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1 Introduction

1.1 The Data

In this document we describe experiments conducted for the Euredit Project,
Work Package 5.6. Using Support Vector Machines(SVMs), we impute
three datasets: Danish Labour Force Survey (DLFS), Sample of Anonymised
Records (SARS) and Annual Business Survey (ABI). SARS and ABI both
come in two forms; the Y2 form has missing values but no errors, the Y3
form has both missing values and errors.

Data-cleaning consists of removing infeasible and implausible values from
a dataset (editing) and then supplying plausible estimates for all values that
are missing (imputation). We do not attempt to evaluate an editing tech-
nique in this work package. We impute the Y3 data sets, but carry out
the minimal editing that will allow the correct function of the imputation
algorithm1. Naturally SVM results on this Y3 data might well be improved
with more sophisticated error removal procedures. The purpose of the exper-
iments was to investigate how deleterious the errors were on the imputation
of the known missing values. For ABI Y3 we performed no editing. Results
in comparison with ABI Y2 clearly show the e�ect of this.

1.2 The Imputation Method

We apply the support vector machine using the rbf kernel. This o�ers
non-linear regression and classi�cation. Exploratory experiments on devel-
opment datasets showed this kernel to perform well relative to polynomial
and sigmoidal kernels on a range of variables. We thus decided to investi-
gate the rbf kernel as a generic model. Unless stated otherwise it can be
assumed that discussion of SVMs in this document will imply the use of the
rbf kernel.

In the imputation problem several variables may be missing values. We
employ a separate SVM model for each variable that lacks values. The SVM
is restricted to univariate target variables.

The SVM can be grouped with semi-parametric prediction techniques,
such as feedforward neural nets. Both algorithms o�er non-linear function
estimation. Like the multi-layer perceptron, the SVM is in principle a uni-
versal approximator ; given a large enough training set the algorithm will

1we have to implement a basic error removal strategies on SARS Y3: we remove values
that were not in the allowed range, e.g. sex takes values 1 (male), 2 (female), so values of
3 were removed
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approximate arbitrarily well any functional continuous mapping from one
�nite-dimensional space to another.

It is argued that semi-parametric techniques o�er the exibility of non-
parametric techniques, such as nearest neighbours. The full dataset becomes
the model for nearest neighbours however. This may require large storage
space. In addition testing datapoints requires comparison with all members
of the training set. The SVM can o�er a more compact model, requiring
less storage space and less time to apply in test phase.

The multi-class SVM algorithm is built from a number of binary classi-
�ers. If there are n classes, a classi�er is trained for each class against the
rest, resulting in n classi�ers.

1.3 Hardware

Our system for experimentation is a described in bullet point form below.

� UNIX mainframe DEC-ALPHA 410

� CPU :466 MHz 3 processors.(System is shared)

� Cache size: 4 Mb Cache

� Operating System: tru64 UNIX 4.0G

� Amount of system physical memory : 1536 Mb

� Virtual memory: 7Gb Swap Space

1.4 Software

The system uses MATLAB 6.0 for data handling, preprocessing, parame-
ter setting and cross-validation. This platform has some limitations. Our
system could be run with chunks of size not greater than 40000 rows by 30
variables. SARS contains more rows and was therefore treated in chunks.
The SVM is written in C code.

2 Support Vector Machines

2.1 Core algorithm

The SVM algorithm[7] estimates a univariate predictor. It o�ers a means of
estimating the value of one variable, Y, given a number of others fX1; X2; :::Xng,
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jointly denoted byX. Y is the (univariate) target variable, andX1; X2; :::; Xn

are known as input variables. Scalar Y naturally requires a regression form of
the SVM. A detailed tutorial can be found in [18]. If Y takes a �nite num-
ber of discrete values we employ the classi�cation form of the SVM. The
SVM regression algorithm builds a `model' for the conditional expectation,
E(Y jX1; X2; :::Xn) of Y. The SVM classi�er produces the MAP estimate,
argmaxi(P (Y = ijX1; X2; :::; Xn)), for discrete Y. We underline the point
that the output of the SVM is a point estimate, there is no model of the
posterior distribution, P (Y jX).

In order to learn the parameters for the SVM, a data sample must be
supplied. This training set of units, denoted by S, must drawn from the
joint distribution P (X; Y ). S = (x1; y1); (x2; y2); : : :(xm; ym). The test set
of units for which we require y values is assumed to be drawn from the
marginal distribution, P (X). In other words, train data and test data are
assumed to be iid.

The algorithm can be understood as involving a projection of the input
data, x ! �(x) to a much higher dimensional feature space. In this new
space a linear model is �tted (either a discrimant or an interpolant). The
pre-image of this linear model, in the input-space, can be highly non-linear.
In fact the image �(x) of each point in the feature space is not calculated
explicitly. The linear algorithms used require only the dot-product between
data points to train and test. The kernel function performs the projection of
two data points, and the dot product between them, in one step: k(x; y) =
h�(x); �(y)i. The high dimensional representation of each point remains
implicit.

The trained model is described by a linear expansion of functions;

f(z) =
nX

i=1

�ik(xi; z) + b

where n is the size of the training set. However the SVM model can be
`sparse'. This means that many of the �i are zero.

The SVM training process requires the solution of a convex quadratic
programme. Such problems are well understood and a number of commercial
toolboxes exist for solving them[17]. Training datasets of dimension 5000
units by 20 variables can be handled in under 60 seconds by our system.
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Figure 1: Incomplete data

2.2 Extending SVM to several missing variables

For two of three datasets treated in this report, more than one variable must
be imputed in the dataset. A separate SVM is employed for each variable.
As one record may lack values on more than one variable, the system needs
a strategy for handling missing input variables, in train and test units.

The SVM requires a fully observed training set, and the input variables
for a test unit must also be fully observed. In �gure 1 we see that two
variables are missing simultaneously. If we are attempting to impute the
education variable for person 2, the input variable sex must be dealt with.
This complication can be handled in two ways. The model for education
might be built without the variable, or the variable might be estimated, using
a model that does not condition on education. We use a crude estimation
technique that inserts the mean or mode for input variables. This will be
called `patching'.

2.3 Model order parameters

In order to train the SVM model we must �rst �x the family of models in
which the algorithm searches during training. This is also known as `speci-
fying the model order'. If we believe the data is noisy we will chose a family
containing simpler models that tolerate more errors. In the case of a neural
network the model order is speci�ed (partly) by the choice of architecture;
the number of hidden nodes. The ensuing training procedure �nds good val-
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ues for the weights, given that architecture. The model parameters together
characterise the family.

The model parameters may be set using a priori knowledge or sometimes
heuristics exist. In this project, we choose to �nd them by a process called
cross-validation. This process selects the values that perform `best' on a set
of data that is labelled, but has not been used for training. We assess the
models according to root-mean-square error,(dL2). There is ample training
data in all the datasets, so cross-validation is a reasonable approach. Below
we describe the various model order parameters for the SVM.

2.3.1 Kernel functions

The kernel function equates a projection of the two data points x and y, to
a higher dimensional feature space and their dot product in that space.

k(x; y) = h�(x) � �(y)i

Three examples of kernel functions are given below;
rbf kernel:

k(x; y) = exp(�
kx� yk2

2�2
)

7



polynomial kernel:
k(x; y) = (hx � yi+ 1)d

linear kernel:
k(x; y) = hx � yi

Most kernels require a small number of further kernel parameters to be
chosen. An rbf kernel has the spread parameter �, which we describe in
more detail below. The experiments described here employ the rbf kernel
and also the linear kernel. The former makes a highly non-linear models
available. The latter supplies only linear discriminants and regressors.

In �g.2 a schematic representation of the parameters for SVM learning
is given. Before the training begins, the model order is speci�ed by setting
parameters C and �. In the case of regression a third parameter � is also
set. The training procedure then discovers the parameters �1; �2; �m and
b which characterise the best �tting model. m is the number of training
points. Using these parameters new points can be predicted.

2.3.2 Kernel parameter: �

The rbf kernel has one parameter2, �. This parameter controls the smooth-
ness of the model, by describing the region of inuence of each point in
the training set. As sigma shrinks, each point has a smaller, more local
inuence. This model will resemble a nearest-neighbours model. As sigma
grows, the model becomes more global. We cross-validate values for � from
between d

5
and d, where d is the dimension of the input vector.

For DLFS and SARS, the � values were about 2d

3
. In the ABI dataset

many variables seemed to have almost perfect linear correlations. If an rbf
kernel was chosen the � value chosen by cross-validation was 500, a much
larger value than was expected. The model approximates a linear kernel
with this size of �.

2.3.3 Error trade o�: C

During training, parameterisations for the prediction model are sought that
make few mistakes on the training data. However the training procedure
also penalises choices of parameter that lead to more complex models. The
parameter C, controls the trade o� between model complexity and errors.

2The rbf kernel can have a separate �i for each input dimension, but we choose a
simpler option
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The larger C, the greater the penalty for mistakes on the training data in
relation to the penalty for using complex models. The algorithm will seek
more complex models to reduce this penalty.

2.3.4 Regression parameter: �

In the case of the SVM for regression only, a further model parameter is
used. The � tube represents a region around the regressor within which
errors are not counted. As � grows the regressor becomes smoother.

2.3.5 Summary

We compare a range of settings for the model order parameters on a hold-
out, or validation set. Usually 5 settings of each su�ces. This corresponds
to 53 = 125 di�erent settings for a regressor, and 25 for a classi�er (� not
required).

2.4 Practical aspects

2.4.1 Processing time

The SVM implemention used is research software. It has no gui, and requires
experience to use correctly. It is a lengthy and cumbersome process to speci-
�cy cross-validation ranges etc. Experimental set up takes 5 - 10minutes.
Set up also involves naming of some output and log �les, the speci�cation
of the number of columns to tackle and so on.

We now consider computational time. Each variable exhibiting miss-
ingness requires the separate training and validation of an SVM. For one
variable, we perform 4-fold cross validation, for each cross-validated setting.
The same size training data can lead to varying processing time, depending
upon noise levels, and the complexity of the dependency.

On DLFS, each of the 125 models compared took 10 seconds to evaluate.
The dataset only required one variable to be imputed, and the task was
complete in 1.5 hours. Each ABI variable took 2-3 times longer to cross-
validate, and there were a total of 10 variables to impute. The full data set
took over 24 hours to process.

2.4.2 Data format

The algorithm presently accepts data in ascii text �les, and does not interface
with Windows or other standard database software.
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2.4.3 Algorithm failure

If too small values for � are chosen, the algorithm may fail to terminate.
Very noisy data may lead to slow convergence, or non termination.
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3 DLFS: Danish Labour Force Survey

3.1 Overview

� experiments on DLFSY2: RS2001, RS2002, RS2003

� 14 variables; describing job type, age, marital status of respondents.

� 1 scalar variable missing values: income

� input variables: 1 scalar (age), 12 discrete: including age,marital status etc.

� platform: MATLAB 6.0 and C code.

� exploratory analysis: comparisons on complete portion of evaluation data
using arti�cial missing data mechanism. Comparing with linear techniques
and MLP.

� preprocessing: normalisation of all variables. variable deletion

� training-data size: 5000 units

� processing time:
set-up time: 5 minutes
cross-validation: 125 settings * 4-fold * 10 seconds = 1.3 hours
�nal training time = 1 minute
testing time = 0.1 minutes
total = 1.4 hours

� model order: C=20 � = 6 � = 0.1

This data, collated in Denmark 1996, consists of population register
records for individuals selected for interview for a labour force survey. The
total number of records is 15579, measured on 14 variables3. income is the
only variable missing values. 4175 records must be imputed. The SVM in
regression form is used; income takes values in the range [0-1,000,000]. It is
measure in Danish Krone. The missing data pattern is genuine.

See the table in Appendix A for a description of each variable and the
values it takes. age is integer valued, we treat it as a continuous variable.
All other input variables are nominal, although education could be treated
as ordinal. DLFS has missing values but no errors.

A 2-dimensional plot (�g.5) shows age (rounded to the nearest decade)
on the x axis plotted against income. The dots show the average income for
people of the given age. The small circles show 1 standard deviation. age
is non-linearly correlated with income. As age increases the average income

3in fact there are 13 informative variables response just indicates if the income value
is missing
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Figure 3: Age vs. Income

increases. A peak is reached at 50 years of age, after which average income
declines with age. The Pearson correlation coe�cient gives a value of 0.3.

Under the assumption of MCAR missingness, a mean imputation would
give an error of approximately 115000 DK, the standard deviation of the
observed values.

3.2 Exploratory Experiments

Exploratory experiments were performed by introducing an arti�cial miss-
ingness pattern into the 11404 complete records. An MCAR pattern was
used. We repeated the experiment 20 times. We imputed values using a
linear SVM, a neural net (MLP) and the group-mean algorithm. Group-
mean variables were (3) age, (6) business type, (2) sex,(5) education. The
variables were chosen incrementally. The single best variable was covariate
was age (discretised into 5 subgroups).

K-S mae rmse worst case

SVM rbf 0.07 53000 83000 780000
MLP 0.12 58000 87000 790000
Group-mean 0.13 61000 90000 810000
Linear SVM 0.10 61000 92000 790000

Below we show the performance improvement for the group-mean algo-
rithm as each variable is added.
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group-mean variables K-S mae rmse worst case

(3 6 2 5) 0.092 57398 90943 723737
(3 6 2) 0.131 61635 95742 746162
(3 6) 0.213 65199 101534 788992
(3) 0.369 72862 115218 854249

SVM linear 0.126 62409 94746 715649

These experiments showed us which variables are most strongly corre-
lated with age. The non-linear SVM is outperforms the linear SVM on rmse.
The worst case error is large, nearly 80% of the range. The rmse estimates
had a variance of 3000DK.

3.3 Evaluation Experiments

We applied the SVM with an rbf kernel to the DLFS data, normalising all
variables, including the target, to zero mean and unit variance. There are
11404 records available as training data. We use only 5000 units, as larger
training showed no improvement in cross-validated error, and took a long
time to process. As the target variable is scalar, we cross-validate three vari-
ables; �, C and �, each initially having �ve settings. This results in 53 = 125
di�erent model orders being compared. We used 4-fold cross-validation,
comparing rmse. Evaluation of each setting took 1 minute approximately.
The experiment took 2 hours to complete.

parameter cross-validated best setting
settings found

� 3 6 9 12 15 6

C 2 5 10 20 100 10

� 0 0.01 0.05 0.1 0.2 0.1

3.3.1 Other training choices

Two re�nements to the algorithm, variable selection and strati�cation, were
investigated. Variable selection involves the selection of the most informa-
tive variables in a step-wise additive process. The single best variable is
selected �rst (based on a validation set, comparing rmse). This variable is
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then combined with all others and the best pair is chosen, then the best
three and so on. The best variables, in decreasing order, were age,business
type, sex, marital status and employment status. These were the same as
those chosen by the group-mean algorithm. This feature reduction should
improve generalisation by removing noisy variables uncorrelated with the
target variable.

The results below for the third algorithm show the SVM trained sep-
arately (strati�ed) for male and female respondents. This split showed
some improvement in cross-validation. We investigated all variables apart
from age as strati�cation variables. Only stratifying on sex improved cross-
validated error. The model order that was found by cross-validation was
similar for all three setups; � = 5, C=10 and � = 0.1.

algorithm training size slope dL1 dL2 KS MSE

SVM rbf 5000 0.93 46000 80000 0.102 1600000

SVM rbf vs 5000 0.94 45000 80000 0.099 1100000

SVM rbf strat 5000 each class 0.94 46000 80000 0.095 1100000

There is little di�erence between the results. The dL2 (root-mean-
square-error) rounded to two signi�cant �gures, is identical for all three
approaches. This �gure represents approximately half of the mean value
for income and two thirds of the inter-quartile range which is 116000DK.
Clearly only a relatively weak dependency has been found.

The Kolmogorov-Smirno� is a measure of preservation of distribution.
It gives the maximum percentage di�erence between the cumulative distri-
bution functions of the true and imputed values. The SVM scores 10%. The
results are better than those estimated from exploratory experiments.

3.4 Summary

This problem involved prediction of the income variable. This variable
has mean 175000DK, standard deviation 115000DK. We have a rmse of
80000DK. This represents an improvement over mean imputation by 30%.
The Kolmogorov-Smirno� measure shows a 10% disparity between the cu-
mulative distribution functions. The algorithm could achieve a lower result
if we chose to add noise ( residuals) to the predictions, but this would nat-
urally worsen the dL1 performance. The SVM seems to not require strati�-
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cation, or feature reduction. The SVM trained successfully and in a timely
fashion. Results for the SVM were amongst the best in the Euredit project
for the measures of preservation of true values. Preservation of distribution
was expected to be less good, as imputing the conditional expectation will
compress the distribution and reduce the second moment.
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4 ABI: Annual Business Inquiry

4.1 Overview

� experiments on ABI Y2: RA2001, RA2002, RA2004,RA2005,RA2008

� experiments on ABI Y3 Experiments: RA3002, RA3007

� total 31 variables: 16 used: 15 scalar, 1 discrete

� 10 imputation variables: turnover, emptotc, puresale, purtot, taxtot, stockbeg,

stockend, assacq, assdisp, employ

� platform: MATLAB 6.0 and C code on unix.

� exploration: Pearson correlation and 2-D plots

� preprocessing: normalisation of all variables

� trainingdata size: 3000 units.

� editing of Y3: None performed.

� processing time for each variable
set-up time: 5 minutes
cross-validation (model selection):
125 settings * 4-fold * 30 seconds = 250 minutes
training time = 1 minute
testing time = 0.5 minutes
total = 4.5 hours

� Model order: For all variables: linear settings.

� � = 500, C= 200, � = 0.

4.2 Evaluation Data Description

This dataset collated in 1998, contains 6233 records measured on 31 vari-
ables. Each record contains responses to selected questions from the UK
Annual Business Inquiry for sector 1. There are 2 questionnaires with one
(the `short' version) only asking for summary information. Variable values
for questions not on the short form are set to (-9) for businesses answering
the short form. There are four `reference variables' acquired independently
from the dataset.

The dataset exists in two forms, Y2 which is missing values, and Y3
which is missing values and also contains perturbed or erroneous values. We
performed experiments on both datasets. We do not attempt to clean the
Y3 data, and we expect results to be less good.
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Figure 4: PURTOT vs. TURNOVER

We reduce the dimensionality of this dataset to 16 variables. The fully
observed reference variables are ref, class and weight. Other reference vari-
ables are turnreg, empreg and formtype. The �rst two describe the registered
turnover and the size of the workforce respectively. The last identi�es short
and long form questionnaires.

All the variables used in the experiments are common to both long and
short forms of the questionnaire, and are described in detail in the meta-
data �le. All of the imputation variables are non-negative scalar valued,
representing sums of money, with the exception of employ which encodes
the number of employees.

There are a few records far removed from the others in the input space.
These can be called `representative outliers'; correctly measured units with
some variables taking values much larger than all the others. Below we show
a histogram of log(turnover+1) partitioned in 10 bins. The skewness of the
marginal distribution of turnover is apparent. We calculate the third mo-
ment; m3 =

1

n

P
n

i=1(xi �mean(x))3 to get a measure of the skewness. For
turnover, m3 = 7e+17.

4.3 Selection of data for training

The data in sector 1 contains 6233 records. Of these over 4000 are com-
pletely observed. In the table below is shown the number of units with no
variables missing, one variable missing and so on. Most variables have just
one missing. We select 3000 units from the 4932 that are fully observed.
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num. missing in row 0 1 2 3 4 5 6

num. of units 4932 1052 135 27 67 18 2

4.4 Preprocessing

We applied the SVM with rbf kernel to this dataset, using the common
variables listed above plus the reference variables (not acquired through
the questionnaire). We deleted all other variables. All variables were nor-
malised. No editing was performed.

4.5 Model Order

The model order was found by �rst cross-validating the settings below.

parameter cross-validated
settings

� 3 6 9 12 15

C 2 5 10 20 100

� 0 0.01 0.05 0.1 0.2 1

Models were compared with respect to dL1, the root mean square error.
When a setting was chosen that was highest or lowest of the range, cross-
validation was repeated with the range extended accordingly. We found
that � was chosen to be the largest value, (15) after an initial round. The
cross-validation phase was then repeated with larger � values.

Ultimately, highly linear models were chosen, with � more than 200 for
all variables apart from assacq. C was 500; also relatively high. � was 0.01,
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or 0 for most variables. Due to the skewness of the data, the normal range
of � was not e�ective. This kernel parameter normally takes values less than
the dimension of the input space. As � grows the global inuence of each
data-point gets larger.

4.6 Results

We imputed the ten variables common to the short and long forms that
were missing values. Appendix B and C contain tables for SVM linear and
SVM rbf. Slope values for turnover indicate that the variable was strongly
correlated with input variables, the Pearson correlation coe�cient between
turnover and purtot is 0.92.

We can see by comparing the dL2 of each variable with its variance and
mean, and observing that R2 is over 0.9, that most variables have been
imputed accurately. However stockbeg and stockend are less well preserved.

This poor result has been diagnosed as due to the crude `patching' heuris-
tic. A third of the units are missing stockbeg and stockend simultaneously.

4.7 Summary

The data concerns the �nances of a range of businesses, many small but a
few multi-nationals also. The distributions are skewed. The performance
of the linear algorithm relative to the non-linear indicates that no strong
non-linearity was found. Observation of the Pearson weighted moments
con�rmed this. Below we give each imputation variable, the most highly
correlated covariate (m.h.c.c) and the value of the weighted Pearson corre-
lation coe�cient (Pearson). All variables are correlated with at least one
other to degree 0.9, with the exception of assacq.

variable TURNOVER EMPTOTC PURESALE PURTOT TAXTOT
Pearson 0.9984 0.9904 0.9993 0.9993 0.9067
m.h.c.c. PURTOT TURNOVER PURTOT PURESALE STOCKEND

variable STOCKBEG STOCKEND ASSACQ ASSDISP EMPLOY
Pearson 0.9657 0.9657 0.9686 0.2821 0.9822
m.h.c.c STOCKEND STOCKBEG TURNREG EMPLOY TURNOVER
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The SVM took over 4 hours for each variable, if one trains with the
non-linear kernel. The results show that the non-linear SVM was able to
capture the linear dependency. However a poor patching heuristic lead to
weaker results for some variables, e.g.stockbeg and stockend. On this dataset
it would have made more sense to train a separate model for each missing
data pattern in the test set. We did not take weights into account in the
training of the model. The correlation statistics show that all variables apart
from assdisp are well modelled by a linear regressor. The non-linearity of
the SVM seems not to be required.
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5 SARS: Sample of Anonymised Records

5.1 Overview

� Experiments on SARSY2: RS20001, RS2002, RS2004

� Experiments on SARSY3: RS3001,RS3005, RS3006

� 31 variables: 2 index, 9 household, 20 personal

� 25 missing values
types of missing variable: 2 scalar, 2 binary, 21 multiclass

� Platform: MATLAB 6.0 and C code.

� Exploratory analysis: comparisons on development data (sector 2 SARS)
with linear techniques, MLP.

� Preprocessing: normalisation of all variables, removal of rarest classes. Dele-
tion of index variables.

� Training-data size
multiclass: 2000 units in each class
regression: 3000 units total

� Editing of Y3: Values removed that had no meaning, e.g. Sex = 3;

� Processing time for each variable:
Set up time: 5 minutes
Cross-Validation (model selection) for categorical variable with 5 classes; 2
parameters are set, C and �:
25 settings * 4-fold * 5 classes * 10 seconds = 1.4 hours
Training time = 1 minute
Testing time = 0.5 minutes
Total = 1.5 hours
Total for 25 variables = approx. 2 days.

� Model order: C 2 [5-80], � 2 [7-20] depending on the variable

� Appendix contains tabulated results

5.2 Evaluation Data Description

The data are a 1% sample of household records from the 1991 UK census.
This amounts to nearly half a million records. There are 31 variables which
represents a selection from the total number. Two of the variables are
handled as scalar (regression) variables; age and hours worked. All other
variables are multi-class discrete valued, with the exception of sex and long-
term-ill, which are binary. We present a table of the variables in Appendix
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C, that gives details of the variables and their rates of missingness. The
dataset was presented in two forms; Y2 with missing values, and Y3 with
errors and missing values. We attempted imputation of both.

5.3 Training Choices

We apply the SVM with an rbf kernel to the data. Our aim is to evaluate this
form of SVM as a generic model. This kernel o�ers non-linear modelling.
Preprocessing involved deletion of the index variables and normalisation
of all others. Training data was randomly selected from the clean, fully
observed data. Size was 3000 units for regression, 2000 units per class for
classi�cation. In the case of multi-classi�cation, there is a binary SVM
trained for each class versus all the others. The classi�cation with the largest
positive margin wins.

5.4 Parameters to set before training

SARS data contains a mixture of discrete and scalar variables. C and �

must be set for both types. For scalar variables, � is also set.

parameter cross-validated
settings

� 8 12 16 20 24

C 5 20 80 300

� 0 0.01 0.05 0.1 0.2

5.5 Training Data for Regression

At least 30% of the data is complete. MATLAB can hold only 65000 records
in memory at a time, so we dealt with the SARS data in chunks. A chunk of
30000 records is loaded and a randomly selected subset is chosen for training.
For regression we take 3000 of the observed units.

5.6 Training Data for Classi�cation

Multi-classi�cation and classi�cation were more complicated tasks. This was
due to the very unbalanced class distributions. For example, the 4th variable
bath indicates whether the household has exclusive use of a bathroom (1) ,
shared use (2) or none at all (3).The relative frequencies of these values are;
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100 : 0.7 : 0.01. Less than 1% of people share a bathroom. Less than one
in ten thousand have no bathroom at all. It is likely that there is no region
of the input space where value 1 is not the mode. The SVM minimises
root-mean-square error or mean-absolute-error on the training set. This
will be achieved by classifying all units to the modal class. Rare classes are
therefore 'swamped'. No imputations are made to them.

5.7 Overview of Complicating Factors

It was more complicated to handle for the following reasons:

1. The data set is relatively large, resulting in long processing times.

2. The data set contains variables with some very rare classes. In some
cases these classes had to be ignored. Indeed in one case the variable
was not imputed at all as the extremely unbalanced distribution meant
no imputations were made to the non- modal classes.

3. -9 values are not to be imputed. This was stated in the experimental
scenario.

4. Some variables are derived. This means that the absence of one always
implies the absence of the other.

5. The data set is hierarchical. Each unit contains information concern-
ing a person, and also information concerning their household. This
information is duplicated for every member of the household. The i.i.d.
assumption does not hold as a result of this hierarchical structure.

Each of these issues complicated the imputation process, and required
extra-code to be developed. The main role of the extra code was in the
selection and preparation of suitable training data for each variable.

5.8 Results

Below we present results for selected discrete-valued variables from SARS
Y2. hhsptype takes values in f1-14g. There is an ordering in these values,
but the variable is treated here as categorical. 20% of units take value de-
tached, 40% are semidetached, 30% are terraced, and 6% are residential ats.
All others categories together make up the remaining 4% of units. This un-
balanced distribution is common to many of the SARS variables.
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All Data hhsptype ltill mstatus residsta econprim isco1

SVM D 0.347 0.053 0.156 0.068 0.211 0.614

For the evaluation data we have no results to make comparisons with
at this stage. As a rough marker, we present results below for a modal
imputation on data for region 2. We know the true values for this dataset.

Let us assume that the missingness is MCAR. We would then expect a
strategy of imputing to the modal class to result in an error rate of 0.6. The
result, tabulated below, calculated from region 2 data is close to this. On
the evaluation data, the SVM achieves an error rate of about half this value;
0.35.

region 2 hhsptype ltill mstatus residsta econprim isco1

modal D 0.605 0.141 0.590 0.051 0.637 0.841

workplace describes the location of a respondents workplace. For this
variable 86% of the units occupy the modal class. The modal imputation
therefore achieves an error rate of 0.14. The SVM achieves 0.15 training set
error, and 0.21 test set error. It seems that the SVM was able to �nd no
functional relationship for this variable.

var params Slope R
2 dL1 dL2 dLinf

age C=20 � = 9 � = 0:2 1.010 0.938 3.354 5.703 67.000
K-S m1 m2 MSE
0.024 0.238 58.016 0.001

var params Slope R
2 dL1 dL2 dLinf

hours C=50 � = 12 � = 0:05 0.963 0.346 6.364 8.544 22.000
K-S m1 m2 MSE
0.455 1.182 54.000 0.001
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5.9 Summary

The census is a hierarchical dataset. Within a household the distribution
of each member is highly dependent on the other members. For example,
the age of a child will be strongly related to the age of a parent. The SVM
system applied here does not exploit this structure.

The household variables will also be dependent upon the value of each
of the members of that household. For example, the number of cars will be
dependent upon the ages of all of the members of the household, and their
employment status. This dependency is also ignored by the SVM.

The present implementation is therefore best judged as applied to a
subset of the data. It would make sense to compare the SVM with other
techniques on single-person households only. For this subset the data can
be assumed to be `at', and the units iid.

The algorithm failed to discover strong dependencies for the household
variables, apart from hhspace. The classes are not well separated, and often
massively dominated by the modal class. Scalar variables are more success-
fully modelled. This is possibly due to scalar noise `cancelling out'.

Tables are given in the Appendix for SARS Y3. Results were comparable
for with SARS Y2. The perturbations did not seem to strongly a�ect the
performance of the algorith.
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6 Discussion

6.1 Motivation for investigating SVMs

SVMs o�er highly exible non-linear interpolation and discrimination mod-
els. When modelling a univariate target variable conditional upon a number
of fully observed covariates, the SVM algorithm is able to make e�cient use
of the available data and �nd non-linear dependencies in high dimensional
data where they exist. They have produced good results on some well-
known classi�cation and regression problems[10]. Moreover they are theo-
retically well founded, o�ering means of bounding the generalisation error.
The training and testing process requires the solution of a convex quadratic
programme. Methods exist which scale to millions of data points. A training
data set of dimension 5000x 20 units requires 1minutes on a 450Mhz PC.
The number of parameters is low allowing quick cross-validation.

Imputation is one approach to the 'Missing Data Problem'. The ulti-
mate goal is to be able to extract statistics accurately and e�ciently from a
dataset missing values on some or all variables. Imputation is only one way
of solving the problem; by inserting `surrogate' values into those variables,
which are unobserved. The goal of the imputation ask is to preserve the true
statistics and to do this the imputations should approximate as accurately
as possible draws from the joint probability density. If multiple imputation
is to be attempted more than one draw is made for each missing value. Our
approach is to model each variable that is missing values separately. I.e.
we train a separate SVM for each variable, each giving us the conditional
expectation of the target variable in the case of regression, or the maximum
aposteriori class in the case of classi�cation. Our assumption must be there-
fore that each conditional distribution is unimodal, as we are assuming a
functional relationship to underlie the data. Our model selection procedure
examines performance on cross-validation subsets of the data, picking the
model that gives best rmse or best mae. If a functional relationship relates
some variables, the SVM should �nd it.

6.2 Assessing performance

These datasets are of varying size and complexity. DLFS required consid-
erably less time to tackle than ABI and SARS. It had only one variable
missing values the scalar income variable. Preprocessing for scalar variable
imputation is less onerous. SARS and ABI required more complex data se-
lection and preprocessing routines. SARS is a hierarchical dataset. SVMs

26



are designed for i.i.d. data, and SARS clearly does not satisfy this.
The success of an imputation approach is highly dependent on how data-

handling tasks are carried out. There is no easy way diagnose whether poor
performance is due to poor preprocessing choices, although benchmarking
with simpler techniques that do not require the same order of preprocessing
is helpful.

To measure imputation performance requires several criteria. There is
no clearly de�ned measure of success for all missing data problems. In
general terms we expect the SVM to perform well when measured according
to preservation of true values (e.g. root-mean-square-error). We expect the
SVM to produce imputations that underestimate noise, and so give less good
preservation of distribution

6.3 Future Work

Investigation of the poor ABI results on stockbeg and stockend indicate that
the strong correlation between these two variables leads to poor results on
many units because they are simultaneously absent. The patching heuristic
is clearly too naive. As an improvement the nearest-neighbours approach
will be investigated. As future work we also intend to investigate noise
estimation, and preserving the variance. Our approach assumes a sharply
peaked unimodal conditional probability distribution for each target vari-
able. We do not address ways of measuring the strength of these assump-
tions. If P (Y jX) is unimodal but very broad, we might develop a means of
estimating the noise in the conditional probability distribution and adding it
to the imputations. We do not have an answer to the problem of conditional
distributions that are multi-modal. We achieved large values for m2, in the
evaluation experiments, showing poor preservation of the second moment.
Clearly if preservation of variance was paramount, the present SVM setup
would not be the optimal technique. We see these experiments as focused
on the estimation of true values: d1error, d2error and slope.

Generally we do not expect the missing data mechanism to be MCAR.
I.e. the test units are not iid with the training units. Hence training error
estimates are often poor indicators of the accuracy of the imputation action
itself. It seems important that diagnostics are developed; techniques derived
for estimating the quality of an imputation action, and rating it in terms of
con�dence and credibility.
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7 Conclusions

Many experiments were conducted on DLFS development data comparing
group-mean, neural net and linear algorithms with SVM. Three experiments
were conducted on the evaluation data. Strati�cation and variable selection
gave additional information about the ability of the algorithm to handle the
data. The results for the imputation of income indicate that the non-linear
correlation has been well captured by the SVM. Results using much simpler
non-linear approaches presented by CBS indicate however that the SVM's
great exibility is not fully exploited. A piecewise linear model with an
additional interaction terms and age2 achieved similar results. This kind of
modelling is more time-consuming and could be said to require more skill
than the SVM approach. It was encouraging to note that the presence of
'noise' variables, did not adversely a�ect the performance.

ABI experiments were less conclusive. The skewness of the data lead to
surprisingly large values being chosen for the kernel parameter � by cross-
validation. The low dL1 values and good R2 values for many variables
seem to show that the linear relationship has been found. However the
crude patching method combined with the strong correlations has lead to
some surprisingly bad results for stockbeg and stockend. A nearest neigh-
bours approach to patching is one avenue of investigation. ABI Y3 data
have not been discussed. The e�ect of the perurbations was huge, and the
performance statistics showed the model had produced highly unreliable
imputations.

The SARS experiments showed good results for the scalar variables, age
and hours worked. Some categorical variables gave reasonable error rates.
But a large number performed worse than the modal imputation. Many
variables are dominated by the modal class, and there may have been little
structure to �nd.

A more informative experiment would compare performance on single
person households, where the hierarchical structure could be ignored, and
household based imputation would not be an option.

As expected, distributions were not well preserved. Large values of m2

were observed and sometimes K-S, the Kolmogorov Smirno� measure showed
a value of 0.5 (50% di�erence between true and estimated cumulative dis-
tribution functions). The SVM imputes at the conditional expectation, or
the MAP. Unless residuals are added, the distribution of imputations will be
expected to be much more compressed than the distribution of true values.
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