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1.0
Introduction

This report was written for the EUREDIT project which is financed by the European Community under the 5th framework programme.  Key objectives of the EUREDIT project are to develop new techniques for data editing and imputation and to then evaluate these methods in order to establish "best practice" for different types of data. The range of editing and imputation methods that will be investigated within EUREDIT is quite broad, covering both the traditional methods used by the National Statistical Institutes (NSIs) participating in the project, as well as more modern (and computer intensive) editing and imputation methods based upon application of outlier robust and non-parametric regression techniques, classification and regression tree models, multi-layer perceptron neural networks, Correlation Matrix Memory neural networks, Self‑Organising Map neural networks and imputation methods based on Support Vector Machine technology.

In order to provide a "level playing field" where these different methodologies can be compared, a key component of EUREDIT is the creation of a number of representative data sets containing simulated errors as well as missing data which will then be used for comparative evaluation of the methods developed by the EUREDIT partners. In order to ensure that this evaluation is standardised across all partners, the EUREDIT project also includes specification of a comprehensive set of evaluation criteria that all partners will apply when reporting the effectiveness of any methodology they develop. This paper sets out these criteria.

It is important to realise that these evaluation criteria are aimed at assessing the performance of an editing and imputation method when the "true" values underpinning either the incorrect or missing data items are known. That is, they have been specifically developed for the comparative evaluation approach underpinning EUREDIT. They are not necessarily appropriate for assessing edit and imputation performance for a specific data set where true values are unknown, the situation that typically applies when data are processed, for example, by NSIs. In these cases although the principles underlying these criteria are still relevant, their application require the creation of "true" values. In some cases it may be possible to achieve this by replicating the observed pattern of errors and missingness in known "clean" data. However this will not always be possible. In such cases the results obtained in the EUREDIT project will provide guidance, but not confirmation, about the most effective editing and imputation methodology for the specific data set under consideration.

2.0 Data editing

2.1
What is editing?

Editing is the process of detecting errors in statistical data. An error is the difference between a measured value for a datum and the corresponding true value of this datum. The true value is defined as the value that would have been recorded if an ideal (and expensive) measurement procedure had been used in the data collection process.

Editing can be of two different types. Logical editing is where the data values of interest have to obey certain pre-defined rules, and editing is the process of checking to see whether this is the case. A data value that fails a logical edit must be wrong. For example, provided the child's age is correctly recorded, then it is physically impossible for a mother to be younger than her child. Statistical editing on the other hand is concerned with identification of data values that might be wrong. In the context of the mother/child age consistency example just described, such a situation arises when we are unsure about the correctness of the age recorded for the child. Clearly at least one (if not both) of the recorded ages is wrong, but we are unsure as to which. The age recorded for the mother may or may not be wrong. Provided the age recorded for the mother is physically possible then there is a chance that the mistake is not with this value but with the value recorded for the child's age. Ideally, it should be highly likely that a data value that fails a statistical edit is wrong, but there is always the chance that in fact it is correct. A modification of the preceding example  that illustrates this situation is an edit that requires a mother to be at least 15 years older than her child. Since the context in which the edit is applied (e.g. the presence or absence of external information, and its associated quality, as in the age of the child above) modifies the way we classify an edit, we shall not attempt to distinguish between evaluation of logical editing performance and evaluation of statistical editing performance in this report. We shall only be concerned with evaluation of overall editing performance (i.e. detection of data fields with errors).

We also distinguish editing from error localisation. The latter corresponds to the process of deciding which of the fields in a particular record that "fail" the edit process should be modified (e.g. parent/child age above). The key aspect of performance here is finding the "smallest" set of fields in a record such that at least one of these fields is in error. This type of evaluation depends on application of the Felligi-Holt principle of minimum change and requires access to the full set of edit rules for the data set  of interest. Since it is infeasible to include every possible edit rule with the evaluation data sets being developed under WP 2 of EUREDIT, the evaluation procedures defined in this report will not focus on the localisation aspects of editing. However, for some of the editing procedures that will be developed under EUREDIT, probability "scores" will be produced for each field in a record corresponding to the likelihood that the field is in error. For such procedures we describe below a performance measure for error localisation that focuses on the ability of the editing procedure to thereby "pinpoint" those data fields in a record that are actually in error.

2.2
Performance requirements for statistical editing

There are two basic requirements for a good statistical editing procedure.

· Efficient Error Detection: Subject to constraints on the cost of editing, the editing process should be able to detect virtually all errors in the data set of interest.

· Influential Error Detection: The editing process should be able to detect those errors in the data set that would lead to significant errors in analysis if they were ignored.

2.3
Statistical editing as error detection

Suppose our concern is detection of the maximum number of true errors (measured value ( true value) in the data set for a specified detection cost. Typically, this detection cost rises as the number of incorrect detections (measured value = true value) made increases, while the number of true errors detected obviously decreases as the number of undetected true errors increases. Consequently, we can evaluate the error detection performance of an editing procedure in terms of the both the number of incorrect detections it makes as well as the number of correct detections that it fails to make.

From this point of view, editing is essentially a classification procedure. That is, it classifies each recorded value into one of two states: (1) acceptable and (2) suspicious (not acceptable). Assuming information is available about the actual correct/incorrect status of the value, one can then cross-classify it into one of four distinct classes: (a) Correct and acceptable, (b) Correct and suspicious, (c) Incorrect and acceptable, and (d) Incorrect and suspicious. Class (b) is a classification error of Type 1, while class (c) is a classification error of Type 2.

If the two types of classification errors are equally important, the sum of the probabilities of the two classification errors provides a measure of the effectiveness of the editing process. In cases where the types of classification errors have different importance, these probabilities can be weighted together in order to reflect their relative importance.  For example, for an editing process in which all rejected records are inspected by experts (so the probability of an incorrect final value is near zero for these), Type 1 errors are not as important because these will eventually be identified, while Type 2 errors will pass without detection. In such a situation the probability of a Type 2 error should have a bigger weight. However, for the purposes of evaluation within the EUREDIT project both types of errors will be given equal weight.

Evaluating the Error Detection Performance of an Editing Procedure

In order to model the error detection performance of an editing process, we assume that we have access to a data set containing i = 1, ..., n cases, each with "measured" (i.e. pre-edit) values Yij, for a set of j =1, ..., p variables. For each of these variables it is also assumed that the corresponding true values 
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 are known. The editing process itself is characterised by a set of variables Eij that take the value one if the measured value Yij passes the edits (Yij is acceptable) and the value zero otherwise (Yij is suspicious). For each variable j we can therefore construct the following cross-classification of the n cases in the dataset:
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The ratio ncj/n is the proportion of false positives associated with variable j detected by the editing process, with nbj/n the corresponding proportion of false negatives.  Then
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is the proportion of cases where the value for variable j is incorrect, but is still judged acceptable by the editing process. It is an estimate of the probability that an incorrect value for variable j is not detected by the editing process. Similarly



[image: image5.wmf]ˆ 

b 

j = nbj/(naj  + nbj)







(2)

is the proportion of cases where a correct value for variable j is judged as suspicious by the editing process, and estimates the probability that a correct value is incorrectly identified as suspicious. Finally,
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is an estimate of the probability of an incorrect outcome from the editing process for variable j, and measures the inaccuracy of the editing procedure for this variable.

A good editing procedure would be expected to achieve small values for 
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j for all p variables in the data set.

In many situations, a case that has at least one variable value flagged as "suspicious" will have all its data values flagged in the same way. This is equivalent to defining a case-level detection indicator:



[image: image10.wmf]  

E

i

=

E

ij

j

=

1

p

Õ

.

Let Yi denote the p-vector of measured data values for case i, with 
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 the corresponding p-vector of true values for this case. By analogy with the development above, we can define a case-level cross-classification for the edit process:


Ei = 1
Ei = 0

Yi = 
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where Yi = 
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 denotes all measured values in Yi are correct, and Yi ( 
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 denotes at least one measured value in Yi is incorrect. The corresponding case level error detection performance criteria are then the proportion of cases with at least one incorrect value that are passed by all edits:
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the proportion of cases with all correct values that are failed by at least one edit:
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and the proportion of incorrect error detections:



[image: image18.wmf]ˆ 

d 

 = (nb + nc)/n.







(6)

Note that the (1) to (6) above are averaged over the n cases that define the cross-classification. In many cases these measures will vary across subgroups of the n cases. An important part of the evaluation of an editing procedure therefore is showing how these measures vary across identifiable subgroups. For example, in a business survey application, the performance of an editing procedure may well vary across different industry groups. Such "domains of interest" will be one of the outputs of the WP 6 package of EUREDIT.

2.4
Statistical editing as error reduction

In this case our aim in editing is not so much to find as many errors as possible, but to find the errors that matter (i.e. the influential errors) and then to correct them. From this point of view the size of the error in the measured data (measured value - true value) is the important characteristic, and the aim of the editing process is to detect measured data values that have a high probability of being "far" from their associated true values.

Evaluating the error reduction performance of an editing procedure

In order to evaluate the error reduction brought about by editing, we shall assume that all values flagged as suspicious by the editing process are checked, and their actual true values determined. Suppose the variable j is scalar. Then the editing procedure leads to a set of post-edit values defined by 
[image: image19.wmf]  

ˆ 

Y 

ij

=

E

ij

Y

ij

+

(

1

-

E

ij

)

Y

ij

*

. The key performance criterion in this situation is the "distance" between the distribution of the true values 
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 and the distribution of the post-edited values 
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. The aim is to have an editing procedure where these two distributions are as close as possible, or equivalently where the difference between the two distributions is as close to zero as possible.

In many cases the data set being edited contains data collected in a sample survey. In such a situation we typically also have a sample weight wi for each case, and the outputs of the survey are estimates of target population quantities defined as weighted sums of the values of the (edited) survey variables. In non-sampling situations we define wi = 1.

When variable j is scalar, the errors in the post-edited data are 
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. The p-vector of error values for case i will be denoted Di. Note that the only cases where Dij is non-zero are the ncj cases corresponding to incorrect Yij values that are passed as acceptable by the editing process. There are a variety of ways of characterising the distribution of these errors. Suppose variable j is intrinsically positive. Two obvious measures of how well the editing procedure finds the errors "that matter" are then: 

Relative Average Error:
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Relative Root Average Squared Error:
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When variable j is allowed to take on both positive and negative values it is more appropriate to focus on the weighted average of the Dij over the n cases and the corresponding weighted average of their squared values. In any case, all four measures should be computed.

Other, more "distributional" measures related to the spread of the Dij will also often be of interest. A useful measure of how "extreme" is the spread of the undetected errors is

Relative Error Range:



R(D)/IQ(Y*)



(9)

where R(D) is the range (maximum  - minimum) of the non-zero Dij values and IQ(Y*) is the interquartile distance of the true values for all n cases. Note that weighting is not used here.

With a categorical variable we cannot define an error by simple differencing. Instead we define a probability distribution over the joint distribution of the post-edit and true values, ab =
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, where Yij = a indicates case i takes category a for variable j. A "good" editing procedure is then one such that ab is small when a is different from b. For an ordinal categorical variable this can be evaluated by calculating
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where i(j(ab) denotes those cases with 
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, and d(a,b) is a measure of the distance from category a to category b. A simple choice for such a distance is one plus the number of categories that lie "between" categories a and b. When the underlying variable is nominal, we set d(a,b) = 1.

A basic aim of editing in this case is to make sure that any remaining errors in the post-edited survey data do not lead to estimates that are significantly different from what would be obtained if editing was "perfect". In order to assess whether this has been achieved, we need to define an estimator of the sampling variance of a weighted survey estimate. The specification for this estimator will depend on the sample weights, the type of sample design and the nature of the population distribution of the survey variables. Where possible, these details will be provided as part of the "meta data" for the evaluation data sets developed by the WP 2 package of EUREDIT. Where this is impossible, this variance can be estimated using the jackknife formula
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Here 
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 denotes the weighted sum of values for a particular survey variable Y and 
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 denotes the same formula applied to the survey values (within the subgroup of interest) with the value for the ith case excluded, and with the survey weights scaled to allow for this exclusion. That is
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Let vw(
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tj = 
[image: image35.wmf]  

w

i

D

ij

i

=

1

n

å

/

v

w

(

D

j

)









(11)

is a standardised measure of how effective the editing process is for this variable. Since the sample size n will be large in typical applications, values of tj that are greater than two (in absolute value) indicate a significant failure in editing performance for variable j.

Extension of this argument to nonlinear estimates produced from the survey data is straightforward. Let U* denote the value of such a nonlinear estimate when it is based on the true values for the variables in the survey data set, with corresponding value 
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If this type of evaluation is required, specification of 
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 will be part of the meta data produced by work package WP 2 of EUREDIT.

Finally, when the variable of interest is categorical, with a = 1, 2, ..., A categories, we can replace the Dij values in tj above by 
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Here I(Yij = a) is the indicator function for when case i takes category a for variable j. If the categorical variable is ordinal rather than nominal then it is more appropriate to use
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where d(a,b) is the "block" distance measure defined earlier.

Evaluating the outlier detection performance of an editing procedure

Statistical outlier detection can be considered a form of editing. As with "standard" editing, the aim is to identify data values that are inconsistent with what is expected, or what the majority of the data values indicate should be the case. However, in this case there are no "true" values that can be ascertained. Instead, the aim is to remove these values from the data being analysed, in the hope that the outputs from this analysis will then be closer to the "truth" than an analysis that includes these values (i.e. with the detected outliers included).

In order to evaluate how well an editing procedure detects outliers, we can compare the moments and distribution of the outlier-free data values with the corresponding moments and distribution of the true values. For positive valued scalar variables, this leads to the measure

Absolute Relative Error of the k-Mean for Yj:
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Typically, (12) would be calculated for k = 1 and 2, since this corresponds to comparing the first and second moments (i.e. means and variances) of the outlier-free values with the true values. For real-valued variables this measure should be calculated as the absolute value of the difference between the k-mean calculated from the identified "non-outlier" data and that based on the full sample true values.

Similarly, we can compare the distribution of the "outlier-free" values with that of the true values. This corresponds to replacing 
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 ≤ y) respectively. The measure (12) can be evaluated at a spread of values for y that cover the distribution of the true values. We suggest that these y-values are defined as the deciles of the distribution of the true values.

Evaluating the error localisation performance of an editing procedure

We define error localisation as the ability to accurately isolate "true errors" in data. We also assume that such "localisation" is carried out by the allocation of an estimated error probability to each data item in a record. Good localisation performance then corresponds to estimated error probabilities close to one for items that are in error and estimated error probabilities close to zero for those that are not. To illustrate, consider the following scenarios for a record containing 4 variables (Y1 - Y4). Here 
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 denotes the estimated probability that the jth item for the ith record is erroneous. The indicator function I(Yij = 
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The first three scenarios above show a case where the error estimates are quite "precise" (i.e. they are either close to one or close to zero). Observe that Scenario A then represents very poor error localisation, with both Yi1 and Yi2 identified as being in error with high probability, while in fact they are not, while Scenario B is the reverse. Scenario C is somewhere between these two situations. Scenarios D, E and F repeat these "true value" realisations, but now consider them in the context of a rather less "precise" allocation of estimated error probabilities. The statistic Gi provides a measure of how well localisation is "realised" for case i. It is defined as
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where p is the number of different items making up the record for case i. A small value of Gi corresponds to good localisation performance for this case. This is because such a situation occurs if (a) there are no errors and all the
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 is close to one when an item is in error and is close to zero if it is not. Note also that Gi is an empirical estimate of the case-level Gini index value for the set of estimated error probabilities, and this index is minimised when these probabilities are close to either zero or one (so potential errors are identified very precisely). Thus, although scenarios B and E above represent situations where the higher estimated error probabilities are allocated to items which are actually in error, the value for Gi in scenario B is less than that for scenario E since in the former case the estimated error probabilities are more "precisely" estimated.

For a sample of n cases these case-level measures can be averaged over all cases to define an overall error localisation performance measure
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Note that the above measure can only be calculated for an editing procedure that works by allocating an "error probability" to each data item in a record. Since some of the more commonly used editing methods only identify a group of items as containing one or more errors, but do not provide a measure of how strong is the likelihood that the error is "localised" at any particular item, it is clear that the "error localisation" performance of these methods cannot be assessed  via the statistic G above.

3.0
Imputation

3.1
 What is imputation?

Imputation is the process by which values in a data set that are missing or suspicious (e.g. edit failures) are replaced by known acceptable values. We do not distinguish between imputation due to missingness or imputation as a method for correcting for edit failure in what follows, since imputation is carried out for any variable for which the edit process has determined true values are missing. Reasons for imputation vary, but typically it is because the data processing system has been designed to work with a complete dataset, i.e. one where all values are acceptable (satisfy edits) and there are no "holes".

Methods of imputation for missing data vary considerably depending on the type of data set, its extent and the characteristics of the missingness in the data. However, there are two broad classes of missingness for which different imputation methods are typically applied. These are unit missingness, where all the data for a case are missing, and item missingness, where part of the data for a case are missing. The extent of item missingness may well (and often does) vary between different records.

An important characteristic of missingness is identifiability. Missingness is identifiable if we know which records in the dataset are missing, even though we do not know the values contained in these records. Missingness due to edit failure is always identifiable. Missingness brought about through under-enumeration (as in a population census) or under-coverage (as in a sample survey) is typically not identifiable. The importance of identifiability is that it allows one at least in theory to cross-classify the missing records according to their true and imputed values, and hence evaluate the efficacy of the imputation process. In this report we shall assume that all imputations are carried out using a data set with identifiable missingness. 

3.2
Performance requirements for imputation

Ideally, an imputation procedure should be capable of effectively reproducing the key outputs from a "complete data" statistical analysis of the data set of interest. However, this is usually impossible, so we investigate alternative measures of performance in what follows. The basis for these measures is set out in the following list of desirable properties for an imputation procedure. The list itself is ranked from properties that are hardest to achieve to those that are easiest. This does NOT mean that the ordering also reflects desirability. Nor are the properties themselves mutually exclusive. In fact, in most uses of imputation within NSIs the aim is to produce aggregated estimates from a data set, and criteria (1) and (2) below will be irrelevant. On the other hand, if the data set is to be publicly released or used for development of prediction models, then (1) and (2) become rather more relevant.

(1)
Predictive Accuracy: The imputation procedure should maximise preservation of true values. That is, it should result in imputed values that are "close" as possible to the true values.

(2)
Ranking Accuracy: The imputation procedure should maximise preservation of order in the imputed values. That is, it should result in ordering relationships between imputed values that are the same (or very similar) to those that hold in the true values.

(3)
Distributional Accuracy: The imputation procedure should preserve the distribution of the true data values. That is, marginal and higher order distributions of the imputed data values should be essentially the same as the corresponding distributions of the true values.

(4)
Estimation Accuracy: The imputation procedure should reproduce the lower order moments of the distributions of the true values. In particular, it should lead to unbiased and efficient inferences for parameters of the distribution of the true values (given that these true values are unavailable).

(5)
Imputation Plausibility: The imputation procedure should lead to imputed values that are plausible. In particular, they should be acceptable values as far as the editing procedure is concerned.

It should be noted that not all the above properties are meant to apply to every variable that is imputed. In particular, property (2) requires that the variable be at least ordinal, while property (4) is only distinguishable from property (3) when the variable being imputed is scalar.  Consequently the measures we define below will depend on the scale of measurement of the variable being imputed.

An additional point to note about property (4) above is that it represents a compromise. Ideally, this property should correspond to "preservation of analysis", in the sense that the results of any statistical  analysis of the imputed data should lead to the same conclusions as the same analysis of the complete data. However, since it is impossible to a priori identify all possible analyses that could be carried out on a data set containing imputed data, this criterion has been modified to focus on preservation of estimated moments of the variables making up the data set of interest.

We also note that in all cases performance relative to property (5) above ("plausibility") can be checked by treating the imputed values as measured values and assessing how well they perform relative to the statistical editing criteria described earlier in this paper.

Finally, unless specifically stated to the contrary below, all measures are defined on the set of n imputed values within a data set, rather than the set of all values making up this set. That is, n below refers to the total number of imputed values for a particular variable. Also, we drop the index j used above to refer to the particular variable being considered, and evaluate imputation for each variable specifically. The assessment of joint (multivariate) imputation will be taken up later.

3.3
Imputation performance measures for a nominal categorical variable

The extent to which an imputation procedure preserves the marginal distribution of a categorical variable with c+1 categories can be assessed by calculating the value of a Wald-type statistic that compares the imputed and true distributions of the variable across these categories. This statistic is the extension (Stuart, 1955) of McNemar’s statistic (without a continuity correction) for marginal homogeneity in a 2 ( 2 table. It is given by
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Here R is the c-vector of imputed counts for the first c categories of the variable, S is the c-vector of actual counts for these categories and T is the square matrix of order c corresponding to the cross classification of actual vs. imputed counts for these categories. Under relatively weak assumptions about the imputation process (essentially providing only that it is stochastic, with imputed and true values independently distributed conditional on the observed data - see Appendix 2), the large n distribution of W is chi-square with c degrees of freedom, and so a statistical test of whether the imputation method preserves the distribution of the categorical variable of interest can be carried out. Obviously, although W can still be calculated when a non-stochastic imputation scheme is used, this distributional result can no longer be used to determine the "significance" of its value.

Note that adding any number of “correct” imputations to the set of imputed values being tested does not alter the value of W. That is, it is only the extent of the "incorrect" imputations in the data set that determines whether the hypothesis of preservation of marginal distributions is supported or rejected.

The extension of W to the case where more than one categorical variable is being imputed is straightforward. One just defines Y as the single categorical variable corresponding to all possible outcomes from the joint distribution of these categorical variables and then computes W as above. This is equivalent to testing for preservation of the joint distribution of all the imputed variables.

We now turn to assessing how well an imputation process preserves true values for a categorical variable Y with c+1 categories. An obvious measure of how closely the imputed values “track” the true values for this variable is given by the proportion of off-diagonal entries for the square table T+ of order c+1 obtained by cross-classifying these imputed and actual values. This is
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where 
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Provided we cannot reject the hypothesis that the imputation method preserves the marginal distribution of Y, we can estimate the variance of D by
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where 1 denotes a c-vector of ones. See Appendix 2 for details. 

If the imputation method preserves individual values, D should be identically zero. To allow for the fact that the imputation method may "almost" preserve true values, we can test whether the expected value of D is significantly greater than a small positive constant . That is, we are willing to allow up to a maximum expected proportion  of incorrect imputations and still declare that the imputation method preserves true values. Consequently, if



[image: image67.wmf]  

D

>

e

+

2

ˆ 

V 

(

D

)


we can say that the imputation method has an expected incorrect imputation rate that is significantly larger than  and hence does not preserve true values. The choice of  will depend on the application. We suggest setting this constant equal to



[image: image68.wmf]  

e

*

=

max

0

,

D

-

2

ˆ 

V 

(

D

)

(

)

.





(16)

The smaller this value, the better the imputation process is at preserving true values. If * is zero we say that the imputation method preserves true values.

Appendix 1 contains an exemplar analysis that illustrates the use of W and D to evaluate a set of imputations.

3.4
Imputation performance measures for an ordinal categorical variable

So far we have assumed Y is nominal. We now consider the case where Y is an ordinal categorical variable. This will be the case, for example, if Y is defined by categorisation of a continuous variable. Here we are not only concerned with preservation of distribution, but also preservation of order. To illustrate that order is important consider the following 4 imputed by actual cross-classifications for an ordinal variable Y taking values 1, 2 and 3. In all cases the value of W is zero, so the issue is one of preserving values, not distributions. The D statistic value for each table is also shown. Using a subscript to denote a particular table we see that Da < Db < Dc < Dd so it appears, for example, that the imputation method underlying table (a) is “better” in this regard than that underlying table (b) and so on.

However, one could question whether this actually means method (a) IS better than methods (b), (c) and (d). Thus method (a) twice imputes a value of 1 when the actual value is 3, and similarly twice imputes a value of 3 when the actual value is 1, a total of 4 “major” errors. In comparison, method (b) only makes 2 corresponding major errors, but also makes an additional 4 “minor” errors. The total error count (6) for (b) is clearly larger than that of (a), but its “major error count” (2) is smaller. The corresponding count for (c) is smaller still (0). It may well be that method (c) is in fact the best of all the four methods!

(a)
Y* = 1
Y* = 2
Y* = 3


(b)
Y* = 1
Y* = 2
Y* = 3
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(c)
Y* = 1
Y* = 2
Y* = 3


(d)
Y* = 1
Y* = 2
Y* = 3
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A way of allowing not only the absolute number of imputation errors, but also their “size” to influence assessment, is to compute a generalised version of D, where the "distance" between imputed and true values is taken into account. That is, we compute
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where d(t1, t2) is the "distance" from category t1 to category t2. Thus, if we put d(t1, t2) equal to the “block metric” distance function, then 
[image: image82.wmf]  

d

(

ˆ 

Y 

i

,

Y

i

*

)

 = 1 if 
[image: image83.wmf]  

ˆ 

Y 

 = j and Y* = j-1 or j+1 and 
[image: image84.wmf]  

d

(

ˆ 

Y 

i

,

Y

i

*

)

 = 2 if 
[image: image85.wmf]  

ˆ 

Y 

 = j and Y* = j-2 or j+2. With this definition we see that Da = Db = Dc = 8/15 and Dd = 20/15. That is, there is in fact nothing to choose between (a), (b) and (c).

Suppose however that we put 
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 = j and Y* = j-2 or j+2. That is, major errors are four times more serious than minor errors (a squared error rule). Then Da = 16/15, Db = 12/15, Dc = 8/15 and Dd = 40/15. Here we see that method (c) is the best of the four.

Setting d(t1, t2) = |t1 - t2| leads to the average error measure underpinning W, while d(t1, t2) = I(t1 ≠ t2) leads to the unordered value of D in (14). Given a metric can be chosen which reflects the importance of imputation errors of different sizes, we can use (16) to evaluate how well a particular imputation method preserves both values as well as order. Further analysis is required on the statistical properties of (16), however. For the purpose of evaluation within the EUREDIT project, we suggest setting 
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3.5
Imputation performance measures for a scalar variable

The statistics W and D can be easily extended to evaluating imputation for a continuous scalar variable by first categorising that variable. If the variable is integer-valued the categorisation is obvious, though “rare” tail values may need to be grouped. For truly continuous variables (e.g. income) a more appropriate categorisation would be on the basis of the actual distribution of the variable in the population (e.g. decile groups). Here again, “rare” groups may need special attention. As before, the extension to the multivariate case is conceptually straightforward, though practical issues about definition of categories need to be kept in mind. Creating categories by simple cross-classification of univariate decile groups will inevitably result in too many groups each containing too few values (the so called “curse of dimensionality”).

If one wishes to avoid the arbitrariness of categorising a continuous variable, then imputation performance measures that are applicable to scalar variables need to be constructed.

To start, consider preservation of true values. If this property holds, then 
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(18)

Here m(Y) denotes the weighted mean of Y-values for the same n cases. For data that are reasonably "normal" looking this should give a good measure of imputation performance. For data that are highly skewed this measure is not recommended since this correlation coefficient is rather sensitive to outliers and influential data values. Instead, it is preferable to focus on estimates of the regression of Y* on 
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The regression approach evaluates the performance of the imputation procedure by fitting a linear model of the form Y* = 
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 +  to the imputed data values using a (preferably sample weighted) robust estimation method. Examples are L1 (minimum absolute deviations) regression or robust M-estimation methods, with the latter being preferable since the iteratively reweighted least squares algorithm typically used  to compute such M-estimates is easily modified to accommodate sample weights. Let b denote the fitted value of  that results. Evaluation then proceeds by testing whether  = 1. If this test does not indicate a significant difference, then a measure of the regression mean square error
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can be computed. A good imputation method will have a non-significant p-value for the test of  = 1 as well as a low value of 
[image: image97.wmf]  

ˆ 

s 

2

.

Another regression-based measure is the value R2 of the proportion of the variance in Y* "explained" by the variation in 
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. However, since this measure is directly related to the correlation of these two quantities, there does not appear to be a good reason for calculating both r and R2.

Underlying the above regression-based approach to evaluation is the idea of measuring the performance of an imputation method by the distance 
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 of imputed values and the corresponding n-vector Y* of true values. This suggests we evaluate preservation of values directly by calculating 
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 for a number of distance measures. An important class of such measures include the following (weighted) distances:
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When the variable Y is intrinsically positive, the differences 
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, to provide measures of the relative distance between 
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The measures (19) and (20) are special cases of
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where  > 0 is chosen so that large errors in imputation are given appropriate "importance" in the performance measure. In particular, the larger the value of  the more importance is attached to larger errors.

The extension of these measures to the case of p-dimensional Y is fairly straightforward. For example, the obvious extension of (20) is to a Mahalanobis type of distance measure
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where the {uj} are specified scaling constants that sum to one and ensure the component imputation errors 
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 are all of the same magnitude. Unless specifically requested, such differential weighting will not be used in the EUREDIT project. In cases where such weighting is to be used a sensible choice of the {uj} is
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Preservation of ordering can be evaluated very simply with a scalar variable. We just replace Y* and 
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 in the preceding "value preserving" analysis by their ranks in the full data set (not just in the set of imputed cases). Note that measures based on ranks (e.g. correlations, distance metrics) can also be used with ordinal variables, supplementing the generalised D statistic (17). Since ordering is not defined for multivariate data, it is not possible to extend preservation of order to the multivariate case.

As noted earlier, preservation of distribution for a scalar variable can be evaluated by categorising the distribution of values (both true and imputed) for this variable and using (14). Alternatively, one can compute the weighted empirical distribution functions for both sets of values:
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and then measure the "distance" between these functions. For example, the Kolmogorov-Smirnov distance is
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where the {tj} values are the 2n jointly ordered true and imputed values of Y. An alternative is
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where  is a "suitable" positive constant and t0 is the largest integer smaller than or equal to t1. Larger values of  attach more importance to larger differences between (23) and (24). Two obvious choices are  = 1 and = 2.

Multivariate versions of (25) and (26) are easily defined. For example, the multivariate version of (26) is
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where j indexes the component variables of Y and the "u-weights" were defined after (22).

Finally, we consider preservation of aggregates when imputing values of a scalar variable. The most important case here is preservation of the raw moments of the empirical distribution of the true values. For k = 1, 2, ..., we can measure how well these are preserved by
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Preservation of derived moments, particularly moments around the mean, are also of interest. In this case we replace the data values (true and imputed) by the corresponding differences. For example, preservation of moments around the mean can be assessed by calculating (28), with 
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Again, we note that extension of (28) to the multivariate case is straightforward, with (28) replaced by
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3.6
Evaluating outlier robust imputation

The outlier robustness of an imputation procedure can be assessed by the "robustness" of the analyses based on the imputed values, compared to the analyses based on the true data (which can contain outliers). This is a rather different type of performance criterion from that  investigated so far, in that the aim here is not to get "close" to the unknown true values but to enable analyses that are more "efficient" than would be the case if they were based on the true data values.

For the EUREDIT project the emphasis will be on assessing efficiency in terms of mean squared error for estimating the corresponding population mean using a weighted mean based on the imputed data values. Note that this measure uses all N data values in the data set rather than just the n imputed values, and is given by
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Here mN(Y) refers to the weighted mean of the variable Y defined over all N values in the data set of interest. Note also that the variance term in (30) includes a penalty for excessive imputation. A multivariate version of (30) is easily defined by taking a linear combination (with the same weights uj as in (29)) of the component-wise versions of (30).

3.7
Evaluating imputation performance for mixture type variables

Mixture type variables occur regularly in most official statistics collections. These are scalar variables that can take exact values with non-zero probability and are continuously distributed otherwise. An example is a non-negative variable that takes the value zero with positive probability , and is distributed over the positive real line with probability 1 - .

The most straightforward way to evaluate imputation performance for such variables is to evaluate this performance separately for the "mixing" variable and for the actual values at each level of the mixing variable. To illustrate, consider the "zero-mixture" example given above. We can represent this variable as X = ( 0 + ((1) ( Y, where  is a zero-one random variable that takes the value 1 with probability  and Y is a scalar variable distributed over the positive real line. Although imputation for X can be assessed directly using the methods outlined so far (since it is a numerical variable that can be treated as scalar) it is also of interest to break down this comparison in order to see how well the mixing component  and the positive valued Y are separately imputed.

Given n imputed observations on X, we then therefore can break down the data set into (a) n imputed values for a numeric categorical random variable , with two values (0 and 1), and (b) n imputed values a strictly positive scalar random variable Y with values only where  = 0. A similar breakdown then exists for the imputed version of X, defined in terms of an imputed value of  and, when this is zero, an imputed value of Y.

Since both true and imputed values of  exist for all cases in the data set, we can evaluate how good these "state" imputations are using (13) and (14). Next, we can focus on the subset of the data where both imputed and true values of  are equal to zero. Conditional on being in this subset, we then use the measures developed in the previous subsection to evaluate how well the imputed values of Y "track" the true values in this subset.

Finally, we can look at the two other subsets: where the imputed value of  is one but the true value is zero, and where the imputed value of  is zero but the true value is one. In the former case (only true values of Y available) we are interested in contrasting the distribution of true values of Y in this "cell" with the distribution of true values of Y in the cell where both imputed and true values of  are equal to zero. This can be done by computing the difference in mean values and the ratio of variances for these two distributions. Alternatively, we can evaluate the difference between these two distributions using measures analogous to (24) and (25). In the latter case (only imputed values of Y available) we can repeat this evaluation, but now comparing the distribution of imputed values of Y in this cell with the distribution of imputed values of Y in the reference cell.

3.8
Evaluating imputation performance in panel and time series data

A panel data structure exists when there are repeated observations made on the same set of cases. Typically these are at regularly spaced intervals, but they do not have to be. Since the vector of repeated observations on a variable Y in this type of data set can be considered as a realisation of a multivariate random variable, we can immediately apply the evaluation methods for multivariate data discussed earlier to imputation of missing values of Y.

For time series data the situation is a little different. Here i = 1, ..., n indexes the different time series of interest, with each series corresponding to a multivariate observation indexed by time. For such data most methods of analysis are based on the estimated autocorrelation structure of the different series. Hence an important evaluation measure where imputed values are present is preservation of these estimated autocorrelations. Let 
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3.9
Comparing two (or more) imputation methods

A key analysis in the EUREDIT project will be the comparison of a number of imputation methods. Simple tabular and graphical analyses will often be sufficient in this regard. For example, Madsen and Larson (2000) compare MLP neural networks with logistic regression at different levels of "error probabilities" and display their results in tabular and graphical format showing how various performance measures for error detection for these methods vary with these probability levels.

A more sophisticated statistical analysis would involve the independent application of the different methods to distinct subsets of the data set (e.g. industry or regional groups) and then computing the performance measure of interest for each of the different methods within each of these groups. A repeated measures ANCOVA analysis of these values (maybe after suitable transformation) with imputation method as a factor can then be carried out. If this factor is found to be significant (there is a real difference in the performance measure values of the different methods when applied to these distinct data sets) then pairwise comparisons (t-tests) can be carried out using the performance measures associated with different methods to identify a suitable ranking of these methods. Note that this approach requires identification of a suitable set of distinct subsets of the data within which the different edit/imputation methods can be applied.

An alternative approach is to do pairwise "global" comparisons of the imputation methods. That is, we calculate a single number that "captures" the overall difference in imputation performance between any two methods. To illustrate this approach, consider the case of a single scalar variable Y with two imputed versions, 
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When Y is multivariate (e.g. as in a panel data set or a time series), the equivalent version of (32) is
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4.0 Operational efficiency

Editing and imputation methods have to be operationally efficient in order for them to be attractive to most "large scale" users. This means that an important aspect of assessment for an editing and imputation method is the ease with which it can be implemented, maintained and applied to large scale data sets. Some examples of criteria that could be used to determine the operational efficiency of an editing and imputation (E&I) method are:

(a) What resources are needed to implement the E&I method in the production process?

(b) What resources are needed to maintain the E&I method?

(c) What is the required expertise needed to apply the E&I method in practice?

(d) What are the hardware and software requirements?

(e) Are there any data limitations (e.g. size/complexity of data set to be imputed)?

(f) What feedback does the E&I method produce? Can this feedback be used to "tune" the process in order to improve its efficiency?

(g) What resources are required to modify the operation of the E&I method? Is it possible to quickly change its operating characteristics and rerun it?

(h) A key aspect of maintaining an E&I system is its transparency. Is the underlying methodology intuitive? Are the algorithms and code accessible and well documented?

It can be argued that no matter how excellent the statistical properties of an editing or imputation method, the method is essentially useless unless it is practical to use in everyday data processing. Consequently it is vital that a candidate E&I methodology demonstrates its operational efficiency before it can be recommended by the EUREDIT project. This in turn requires that any analysis of the performance of a method should provide clear answers to the above questions. In particular the resources needed to implement and maintain the system (both in terms of trained operatives and information flows) need to be spelt out. Comparison of different E&I methods under this heading is of necessity qualitative, but that does not diminish its importance.

5.0
Plausibility

As noted earlier, the plausibility of the imputed values is an important performance criterion. In fact, there is an argument that plausibility is a binding requirement for an imputation procedure. In other words, an imputation procedure is unacceptable unless it satisfies this criterion. This is particularly important for applications within NSIs.

Plausibility can be assessed by the imputed data passing all "fatal" edits, if these are defined. The degree of plausibility can be measured by calculating any one (or all) of the edit performance measures (1) - (12) described earlier, treating the imputed data values as the pre-edit "raw" values.

6.0
Quality measurement

In the experimental situations that will be explored in EUREDIT, it is possible to use simulation methods to assess the quality of the E&I method, by varying the experimental conditions and observing the change in E&I performance. However, in real life applications the true values for the missing/incorrect data are unknown, and so this approach is not feasible. In particular, information on the quality of the editing and imputation outcomes in such cases can only be based on the data available for imputation.

In this context we see that editing quality can be assessed by treating the imputed values as the true values and computing the different edit performance measures described earlier. Of course, the quality of these quality measures is rather suspect if the imputed values are themselves unreliable. Consequently an important property of an imputation method should be that it produces measures of the quality of its imputations. One important measure (assuming that the imputation method preserves distributions) is the so-called imputation variance. This is the additional variability, over and above the "complete data variability", associated with inference based on the imputed data. It is caused by the extra uncertainty associated with randomness in the imputation method. This additional variability can be measured by repeating the imputation process and applying multiple imputation theory. Repeatability of the imputation process is therefore an important quality measure. If this is not possible, then it should be possible to indicate (given the mechanics of the imputation method used) how this variance can be measured.

7.0
Distribution theory for the different measures

Although distributional theory is known for some of the measures proposed in this paper (e.g. W and D), it should be noted that more research is needed to develop sampling theory for the other measures. This will allow the analysis to indicate that not only does an imputation method achieve a particular value for a performance measure, but also whether this value is significantly different from "similar" values recorded by other methods. This research is ongoing.
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Appendix 1: An Exemplar Analysis

Suppose the categorical variable Y has 5 categories and 100 individuals have their values imputed. The true vs. imputed cross-classification of these data is


Impute = 1
Impute = 2
Impute = 3
Impute = 4
Impute =5
Total

True = 1
18
2
2
0
0
22

True = 2
2
22
2
2
0
28

True = 3
0
1
16
0
0
17

True = 4
0
0
0
12
5
17

True = 5
0
0
0
1
15
16

Total
20
25
20
15
20
100

We take category 5 as our reference category. Then



[image: image136.wmf]  

  

R

=

20

25

20

15

æ 

è 

ç 

ç 

ç 

ö 

ø 

÷ 

÷ 

÷ 

,

S

=

22

28

17

17

æ 

è 

ç 

ç 

ç 

ö 

ø 

÷ 

÷ 

÷ 

,

T

=

18

2

2

0

2

22

2

2

0

1

16

0

0

0

0

12

é 

ë 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 


and



[image: image137.wmf]  

  

diag

(

R

+

S

)

-

T

-

T

t

=

6

-

4

-

2

0

-

4

9

-

3

-

2

-

2

-

3

5

0

0

-

2

0

8

é 

ë 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 


so



[image: image138.wmf]  

W

=

-

2

-

3

3

-

2

(

)

6

-

4

-

2

0

-

4

9

-

3

-

2

-

2

-

3

5

0

0

-

2

0

8

é 

ë 

ê 

ê 

ê 

ù 

û 

ú 

ú 

ú 

-

1

-

2

-

3

3

-

2

æ 

è 

ç 

ç 

ç 

ö 

ø 

÷ 

÷ 

÷ 

=

6

.

5897


on 4 degrees of freedom (p = .1592).

Since W is not significant, we can now proceed to test preservation of individual values. Here D = 1 – 83/100 = 0.17 and
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We therefore conclude that the imputation method also preserves individual values.

Appendix 2: Statistical Theory for W and D

Let Y denote a categorical variable with c+1 categories, the last being a reference category, for which there are missing values. The value for Y can be represented in terms of a c-vector y whose components “map” to these categories. This vector is made up of zeros for all categories except that corresponding to the actual Y-category observed, which has a value of one. As usual, we use a subscript of i to indicate the value for a particular case. Thus, the value of y when Y = k < c+1 for case i is yi = (yij), where yik = 1 and yij = 0 for j ( k. For cases in category c+1, y is a zero vector. We assume throughout that the values of y are realisations of a random process. Thus for case i we assume the existence of a c-vector pi of probabilities which characterises the “propensity” of an case “like” i to take the value yi.

Suppose now that the value yi is missing, with imputed value
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. Corresponding to this imputed value we then (often implicitly) have an estimator 
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 of pi. We shall assume

1. The imputed value 
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 is a random draw from a distribution for Y characterised by the probabilities 
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2. Imputed and actual values are independent of one another, both for the same individual as well as across different individuals.

The basis of assumption 1 is that typically the process by which an imputed value is found corresponds to a random draw from a “pool” of potential values, with the 
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 corresponding to the empirical distribution of different Y-values in this pool. The basis for the between individuals independence assumption in 2 is that the pool is large enough so that multiple selections from the same pool can be modelled in terms of a SRSWR mechanism, with different pools handled independently. The within individual independence assumption in 2 is justified in terms of the fact that the pool values correspond either to some theoretical distribution, or they are based on a distribution of “non-missing” Y-values, all of which are assumed to be independent (within the pool) of the missing Y-value. Essentially, one can think of the pool as being defined by a level of conditioning in the data below which we are willing to assume values are missing completely at random (i.e. an MCAR assumption).

Given this set up, we then have
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In order to assess the performance of the imputation procedure that gives rise to 
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, we first consider preservation of the marginal distribution of the variable Y. We develop a statistic with known (asymptotic) distribution if this is the case, and use it to test for this property in the imputations.

To make things precise, we shall say that the marginal distribution of Y  has been preserved under imputation if, for any i, 
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Consequently,
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and so an unbiased estimator of (A1) is
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For large values of n the Wald statistic
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then has a chi-square distribution with c degrees of freedom, and so can be used to test whether the imputation method has preserved the marginal distribution of Y. See the main text for the definitions of R, S and T.

In order to assess preservation of true values, we consider the statistic
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where I(x) denotes the indicator function that takes the value 1 if its argument is true and is zero otherwise. If this proportion is close to zero then the imputation method can be considered as preserving individual values.

Clearly, an imputation method that does not preserve distributions cannot preserve true values. Consequently, we assume the marginal distribution of Y is preserved under imputation. In this case the expectation of D is
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where 
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 denotes that the value for Y is category j, with 
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 defined similarly, and 1 denotes a vector of ones. Furthermore, the variance of D is
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unless there are a substantial number of missing values for Y drawn from distributions that are close to degenerate.  Using (A2), we see that
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and hence an approximately unbiased estimator of V(D) (given preservation of the marginal distribution of Y) is
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