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1 Introduction

This report is concerned with approaches to the ‘missing data problem’,
specifically those known as imputation methods. The estimation of statistics
from a dataset that is missing values is a common problem in National
Statistics, the domain from which we draw our experimental datasets. We
investigate a technique using Support Vector Machines (SVMs) for dealing
with missing data in such surveys.

The technical details of the algorithm are described in a separate doc-
ument. We will use this report to place the technique in the framework of
existing approaches.

Imputation techniques solve the missing data problem by completing
the dataset with ‘plausible’ surrogate values. We note that statistics can
be estimated without imputation. This requires formulae to be handcrafted



for each dataset, a complex task requiring considerable expertise. Imputa-
tion has the advantage that once the dummy values have been inserted all
standard, complete-data techniques can be applied.

Imputations (the inserted values) should ideally preserve the full joint
probability of the data set. We use both measures of the preservation of
marginal distributions and the preservation of true values to compare the
methods on real world data sets. These measures of success compare the im-
puted values with the missing true values. The formulae for the performance
measures are given in the third section.

The second section gives a formal definition of the maximum-likelihood
model for datasets missing values. This is useful for clarifying the assump-
tions implicit in the various imputation approaches, and the patterns of
missingness each can effectively treat, even those that do not attempt a
model of the joint probability. It provides the conceptual framework for the
EM and Data Augmentation Methods described in sections 5 and 6, which
are based on parametric models of the full joint probability.

In the fourth section some simpler approaches to the missing data prob-
lem are described. These methods include list-wise deletion and mean im-
putation. The EM algorithm is presented in the fifth section. This iterative
algorithm is used to estimate parametric models for the data. It is sensitive
to the missing data pattern, and produces a maximum-likelihood solution.
EM is related to the Bayesian method described in section 6, which also uses
parametric models.

The Bayesian approach to imputation is also known as ‘multiple imputa-
tion’. This is because the Bayesian approach allows one to make k£ > 1 draws
Y ~ P(Ypiss|Yobs) for each missing datum. Using a general set of formu-
lae these multiple completions can be combined in any statistical estimate
and importantly, measures of the variance of these statistics will naturally
embody the extra uncertainty due to the incompleteness of the data set.

In section 7, an overview of Felligi-Holt techniques is given. These meth-
ods were developed for census data. Typically such data contains variables
that must satisfy ’edit rules’. These capture logical relations existing be-
tween variables, for example, age’ and 'marital status’.

Our aim is to assess Support Vector Machines which are state of the
art prediction tools introduced in section 8. They able to learn complex
dependencies between a set of input variables and a categorical or scalar
output variable. They are straightforward to regularise, and make efficient
use of the available data. As SVMs supply a conditional mean or mode, a
separate predictor must be estimated for each missing variable. It is our
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Figure 1: Incomplete data

supposition that non-linear correlations between subsets of the variable can
be exploited by these algorithms. ‘True values’ will have been preserved only
if a dependency or correlation between the variable with non-response and
observed variables can be well estimated. However if no such dependencies
exist we will expect the SVM to produce a mean imputation.

2 Imputation Problem

2.1 The data

The problem is represented graphically in figure 1. Here a dataset A, xm, of
individuals (rows) measured on a number of variables (columns) is shown.
The question marks represent values that are missing. If A were the data
collected from a census, each row would represent a person, and each item
on that row, the answer to a question put to that person. The rows, «a; are
assumed to be exchangeable.

In its most general form the task is to enable users of the dataset to easily
and accurately extract statistics, and measures of their precision, from the
dataset. The job of imputation is to complete the dataset. L.e. to draw from
a model of P(Y,iss|Yops), so that the statistics of the joint probability are
preserved. We wish to preserve means, variances and correlations.

It may also be a goal of the imputation process to allow subsequent
analysis to be sensitive to the missing information. Multiple imputation



techniques attempt to achieve this last aim.

2.2 Missing Data Patterns

The values missing are assumed to be produced by various types of ‘missing
data pattern’. If a variable is missing values completely at random (MCAR),
a variable’s absence is independent of all values observed or unobserved in
the data set, including its own value. Missing at random (MAR) contains
MCAR as a special case. A data set has a MAR missing data pattern if
that pattern is independent of the missing values, given the observed values.
In other words, if P(R|Y,ps: Yiniss) = P(R|Yops). Where R;; represents a
missingness indicator matrix. Not-missing-at-random (NMAR) describes
cases where MAR does not hold. For example, if, in a survey rich people
were unwilling to divulge information about their income, the pattern of
non-reponse would clearly be dependent upon the values that were missing.
Such patterns of missingness are known as non-ignorable. The observed
values do not contain the information required to produce valid statistics
for the full population.

In this work we evaluate algorithms on MAR and MCAR patterns.
MCAR implies that any training set that can be assembled will be iid with
the test set. MAR patterns are such that some subset of the data can be
extracted such that the conditional distribution of any variables missing
data given observed data will be iid in observed and missing data. MAR
and MCAR patterns are collectively known as ignorable missingness mech-
anisms.

3 Evaluation Criteria

3.1 Scalar Variables

We measure the preservation of marginal distribution (the first two criteria)
and the preservation of true values (the second two criteria). The second
group contains measures used in standard machine learning scenarios; root
mean square error and mean absolute error. The first type is concerned with
measuring the distance of the whole set of true values from the whole set
of imputations - preservation of marginal distribution compares the distri-
butions of the set of imputations with the set of true values. In this case is
not important whether each individual imputation is close to its true value.
The performance is good if the set of imputations as a whole follows the



same distribution as the true values they replace. If the imputations were
a random permutation of the true values the measure would give a perfect
score, even if individually each imputation deviated strongly from the value
it replaced.

The measures of preservation of true values,(mean absolute error and
root mean square error) give an expected deviation of each imputed value
from its true value. The preservation of true values is ‘harder’ and success
will imply preservation of marginal distributions.

3.1.1 Preservation of marginal distribution

We compute the weighted empirical distribution functions for both sets of
values. V" represents a true value, Y; an imputation, w; represent weights,
all set to 1 here, I() is an indicator function and n is the number of impu-
tations made on one variable.
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We then measure the ‘distance’ between these functions, in the two fol-
lowing ways.

1. Kolmogorov-Smirnov Distance sMargK$S

dics(Fy s Fy,) = maz; (|Fyw(t) — Fy, (t)]) = mazj (|Fywm(t;) — Fy, (t;)])

where the ¢; are the 2n jointly ordered true and imputed values of Y.

2. Alpha distance metric sMargAlph :-

do(Fyon: Fy,)) = -—— D (= tio1) [ Fyan(ts) — Fy,, (£5)]

ton — 1o

where a is a ‘suitable’ positive constant and ¢y is the largest integer
smaller than or equal to #;

Normally a = 0 or 1.



The measures both take values in the interval [0, 1, zero being best and
one worst. The Kolmogorov Smirnov distance measures the maximum dis-
tance between the empirical cumulative distribution functions. The worst
score occurs if a ¢t value exists that scores zero on one of the functions and
one on another. This happens if all imputations are smaller than all true
values, or vice versa, i.e. if the cumulative distribution functions do not
overlap at all.

3.1.2 Preservation of true values

We use two measures for preservation of true values for a scalar variable,
The first is the mean absolute deviation, stvdl and the second is the root
mean square error, stvd2. The second is more sensitive to the presence of a

few large errors. Y;* represents a true value, Y; an imputation and n is the

number of imputations.

stvd]l =
n
n (Y — V)2
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n

Both of these measure take values from 0 upwards. A mean imputation
will have an error equal to the estimated variance of the observed values of
the variable.

4 Standard techniques

4.1 Deletion of Units

This simple approach removes all rows lacking values on any variables. This
is simple to implement and quick to execute. If few variables are missing,
and the pattern is MCAR, it is reasonable. However if several variables lack
values independently, the proportion of the dataset that is discarded can be
high. For example, if four variables have a 5 % missingness, list-deletion
would expect to remove nearly 20% 100 — (0.95%) x 100%) this would be
a significant proportion of the data. In some datasets deletion is not an
option, in a census for example.



4.2 Imputating overall mean or mode

Each unit with a missing item is imputed with the mean of the respondents,
(for numeric variables) or the mode (for categorical variables). It is best
used where only a small proportion of the data for each variable is missing.
It embodies the assumption that variables are not correlated. The mean is
retained, but the varaiance of the variable is reduced and any correlations
with other variables can be dampened.

4.3 Group Mean

Each missing item is replaced by a group mean or mode. The groups are
defined by fully observed discrete (or discretised) covariates. The covariates
could be hand picked using apriori knowledge or ‘learned’ by an evolutionary
technique for example. The technique is similar to donor imputation.

4.4 Hot Deck or Donor

Each missing item is replaced by a copying a randomly selected value from
a subgroup (‘donor pool’) defined by one or more fully observed covariates.
For example, on a census data set, one could impute income by copying from
a randomly chosen respondent of the same sex and age.

4.5 Discussion of Standard Techniques

The techniques described in section 1 are not necessarily ad-hoc. Given that
the data has been generated according to the right distribution they may
the simplest to implement and introduce no distortion to the distributions.
However they are normally applied without investigation into the assump-
tions they embody, or with any principled attempt to choose the covariates
that define the best donor pool or group.

It should be noted that some techniques are problematic if unfeasible
regions exist, (usually characterised by edit rules). Methods that attempt
to generalise from the data, feature and group means for example, could
impute unfeasible values.

In addition group mean and donor techniques are susceptible to the
"Curse of Dimensionality’ [5]. ’Lattice-based’ technique which model the
data in local regions in the input space scale badly with input dimension.



5 EM Algorithm

Given observed data Y, and unobserved data Y,,;ss, the Expectation Max-
imisation (EM) algorithm finds # that maximises P(Y,p5/0). The EM algo-
rithm iteratively produces a sequence of parameter estimates 6,6, ... that
converge to a local maximum of the observed data likelihood. It is assumed
that the observed data likelihood is diffiuclt to handle directly, but the joint
distribution P(Yops, Yimiss|#) can be maximised analytically. After a random
initialisation of the model # the two following steps are repeated,

e E step: Estimate P = P(Yiniss|Yobs; Ootd)
o M step: Opew = ma:cg[Ep[P(Yobs,Ym,'55|0)]]

In the first step a distribution over the missing data is calculated, given
a prior estimate of the model. This is then used in the second step to
reestimate the model. The approach is appropriate for any MCAR and
MAR missing data pattern, in a dataset that is of the parametric form of
f. EM has been used to estimate the the parameters of mixture models.
There is no missing data in this situation, but extra parameters, #; (mixture
components) can be introduced which take on the role of the missing data
in the algorithm. This approach is taken because the likelihood P(data|f)
is intractable. The stationary points in the derivative are difficult to find.
P(data,8,]6,) is much easier to handle. The method provably finds a local
maxima of the likelihood function. In many cases it is also a global maxima.
Given that the data conforms to the parametric model, the method will work
for ignorable missing data patterns. The method can be adapted to work
with mixture models for missing data problems also. Convergence is easier
to diagnose than for the full Bayesian methods described in the next chapter.
Because the method only prodcues a point estimate, confidence limits are
not available for the imputations. The dependence on the parametric form
can be limiting if their are non-linear correlations in the data. The process
could get trapped in a local minima. The standard reference is [13], as
this was the first point at which convergence was proved . Examples of the
algorithm had been seen much earlier however. Recent extensions by Tresp
and Gharamani use EM with mixture models and incomplete data, and
multi-layer perceptrons. Neal and Hinton have investigated generalisations
of the algorithm in which data and parameters are updated component at
a time. This has been found to speed convergence.



6 Bayesian Methods for Imputation

6.1 Introduction

Multiple Imputation (MI) results from a Bayesian approach to modelling
the dataset. MI responds to the need for methods that capture the addi-
tional uncertainty due to missingness. It is a simulation based technique in
which each missing dataum is replaced with a set of m > 1 values. The m
versions of the dataset are analyzed with standard complete data methods.
The m results are then combined with simple rules and produce estimates
of standard errors and p-values that formally incorporate missing data un-
certainty.

6.2 Simulation of probability density functions

Data Augmentation developed by Tanner and Wong is a simulation tech-
nique used in the application of full Bayesian methods to the missing data
problem. Bayesian methods can require the integration of intractable prob-
ability density functions. Various methods have been developed to approx-
imate such integrals, for example variational or Markov chain Monte Carlo
techniques. The latter family of methods use simulated draws from the
intractable density function. Data Augmentation is an MCMC techniqe
closely related to the more well known Gibbs Sampling method.
Ideally we would like to produce

P(Ymi5|Yobs) = /P(Ymt5|0)P(0|Yobs)d0

and draw values of Y,,;s to complete the data set. However as suggested
above, the posterior distribution of  cannot be handled analytically. The
integral is approximated by simulating the second distribution on the right
hand side. Simulation involves producing a large number number of draws
from the intractable distribution. I.e. a number of §’s are produced 6, 6, ...03, ...0,
according to the posterior distribution. The integral can then be approxi-

mated:
n

1
P(Ymislyobs) ~ _Z P(szswz)

6.3 Gibbs Sampling

We will sketch Gibb’s sampling as it offers a clearer presentation of the ideas
than the closely related technique of data augmentation. Gibb’s sampling
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exploits the situation in which our multidimensional target random variable
cannot be simulated, but conditional distributions of its subvectors can. Let
random vector Z = (Z1, Z,, ..Z ) have joint distribution P(Z) as our target
to be simulated. We iteratively draw from the conditional distribution of
each subvector given all the others.

Zt ~ P(2,|28,..2Y)

VSRS VA VARSI AW AY
ZIY ~ P(Z5| 24,z ZY)

After we have done t complete cycles through the J conditional vectors
we have a sequence

z'\. 7%, .7 (= (2}, 2%, .2%)

that forms a Markov chain, which under certain conditions ! has a stationary
distribution equla to P(Z).

6.4 Strengths and Weaknesses

Multiple Imputation offers the only principled method for incorporating the
uncertainty due to missing data. It is dependent however on a number
of assumptions concerning the data, the prior distribution of the model
parameters and mechanism of non-response.

The first assumption is that the the data conforms to the parametric
model chosen. The second concerns a problem inherent to Bayesian ap-
proaches. The effect of the prior over the model parameters may be quite
strong if the dataset is not large, or if certain variables have high missing-
ness. Lastly, if the mechanism is not MAR the MI will, like all standard
methods fail.

7 NIM and Felligi-Holt

The nearest-neighbour imputation model (NIM) has been developed specif-
ically for the census setting. This setting assumes not all errors have been
localised. Variables that are in a strict logical relationship can be checked

'The regularity conditions necessary to establish convergence of the Gibbs sampler are
technical. They do tend to be satisfied in most problems of practical interest
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for consistency. In a household data set for example, the respondents that
have age less than sixteen must also have ‘single’ as their marital status. If
a unit fails to be consistent, (it fails an ’edit rule’), the task is to first pick
which variable to impute, marital status or age and then to impute a legal
value. This is called the edit and imputation scenario.

It should be noted that the data sets typically tackled in this scenario
contain O(108) records. Household data is, in addition, normally large,
noisy, multimodal and O(100) dimensionality.

Felligi-Holt approaches, which pre-date NIM, the edit rules are processed
to identify the minimum-change-set. This is the smallest set of variables
that could be altered to render the unit consistent. Donor methods are
subsequently used to find a ‘plausible’ value.

In NIM, the changes the algorithm makes depend upon which donors are
available to impute from. If respondent A is 14 years old and divorced, a
donor set of variables is first assembled, by identifying a number of ‘nearest
neighbours’ under one change set are much closer than than under the others
this is identified as the optimal change set. Under Felligi-Holt no account
is made of the likelihood of the imputed unit. By using information from
the donor pool one can approximate a ‘most likely’ change-set, as opposed
to a ‘minimum-change’ set. These techniques can handle large data sets
and strict edit rules, localising errors as well as imputing legal values. The
techniques are suited to scenarios in which the data is well understood, and
neighbourhood metrics are easy to define.

8 Imputation with Support Vector Machines

8.1 Introduction

A separate document contains a description of the SVM imputation harness,
and the core SVM algorithms. Here we motivate an SVM approach to
imputation and place it in the context of existing techniques. In particular
we shall argue that many of the issues to be considered when using SVMs
are common to feed-forward multi-layer perceptrons.

The SVM approach proposed treats imputation as a generalisation of
prediction. The goal in prediction is estimate target values such that a
unit level measure of error is minimisied, for example the root-mean square
error. This is not the only measure of error that is relevant in missing data
problems however. We discuss the implications of treating imputation as
prediction, and particulars of our ‘meta-approach’ in the first section.

12



In the second section we review the issues that prompted the develop-
ment of the SVM. We present features of the algorithm that recommend their
application in standard classification and regression problems. We investi-
gate whether these features can be exploited in the more general missing-
data scenario also.

The approach proposed by Rubin, using models of the full joint probabil-
ity will be known as the ‘model-based” approach. Imputation methods using
models of the conditional expectation will be known collectively as ‘pre-
diction approaches’. Prediction approaches include some neural networks
models, the group-mean algorithm, hot-deck? and SVMs. We will distin-
guish issues that we believe to be common to all prediction approaches, and
those that pertain only to the SVM.

8.2 Imputation with Support Vector Machines
8.2.1 Predicting Missing Values

Imputation should preserve the full joint distribution P(X), of the data.
Devising measures for the preservation of P is difficult. Hence, various
components of the full distribution are used as proxies. For example, the
Kolmogorov-Smirnoff distance is used to measure the preservation of the
marginal distribution of each missing variable, and root-mean-square error
is used to measure the preservation of true values. Using these measures
we can compare the performance of various approaches. Techniques that
perform well on one measure however, might not be so good at others.

Our SVM imputation harness extracts a number of prediction prob-
lems from the data set, treating them sequentially. An SVM predicts a
univariate target value from a (fully observed) multivariate training vec-
tor, assuming i.i.d data, producing a model for the conditional expectation;
E(Xtarget| X1, ..., Xp). A parameterisation is found that minimises the root-
mean-square-error on the training set, subject to regularisation term.

Hence, by handling imputation with a prediction algorithm we effec-
tively chose preservation of true values as the primary goal. The implicit
assumption is that the conditional distribution is unimodal and conditional
variance is low, and hence that most data lies near their expected value,
conditioned on the other variables.

Imputing with the conditional expectation will tend to reinforce any

2hot-deck attempts to maintain the variance in the distribution by drawing imputations
from a pool of data ‘near’ to the conditional expectation
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correlations in the data and compresses the distribution of the target vari-
able. Neural nets can be considered as prediction algorithms and will also
accentuate correlations.

In the next section we discuss the generalisation of the SVM to several
missing variables. The points made in this section concerning prediction
methods and their affect on the joint probability distribution will be de-
veloped in the conclusions section. We proceed under the assumption that
imputing with the conditional expectation is acceptable.

8.2.2 Generalising SVM to Several Missing Variables

We can immediately apply SVM to a non-hierarchical data set, that has only
one variable missing values®. L.e. missing-data problems reduce to standard
regression or classification problems if only one variable is missing.

The situation is more complicated when many variables are missing
values?. Whichever variable is first imputed, a strategy for dealing with
missing input variables must be found. We have investigated two such ap-
proaches to this problem.

heuristicl extracts a fully observed subset of the data for training.
Missing input variables on the test units are estimated by a mean or modal
value.

heuristc2 estimates all missing covariates with a mean or mode. ‘Patched’
data is used for training.

The first heuristic may not be possible at all as there may be no units
that are fully observed. It will usually result in a much reduced training
set. If two variables are independently MCAR missing at a 20% rate, the
expected proportion of complete units is 64%. If 5 variables are missing in
this way there will be just 33% of the data available.

Heuristicl also assumes that the missing data pattern for the target vari-
able is MCAR (missing completely at random[22]). For example, consider a
hypothetical survey scenario in which students always leave some questions
unanswered. Training a model to predict income using only fully observed
units will not access information from students. It is likely that imputations
for income for students will be inaccurate, as the model will not be well
determined for students.

8¢.g. Danish Labour Force Survey, only income variable missing values
‘e.g. Sample of Anonymised Records (SARS) data set. Many of the variables are
missing values, and a single unit may lack as many as five simultaneously
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The second heuristic presently uses crude methods to estimate missing
data in the training and test set input variables. This may distort any
relationships that do exist in the data.

8.3 Motivation for Support Vector Machines

Support Vector Machines, introduced by Boser, Guyon and Vapnik[2], are
just one technique in a group known as ‘Kernel Methods’. These algo-
rithms merge concepts from statistics, functional analysis, optimisation and
machine learning. They are often non-linear generalisations of pre-existing
linear techniques, exploiting an implicit projection of the data to a high-
dimensional feature space, provided by the kernel function.

In addition to the SVM regression and classification tools, a kernel PCA
[3] has been studied and a novelty detection algorithm [9]. Campbell de-
veloped a kernelised Fisher’s discriminant algorithm, and Saunders et al
devised a kernelised ridge regression [11].

The appeal of Kernel Methods lies firstly in their access to a rich set
of non-linear models. Like neural networks they are in principle universal
approximators. This means that, given enough data the algorithm can pro-
duce a regressor or discriminant to fit any continuous surface. Secondly,
kernel methods offer algorithmic efficiency. Training® requires the solution
of a convex quadratic program. Such problems have been extensively stud-
ied and efficient methods exist for solving them. Testing is linear in the size
of test set.

Thirdly, due to the simplicity of the underlying linear algorithm, attrac-
tive theoretical properties can be proved, bounds on the generalisation error
for example. We discuss this aspect in the third section.

The good performance of SVMs, particularly on high-dimensional prob-
lems, is believed to be based firstly in their avoidance of density estimation
and secondly, in their efficient parameterisation. We explore these issues
further in the next section.

In the last section, we discuss two successful applications of SVM clas-
sification; hand-written digit recognition and text retrieval. By contrasting
these problem domains with the problem in hand, imputation in National
Statistics, we hope to draw some qualitative conclusions.

5 . . .
otherwise known as parameter estimation
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8.3.1 Density estimation and the Curse of Dimensionality

Vapnik [27] argued that ‘when solving a given problem, try to avoid solving
a more general problem as an intermediate step’. Density estimation is
more general than classification and regression in the following sense; if we
know the full joint p.d.f. P(X,Y), we can derive P(Y|X). However density
estimation is an example of an ill-posed problem: given a small deviation in
the sample, large deviations in the estimated parameters of the model may
result.

Vapnik argued that regression and classification problems should be
solved directly, without estimation of probability densities. SVMs imple-
ment this philosophy.

In addition, SVMs can be seen to handle some of the problems that
befall classical parametric and non-parametric approaches when applied in
high-dimensions. These problems are known collectively as 'The Curse of
Dimensionality’[5].

One problem exemplified by multivariate polynomial regression is known
as parameter explosion. The number of parameters for an Mth order model
grows like d™, a power law dependence on the dimension d. Large training
sets are required in order that the model be well determined[7].

Models that perform local density estimates are also problematic in high
dimensions. The nearest-neighbours and Parzen window models are ex-
amples in point. If we place a hypercubical box around a point in a 10
dimensional space, containing 1% of the data (assumed to be uniformly dis-
tributed), the expected edge length will be (0.01)% = 0.63. The box will
hence have side length of over 60% of the range of each input variable. The
attempt to provide a local model fails.

The SVM avoids density estimation. Moreover, through use of the kernel
functions, a rich non-linear hypothesis space is supplied with no increase in
the number of parameters. Regularisation, through maximisation of the
margin, is also independent of the dimension.

8.3.2 Bounding the Generalisation Error

Consider a classification problem. The goal is to find f : R — {41} using
input-output training data that is independently and identically distributed,

(X17y1)7 (X17 yl) € IRN X {il}

such that f will correctly classify unseen examples (X1, y1+1) i.e. f(Xi41) =
Yi+1, where the test pair is drawn from the same distribution as the training

16



set.
The training error of a given classifier is given by,

1
1
errtr(nn - 2_ Z - yz

and the true error® is given by,

errtrue[f] = %/ |f(X) - yl dP(X7 y)

The true error cannot be calculated as we do not know the distribution,
P(x,y). VC theory devises methods for calculating the probability p of the
true error deviating by more than a given amount from the training error;

0= P{lerrtrue - errtrainl > f}

We can interpret § as the probability of being mislead by the training per-
formance. Investigation into how ¢ could be bounded lead to the discovery
of capacity concepts such as the VC-Dimension’. Capacity concepts give a
measure of the flexibility of a family of models. A family with high capacity
will have a member that can fit any training set closely. The 1-nearest-
neighbours model, for example, will always give zero training error. How-
ever, if there is noise we are likely to overfit. Such high capacity models
therefore have large 4.

The technique of regularisation in classical statistics is closely related to
capacity. However capacity measures produce an integer value for a family
that can be related, with the training error and size of data set, to a bound
on &, for a given e. More usefully, the bound is rearranged. € is given in
terms of a given §, h the VC dimension of the family of models and 1 the
size of the training set,

l

If § were set to 0.05, the bound states that there is only a 1 in 20 chance
that the true error is more than € away from the training error.

The margin in an SVM acts as a capacity measure. It should be max-
imised to minimise capacity and give tighter bounds. Of two functions
achieving the same training error, the better one has the larger margin since
the true error is more likely to be close to the training error.

. \/hu()g +1) — log(6/4)

falso known as the risk functional
"defined as the largest number h, of points that can be separated in all possible ways
using functions of the given class.
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8.3.3 Applications of Kernel Methods

SVMs have performed impressively on hand-written digit recognition prob-
lems. The publicly available USPS data set contains 10,000 handwritten
numerals, described as grey-scale vectors in a 20x 20 = 400 pixel space.
The goal is to automate the process of sorting mail by Zip code[28].

The SVM was able to give near optimal performance on USPS with-
out knowledge of the geometry of the problem. Existing techniques with
comparable performance exploit a priori knowledge.

This application domain is characterised by its high dimensionality, and
low noise. Classes of handwritten digits overlap only to a small degree. It
should also be noted that these sorts of problems do not require a classifier
that is transparent, i.e. that can justify or explain its decisions. All that is
required is an accurate classification.

SVMs have also performed well on text categorisation[17] problems where
the goal is to sort documents into a number of predefined categories ac-
cording to content. This problem is characterised by an input space with
thousands of dimensions, and low noise. The documents are vectorised by
considering each word in the language as a dimension.

The domain of National Statistics presents datasets of relatively low
dimensions, with many categorical variables. Many of the variables are
related logically, for example marital status and age. Common sense dictates
that the most subtle dependencies in the variables are still unlikely to require
highly non-linear models.

This considerations must limit our expectations of SVMs outperform-
ing more transparent models. We will take these issues up again in the
conclusions.

9 Summary

9.1 SVM Imputation

The support vector machine offers non-linear, univariate prediction. It has
been harnessed to the imputation problem in an ad-hoc manner, estimating
the missing values by training a set of models, one SVM for each variable
missing values. The problem thus becomes one of how to best select training
data for each model. The order in which variables are imputed is also
important, as imputations for one variable may subsequently be used as
training data for other missing data.
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Model selection is carried out through cross-validation. For the rbf
kernel® 3 parameters must be chosen before seeing the data. Good set-
tings can be found by considering about 120 different combinations, taking
2 hours approximately on our platform.

9.2 Results on DLFS

Results on the Danish Labour Force Survey data set (DLFS),? showed the
SVM improving upon the performance of the MLP and the group-mean al-
gorithms. We qualified our conclusions however, noting that the benchmarks
were not tuned as extensively as the SVM. For example we investigated only
one approach to partitioning scalar variables. Results also indicated that the
SVM may be mislead by noisy redundant variables.

9.3 Results on SARS

Initial experiments with the Sample of Anonymised Records (SARS) indicate
that the SVM performs similarly to the group-mean and other algorithms.
On some multiclass problems it offered better preservation of distributions.
However a fuller investigation of feature extraction and pre-processing is
necessary before confident conclusions can be made.

9.4 Conclusions

We make the following tentative remarks regarding the nature of the data
that is being imputed and the suitability of SVMs. These remarks are based
on the results observed on two datasets, and certain background knowledge
concerning the items (people, businesses) represented by the data.

9.4.1 Simple Dependencies

The datasets in the Euredit Project are large, and low dimensional. There is
enough data to estimate conditional probabilities locally. Many variables are
categorical, for example sez and marital status, with few values. Particular
variables are known apriori to bear (simple) relationships to each other, for
example marital status and age. In some cases these relationships are clearly
deductive. In other words, an appreciation of the entities and the variables

8The choice of rbf kernel is not necessarily optimal. Other kernels should also be
investigated
?Presented in a separate document
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they are measured on shows the data to contain simple dependencies that
fit well with apriori common sense.

In summary, we do not expect complex unkown multivariate dependen-
cies to exist in these data sets, that can only be captured by algorithms such
as the SVM or the MLP, fitting highly non-linear dependencies. Stratifica-
tion and some simple transformations should usually be adequate.

9.4.2 Expected Gains in Performance

Hence we believe SVMs are unlikely to offer a large improvement over simpler
approaches, which are more transparent and quicker to apply. Moreover, in
some situations linear and group mean methods appear to be more robust
to noisy, redundant variables.

9.4.3 Apriori knowledge and Edit Rules not handled

Moreover the SVM has not been implemented in a way that can integrate
knowledge of structure in the data set. It is possible to impute rules that
contradict edit rules for example. Hierarchical structure, for example in
household surveys, can also not be exploited at present.

9.4.4 Usability

The SVM is presently a piece of research software, and accepts data only in a
flat, csv format. Preprocessing is required. We investigate normalisation and
the use of design variables. It can offer only the training error, and validation
results in general, as diagnostic information. The model is non-probabilistic,
giving point predictions without confidence or credibility ratings. The model
does not indicate which features are most important for the prediction task.
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