 

 
Equation numbers used in the tables above refer to those described in (Chambers, 2000). 
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5.1 Danish Population Register/Labour Force Survey LFS 
 
The dataset consists of Danish population register records for individuals selected for interview for the 
Danish Labour Force Survey (1996). The dataset is adapted for use in the Euredit project to test imputation 
for the income variable by treating this as missing for those individuals who did not respond to the Labour 
Force Survey. The results reported in this section are based on the Y2 version of the dataset which contains 
missing values but not errors.   
 

INCOME NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.831936 0.77263 0.886095 0.886242 0.946284

t-val -35.190195 -41.413596 -28.807669 -28.77147 -13.886186

mse   9569009086 1.19E+10 6652994619 6648029533 6679189338

R^2   0.262119 0.144952 0.423972 0.424417 0.423124

dL1   62390.94419 74261.18252 48783.28862 48754.33796 45131.97126

dL2   102680.036 117357.4575 81746.92193 81713.57872 81156.99662

dLinf 850380 884379 833999 834028 834249

K-S   0.05988 0.08479 0.148982 0.149222 0.13485

K-S_1 0.010871 0.013568 0.02611 0.026089 0.021769

K-S_2 0.000356 0.000659 0.001908 0.001903 0.001105

m_1   7290.365988 10728.29533 11515.65509 11498.89461 1131.812216

m_2   888155313.9 2544173608 3047531467 3050703655 6904997159

MSE 4904609.742 9367060.272 10488350.59 10460707.21 1047917.18
 
 

Table 5.1.1: Imputation results for LFS variable INCOME 
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5.2 UK Sample of Anonymised Records (SARs) 
 
This is a sample from a Census dataset.  The data selected were a 1% sample of household records 
which provides the largest dataset in the collection.  The data set contains information on people 
within households and therefore has a hierarchical structure.  From Census documentation, patterns 
of errors and missingness in the pre-edited data can be recreated in the data distributed to 
participants. The results reported in this section are based on the Y2 version of the dataset which 
contains missing values but not errors.   
 
The tables in section 5.2 are arranged in a slightly different format with two variables presented in 
each table and two results columns under each variable, one for each of two imputation modes 
(WEIGHTED MEAN and MEDIAN). Shading is used to highlight the better-scoring values under 
each variable, in each row.  

 
 AGE HOURS 
 WTD MEAN MEDIAN WTD MEAN MEDIAN 
AREm1 606.990123 306.987492 574.317757 294.424115 
AREm2 606.990123 306.987492 574.317757 294.424115 
Slope 0.740835 0.752259 1.125586 0.996535 
t-val -7.223066 -12.023619 1.862356 -0.187487 
mse   98.99608 79.919944 126.452441 210.257492 
R^2   0.417793 0.454998 0.000212 0.081173 
dL1   9.370968 8.075 9 8.115385 
dL2   12.606322 11.466255 11.677971 14.359398 
dLinf 40 46 26 49 
K-S   0.403226 0.45 0.5 0.230769 
K-S_1 0.104839 0.082976 0.157095 0.037019 
K-S_2 0.025982 0.021176 0.042335 0.00282 
m_1   6.66129 5.991667 6.375 3.115385 
m_2   313.725806 273.441667 404.75 208.346154 
MSE 0.001056 0.001058 0.001181 0.001181 

 
Table 5.2.1: Imputation results for SARs variables AGE and HOURS 

 
 

 SEX RELAT 
 WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     0.692308 0.72 31.55965 35.439104 
D     0.448276 0.416667 0.796296 0.576923 
Eps  0.172414 0.277223 0.673458 0.449361 

 
Table 5.2.3: Imputation results for SARs variables SEX and RELAT 
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 MSTATUS LTILL 
 WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     18.379642 21.265306 0.333333 2.666667 
D     0.52459 0.2625 0.048387 0.053097 
Eps  0.348027 0.126715 0 0 

 
Table 5.2.3: Imputation results for SARs variables MSTATUS and LTILL 

 
 

 TENURE HHSPTYPE 
 WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     28.409688 9.806161 4.266492 7.730595 
D     0.868421 0.317073 0.5 0.398305 
Eps  0.750733 0.134553 0.314305 0.255489 

 
Table 5.2.4: Imputation results for SARs variables TENURE and HHSPTYPE 

 
 

 ROOMSNUM BATH 
 WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     25.883317 52.357946 0 0 
D     0.557143 0.618321 0 0 
Eps  0.398064 0.510365 0 0 

 
Table 5.2.5: Imputation results for SARs variables ROOMSNUM and BATH 

 
 

 CENHEAT INSIDEWC CARS 
 WTD MEAN MEDIAN WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     28.2 42 0 0 20.666667 26.287049
D     0.390244 0.346405 0 0 0.430769 0.413043
Eps  0.217779 0.215686 0 0 0.243607 0.282609

 
Table 5.2.6: Imputation results for SARs variables CENHEAT, INSIDEWC, and CARS 

 
 

 COBIRTH ISCO1 ISCO2 
 WTD MEAN MEDIAN WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     9.22006 18.181818 6.242737 53.879741 7.618073 43.091494
D     0.666667 0.157534 0.83871 0.852273 1 0.931034
Eps  0.524533 0.005609 0.694447 0.770328 1 0.862069

 
Table 5.2.7: Imputation results for SARs variables COBIRTH, ISCO1, and ISCO2 
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 DISTWORK WORKPLACE QUALNUM 
 WTD MEAN MEDIAN WTD MEAN MEDIAN WTD MEAN MEDIAN 
W     1.750637 9.831418 6 4 16 36.222222
D     0.5 0.571429 0.888889 0.125 0.5 0.384615
Eps  0 0.323993 0.666667 0 0.25 0.230769

 
Table 5.2.8: Imputation results for SARs variables DISTWORK, WORKPLACE, and 

QUALNUM 
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5.3 UK Annual Business Inquiry (Retail Section) 

The ABI dataset consists of a sample from the retail section of the U.K. Annual Business Inquiry (1999). For 
each business the dataset contains information on aspects of purchase costs and employment costs. The data 
is based on responses for either of 2 possible questionnaires.  The larger questionnaire contains 17 retail 
questions.  The smaller one only asks for summary information and contains 5 retail questions.  Businesses 
on the dataset therefore either have 5 or 17 responses to individual questions. The results reported in this 
section are based on the Y2 version of the dataset, which contains missing values but not errors.   

 
TURNOVER NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.601782 0.772398 1.026589 1.050274 1.210826

t-val -14727.56982 -82.861624 15.537449 26.961219 140.775111

mse   421920267.1 3.06E+10 1.79E+10 16928770000 2.38E+10

R^2   0.988247 0.143547 0.815609 0.833653 0.639476

dL1   557.93525 878.917817 576.394886 570.580788 654.853699

dL2   20848.90588 29706.4243 23020.3066 22622.23535 27216.45232

dLinf 34611.58913 46667.4444 38124.16509 37451.4551 45054.26939

K-S   0.066176 0.058824 0.066176 0.066176 0.073529

K-S_1 0.004479 0.001965 0.001723 0.00181 0.001351

K-S_2 0.000036 0.000016 0.000023 0.000023 0.000017

m_1   303.514852 410.743686 391.621615 385.911458 559.172663

m_2   1722668335 875997246.3 919386274.3 912797936.9 989200177.2

MSE 1761889.389 1726690.292 1726094.029 1726181.195 1621242.672

Table 5.3.1: Imputation results for ABI variable TURNOVER  
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EMPTOTC NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 1.09085 0.928443 0.792165 0.796168 1.121222

t-val 17.876876 -81.330442 -365.759311 -344.529238 148.625277

mse   635276.4508 246500.8893 158029.5282 130879.8377 144650.1938

R^2   0.935381 0.942393 0.965425 0.970685 0.968387

dL1   23.078173 24.153703 18.630044 17.923052 16.593864

dL2   148.6216 85.982371 128.139593 118.924198 65.243937

dLinf 213.243839 59.232831 127.38729 124.422825 57.284754

K-S   0.067227 0.117647 0.142857 0.142857 0.109244

K-S_1 0.004453 0.007619 0.006715 0.006418 0.00669

K-S_2 0.000055 0.000082 0.000097 0.000091 0.000092

m_1   8.989751 5.808313 0.132834 0.870815 10.279398

m_2   73663.19221 8689.384494 83609.07462 77522.82136 18292.09693

MSE 11515.18438 11769.5952 13385.1099 13711.37853 11912.92138

 
Table 5.3.2: Imputation results for ABI variable EMPTOTC 

 

PURTOT NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.973032 0.972862 1.210687 1.214306 1.324886

t-val -151.747446 -167.691817 111.119707 109.857861 129.05372

mse   89457551.8 926868599.8 590017247 578118010.2 925192481.6

R^2   0.981438 0.727809 0.880817 0.88346 0.879428

dL1   107.723499 160.975172 157.504277 156.876758 183.837574

dL2   1367.576497 4737.118934 4489.373258 4466.439977 5606.733523

dLinf 1924.924198 7385.018571 6437.260945 6400.630941 7761.563018

K-S   0.071429 0.085714 0.078571 0.071429 0.078571

K-S_1 0.005038 0.002299 0.003846 0.003825 0.00433

K-S_2 0.000038 0.000022 0.00003 0.000029 0.000033

m_1   21.702495 93.081025 88.276592 87.836501 145.2628

m_2   13289115.75 42080503.12 50411609.38 50280970.81 60533989.37

MSE 2086083.859 2218505.717 2416710.508 2416715.814 2416305.685

 

Table 5.3.3: Imputation results for ABI variable PURTOT  
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TAXTOT NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.635972 0.245462 0.786586 0.80767 1.256017

t-val -61.585718 -190.845269 -69.555706 -60.040456 67.918816

mse   233624.3473 275661.0602 32396.75789 29508.00728 17047.96696

R^2   0.3134 0.025357 0.907013 0.913852 0.939555

dL1   6.605313 9.273154 4.709212 4.610275 4.053619

dL2   79.535662 93.527176 28.511028 27.281857 28.219452

dLinf 122.812875 128.139627 24.312605 24.282846 34.311424

K-S   0.110236 0.102362 0.15748 0.15748 0.055118

K-S_1 0.004239 0.006675 0.004992 0.005151 0.005771

K-S_2 0.000079 0.000168 0.000067 0.000064 0.00006

m_1   0.949261 0.61096 1.211339 1.067939 1.651507

m_2   7643.780106 6721.69991 373.125456 246.875298 3244.615677

MSE 146.734747 151.191593 169.648034 163.781779 138.084805

 
 

Table 5.3.4: Imputation results for ABI variable TAXTOT 
 
 
 
 

ASSACQ NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.610078 0.350497 2.299377 2.348604 11.8652

t-val -10615.84579 -1176.787082 30979.85687 30741.27331 20877.74702

mse   1574981196 2318876295 37611487.75 34674621.05 1128629344

R^2   0.583305 0.02655 0.983912 0.985178 0.757272

dL1   122.991111 164.940762 103.40781 104.380197 153.759791

dL2   6022.316675 8174.93057 4750.88764 4817.449093 7985.846908

dLinf 11684.94758 15804.15437 8955.59911 9100.061642 15452.39291

K-S   0.325 0.24 0.36 0.36 0.21

K-S_1 0.001334 0.001221 0.001434 0.001396 0.001327

K-S_2 0.000008 0.000009 0.000009 0.000008 0.000012

m_1   83.915096 148.691998 97.402055 98.321647 152.408623

m_2   55789183.95 67380530.76 55118467.42 55619013.91 67375916.82

MSE 5199.377939 7685.053967   1729.589657

 
 

Table 5.3.5: Imputation results for ABI variable ASSACQ 
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ASSDISP NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.052253 0.000001 0.096045 0.072863  

t-val -3933.82518 -48821986.2 -1069.85705 -1875.963002  

mse   814498.3729 890484.1787 768226.1541 796539.67  

R^2   0.909069 0.214256 0.978925 0.978319  

dL1   7.783774 8.308057 6.065148 6.112376 5.410936

dL2   48.95104 141.884922 44.113169 43.821307 150.748872

dLinf 61.11398 239.017337 68.991516 68.206566 257.379565

K-S   0.355263 0.368421 0.644737 0.644737 0.203947

K-S_1 0.004985 0.001537 0.005846 0.005911 0.001763

K-S_2 0.000045 0.000016 0.000155 0.000159 0.000059

m_1   3.447436 6.163478 3.329501 3.322842 5.319427

m_2   5706.417211 22542.37296 10864.34337 10747.61477 24740.63834

MSE 151.400755 166.628831 430.378506 411.088259 101.873028

 
 

Table 5.3.6: Imputation results for ABI variable ASSDISP 
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5.4 Swiss Environment Protection Expenditures (EPE) 

This is a Business Survey containing categorical variables and a large number of true zero responses (i.e. 
where there was no expenditure) and also contains outliers.  The originators of the data themselves recreated 
the pattern of errors and missingness, and edit rules were also supplied. The results reported in this section 
are based on the Y2 version of the dataset, which contains missing values but not errors.   

 
TOTINVTO NN MEAN WTD MEAN MEDIAN 

Slope 0.611244 

RANDOM 

0.380364 0.798213 4.186055

t-val -17.326554 -24.655258 -6.514134 -6.543223 21.070571

mse   970378.7171 1150254.651 979653.1805 979666.4041 938406.5043

R^2   0.172545 0.013176 0.155711 0.156337 0.18122

dL1   104.944681 118.468714 104.430676 104.112756 105.125946

dL2   278.196426 331.088521 281.291029 281.280737 300.096485

dLinf 315.751565 349.767152 324.19278 324.19278 346.256944

K-S   0.477778 0.666667 0.388889 0.388889 0.622222

K-S_1 0.048276 0.048955 0.049656 0.049622 0.061365

K-S_2 0.007766 0.011523 0.007185 0.007189 0.014916

m_1   61.825594 88.586389 57.121631 57.771163 104.724082

m_2   77072.02138 69295.54836 86143.03344 86208.83018 95873.53029

0.797776

 
Table 5.4.1: Imputation results for EPE variable TOTINVTO 

  
TOTEXPTO NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.551205 0.14473 0.797214 0.793996 3.028339

t-val -53.625532 -99.51939 -25.353985 -25.111735 42.715912

mse   828826.3701 951715.0934 792351.9331 792929.0557 782248.9019

R^2   0.141578 0.010692 0.179699 0.179261 0.219717

dL1   67.696284 89.380771 52.743278 52.984982 68.396786

dL2   279.353386 394.325584 271.30789 271.376386 289.983297

dLinf 548.92523 556.915131 551.493412 551.493412 563.573382

K-S   0.4 0.554286 0.308571 0.314286 0.537143

K-S_1 0.011052 0.011612 0.010107 0.010199 0.017986

K-S_2 0.00146 0.002679 0.001056 0.001072 0.003942

m_1   24.879961 33.804602 31.962372 32.1643 68.344725

m_2   68697.49446 6187.716868 77339.89128 77307.95825 90521.79572

Table 5.4.2: Imputation results for EPE variable TOTEXPTO 

36 



EUREDIT Deliverables D4.4.1 and D5.4.1: Application of CMM techniques to editing and imputation 

 
5.5 European Community Household Survey (GSOEP) 

This is the only social survey dataset in the collection suitable for edit purposes and also the only social data 
with a longitudinal aspect.  It consists of information from a panel of people interviewed over a number of 
years.  There is also an element of hierarchical data with information on people within households.  There is 
documentation on the full dataset allowing accurate proportions of errors and missing values to be generated. 
The results reported in this section are based on the Y2 version of the dataset, which contains missing values 
but not errors.  Results are shown here only for the first three years of the survey (years 1991 to 1993) to 
provide an indication of the form that the results take. Full results will be taken into account during WP6.  

 
income 91 NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.902863 0.802044 0.96822 0.970108 0.976106

t-val -15.793043 -24.708059 -5.460485 -5.384541 -4.545728

mse   384118686.5 586226310.1 225058111.9 219919920.5 259818820.9

R^2   0.540427 0.334582 0.70222 0.708916 0.655495

dL1   11273.97092 14394.95727 9444.636202 9328.405935 9042.414243

dL2   20434.52508 26869.05781 14985.95958 14817.2745 16086.52403

dLinf 339996 512500 172994 172272 179400

K-S   0.033234 0.063501 0.278932 0.278932 0.065282

K-S_1 0.002323 0.004337 0.016315 0.016415 0.014013

K-S_2 0.000041 0.000167 0.001032 0.001025 0.00053

m_1   31.537685 2116.655786 997.632047 1003.039763 572.862908

m_2   70826506.32 299389860.1 197631767.3 191756480.4 269230490.8

MSE 216916.0517 666539.224 310609.5545 312135.517 224910.7036

 
Table 5.5.1: Imputation results for GSOEP variable INCOME 91 
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hhinco 91 NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.858665 0.829254 0.993704 0.991347 1.084167

t-val -13.435136 -14.120848 -0.656378 -0.90189 7.962435

mse   1830518862 2154849540 1076758373 1072332257 1058187956

R^2   0.215367 0.124011 0.388821 0.391336 0.405533

dL1   28732.87953 32259.57329 23192.35905 23114.00119 21908.37092

dL2   44952.16602 48813.32789 32785.14123 32711.96597 33161.16482

dLinf 518500 582267 211511 206670 240482

K-S   0.052819 0.068843 0.140059 0.140653 0.2

K-S_1 0.005376 0.006276 0.049866 0.049187 0.049207

K-S_2 0.000113 0.000198 0.004524 0.004371 0.005479

m_1   1778.127003 3356.273591 1393.826113 1297.395846 7486.046884

m_2   47350093.77 223261085.9 1250348127 1224890812 1864626982

MSE 826400.7017 1618025.512 620567.0413 596376.7678 5905158.496

 
Table 5.5.2: Imputation results for GSOEP variable HHINCO 91 

 
 
 

income 92 NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.923717 0.843288 1.025601 1.025984 1.035041

t-val -13.124856 -15.617093 4.284043 4.493228 6.887363

mse   476276712.3 903333208.4 278243595.2 275557022.8 283814505

R^2   0.493903 0.215259 0.679854 0.683277 0.675976

dL1   12392.19412 17973.52131 9666.40553 9572.783986 9220.528226

dL2   21942.0722 30839.98033 16768.36578 16695.81001 16979.85021

dLinf 192000 385420 184906 185704 188050

K-S   0.08871 0.222926 0.194124 0.195276 0.077765

K-S_1 0.012889 0.018886 0.018408 0.018556 0.015604

K-S_2 0.00045 0.002388 0.000818 0.000829 0.000603

m_1   3138.384217 8494.228687 2027.048387 2079.340438 2930.411866

m_2   313387030.8 468877940.2 431458276.5 437424418 460637572.2

MSE 1235842.611 7726429.353 639605.0762 661783.9446 1091184.433

 
 

Table 5.5.3: Imputation results for GSOEP variable INCOME 92 
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hhinco 92 NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.873062 0.807108 1.053956 1.051828 1.1395

t-val -10.633327 -11.468709 4.706092 4.451756 11.490774

mse   2368580048 3387923349 1588912574 1589161355 1678927163

R^2   0.182416 0.069087 0.304633 0.304978 0.304032

dL1   33103.61982 42286.22062 27025.32085 27063.28226 26777

dL2   49369.869 59173.96342 40173.04845 40153.37411 42114.3568

dLinf 449598 534239 495297 496043 503099

K-S   0.112327 0.288018 0.152074 0.147465 0.207373

K-S_1 0.014579 0.03295 0.018514 0.018259 0.024282

K-S_2 0.000939 0.006046 0.001686 0.001632 0.002916

m_1   8926.75576 19857.77362 8144.154954 8025.436636 14757.65438

m_2   1311776310 2203965248 2284463896 2260967937 2871310801

MSE 8802426.76 41555953.02 7348430.811 7149790.444 23089703.6

 
Table 5.5.4: Imputation results for GSOEP variable HHINCO 92 

 
 

income 93 NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.932205 0.846262 1.078636 1.077577 1.072109

t-val -9.527275 -11.946876 11.390366 11.524786 11.924878

mse   756445111.9 1160132622 405791573.5 396192822.5 521993586.4

R^2   0.3365 0.175106 0.601021 0.610501 0.50696

dL1   14452.45286 21199.44939 10750.01099 10731.71718 11194.25275

dL2   27611.76319 34297.34355 20585.59116 20348.50343 23118.09675

dLinf 479998 408000 337860 303290 412166

K-S   0.139965 0.371891 0.144592 0.144592 0.114517

K-S_1 0.011587 0.028918 0.011674 0.011469 0.013105

K-S_2 0.000815 0.006717 0.000808 0.000776 0.000826

m_1   5792.036437 14098.15732 4642.119722 4583.377097 6521.898785

m_2   586105858.9 934650490.1 738331080.3 729884741.4 784131275.2

MSE 3710993.794 20761214.52 2467241.157 2411823.059 4623595.947

 
Table 5.5.5: Imputation results for GSOEP variable INCOME 93 
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hhinco 93 NN RANDOM MEAN WTD MEAN MEDIAN 

Slope 0.888293 0.778109 1.153474 1.150964 1.224814

t-val -8.623481 -9.092754 11.644653 11.333498 15.200934

mse   3384484854 5184645349 2214800812 2207922336 2641590418

R^2   0.110915 0.029175 0.250267 0.252956 0.198705

dL1   36903.89647 49975.00694 29657.32678 29610.19896 31334.02198

dL2   58539.19247 74247.61915 48335.80679 48218.24861 53140.95348

dLinf 790999 791000 732894 732226 736640

K-S   0.176403 0.46096 0.181029 0.176981 0.235975

K-S_1 0.019144 0.041636 0.021172 0.020932 0.028278

K-S_2 0.001974 0.012764 0.002333 0.002266 0.003994

m_1   15509.3181 32984.90168 14707.23193 14557.79526 22766.68016

m_2   2580008707 3282349571 3598809116 3568181122 4186729063

MSE 25413583.76 112939711.9 22848066.29 22398107.66 54003915.07

 
 

Table 5.5.6: Imputation results for GSOEP variable HHINCO 93 
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6 Discussion 
It is not possible to derive many general conclusions about the results presented here because they are based 
on the use of a single basic approach – CMM. Later during WP6 of the Euredit project these CMM results 
will be compared with the results obtained in other work packages using different methods, and then a 
clearer picture of performance in relative terms should be become available.  

The results presented in sections 4 and 5 suggest that the York CMM-based system is at least partially 
successful in identifying errors and it generally appears an effective tool for imputation, especially where a 
large degree of automation is required.  

For error localisation, it appears that a wider variation in the parameter sd should have been investigated. 
Part of the reason for the limited variation is due to the evaluation process, which requires that results be 
returned to another partner (ONS) for evaluation against the (withheld from other partners) true data. 
Although this is a scientifically sound approach, it places a practical limit on the number of experimental 
results that can be evaluated in a given time. Nevertheless, it is apparent that there is some trade-off between 
the A and B scores, and between the alpha and beta scores, in most cases. This suggests that the cost of 
improving the error detection rate is an increase in the false-alarm rate.  

For imputation, the WEIGHTED-MEAN mode seems to offer comparatively good performance in most 
dataset/variable combinations for many of the evaluation criteria, but not in every case. MEDIAN-MODE 
also appears to good (but not always the best) performance in a range of situations. It is very difficult to draw 
general conclusions about choice of best imputation mode on the basis of these results without a deeper more 
careful analysis. However, it does seem that it may be possible to identify a policy for using a particular 
imputation mode according to data type and the criteria of greatest importance in a given situation. For 
example, the NEAREST-NEIGHBOUR mode often performs good-to-best for preservation of distribution 
according to the Kolmogorov-Smirnov criteria, whereas the WEIGHTED-MEAN mode often performs 
good-to-best for preservation of values (criteria dL1, dL2, and dLinf). 

Overall, the results so far seem encouraging but it is not possible to judge performance in relative terms at 
this stage since results for other systems are not yet available for comparison. Also, more experiments need 
to be performed to better characterise the system. If time permits, the current system will be extended with 
the aim of identifying errors in particular values rather than errors at record level. 
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Appendix A: Review of the KNN method 
The conventional Hot Deck approach – see for example (Kalton, 1983) – may be defined as a method where 
an imputed value is selected from an empirical distribution, consisting of values from similar responding 
units. The units which comprise the empirical distribution (sometimes referred to as donor records) are 
selected based on some similarity metric, and there are a number of methods by which the selection from the 
distribution is made. The most straightforward implementations of the Hot Deck approach construct the 
distribution by selecting records which match exactly on the variables which are present, and then select 
some value from this distribution. The number of matching records may be small.  

The K-NN algorithm is closely related to the conventional Hot Deck approach. The difference between the 
techniques lies in the way in which the donor sets are derived. Whereas in the basic Hot deck technique the 
donor records match exactly on the (subset of) available data items, the KNN technique requires a distance 
metric to be defined so that the closest matching exemplars from the training data can be selected. These are 
used as the basis for computation of the required output for a missing value.   

The K-NN method is a widely used and simple method for data classification. The following argument 
justifies the KNN technique in terms of the construction of a Bayesian classifier. We posit that the training 
data represents the output density function such that the probability that a new case x drawn from the 
unknown density function p(x) will fall inside some region R of the output space or x-space is by definition: 

∫ ′′=
R

xdxpP )(  

If we have N data points drawn independently from p(x) then the probability that K of them will fall in the 
region R is given by the binomial distribution: 

KNK PP
KNK

NK −−
−

= )1(
)!(!

!)Pr(  

The expected fraction of the N points in this region R is [ ] PNKE =/ , and the variance is:  

N
PPP

N
KE )1(2 −

=

















 −=  

Thus as N tends to ∞ the variance tends to zero, and in this limit we obtain the actual probability distribution 
for the output space. The approximation P = K/N is unbiased. 

Assuming p(x) is continuous and doesn’t vary over the region R then we can approximate the integral for P 
by: 

∫ ≈′′=
R

VxpxdxpP )()(  

where V is the volume of the region R and x lies inside R. From these equations we obtain the intuitive 
results, that  
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NV
Kxp ≈)(  

Note that two assumptions are required to make this approximation. R is assumed to be large so that  
P = K/N is valid, and R is required to be small to give P = p(x)V. A compromise is required to obtain the 
best approximation for p(x). 

In practice, we can choose for V to be fixed (which gives the Kernel-based density estimation methods), or 
K to be fixed to give the K-nearest neighbour (KNN) techniques. Duda and Hart (Duda and Hart, 1973) 
showed that the KNN technique does in fact converge to the true density function. 

Where the distribution of the data-points in output space is non-uniform, the kernel-based (fixed V) 
techniques can over-smooth is some regions and under-smooth in others. This is avoided by using the KNN 
techniques. 

A Bayesian classifier may be constructed thus. Suppose that the data contains Nk points in each of k classes 
Ck, such that  

∑ =
k k NN  

Take a hypersphere around the test point x that encloses K training points in a volume V. Then the class-
conditional densities are estimated by  

VN
KCxp

k

k
k =)|(  

The unconditional density is still estimated by  

NV
Kxp ≈)(  

The prior probabilities are estimated by 

N
NCP k

k =)(  

Bayes’ theorem then gives 

)(
)()|()|(

xp
CPCxpxCP kk

k =  

Thus the largest estimate for Kk indicates the class Ck to which is the most probable class for the test vector 
x. The use of this technique requires a metric to be defined which allows the distances between test and 
training vectors to be calculated. 

The description given above is of the Bayesian classifier constructed using the k-NN technique. If, instead of 
a classification problem, we have a function estimation problem there are two routes which can be taken. We 
can either reduce the continuous values of the function to categorical data, by some quantisation algorithm, 
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or we can calculate the required value as a function of the values of the K nearest neighbours. We have taken 
the latter approach.  

For more details of this technique and the construction of classifiers, see (Bishop, 1995). 

A comparison between K-NN methods and other machine learning and statistical methods has been given in 
Michie (1994). This showed that the K-NN method is always as good if not better than any other methods 
across many different problems. 
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Appendix B: Some experiments with the Iris database 
The effectiveness of the DKN strategy has been investigated using a simple dataset based on the well-known 
“Iris Plant database (Fisher, 1936). The original iris database contains 150 records representing 3 classes 
described in terms of 4 numeric attributes. It becomes difficult to visualise the relative positions of data in 
higher dimensions so a much simpler 2 attribute dataset was derived from the original using a subset based 
only on the first 2 attributes of each record. It was necessary to remove duplicate records from the subset to 
avoid multiple overlaid data points, and the data was sorted on the first attribute (highest to lowest) and then 
on the second attribute (highest to lowest) resulting in a highly-ordered dataset which is easily viewed as a 
2D graph. The modified Iris database is shown in Appendix C. 

Here the DKN strategy was applied to the results of CMM 
matching (as described in section 2.5) to produce a re-
ordered list of the original data, ranked in order of distance 
from each point to its kth neighbour. Values of  k were 
selected between 3 to 30.  
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Figure B.1: Scatter graph of the first 2 
columns for the iris database (sepal 
length and sepal width). 

The pre-processing method used in these experiments is t
original method (see sections 2.4.1 to 2.4.5) in which 
adjacent bits are set in the binary input vectors r
continuous values, rather than the more recent method 
which uses weighted binary input vectors. The differenc
in accuracy is more apparent for larger values of k when 
finding the k nearest neighbours. Because the experime
with the iris data use only small values for k, the results are
still meaningful, and the overall operation of the DKN 
strategy is not significantly affected, though sometimes
few points may be ranked higher in the list of outlier 
candidates than they should be. 

he 

epresenting 

e 
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 a 

Figure B.1 opposite shows a 2D scatter plot of first 2 
columns of the iris data used in this series of experiments. 
The scatter plot is constructed using the values of sepal-
width and sepal-length (respectively) taken from the iris 
data as X-Y coordinates. These were used as input to the 
outlier identification procedure. It is not easy to identify 
clear clusters of data points in this 2D view of the data, but 
2 main groups of points have been “ringed” in one possible 
interpretation of the data in terms of clusters. In this 
interpretation, the data points remaining outside the ringed 
clusters could be considered outliers. This is rather 
subjective, of course, as larger rings could easily be drawn 
to include more data points.    

Figures B.2 (a) to (h) on the following pages summarise 
the results of the DKN strategy applied to the modified iris 
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data for a range of values of k from 3 to 30. The data plotted in this series of figures represents the top eleven 
data points identified by the DKN ranking strategy. Actual rankings are not shown in the graphs. For 
reference the top eleven ranked data points produced in each experiment are reproduced in Appendix D. 

A number of interesting observations can be drawn from these results. In all cases, “visually” extreme points 
are ranked in the top eleven (i.e. identified as “outliers”). The changing positions of the top eleven ranked 
points suggests that the method is quite sensitive to the choice of k (as might be expected). Although the 
results appear graphically similar, the actual changes in rank order are vary considerably (see Appendix D). 
It remains unclear from these figures what choice of k-value might be considered “best” in the sense of 
correctly identifying outliers. Part of the problem is that there is no “ground truth” to indicate that certain 
points are somehow in error or different in a physical sense, because we have merely chosen some data 
convenient for plotting and visualising in 2D. 
 

Distance to 30th neighbour sepal-length sepal-width petal-length petal-width class 
2.72074 5.7 4.4 1.5 0.4 Iris-setosa 
2.57588 7.9 3.8 6.4 2 Iris-virginica 
2.46891 7.7 3.8 6.7 2.2 Iris-virginica 
2.44844 5.5 4.2 1.4 0.2 Iris-setosa 
2.23971 5.8 4.0 1.2 0.2 Iris-setosa 
2.23971 5.0 2.0 3.5 1 Iris-versicolor 
2.21713 5.2 4.1 1.5 0.1 Iris-setosa 
2.02011 5.4 3.9 1.7 0.4 Iris-setosa 
1.97579 4.5 2.3 1.3 0.3 Iris-setosa 
1.85835 7.7 2.6 6.9 2.3 Iris-virginica 
1.85292 7.2 3.6 6.1 2.5 Iris-virginica 

Table B.1: Top-eleven records produced by DKN ranking 

For convenience, a typical example of the system output is given above showing the eleven top-ranked data 
points for k=30, and this data is plotted in Figure B.2 (h). The detailed results for this example are shown in 
Appendix D for all points (but clearly the points nearer the top of the list are of greatest interest). 
Additionally a threshold criterion is used in an attempt to make a firm decision about which points should be 
considered outliers. The DKN strategy assumes outliers have a relatively large distance to their kth 
neighbour. The threshold here is determined using an approximation to the first derivative of the DKN 
function. Thus a threshold is selected by finding the position of largest change in ranked list of DKN 
distances, which is assumed to represent the difference in cluster sizes between relatively large normal data 
clusters and relatively small outlier clusters.        

For the experiment described here, the data point in the ranked list which is ranked just above the position at 
which the largest change in DKN distance occurs is 2.23971, so we label this point and all data points ranked 
above in the list as likely outliers. The top four data points from table B.1 are thus selected as shown in table 
B.2 below.  

  
Likely Outliers:        These are assumed to have large distance to the k=30th neighbour. 
The distance prior to which the largest change occurs is: 2.23971.   4 records are likely outliers. 

2.72074 5.7 4.4 1.5 0.4 Iris-setosa 
2.57588 7.9 3.8 6.4 2.0 Iris-virginica 
2.46891 7.7 3.8 6.7 2.2 Iris-virginica 
2.44844 5.5 4.2 1.4 0.2 Iris-setosa 
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Table B.2: Top-four records produced by threshold criterion 
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Figure B.2 (a) Figure B.2 (b) Figure B.2 (c) 

Figure B.2 (d) Figure B.2 (e) Figure B.2 (f) 
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Appendix C: Details of the modified Iris database 
he modified Iris database used in experiments is shown in Table C (a)-(d) below. Note that all attributes are 
hown, even though only the first two – sepal-length and sepal-width – are actually used.  

al-
length 

sepal-
width 

petal-
length 

petal-
width class 

T
s

 
sep

7.9 3.8 6.4 2 Iris-virginica 
7.7 3.8 6.7 2.2 Iris-virginica 
7.7 3.0 3.5 1.0 Iris-versicolor 
7.7 2.8 1.3 0.3 Iris-setosa 
7.7 2.6 1.5 0.4 Iris-setosa 
7.6 3.0 3.9 1.4 Iris-versicolor 
7.4 2.8 6.1 2.3 Iris-virginica 
7.3 2.9 6.7 2.0 Iris-virginica 
7.2 3.6 6.9 2.3 Iris-virginica 
7.2 3.2 6.6 2.1 Iris-virginica 
7.2 3.0 6.1 1.9 Iris-virginica 
7.1 3.0 6.3 1.8 Iris-virginica 
7.0 3.2 6.1 2.5 Iris-virginica 
6.9 3.2 6.0 1.8 Iris-virginica 
6.9 3.1 5.8 1.6 Iris-virginica 
6.8 3.2 5.9 2.1 Iris-virginica 
6.8 3.0 4.7 1.4 Iris-versicolor 
6.8 2.8 5.7 2.3 Iris-virginica 
6.7 3.3 4.9 1.5 Iris-versicolor 
6.7 3.1 5.9 2.3 Iris-virginica 
6.7 3.0 5.5 2.1 Iris-virginica 
6.7 2.5 4.8 1.4 Iris-versicolor 
6.6 3.0 5.7 2.1 Iris-virginica 
6.6 2.9 4.4 1.4 Iris-versicolor 
6.5 

6.0 2.7 5.6 1.4 Iris-virginica 
3.2 5.0 1.7 Iris-versicolor 

6.5 3.0 5.8 1.8 Iris-virginica 
6.5 2.8 4.4 1.4 Iris-versicolor 

 

sepal-
length

sepal-
width 

petal-
length 

petal-
width class 

6.4 3.2 4.6 1.3 Iris-versicolor 
6.4 3.1 5.1 2.0 Iris-virginica 
6.4 2.9 5.8 2.2 Iris-virginica 
6.4 2.8 4.6 1.5 Iris-versicolor 
6.4 2.7 4.5 1.5 Iris-versicolor 
6.3 3.4 5.5 1.8 Iris-virginica 
6.3 3.3 4.3 1.3 Iris-versicolor 
6.3 2.9 5.6 2.1 Iris-virginica 
6.3 2.8 5.3 1.9 Iris-virginica 
6.3 2.7 5.6 2.4 Iris-virginica 
6.3 2.5 4.7 1.6 Iris-versicolor 
6.3 2.3 5.6 1.8 Iris-virginica 
6.2 3.4 5.1 1.5 Iris-virginica 
6.2 2.9 4.9 1.8 Iris-virginica 
6.2 2.8 4.9 1.5 Iris-versicolor 
6.2 2.2 4.4 1.3 Iris-versicolor 
6.1 3.0 5.4 2.3 Iris-virginica 
6.1 2.9 4.3 1.3 Iris-versicolor 
6.1 2.8 4.8 1.8 Iris-virginica 
6.1 2.6 4.5 1.5 Iris-versicolor 
6.0 3.4 4.6 1.4 Iris-versicolor 
6.0 3.0 4.7 1.4 Iris-versicolor 
6.0 2.9 4.0 1.3 Iris-versicolor 

6.0 2.2 4.5 1.6 Iris-versicolor 
5.9 3.2 4.8 1.8 Iris-virginica 
5.9 3.0 4.5 1.5 Iris-versicolor 

Table C (a) Table C (b) 
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sepal-
length 

sepal-
width 

petal-
length 

petal-
width class 

5.8 4.0 5.1 1.6 Iris-versicolor 
5.8 2.8 4.0 1.0 Iris-versicolor 
5.8 2.7 4.8 1.8 Iris-versicolor 
5.8 2.6 4.2 1.5 Iris-versicolor 
5.7 4.4 1.2 0.2 Iris-setosa 
5.7 3.8 5.1 2.4 Iris-virginica 
5.7 3.0 4.1 1.0 Iris-v or ersicol
5.7 2.9 4.0 1   .2 Iris-versicolor
5.7 2.8 1.7 0.3 Iris-setosa 
5.7 2.6 4.2 1.2 Iris-versicolor 
5.7 2.5 4.2 1.3 Iris-versicolor 
5.6 3.0 4.5 1.3 Iris-versicolor 
5.6 2.9 3.5 1.0 Iris-versicolor 
5.6 2.8 5.0 2.0 Iris-virginica 
5.6 2.7 4.5 1.5 Iris-versicolor 
5.6 2.5 3.6 1.3 Iris-versicolor 
5.5 4.2 4.9 2.0 Iris-virginica 
5.5 3.5 4.2 1.3 Iris-versicolor 
5.5 2.6 3.9 1.1 Iris-versicolor 
5.5 2.5 1.4 0.2 Iris-setosa 
5.5 2.4 1.3 0.2 Iris-setosa 
5.5 2.3 4.4 1.2 Iris-versicolor 
5.4 3.9 4.0 1.3 Iris-versicolor 
5.4 3.7 3.8 1.1 Iris-versicolor 
5.4 3.4 4.0 1.3 Iris-versicolor 
5.4 3.0 1.7 0.4 Iris-setosa 
5.3 3.7 1.5 0.2 Iris-setosa 
5.2 4.1 1.7 0.2 Iris-setosa 
5.2 3.5 4.5 1.5 Iris-versicolor 
5.2 3.4 1.5 0.2 Iris-setosa 
5.2 2.7 1.5 0.1 Iris-setosa 

sepal-
length

sepal-
width 

petal-
length 

petal-
width class 

5.1 3.8 1.5 0.2 Iris-setosa 
5.1 3.7 1.4 0.2 Iris-setosa 
5.1 3.5 1.5 0.3 Iris-setosa 
5.1 3.4 1.5 0.4 Iris-setosa 
5.1 3.3 1.4 0.2 Iris-setosa 
5.1 2.5 1.5 0.2 Iris-setosa 
5.0 3.6 1.7 0.5 Iris-setosa 
5.0 3.5 3.0 1.1 Iris-versicolor 
5.0 3.4 1.4 0.2 Iris-setosa 
5.0 3.3 1.3 0.3 Iris-setosa 
5.0 3.2 1.5 0.2 Iris-setosa 
5.0 3.0 1.4 0.2 Iris-setosa 
5.0 2.3 1.2 0.2 Iris-setosa 
5.0 2.0 1.6 0.2 Iris-setosa 
4.9 3.1 3.3 1.0 Iris-versicolor 
4.9 3.0 1.5 0.1 Iris-setosa 
4.9 2.5 1.4 0.2 Iris-setosa 
4.9 2.4 4.5 1.7 Iris-virginica 
4.8 3.4 3.3 1.0 Iris-versicolor 
4.8 3.1 1.6 0.2 Iris-setosa 
4.8 3.0 1.6 0.2 Iris-setosa 
4.7 3.2 1.4 0.1 Iris-setosa 
4.6 3.6 1.3 0.2 Iris-setosa 
4.6 3.4 1.0 0.2 Iris-setosa 
4.6 3.2 1.4 0.3 Iris-setosa 
4.6 3.1 1.4 0.2 Iris-setosa 
4.5 2.3 1.5 0.2 Iris-setosa 
4.4 3.2 1.3 0.2 Iris-setosa 
4.4 3.0 1.3 0.2 Iris-setosa 
4.4 2.9 1.4 0.2 Iris-setosa 
4.3 3.0 1.1 0.1 Iris-setosa 

Table C le C

 

 (c) Tab  (d) 
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Appendix D: Results of Iris experiment (top 11 points as ranked by DKN) 

 

 

 

 
k=7 k=10 k=20 k=30 

  

00 5.4 3.7 78 2.237 0.210 7.7 3.8 2 2.240 0.000 5.8 4 55

34 7.7 2.6 5 1.804 0.006 5.2 4.1 82 2.020 0.044 5.4 3.9 77

00 5.2 4.1 82 1.632 0.122 7.7 2.6 5 1.853 0.054 7.2 3.6 9

rms of distance from origin (0,0). Table shows only first 11 data  points. 

3 k=4 k=5 k=
width

1 1.775 0.143 7.9 3.8 1 1.965 0.084 7.9 3.8 1 2.016 0.096 7.9 3.8
3
4.4

9 1.067 0.111 5 2 99 1.161 0.019 4.5 2.3 112 1.183 0.049 4.5 2.3
2
4.2

3 0.924 0.000 5.4 3.7 78 1.067 0.106 7.7 2.6 5 1.124 0.116 5 2
3

2 0.902 0.000 5.2 4.1 82 0.924 0.037 5.2 4.1 82 0.902 0.000 5.8
5 0.902 0.015 7.7 2.6 5 0.887 0.000 5.8 4 55 0.902 0.000 6.2
2 0.887 0.000 4.5 2.3 112 0.887 0.059 6.2 2.2 43 0.902 0.008 5.2 4

distance diff length width id distance diff length width id distance diff length width id distance diff length width id 
1.853 0.060 7.9 3.8 1 2.264 0.247 5.7 4.4 59 2.886 0.200 5.7 4.4 59 2.721 0.145 5.7 4.4 59
1.793 0.160 7.7 3.8 2 2.016 0.096 7.9 3.8 1 2.687 0.345 5.5 4.2 71 2.576 0.107 7.9 3.8 1
1.633 0.389 5.7 4.4 59 1.920 0.287 7.7 3.8 2 2.341 0.102 7.9 3.8 1 2.469 0.020 7.7 3.8 2
1.245 0.000 5 2 99 1.633 0.029 5.3 3.7 81 2.240 0.003 5.8 4 55 2.448 0.209 5.5 4.2 71
1.245 0.034 4.5 2.3 112 1.604 0.0
1.211 0.040 5.5 4.2 71 1.604 0.140 5.5 4.2 71 2.026 0.147 5.4 3.9 77 2.240 0.023 5 2 99
1.171 0.034 5.4 3.9 77 1.464 0.010 4.5 2.3 112 1.879 0.075 5 2 99 2.217 0.197 5.2 4.1 82
1.137 0.000 7.2 3.6 9 1.454 0.0
1.137 0.092 7.7 2.6 5 1.420 0.038 5.8 4 55 1.799 0.129 5.7 3.8 60 1.976 0.117 4.5 2.3 112
1.045 0.014 7.7 2.8 4 1.383 0.041 5 2 99 1.670 0.038 4.5 2.3 112 1.858 0.005 7.7 2.6 5
1.031 0.103 7.7 3 3 1.3 0.142

ded
d in

ch diff co

Notes: (1) “id” column has been ad  to allow a cross-referencing with different result sets. 
(2) “Original data was ranke  te
(3) The “boxed” cell in ea lumn shows the threshold value above which points are classed as outliers. 

Original data 
length width id

7.9 3.8 1
7.7 3.8 2
7.7 3 3
7.7 2.8 4
7.7 2.6 5
7.6 3 6
7.4 2.8 7
7.3 2.9 8
7.2 3.6 9
7.2 3.2 10
7.2 3 11

k= 6 
distance diff length width id distance diff length width id distance diff length width id distance diff length  id 

1.701 0.132 7.9 3.8  1 
1.569 0.398 7.7 3.8 2 1.632 0.290 7.7 3.8 2 1.881 0.369 7.7 3.8 1 1.920 0.316 7.7 .8 2 
1.171 0.047 5.7 4.4 59 1.342 0.275 5.7 4.4 59 1.512 0.351 5.7 4.4 59 1.604 0.421 5.7  59 
1.124 0.200 5 9  112 2

3.6
2.6
2.2
2.3

0.924 0.030 7.2 9 0.956 0.028 7.7 3 3 1.142 0.018 5.5 4.2 71 1.134 0.010 7.7 .6 5 
0.895 0.051 7.7 5 0.928 0.004 7.2 3.6 9 1.124 0.058 5 2 99 1.124 0.000 5.5  71 
0.843 0.015 6.2 4  99 
0.828 0.095 4.5 112 0.924 0.022 5.5 4.2 71 0.960 0.036 7.2 3.6 9 1.008 0.106 7.2 .6 9 
0.733 0.001 6 2.2 5 4 55 
0.732 0.000 5.8 4 5 2.2 43 
0.732 0.022 5.2 4.1 8 .1 82 



EUREDIT Deliverable D4.4.1: Application of CMM techniques to data editing 

 

Appe

ta r m ase =30) 
stanc ighb

 
ance sepal- sepal-

len
petal-width class 

2.72074 5.7 4.4 1

46891 7.7 3.8
0.2 Iris-setosa 

23971 5.8 4
2.23971 5 2 3.5 1 Iris-versic r 

2 0.4 Iris-setosa 

2.3 Iris-virginica 
85292 7.2 3.6

1.79313 5.7 1

68647 7.6 3
1 Iris-versicolor 

60399 5.1 3.8
1.60399 5.4 3.7 1.5 0.2 Iris-setosa 

1 1 Iris-versicolor 

1.5 Iris-versicolor 
54688 4.4 3.2 0.2 Iris-setosa 

1.46379 4.4 3 1

45399 4.6 3.4
4 1 Iris-versicolor 

44311 4.9 2.5
1.39377 7.4 2.8 6.1 Iris-virginica 

1 1.3 Iris-versicolor 

3 1.1 Iris-versicolor 
35367 4.6 3.1 1

1.34704 5 3.6
1.34137 7.2 3.2
1.34137 4.6 3.2  
1.31771 .8  
1 1.8 Iris-virginica 

5.8 1.6 Iris-virginica 
 4 1.3 0.2 Iris-setosa  

24216 5.5 2.4 3.8 1.1 Iris-versicolor 

ndix E:  

iled DKN results fo
Sorted list in order of di

Dist
length width 

2
2.
.57588 7.9 3.8

2
2.
.44844 5.5 4.2

2.21
.02

71
01

3 
1 

5
5
.2 
.4 

4.1
3.9

1
1
1.

.97

.85
57
83

9 
5 

4
7
.5 
.7 

2.3
2.6

1.79872 7.7 3
3.8

1
1.
.74221 7.7 2.8

1
1.

.63316 5 2.3

1.60
.57

39
47

9 
9 

5
4
.3 
.9 

3.7
2.4

1
1
1.

.56

.56
90
56

9 
9 

4
6

.3 

.2 
3

2.2

1.50991 4.4 2.9

1
1.
.46228 5.1 3.7

1
1.

.45399 6 2.2

1.38
.38

65
26

2 
5 

4
6

.6 

.3 
3.6
2.3

1
1
1.

.38

.36
26
19

5 
8 

5
5

.5 

.1 
2.3
2.5

De
 

odified Iris datab  (k
r e from each point to its 30th ne ou

 

 
 

 
 
 

 

 
 
 

 

 
 
 
 
 

 

 
 

petal-
gth 

.5 0.4 Iris-setosa 
6
6
1.4

.4

.7
2

2.2
Ir
Ir

is-v
is-v

irg
irg

in
in

ica
ica

 
 

1.2 0.2 Iris-setosa 
olo

1
1.7

.5 0.1 Iris-setosa 

1
6.9
6

.3 0.3 Iris-setosa 

.1

.1

.7

2.5
2.3
0.3

Ir
Ir
Ir

is-v
is-v
is-s

irg
irg
et

in
in
os

ica
ica
a 

 
 6

6
6
3.3

.7

.6
2

2.1
Ir
Ir

is-v
is-v

irg
irg

in
in

ica
ica

 
 

1.5 0.3 Iris-setosa 

1
3.3
.5 0.2 Iris-setosa 

1
4.5
1.3

.1 0.1 Iris-setosa 

1.4
.3

0.2
0.2

Ir
Ir

is-s
is-s

et
et

os
os

a 
a 

1
1

.5

.4
0.4
0.3

Ir
Ir

is-s
is-s

et
et

os
os

a 
a 

4.5 1.7
1.9

Iris-virginica 

1 0.2 Iris-setosa 
4.4

4 1.3 Iris-versicolor 

.5

.4
6

0.2
0.2
1.8

Ir
Ir
Ir

is-s
is-s
is-v

et
et
irg

os
os
in

a 
a 
ica

1
 

1
1
6.3

.4

.6
0.2
0.2

Ir
Ir

is-s
is-s

et
et

os
os

a 
a 4 3.4

.29705 7.3 2.9
1
1
1.

.24

.24
46
464

4 7.2 
.7 

3
3.2

53 



EUREDIT Deliverable D4.4.1: Application of CMM techniques to data editing 

 

54 

1.21101 6.7 2.5 5.8 1.8 Iris-virginica 
1.21101 5 3.5 1.3 0.3 Iris-setosa  
1.18281 6.4 2.9 4.3 1.3 Iris-versicolor 
1.17137 5.2 3.5 1.5 0.2 Iris-setosa  
1.17137 6.7 3.3 5.7 2.1 Iris-virginica 
1.17137 5.5 3.5 1.3 0.2 Iris-setosa  
1.17137 6.3 3.4 5.6 2.4 Iris-virginica 
1.17137 5.1 3.5 1.4 0.2 Iris-setosa  
1.17137 4.8 3 1.4 0.1 Iris-setosa  
1.17137 5.8 2.8 5.1 2.4 Iris-virginica 
1.16147 6.2 3.4 5.4 2.3 Iris-virginica 
1.16147 6 3.4 4.5 1.6 Iris-versicolor 
1.14613 7.1 3 5.9 2.1 Iris-virginica 
1.14613 7 3.2 4.7 1.4 Iris-versicolor 
1.14222 5.7 2.8 4.5 1.3 Iris-versicolor 
1.14222 4.8 3.1 1.6 0.2 Iris-setosa  
1.13702 6.5 3 5.8 2.2 Iris-virginica 
1.13702 5 3.4 1.5 0.2 Iris-setosa  
1.13406 4.9 3 1.4 0.2 Iris-setosa  
1.13406 4.9 3.1 1.5 0.1 Iris-setosa  
1.12436 5.5 2.5 4 1.3 Iris-versicolor 
1.11835 6.3 3.3 4.7 1.6 Iris-versicolor 
1.06899 5 3.3 1.4 0.2 Iris-setosa  
1.06663 6.6 3 4.4 1.4 Iris-versicolor 
1.06663 5.1 3.3 1.7 0.5 Iris-setosa  
1.06663 6.9 3.2 5.7 2.3 Iris-virginica 
1.06663 5.1 3.4 1.5 0.2 Iris-setosa  
1.05417 5.2 2.7 3.9 1.4 Iris-versicolor 
1.05417 5.6 2.5 3.9 1.1 Iris-versicolor 
1.04532 6.7 3 5 1.7 Iris-versicolor 
1.04532 5.4 3.4 1.7 0.2 Iris-setosa  
1.04532 5 3.2 1.2 0.2 Iris-setosa  
1.04532 5 3 1.6 0.2 Iris-setosa  
1.03125 6.8 3.2 5.9 2.3 Iris-virginica 
1.03125 5.2 3.4 1.4 0.2 Iris-setosa  
1.03125 6.9 3.1 4.9 1.5 Iris-versicolor 
1.00811 6.1 2.6 5.6 1.4 Iris-virginica 
1.00811 5.5 2.6 4.4 1.2 Iris-versicolor 

0.967419 6.6 2.9 4.6 1.3 Iris-versicolor 
0.967419 5.7 2.6 3.5 1 Iris-versicolor 
0.967419 6 2.7 5.1 1.6 Iris-versicolor 
0.967419 6.3 2.5 4.9 1.5 Iris-versicolor 
0.967419 5.7 2.5 5 2 Iris-virginica 
0.960137 5.8 2.7 4.1 1 Iris-versicolor 
0.955719 5.4 3 4.5 1.5 Iris-versicolor 
0.955719 6.8 2.8 4.8 1.4 Iris-versicolor 
0.955719 5.9 3.2 4.8 1.8 Iris-versicolor 
0.929177 6.8 3 5.5 2.1 Iris-virginica 
0.927971 6.1 2.8 4 1.3 Iris-versicolor 
0.927971 5.6 3 4.5 1.5 Iris-versicolor 
0.927971 5.7 3 4.2 1.2 Iris-versicolor 
0.927971 6.4 3.2 4.5 1.5 Iris-versicolor 
0.924344 5.8 2.6 4 1.2 Iris-versicolor 
0.924344 6.5 3.2 5.1 2 Iris-virginica 
0.902187 6.4 2.7 5.3 1.9 Iris-virginica 
0.902187 5.6 2.7 4.2 1.3 Iris-versicolor 
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0.902187 5.6 2.9 3.6 1.3 Iris-versicolor 
0.89468 5.7 2.9 4.2 1.3 Iris-versicolor 

2.8 4.6 1.5 Iris-versicolor 
3 4.6 1.4 Iris-versicolor 

0.887417 6.3 2.7 4.9 1.8 Iris-virginica 
0.887417 6.7 3.1 4.4 1.4 Iris-versicolor 

0.843235 6.4 2.8 5.6 2.1 Iris-virginica 
0.82810
0.828105 5.9 3 4.2 1.5 Iris-versicolor 

 .1 .7 Iris-versi
0.816148 4 1 5 1.8 Iris-virginica 
0
0 1
0
0

Lik rs:  
Th ssume stance g  is determ ed 
by point of largest chan n lis ce rox. derivative. 
Th r ich the est chang rs 
4 r e likely ers.  

 
3

0  

 

0.89468 6.5 
0.89468 6.1 

0.887417 6.2 2.8 4.8 1.8 Iris-virginica 
0.887417 5.6 2.8 4.9 2 Iris-virginica 

5 6.3 2.8 5.1 1.5 Iris-virginica 

0.816148 6
6.

2.9
3.

4
5.

1.4 color 

.756086 6 3 4.8 1.8 Iris-virginica 

.756086 6.2 2.9 4.3 .3 Iris-versicolor 

.733053 6.3 2.9 5.6 1.8 Iris-virginica 

.731897 6 2.9 4.5 1.5 Iris-versicolor 
    

ely Outlie  
ese are a d to have large di to kth nei hbour. Threshold in

ge i t of distan s - app  
e distance prio to wh  larg e occu is: 2.23971  
ecords ar  outli  
2.72074 5.7 4.4 1.5 0.4 Iris-setosa 
2.57588 7.9 .8 6.4 2 Iris-virginica 
2.46891 7.7 3.8 6.7 2.2 Iris-virginica 
2.44844 5.5 4.2 1.4 .2 Iris-setosa 
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Appendix F: Error localisation experiments  
 

F.1 UK A usine Inquir Retail tion) 

The ABI dataset consists of mple from eta tion of l Business nquiry (1999). For 
each busin taset contains information on aspects of pu employment costs. The data 
is based on responses for either of 2 possible questionnaires.  The larger questionnaire contains 17 retail 
questions. ler one only asks for summary rmation and contains 5 retail questions.  Businesses 
on the dataset therefore either have 5 or respons  individual 

It was nece reate a special “err only” d t from  provided to Euredit partners. 
This is because the Euredit datasets have ided in ions, but only as combined 
“missings ” versi The ou  detection system u nt at York is currently 
designed t mputation and outlier detectio paratel ns could ultimately be 
combined, but the aim of re h at Y s to evaluate perfor ks separately

nnual B ss y (  Sec

 a sa  the r il sec  the U.K. Annua  I
ess the da rchase costs and 

 The smal  info
 17 es to questions. 

ssary to c ors atase the ABI datasets
 not been prov “errors only” vers

plus errors ons. tlier nder developme
o perform i n se y. These operatio

searc ork i mance on these tas
mputation t dep  on t lts o  (or error) detection

d for Euredit. A de
th a onding dirty file g 

297(y3).c  replacing any m the dirty file with the equi
 the clean wo n es w ted: 

co on  (no records with m
7_dirty.cs

 tho ds f y3).csv which are kno n to contain errors 
called: 297_errs_on v 

In addition  and sh sponse ords we nsidere together, to investigate the 
possibility rmance ht be a sely aff d by the and lower dimensional 
data. More data files were c d for th urpose:

• tw rsions c297(tr csv

w
ly.cs

, the long ort re  rec re co d separately and 
 that perfo  mig dver ecte  mixture of higher 

reate is p  

o more ve of se ue). ile: 297short_clean

o more ve of 29 .csv and 297_dirty_lo

s provide a work alua e b formance characteristics of the York sy
y records id d as p l ou an be
less, evalua e per ce o rk o rror detection syste
t is aimed a fying ki ers at the cord level (rather th
l values). T k system nfigured to output a list of out

 be p  to e e York system in f

e the combin orman  be of cal in ut it is essential to know the performance of 
individual  if it is d to com e two di nt metho ponent is needed for a 
particular Hopefu ese issu ill be rev d and ad t project. 

 components
application. 

desire
lly th

bin
es w

ffere
isite

ds, o
dress

r if only one com
ed in the Euredi

, so that the 
results of i  are no endent he resu f outlier  and vice-versa.2  

Initial results are based on the sec297xxx.csv data files provide rived dataset was created 
by comparing a clean data file: sec297(true).csv wi  corresp  containin errors and missing 
values: sec sv,  by issing value records in valent correct 
record from  file. T ew fil ere crea

• a new version of sec297(y3).csv ntaining ly errors issings) called: 
29 v 

• a reference file containing only se recor rom sec297(

 the clean data f .csv and 297long_clean.csv  

• tw rsions 7_dirty : 297short_dirty.csv ng.csv 

These file  frame  for ev ting som asic per stem, 
where an entifie otentia tliers c  checked against the file containing known errors. 
Neverthe ting th forman f the Yo utlier/e m is currently difficult, 
because i t identi  and ran ng outli re an at the level of 
individua he Yor  is currently co lier candidates ranked in 
descending order of confidence. It may ossible xtend th uture, to identify 

                                                 
2 Of cours ed perf ce may practi terest, b
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individua s of outlier values, the leve confide uite low, and probably 
inadequate pletely mated em. In p ice it w le to identify potential 
records-with-errors and leave it to the u to make re speci  what errors are actually 
present.  

Another p ecting ation i  difficu  known errors are “soft 
errors” and which are “hard errors”, particularly si acilities t t rules are not available at 
York. Ad tadata produced by AT ha ved inv e methods used to produce 
“filtered data” at York are quite basic and very tim nsuming. Since other partners seem likely to need 
various fo tered d t woul pear sen e to make additional dataset versions available to all 
partners. 

The results shown in the following series of graphs are thus lim lties in preparing data in a 
suitable f for this on the ent results do not ne  complete range of 
experime er a sele d set of examples which provi ation. The experimental 
procedu llows

• 

• file containing records with and without errors (but not missings) 

• use the DKN strategy described previously to rank eac ta file and store in output file 

• calculate results by working down the ranked records, from high to low, checking whether each 
corresponds with a genuine error (true positive) or not (false positive) 

• this last step is carried out in steps of size 10, so for example, the first 10 ranked records are 
examined to obtain a score out of 10 for true positives and false positives, then the first 20, 30, etc. 

For each experiment the essential system parameters recorded are: 

• MaxBins – the maximum number of quantisation bins used by the RUE algorithm,  

• k – the value of k used to find the k nearest neighbours 

• CMMmatches – the number of matches required from CMM matching. This is always larger than k 
and is used to try to ensure that the true (Euclidean) nearest neighbours are found. 

Approximate processing time (total elapsed time) is also noted for completeness, although the system used to 
generate results contains many inefficiencies due residual “debug” code used during development which is 
still to be removed.  

Note that in the following series of bar graphs, the numbers shown for each successive bar are cumulative, 
effectively showing the scores for true positive and false positive out of the total possible up to that point 
(e.g.  scores out of 10, 20, 30, etc.). 

ls or group but l of nce is likely to be q
 for a com  auto  syst ract ould seem preferab
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roblem aff evalu s the lty in identifying which of the
nce f o implement edi

ditional me  IST s pro aluable, though th
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ormat, and  reas curr cessarily reflect a
nts, but rath cte de some basic inform
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train the system using a data 

h record in the da
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F.1.1 ABI sector 297 (long version) – all error types 
These experiments examined the effect of different parameter settings on the ability of the system to 
correctly identify errors of all types, but using only the subset of records representing responses to the long 

ersion of the questionnaire. This is of interest because the responses to the short version contain fewer 
values and hence exist in only a subspace of the long version responses. This difference in information 

 earlier 
experiments where scores are shown only for the first 100 classifications. Later charts show scores for the 

a) k = 100,   MaxBins = 34,   CMMmatches = 300 

 100,   MaxBins = 34,   CMMmatches = 400 

 
 

v

content may adversely affect the operation of the DKN method. The charts below are from

first 200 classifications. 

Number of data records in file was: 1177 

Processing time on Dell laptop (433MHz Celeron) was around (TBC) minutes. 

True positive and False positive errors

80

100

120

0

20

40

60

C
la

ss
ifi

ca
tio

n 
Sc

or
e

False positive 1 5 10 15 23 28 35 40 44 51

b) k =

True positive 9 15 20 25 27 32 35 40 46 49

1 2 3 4 5 6 7 8 9 10

True positive and False positive errors

60

100

C
la

ss
ifi

ca
tio

n 
Sc

or
e

0

20

False positive 1 5 9 16 22 28 32 37 42 48

True positive 9 15 21 24 28 32 38 43 48 52

1 2 3 4 5 6 7 8 9 10

120

80

40

58 



EUREDIT Deliverable D4.4.1: Application of CMM techniques to data editing 

 
F.1.2 ABI sector 297 (short version) – all error types 
This examines the ability of the system to correctly identify errors of all types, but using only the subset
records representing responses to the short version of the questionnaire. This is of interest because t
responses

 of 
he 

 to the short version contain fewer values and hence exist in only a subspace of the long version 
responses. This difference in information content may adversely affect the operation of the DKN method.   

 

F.1.3 A
This examines the ability of the system to correctly identify errors of all types, using records representing 

25 
  

k = 100,   MaxBins = 56,   CMMmatches = 500,   Number of data records: 3,149 
Processing time on Dell laptop (433MHz Celeron) was around 16.5 minutes. 
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F.1.4 ABI sector 297 (combined short and long version) – soft errors only 

k = 100,   MaxBins = 65,   CMMmatches = 500,   Number of data records: 4,325 
aptop (433MHz Celeron) was around 24 minutes. 

 

k = 10,   MaxBins = 65,   CMMmatches = 100,   Number of data records: 4,325 
Processing time on Dell laptop (433MHz Celeron) was around 5.1 minutes. 
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k = 1,   MaxBins = 65,   CMMmatches = 100,   Number of data records in file was: 4,325 
ssing time on Dell laptop (433MHz Celeron) was around 2.75 minutes. 
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