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Abstract

The extension of M-quantiles to a multivariate setting was originally intro-
duced by Breckling and Chambers (1988). It turns out that in certain situations
their definition does not produce intuitive results. We present an alternative
definition based on a generalisation of the univariate estimating equations for
M-quantiles that overcomes these shortcomings and includes the spatial median
and the multivariate sample mean as special cases.
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1 Introduction

The idea of extending M-estimates and M-quantiles to a multivariate setting was
originally proposed by Breckling and Chambers (1988). Their interest was to pro-
vide a robust technique for summarising the distribution of multidimensional data.
Since they generalised standard M-estimates and univariate quantiles in an intuitive
and simple manner their definition is preferable to the rather ad-hoc techniques for
summarising multidimensional data presented in Tukey (1977). Furthermore, multi-
variate (M-) quantiles are an attractive alternative to quantiles based on an estimate
of the multivariate density as they are simple to compute and do not suffer from the
well-known ‘curse of dimensionality’ problem inherent in most nonparametric den-
sity estimation procedures (Scott 1992). A further use of multivariate M-quantiles
is as a probability based ordering technique for multidimensional data, and hence
they have applications in outlier detection and for performance measurement, see
Kokic, Chambers, Breckling, and Beare (1997). A related technique for ordering
multivariate data is the concept of depth contours as discussed by He and Wang
(1997), which can also be extended to regression, see Rousseeuw and Hubert (1999).

In their definition Breckling and Chambers (1988) consider a sample y1,..., ¥y,
of observations, y; € R*, a given value 0 < p < 1 and a vector 7 € R¥ of length
1, interpreted as a direction. Their aim was to define a vector § = 6, € R that
can be interpreted as the k-dimensional M-quantile of the sample of observations
with respect to the direction r and the probability p. The definition was based
on a simple generalisation of the one-dimensional loss function for quantiles and
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M-quantiles. Unfortunately their definition does not produce intuitive results in
certain situations. For example, the estimated quantiles are often situated outside
the convex hull of the data.

Chaudhuri (1996) presents a definition of multivariate geometric quantiles which,
however, can be shown to coincide with a special case of the definition of Breckling
and Chambers (1988) and hence is subject to the same problem.

The main purpose of this paper is to present an alternative definition based on a
multivariate generalisation of the univariate estimating equations for quantiles and
M-quantiles. Empirical evidence suggests that the new definition largely overcomes
the shortcomings of the approach of Breckling and Chambers (1988). Furthermore,
these M-quantiles are not restricted to lie on specific pre-specified surfaces and are
thus free to represent and adapt to the true shape of the data. This is in contrast
to the ‘median ball’ approach presented in Averous and Meste (1997).

2 The Breckling/Chambers approach

2.1 Definition

In the univariate case, the ordinary p'" quantile can be defined as the scalar that
minimizes the sum of the residuals weighted with an appropriate loss function. This
idea can easily be extended to the definition of a univariate M-quantile by using a
weighted form of a primitive of Huber’s M-function as the loss function.

The main difficulty in a multivariate adaption of this concept is that there does
not exist a natural ordering in £ dimensions, £ > 1. Since distinguishing between
the lower and upper quartiles in the one dimensional case, for example, corresponds
to an indirect specification of direction, it immediately follows that the definition of
any quantile other than the median requires such a specification.

So a directional unit vector r is introduced with respect to which the M-quantile is
defined. Without loss of generality one can assume p < % because once a multivariate
M-quantile 6 = 0, , is defined, one simply sets 6;_, , := 0, _,. Let «; denote the
angle between y; — 0 and r, so cosa; = (y; — 0)'r/||y; — 0], and let ¢ := 1 — 2p.
Breckling and Chambers (1988) defined 6,,, as the vector that minimizes the sum
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The basic reasoning behind this definition is to introduce a weighting scheme for
the residuals y; — 6 depending both on their length and the angle they form with
r, and which produces the ordinary M-quantile in one dimension.! The parameter
¢ > 0 determines where this weighting changes from an expectile type weighting to
an ordinary quantile type weighting. If ¢ = 0 pure quantile estimation results, while

!The definition of Breckling and Chambers (1988) is in fact slightly more general, allowing for a
broader class of loss functions.



¢ — oo corresponds to pure expectile estimation.? When r moves around the whole
(k — 1)-dimensional unit sphere the resulting set of corresponding M-quantiles is a
(k — 1)-dimensional closed surface embedded within k-dimensional Euclidean space.

2.2 An example revealing shortcomings of the Breckling/Chambers
definition

While the above definition yields acceptable results in many situations, in certain
circumstances the result can be very different from what appears to be intuitive. A
natural quality that a multivariate M-quantile should have is that it should lie within
the convex hull of the sample. This, however, is not always the case as the following
example shows. We consider a two-dimensional ‘cigar shaped’ data set, see figure 1.
The sample was generated by adding normally distributed random terms with mean
0 and variance 0.01 to 200 equidistant points on the interval [—1,1]. To keep the
interpretation of the results simple we compute the pure multivariate quantiles (i.e.
we set ¢ = 0) for p = 0.05. The directional vector r is moved around the whole unit
circle.

While the results seem reasonable for 7 pointing more or less directly left or right,
the results for r pointing straight up or down are far from what we intuitively expect.
To analyse this behaviour let us consider the case r = ({). The sum that is to be
minimized in order to obtain the quantile is given by (2.1). To minimize this sum
one has to consider the two terms 1 —  cos; and ||y; — 0||. The first of these gets
smaller the closer the «;’s get to zero, that is, the more negative the y-component of
0 is. Exactly the opposite is true for the second term: it gets larger when 6 moves
downwards. It appears that for small values of p the first term dominates the second,
pulling the resulting quantile down too far.

This can also be seen when looking at the problem in a different way, namely by
finding the root of the derivative of (2.1) with respect to 6. This yields
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as the estimating equation for 6. For small p the right hand side is almost equal to
the vector r; more precisely for r = (V) it is equal to (2) The left hand side is the
average of the unit vectors pointing from 6 to the sample elements. Obviously the
only way this average can be equal to the right hand side is to move 6 very far down.

3 Alternative approach

The above approach is based on finding the minimum of the sum of the residuals
weighted with a certain loss function. We now introduce an approach that is based on
finding the root of the sum of the residuals weighted with an appropriate influence

2The expression ¢ — oo is to be understood in the sense that ¢ is large enough for the interval
[0, c) to contain all values ||y; — 6|
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Figure 1: Quantiles of cigar shaped sam-  Figure 2: Quantiles of cigar shaped sam-
ple for p = 0.05 (¢ = 0), computed with the  ple for p = 0.05 (¢ = 0), computed with the
Breckling/Chambers approach. new approach.

function. This has two advantages: (1) The development of a multivariate M-
quantile influence function is exactly analogous to how M-quantiles are motivated
in the one-dimensional case; (2) Modelling the influence function instead of the loss
function is a more general approach because for a given loss function there is always a
corresponding influence function, while the opposite is not true. In fact, the specific
influence function we shall define does not have a corresponding loss function.

Using the variables , a; and ¢ as above, we define the p™ sample M-quantile
0=0,,,0<p< %, as the solution of
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Again, in the univariate case this reduces to the standard definition of an M-quantile
which in turn includes the pure quantile as a special case. It is easy to check that
for p = 0.5 setting c to zero yields the spatial median and setting it to infinity yields
the multivariate sample mean (cf. footnote 2).

As equations (3.1) and (3.2) suggest, the numerical computation of # can be
achieved efficiently using iterative reweighting. Empirical evidence suggests that
equation (3.1) does not have multiple roots: for all tested data sets, the algorithm
converged very quickly and is very robust under (even extreme) changes of the start-
ing values. However, the proof of this property remains an open problem.

We return to the example of the last section to demonstrate that the new defini-
tion leads to a more favourable outcome. Using the same parameters as before the
results are as shown in figure 2. Clearly this is much closer to how we intuitively ex-
pect multivariate quantiles to behave than before. The overall shape of the quantile
line adapts very well to the data and now all the quantiles lie within the convex hull
of the data.
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The main difference between the two definitions may best be seen when con-
sidering the case ¢ = 0 again. In the Breckling/Chambers approach, to obtain the
influence function we have to differentiate equation (2.1) with respect to 6 and set
this equal to zero, which yields

Z:ZI{(l - Ccosai)h - C(T - hcosai)} =0. (3.3)

Comparing this to equations (3.1) and (3.2) shows that the first term in (3.3) cor-
responds exactly to the influence function of the new approach, so the two influence
functions differ by the second term in (3.3). Thus it is this term that is responsible
for the undesired effect discussed in section 2.2.

4 Properties

Clearly an M-quantile as defined in equations (3.1) and (3.2) is equivariant under
rotation and translation of the data set. Also it is straightforward to see that it
is equivariant under re-scaling of the data set as a whole. The M-quantiles are
not, however, equivariant under arbitrary affine transformations which is a property
required by some authors (see, for example, Chakraborty 2000). However, as already
pointed out by Averous and Meste (1997), affine equivariance runs counter to certain
robustness requirements and it is impossible to fulfil if the standard spatial median
is to be included as a special case since the latter is not affine equivariant.

Our definition of a multivariate M-quantile implies that it is always located
within the convex hull of the data, which can be seen as follows: The weights w; are
strictly positive, so in order to make the sum in (3.1) zero there have to be sample
elements on both sides of any hyperplane orthogonal to one of the coordinate axes and
passing through 0. Because of the equivariance under rotation property mentioned
above, this is also true for an arbitrary hyperplane passing through 6. Thus 6 must
lie within the convex hull of the data.

In the univariate case, a quantile is described and defined via the geometric
property that the proportion of sample elements lying above the p'"" quantile is equal
to 1 —p. The analogous behaviour in the multivariate setting would be the following:
the proportion of sample elements lying beyond a hyperplane orthogonal to r and
passing through 6 be equal to 1—p. This corresponds to first projecting all the sample
elements on the straight line given by some pivotal point and the directional vector
r, and then taking the standard univariate quantile along that direction. A natural
choice for the pivotal point would be the spatial median. This approach, however,
has two distinct drawbacks. Firstly, by reducing the problem to the univariate case
one gives away much of the information implied in the spatial distribution of the
data. Secondly, this definition would again lead to quantiles situated outside the
convex hull of the data, see figure 3. In turn this means that the definition presented
in this paper does not allow this simple geometric interpretation. But can we expect
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Figure 3: Quantiles of cigar shaped sam-
ple for p = 0.05 (¢ = 0), computed with the
“projection” approach.

this kind of “neat” geometric behaviour in the first place? To discuss this point, let
us go back to the univariate setting again.

A one-dimensional (M-)quantile can be defined in terms of an estimating equa-
tion where each residual is assigned a weight depending on its sign. This weighting
in principal corresponds to counting the number of residuals left and right of the
quantile. When adapting this definition to the multivariate setting the main thing
to notice is that distinguishing between positive and negative residuals is equivalent
to a specification of direction (one out of two). In dimensions higher than 1, the
assignment of weights becomes more complex, because the angle between a chosen
directional vector r and a residual y; — 6 is a continuous variable ranging from 7 to
—m. Thus there arises an ambiguity concerning the definition of the weighting fac-
tors, and it becomes clear that the geometric interpretation of a multivariate quantile
will be a lot more obscure than in the univariate case and that it will depend on
the specific choice of weighting scheme. In Breckling, Kokic, and Liibke (2000) we
present a generalisation of our approach that takes this ambiguity into account. A
whole family of weighting functions is introduced that include the specification (3.2)
as a special case.

We conclude by considering a further fundamental property one might impose
on a multivariate M-quantile: if p; < ps, then the closed surface corresponding to p;
should encompass the surface corresponding to po, thus implying a probability based
ordering. Empirical evidence suggests that this condition is indeed fulfilled by our
definition. For examples supporting this statement and a more detailed discussion on
the background of the introduced definition we refer the reader to Breckling, Kokic,
and Lubke (2000).
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