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1 Introduction

This document contains a description of the Support Vector Machine algorithm
(SVM), and its application to imputation problems. We apply the technique
to three datasets from Offices of National Statistics. We evaluate SVM for
imputation of income in the Danish Labour Force Survey. On a section of
the UK census (Sample of Anonymised Records) we evaluate SVM imputation
for a number of household and individual variables. Lastly we invesigate SVM
performance on the UK Annual Business Inquiry. This dataset also requires the
imputation of several variables.

There are two forms of SVM algorithm, one for prediction of scalar variables
the other for binary categorical variables1. Both forms are able to learn non-
linear functional relationships from data. The SVM can be grouped with other
semi-parametric methods such as the multi-layer perceptron, and the radial
basis function network.

In addition to the SVM work, we investigate a related approach known as
the Gaussian process which allows us to draw multiple imputations for each
missing income datum.

The SVM originated in the Machine Learning community. There may be
some jargon in this field which is unfamiliar to statisticians so we include a
glossary.

Applications have been run on a DEC-ALPHA workstation with 450Mhz
CPU and 40Gb of swap space. Running times were comparable to a PC with a
450Mhz chip running Linux with 1Gb of RAM. The SVM is written in C-code.
Data preparation was performed on MATLAB 6.5.

Datasets used are:

1. DLFS: lfs2.csv

2. SARS: newhhold(area2), newhholdm.csv

3. ABI: sec298y2.csv

1A straightforward extension of SVM classification is required if the imputation variable
has more than two classes.
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2 Method: Support Vector Machines

2.1 Overview

Support Vector Machines, introduced by Vapnik[20] are tools for non-linear
regression and classification. SVMs may be likened to feed-forward neural net-
works. Both are known as ‘semi-parametric’ techniques: they offer the efficient
training characteristics of parametric techniques but have the capability to learn
non-linear dependencies, just as non-parametric methods can.

Formally, the SVM for regression (SVR) models the conditional expectation
of the imputation variable:

SV R : E(Y |X1, X2, ...Xn)

For binary classification problems (Y ∈ {+1,−1}), the SVM produces a dis-
criminant, giving

SV C : argmax
Y =±1

(P (Y |X1, . . . , Xn))

the most likely of the two output classes.
Both the SVC and the SVR algorithms are non-linear generalisations of lin-

ear techniques. We can understand this non-linear generalisation in the following
way: the data is projected x → φ(x), and then inserted into the linear algo-
rithm. The parameters of the linear model learned from φ(x1), φ(x2) . . . , φ(xn)
in the feature space, describe a non-linear model in the input space.

Parameter estimation for the SVM has an appealing feature that standard
neural networks lack. The objective function minimised during training is con-
vex and quadratic and therefore has only one, global maximum. Neural nets
can suffer from local minima. Convex quadratic optimisation problems are well
understood and efficient methods exist for solving them.

SVM is a prediction algorithm not a probabilistic model. By this we mean
that neither SVC and SVR do not generate estimates for P (Y |X1, . . . , Xn) . SVC
states whether a point lies on one side or another of a discrimination surface.
SVR estimates the expected value of a variable given some others. Avoiding
density-estimation is seen to underlie the success of the algorithm.

Good performance with SVM has been observed on some well known non-
linear problems, such as hand-writing recogntion [9]. Standard approaches to
this problem use various domain-dependent heuristics. The SVM was able to
offer state-of-the-art performanance exploiting no a priori information.

Application of the SVM is largely automated. A kernel function must be
chosen, and a small number (usually < 5) of parameters must be estimated by
cross-validation.

The simplicity of the underlying linear algorithm makes theoretical analysis
possible. It can be shown that the model learned by the SVM minimises a
bound on the generalisation error. Such a bound gives us guarantees about
worst-case performance. Let us assume a training set of size n drawn from a
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fixed distribution P (X,Y ) and the SVC outputs a model which makes k errors
on the training set. Given a user chosen confidence level δ(normally 95% level),
statements can be made of the form:-

With probability no more than 1-δ will the generalisation error be
greater than k

n + ε(n, k, h, δ).

Where ε is a function of the datasize n, δ, k and a capacity measure h. Capacity
measures quantify the flexibility of a family of models. Of course the higher the
confidence level δ we demand, the larger ε will be. These bounds make no
assumptions about the form of the distribution of the data, except that each
training and test item is independently and identically distributed.

Unless the missingness pattern is MCAR2 we cannot assume that the data
that is missing values is iid with the fully observed units. The bounds are
therefore normally not applicable for the missing data problem.

Compared to the SVM, standard methods such as donor imputation and lin-
ear regression have both simpler conceptual basis and more transparent mode of
operation. The chief question is whether standard imputation problems contain
non-linearly correlated variables. It is only in such scenarios that the SVM’s
non-linear capability can be usefully exploited.

SVMs and Multiple Imputation

As the SVM does not model the conditional probability, P (Y |X1, . . . Xn), we
cannot draw multiple values from this distribution as required for multiple im-
putation.

In section 3.1 we discuss Gaussian processes which closely resemble SVM
regression models. For a full description see articles by Mackay, Neal and
Williams[11][14][22]. Gaussian processes are a form of stochastic process de-
veloped in the Bayesian Framework. Under the assumption that the predictive
distribution is Gaussian, this framework will generate estimates for the condi-
tional variance, E(Y |X − E(Y |X))2. We apply this approach and evaluate its
performance.

2missing completely at random
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Figure 1. Linear algorithm with projection

2.2 SVM for classification

We assume a training set {xi, yi}n
i=1 of n pairs, from which we wish to learn or

estimate a classification model f̂(·) such that f̂(x) = y. The vector x is known
as the input and y is the binary valued label.

We may consider the SVM to consist of two conceptual components: a
method for estimating a linear discriminant, and a projection. Figure 1 above
depicts the two concepts schematically for a classification problem. In the first
row on the left we see the training dataset (x, y). The y values (known as
labels) are either +1 or -1 (represented by black and white circles). Each vector
x describes the position of a point in a 2-dimensional space. We wish to learn
to discriminate the two classes of data. A linear solution successfully separating
the two types of data is shown on the right.

In the second row we see a training dataset for which non-linear separation
is attempted. In the first phase the data is projected, x → φ(x), from the 2-
dimensional space to a higher, 4-dimensional space. The projected data is then
inserted to the same algorithm as before. A linear separation of φ(x) is found.
As we can only draw in the IR2 plane, we represent the extra dimensions by
putting two circles around each point. The parameters of the linear solution
here describe a non-linear decision surface separating the untransformed data.

The projection here from IR2 → IR4 adds quadratic terms. x = (x1, x2)′ →
(x1, x2, x

2
1, x

2
2)

′ = φ(x). The two extra dimensions are non-linear functions
of the original input variables. Linear separation in the feature space is then
equivalent to a quadratic decision surface in the input space, IR2.

We want the learned model to have low error on all data from the same
distribution as the training set. We wish therefore to learn the general fea-
tures on the training set and not the noise. The problem of learning the noise
or ‘overfitting’ is well known, and techniques to combat it are known in ma-
chine learning as ‘capacity control’ or regularisation. We describe how the SVM
training procedure penalises over-complex models at the end of section 2.2
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Figure 2. Linear separable problem. On the left the separator with largest
margin. On the right a linear separator with smaller margin

The simplest form of the algorithm, which we introduce first, is that which
handles linearly separable problems. These are classification problems involving
two classes where a linear discriminant can separate the two classes with no
mistakes.

Linearly separable problems

In figure 2 we present a training set consisting of two classes of data in IR2. A
label yt ∈ {±1} associated with each ‘input’ vector xt is indicated by colour.
We construct planes that separates the two classes of points. Given a normal w
and intercept b, f(x) = sign(〈w · x〉+ b) is the resulting discriminant function.
Two such planes are indicated.

The shortest perpendicular distance from the plane to a training point is
known as the margin ρ. We shade a ‘tube’ around the discriminant of radius
equal to the margin.

The perceptron algorithm [16] provides one method to determine (w, b) that
separate the data. The perceptron may find any separating plane however. Our
goal is to formulate an expression for a ‘good’ separating hyperplane. We will
see later that not all solutions that separate the data are useful.

Maximising the margin

Intuitively a hyperplane that maximises the distance to the nearest point is
appealing. The maximal-margin hyperplane is the separator shown in fig.2 on
the left. Intuitively this plane can be understood as the middle of the fattest
‘tube’ that fits between the two classes of data. We know try to give a formal
description of the maximum-margin hyperplane.

As yt ∈ {+1,−1} the expression, yt(〈w · xt〉 + b) > ρ states that each point
is on the right side of the margin and a distance of rho away from it. As the
margin is proportional to the norm of the weight vector ‖w‖, we must normalise
our search space, hence the second constraint.
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Formally, our goal is this:

max ρ subject to yt(〈w · xt〉+ b) ≥ ρ t = 1, . . . , n (1)
and ‖w‖ = 1 (2)

The problem above involves a linear objective function and a quadratic con-
straint on w. This is difficult to solve by standard methods. A certain amount
of algebra is required to manipulate this optimisation problem to an amenable
form. We summarise the main steps below, and refer the reader to good intro-
ductory texts for a full treatment[5].

Step 1: transform to convex quadratic programme Our first goal is to remove
the constraint that is quadratic in w. Instead of fixing the norm ‖w‖ = 1, and
finding the maximum ρ we can fix ρ to an arbitrary constant value, and search
for the smallest ‖w‖ that achieves it. The canonical form fixes ρ = 1.

min 〈w · w〉 subject to yt(〈w · xt〉 + b) ≥ 1 t = 1, . . . , n (3)

This program is convex and quadratic, with linear constraints.

Step 2: transform to the dual form One more stage of simplification is un-
dertaken, through addition of Lagrange multipliers [6]. A new optimisation
problem ‘in dual variables’ is derived and maximised. Problems in this form are
well understood and efficient methods exist for solving them[19][12].

max W (α) =
∑n

t=1 αt − 1
2

∑n
t,s=1 ytysαtαs〈xt,xs〉 (4)

subject to the positivity constraints

0 ≤ αt for t = 1, 2, . . . , n (5)

and the constraint
n∑

t=1

ytαt = 0.

Note that the data xt only appears in a dot product in the second summation
term of the equation. This feature of the problem enables a useful shortcut to
be made when producing non-linear models.

Interested readers should consult [5][20] for the full derivation of the SVM
optimisation problem. Fletcher [6] is a standard work on optimisation. We
note however that the optimisation problem has one global maximum. This
compares favourably with the feed-forward neural network, which must contend
with multiple local minima. As the neural net uses a gradient descent algorithm,
it is therefore possible for the training process of a neural net to terminate at a
poor local minima.

We also omit the description of the problem of overlapping classes. Of course
most real-world problems are of this type. When attempting to predict some-
bodys job, we do not expect to get error free results. The derivation of this
optimisation problem is similar. The sources cited above cover this case.
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Figure 3. Non-linear projection

Projection to a higher-dimensional feature space

Non-linear classification is achieved through a projection of the data into a
higher dimensional feature space prior to estimation of a linear model. To
illustrate this idea, we present a classification problem in figure 3. On the
left we see that a linear discriminant is not able to separate the data. In the
central figure a projection or augmentation has been found that renders the
data linearly separable. The projection z = 1 + 2xy − x − y, where x, y are
the original dimensions is suitable. Under this projection, (0, 0) → (0, 0, 1) and
(1, 1) → (1, 1, 1) while (0, 1) → (0, 1, 0) and (1, 0) → (1, 0, 0). z = 1

2 thus acts as
a separating plane. In the third figure the pre-image of the plane is presented.
The linear model learned in the augmented space is equivalent to a non-linear
model in the input space. In the 2-dimensional input space, z = 1

2 becomes
1
2 = 1 + 2xy − x− y.

Addition of a large number of features will result in expensive computations,
and large storage requirements. However the SVM algorithm exploits an aspect
of the linear classification algorithm to achieve great efficiency. Indeed the
algorithmic ‘trick’ allows infinite dimensional augmented feature spaces to be
considered.

Efficient data augmentation

To illustrate the notion of efficient data augmentation, we give an example of
another projection involving polynomial functions of the input variables. Con-
sider a projection of two data points x, z, from a 2 to a 6 dimensional space.
(In fact all the points exist in a 5-dimensional subspace, as the 6th feature is
constant).

x → φ(x) OR (x1, x2)′ → (
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2, 1)′

z → φ(z) OR (z1, z2)′ → (
√

2z1,
√

2z2, z21 , z
2
2 ,
√

2z1z2, 1)′
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This projection has a useful characteristic; consider the dot product between
φ(x) and φ(z) in the new feature space,

〈φ(x) · φ(y)〉 = 2x1z1 + 2x2z2 + x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2 + 1 (6)

= (x1z1 + x2z2 + 1)2 = (〈x · y〉 + 1)2 (7)

We see that the projection and dot-product could have been calculated in
one step. The function, k(x,y) = (〈x · y〉 + 1)2 is known as a kernel function.
It allows us to bypass calculation of the projections φ() of each point, if we
only wish to know their dot product. Mercer’s Theorem3 specifies the general
conditions that must hold for a function to be a kernel.

An algorithm that uses the training data only in the form of dot products
〈x1 · x2〉 can operate in a higher-dimensional feature space without explicitly
calculating the positions of x1,x2 in that space, since 〈φ(x1)·φ(x2)〉 = k(x1,x2).

This method of ‘implicit’ data augmentation can be exploited by the SVM.
We can derive an expression for the maximal margin hyperplane in a feature
space that requires only knowledge of the dot-products of each training point
with all others. The dual optimisation problem given in equation 4 becomes:-

W (α) =
∑n

t=1 αt − 1
2

∑n
t,s=1 ytysαtαsk(xt · xs) (8)

subject to the positivity constraints

0 ≤ αt for t = 1, 2, . . . , n (9)

and the constraint
n∑

t=1

ytαt = 0.

where the dot product has been swapped for the kernel function.

Penalising over complex models

In this section we give an intuitive argument for how large margin hyperplanes
working on projected data φ(x) can penalise over-complex models4.

When we apply the linear algorithm to the projected data φ(x) our search for
good hyperplanes will consider solutions that are highly non-linear in the input
space, for example the right hand solution shown in figure 4. Both non-linear
solutions successfully separate the data, but we prefer the simplest solution as

3Mercer’s Theorem: Let X be a compact subset of IRn. Suppose K is a continuous
symmetric function such that the integral operator TK : L2(X) → L2(X), (T(f))(·) =∫
X K(·,x)f(x)dx is positive, that is

∫
X×X K(x, z)f(x)f(z)dxdz ≥ 0 for all f ∈ L2(X).

Then we can expand K(x, z) in a uniformly convergent series in terms of T ′
Ks eigen-functions

φj ∈ L2(X), normalised in such a way that ‖φj‖L2 = 1, and positive assoicated eigenvalues

λj > 0, K(x, z) =
∑inf

j=1 λjφj(x)φj (z) A corollary of this theorem is that , for any finite

subset of X, the corresponding matrix Gi,j = K(xi,xj), must be positive semi-definite.
4In fact the margin is also a useful theoretical property. VC-theory[5][20] shows that the

larger the margin the better our guarantees for performance on test data.
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Figure 4. Low and high capacity models

this is less likely to have learned features of the noise - a characteristic known
as ‘overfitting’. When overfitting occurs a solution is found that minimises the
number of mistakes on the training set but does not perform well on data it has
not trained on.

Theoretical work[20] supports the claim that, all else being equal, the sim-
plest solution is best. Below we show how the SVM encourages simpler solutions.
We wish to understand how minimising ‖w‖ penalises complex models.

A simple explanation is as follows: consider a classification problem where
we perform the following (redundant) projection from IR2 to IR3:

x = (x1, x2)′ → (x1, x2, λx1) = φ(x)

Assume y, our imputation variable is perfectly discriminated with x1, i.e. y =
sign(3x1 − 4). Then the weight vector in the feature space w = (w1, w2, w3)
could use the first variable: w = (3, 0, 0) or the last: w∗ = (0, 0, 3

λ ) as we can
achieve zero error using either variable5. However, we wish to minimise the
norm ‖w‖. Thus if λ < 1 then w will be preferred, while if λ > 1 then w∗ will
be preferred.

Hence, by choosing projections (kernels) that associate smaller constant co-
efficients with higher capacity features, we can encourage the use of simpler
models. It is a characteristic of the kernels that satisfy Mercer’s Theorem that
the features have suitably scaled coefficients.

Multiclass Classification

We now extend the SVM for binary classification to y ∈ {1, 2, 3, ...N}. There
are several approaches in the literature to the multi-class problem. Blanz et
al. [2] employ a ‘one-against-the-rest’ technique (also used here in our exper-
iments). One-against-one techniques have also been proposed, although these
are obviously less efficient. Weston et al.[21] propose a technique that builds a
discriminant for all classes at once. A recent survey has been conducted by Hsu
and Lin[7].

5We might also consider both in suitable proportions
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GivenN output classes we trainN SVM binary classifiers. Each is trained on
one class k versus all others. Test-phase is straight-forward, points are assigned
to the class with largest margin.

g(z) = argmaxifi(z)

where fi(·) is the classifier trained on class i versus the rest. Some empirical
evidence exists for ‘normalising’ the output of each classifier before finding the
maximising class. The normalisation consists of dividing the output of fi() by
the margin it achieved.

Kernel Functions

Many functions satisfy Mercer’s conditions and can be used by the SVM algo-
rithm. The simplest kernel, supplying a linear solution, is the dot product for
the input space,

k(x, z) = 〈x · z〉
Polynomial kernels are of the form:-

k(x, z) = (〈x · z〉 + 1)d

where d is user defined. As d gets larger, the SVM is able to supply higher
capacity models. Radial basis function kernels, used in our experiments, are of
the form:-

k(x, z) = exp(−‖x− z‖2

σ2
)

where σ is user defined. This kernel has an infinite dimensional feature space.
Therefore φ(x) cannot be calculated at all for this kernel. As σ gets larger
the capacity gets lower. It produces models that are ‘universal approximators’:
given enough training data, any smooth function can be modelled arbitrarily
well. We use the SVM with rbf kernel in our experiments.

11
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Figure 5. Regression estimation

2.3 SVM for regression

Given a training set of pairs, {(x1, y1), (x2, y2) . . . (xn, yn)} ∈ IRn× IR, the SVM
algorithm estimates a function f such that, for (x, y) drawn according to the
same distribution as the training set, f(x) = y. The pairs are drawn from
a fixed distribution P (X,Y ), where x may be multivariate. The y values are
often referred to as the ‘labels’ for each x. The function describes a non-linear
regression surface that interpolates the data.

The underlying model for the SVM is linear. We seek a regression function,

y = 〈w · x〉 + b

that would have the best fit for the new examples, where the parameters
w, b are the gradient and the intercept respectively. Parameters are sought that
minimise some measure of error on the training set, subject to a penalty for
overly complex models. In the next section various loss functions are considered,
each offering a different way of measuring the training error. Once a loss function
is chosen we show that the best parameters (w, b) can be formulated as the
solution to a standard constrained optimisation problem.

Loss functions

Our problem is to construct a learning machine which minimises some measure
of discrepancy between its prediction ŷ and the true label y of an example x. In
the case of regression estimation the label y is a real value: y ∈ IR. Sometimes
it is useful to define the loss function as the cumulative square loss,

L(yt, ŷt) = (yt − ŷt)2,

and sometimes as cumulative absolute loss,

L(yt, ŷt) = |yt − ŷt|.
yt is the label and ŷt is the predicted value. The absolute loss function is more
robust in the presence of noisy data. It can be made more robust still by fixing

12



some tolerance limit (or “insensitivity zone” ε > 0) so that errors of less than ε
will not be punished. The following absolute loss function will be used:

L(yt, ŷt) = |yt − ŷt|ε =
{

0, if |yt − ŷt| ≤ ε,
|yt − ŷt| − ε, otherwise.

The left-hand part of figure 5 illustrates this loss function. If |y − ŷ| is less
than ε the loss is zero, otherwise the loss increases linearly.

Parameter Estimation as Constrained Optimisation

The regression estimation problem can now be formulated in the following way:
find the minimum of the objective function,

1
2
〈w · w〉 + C

(
n∑

t=1

(ξ∗t + ξt)

)
(10)

subject to the constraints

yt − 〈w · xt〉 − b ≤ ε+ ξ∗t , t = 1, . . . , n, (11)

〈w · xt〉+ b− yt ≤ ε+ ξt, t = 1, . . . , n, (12)

ξ∗t ≥ 0, t = 1, . . . , n, (13)

ξt ≥ 0, t = 1, . . . , n. (14)

ξt and ξ∗t measure the error on each training point xt according to the loss
function L. ξt is non-zero if the point lies above the ε tube. ξ∗t is non-zero if we
are below it. Roughly, the algorithm finds the flattest function (by minimizing
the norm of w) which passes within ε distance of the training examples. The
right-hand side of figure 5 illustrates this approach.

The projection of the data to a feature space introduces non-linearity. This
was described in detail for SVM classification. We wish to avoid overfitting
however, hence we penalise overcomplex solutions. In the linear setting the
regularisation term (‖w‖) penalises steeper gradients. However in the feature
space this term penalises the high capacity models.

Note that the trade-off between flexibility and training errors is controlled
by the user defined parameter6 C. Low C favours simpler models. As C → ∞
errors are penalised more heavily, and the model becomes more complex.

The optimisation problem described by equations (1)-(5), is convex and
quadratic, subject to linear constraints. Such problems can be solved through
addition of Lagrange multipliers [6].

SVM regression is constituted of the same two components as SVM classi-
fication. We formulate a description of a regularised linear solution and use a
projection of the data to include non-linear solutions. In practice the feature

6C ∈ [0,∞) is set by cross-validation in our experiments
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space vectors φ(x) are never computed as we use algorithms that require knowl-
edge of the dot-products alone and exploit kernel functions that perform the
projection and dot-product in one step.

We have chosen to omit a detailed derivation of the optimisation problem
that is solved to find the parameters. Good introductory texts exist describing
the steps, for example [5].
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Figure 6. Incomplete data

2.4 SVM with missing inputs

Introduction

For the Danish Labour Force Survey only one variable (income) is missing.
The SVM can be applied without alteration to this problem. For ABI and
SARS however, more than one variable must be imputed in the dataset, and
there are units that are missing multiple values. Our problem is made slightly
easier however. On both these datasets, a significant portion of the data is fully
observed. We do not have to handle the problem of missing input variables in
training data. Here we discuss what to do for test units that are missing one or
more input variables. In SARS 30% of units have more than 1 values missing
(see table 6). For ABI around 5% of units are missing more than 1 value (see
table 22).

Missing input variables on test units

Observe in figure 6 person 2 is missing values for sex and income. Let us
suppose we choose to impute sex first. If we train the SVM using income as an
input variable, we must have a value for income when we test with the model.
Below we suggest three options.

Option 1: Estimate income The first option is to estimate the value of income,
and apply the SVM trained on all variables. We might estimate using a simple
technique such as nearest neighbours. We could use an SVM trained on all
variables except sex.

We may have a model already trained for sex using all input variables,
including income. It may be too computationally expensive to retrain on a
reduced set of input variables and thus option 1 is attractive.

Moreover, if we believe the correlation between income and sex to be weak,
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or if we have relatively few items missing the sex variable, it may be practical
to use a ‘quick and dirty’ method i.e. to estimate income and use the model on
hand.

Option 2: Train new model If a large number of units lack income and
sex simultaneously, it may be preferable to train a model for sex that is not
conditioned on income. If we use option 1, we may produce poor estimates,
especially if our estimation procedure for option 1 is poor.

Option 3: Integrate over missing value If retraining was too expensive, and
a single estimate unreliable we could attempt to estimate the distribution of
the missing value and integrate over it. In practice we would find a number k
of estimates for the missing value, and complete the unit k times. We would
predict sex for each. We would then chose the modal value from this set of k
predictions. This approach is the most theoretically well founded, but rather
complicated.

Patching: The chosen approach

As the missingness rates were relatively low in ABI and SARS we choose option
1. We use a ‘quick and dirty’ method to complete each missing input variable,
known as ‘patching’. This approach consists of using the mean (or mode for
categorical variables) as an estimate for each missing value. Thuse we can
impute with just one model for each imputation variable.
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3 Evaluation

3.1 Dataset: DLFS

3.1.1 Technical Summary

Method: SVM Regression Imputation
Training datasets: Completed portion of DLFS (Y2)
Hardware used: DEC Alpha UNIX
Software used: MATLAB, SVM in C-code
Test scope: Imputation only
Experiments on DLFSY2: RS2001, RS2002, RS2003
Preprocessing: normalisation of all variables

variable deletion
Training-data size: 5000 units
Processing time:
set-up time: 5 minutes
cross-validation: 125 settings * 4-fold * 10 seconds = 1.3 hours
final training time 1 minute
testing time 0.1 minutes
Total 1.4 hours

3.1.2 Data description

The Danish Labour Force Survey was collated in 1996 and consists of population
register records. There are 15579 records measured on 14 variables7. income is
the only variable missing values; 4175 records must be imputed for this variable,
approximately 30% and the missing data pattern is genuine. income takes
values in the range [0-1,000,000], measured in Danish Krone. The distribution
is skewed, with mean 170,000 DK, standard deviation 110,000DK.

A 2-dimensional plot (fig.10) shows age on the x-axis plotted against income.
The dots show each respondent, the crosses show the average income for people
of the given age. The circles show the mean plus and minus one standard
deviation. age is clearly non-linearly correlated with income. As age increases
the average income increases. A peak is reached at 50 years, after which average
income declines. The variability changes with age also.

Apriori suitability of SVM

Before applying the SVM to this dataset we made the following observations
concerning features of the data and our expectations of success.

Data size: There is plenty of data available for training an SVM.
7in fact there are 13 informative variables response just indicates if the income value is

missing
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Figure 7. age vs. income

Variable types: Except for age all variables are categorical. We therefore do
not expect highly non-linear correlations.

Missing data pattern: Only one variable is missing. This makes application
of SVM particularly straightforward.

3.1.3 Imputation

data preparation: All variables are normalised (including categorical variables
and the target), to zero mean and unit variance. It is important that the length
scales of each variable are similar. There are 11404 records available as training
data. We use only 5000 units, as larger training showed no improvement in
cross-validated error, and was slow to process.

SVM setup: We applied SVM regression as income is scalar valued. An rbf
kernel is chosen as we believe from figure 10 that the imputation variable may
be non-linearly correlated with age and this kernel supplies non-linear models.

SVM regression has three model parameters: σ, C and ε. These parameters
are not learned during training. They must be estimated by comparing a number
of settings on a validation set. We cross-validate the three parameters, each
initially having five settings8. This results in 53 = 125 different model orders
being compared. We used 4-fold cross-validation, comparing rmse. Evaluation
of each setting took 1 minute approximately. The experiment took 2 hours to

8We give the cross-validation range, and best settings in the appendix
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complete on a DEC-Alpha with 450Mhz CPU and 40Gb of swap space. The
settings for the model parameters were: C=20, σ = 6 and ε = 0.1.

Simulated missing data mechanism

Exploratory experiments were performed by introducing an artificial missingness
pattern into the 11404 complete records. An MCAR pattern was used, deleting
an income value with probability 0.3, repeating the experiment 20 times. We
imputed values using a linear regressor, a neural net (MLP) and the group-mean
algorithm. The neural net was a feedforward MLP from the NETLAB toolbox
[13]. Group-mean variables were (3) age, (6) business type, (2) sex,(5) education.
These variables partioned the input space into 160 possible subgroups. The
variables were chosen incrementally. The single best variable is age, discretised
into 5 subgroups.

Table 1. Development Results: income

K-S ±0.01 mae ±1000 rmse ±3000 worst case
SVM rbf 0.07 53000 83000 780000
MLP 0.12 58000 87000 790000
Group-mean 0.13 61000 90000 810000
Linear 0.10 61000 92000 790000

Below we show the performance improvement for the group-mean algorithm
as each variable is added. The non-linear SVM is outperforms the linear SVM
on rmse. The worst case error is large, nearly 80% of the range. The rmse
estimates had a standard deviation of 3000DK, the mae results had a standard
deviation of 1000DK.

Table 2. Development Results: Group Mean for income

group-mean variables K-S mae rmse worst case
(3 6 2 5) 0.09 57000 91000 720000
(3 6 2) 0.13 62000 96000 750000
(3 6) 0.21 65000 102000 790000
(3) 0.40 73000 115000 850000
linear regressor 0.13 62000 95000 720000

3.1.4 Results

In this section we present results for the Evaluation Data. These experiments
were evaluated independently by ONS. Imputation of the 4175 income values
originally missing from the dataset was made. The true values, extracted from

19



tax records, were retained by an independent evaluator9.
All variables were normalised before training. As well as a ‘vanilla’ ap-

plication of the SVM, we investigated two refinements; variable selection and
stratification. Variable selection involves the selection of the most informative
variables in a step-wise additive process. The single best variable is selected first
(based on a validation set, comparing rmse). This variable is then combined with
all others and the best pair is chosen, then the best set of three, and so on. The
best variables, in decreasing order, were age,business type, sex, marital status
and employment status, the same as those chosen by the group-mean algorithm.
Feature reduction can improve generalisation by removing noisy variables that
might mislead the optimisation routine.

SVM rbf strat denotes a stratified procedure. Two SVMs, one trained
for male respondents and the other for female respondents are applied. We
investigated all variables, but only stratifying on sex improved cross-validated
error. The model order that was found by cross-validation was similar for all
three setups; σ = 5, C=10 and ε = 0.1.

In the table below slope represents the weighted Pearson moment, mae the
mean absolute error, rmse the root mean square error, KS the Kolmogorov
-Smirnoff distance and MSE the mean squared error. We show the best results
from amongst the Euredit partners.

Table 3. Results: income

algorithm training size slope mae rmse KS MSE
1 SVM rbf 5000 0.93 46000 80000 0.102 1600000

2 SVM rbf vs 5000 0.94 45000 80000 0.099 1100000

3 SVM rbf strat 5000 each class 0.94 46000 80000 0.095 1100000
4 strat. linear 10000 0.922 47000 79000 0.077 1710000

5 DIS (hotdeck) 0.83 63000 102000 0.06 3927580

The fourth model was a stratified linear model, augmenting the data with
interaction and quadratic terms (age2).

80000DK rmse represents approximately half of the mean value for income
and two thirds of the inter-quartile range which is 116000DK. A relatively weak
dependency has been found. Of course this makes sense given the granularity
of the input variables. The performance of the augmented linear model (4) is
also informative. The technique is much less powerful than the SVM and yet
was able to achieve comparable performance. Of course the technique required
expertise and hand-tuning.

9The UK Office of National Statistics. For the purposes of the Euredit Project, each
participant in the project had access only to the incomplete dataset, and all results presented
were evaluated independently
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Summary

There is little difference between the SVM results. The rmse, rounded to two
significant figures, is identical for all three approaches. SVM does not require
stratification, or feature reduction for this problem. The algorithm was able to
extract a model from the data without fine tuning or apriori knowledge.

The Kolmogorov-Smirnoff is a measure of preservation of distribution. It
gives the maximum percentage difference between the cumulative distribution
functions of the true and imputed values. The SVM scores 10%. KS=0.035
results were presented elsewhere, however this value was achieved with a rmse
of 104,000DK and a mae of 64,000DK. This highlights an obvious tension. Low
rmse is likely to conflict with good KS values. We achieve low rmse by predicting
at the conditional expectation. However this will compress the distribution
making it seem more peaked at the mode than it is.

Another approach would be to compare techniques before and after the
adding of residuals. In this way the ability of a model to capture the cor-
relations would be measured, as well as the noise. We wish our imputations
to contain noise, as otherwise estimates of correlations will be too large and
confidence intervals too small. In the next section we consider multiple imputa-
tion. This procedure enables users of imputed datasets to reflect the underlying
missingness in any statistics and confidence intervals they may calculate.

Multiple Imputation

We apply the Multiple Imputation framework[17][10][18] to derive confidence
intervals that are sensitive to the underlying missingness. A number k of draws
from P (Y |X) are made for each missing datum10 which result in k completed
datasets. Assuming we wish to calculate the mean, µ, and its confidence interval,
the standard error σ(µ), we perform the standard analysis on each of the k
completed datasets, producing µ1, . . . , µk and σ(µ)1 . . . , σ(µ)k. These two sets
of statistics are then inserted into the generic formulae devised by Rubin, to
produce an overall estimate for the standard error σ(µ)total. This estimate
should reflect the increased uncertainty due to missingness.

As the SVM is limited to modelling E(Y |X), we turn to Gaussian Pro-
cesses. These Bayesian models can produce estimates for the predictive dis-
tribution P (Y |X) under the assumption of gaussian noise. Recent interest in
this approach has been excited by work on Bayesian neural networks[14][11]. In
addition, a connection with the SVM has been made[5]; it has been shown that
the mean of the predictive distribution of a Gaussian processes is identical to
the SVM regressor trained with zero width epsilon-tube.

Gaussian Processes

A stochastic process is a collection of random variables, {Y (x)|x ∈ X} indexed
by set X. We can think of stochastic processes as arising from a distribution

105-10 imputations usually suffice
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D over a space of functions, F ; {Y = f(x)|f ∼ D(F)} applied to a fixed set
of vectors {x ∈ X}. The stochastic process achieves an appealing generality
as we do not parameterise the input-output relationship explicitly, but instead
parameterise a probability model over the outputs given the inputs. This model
is defined by specifying the form of the marginal distribution for the f(X) when
applied to a finite set of variables.

A Gaussian process is a stochastic process for which the marginal distribution
over any finite set of variables is zero mean Gaussian11.

Pf∼D[f(x1), ..., f(xl)) = (y1, ..., yl)] ∝ exp(−1

2
y′Σ−1y)

where Σ is a symmetric positive definite covariance matrix. Element Σij of
the matrix describes Ef∼D[f(xi)f(xj)], the correlation between the function
outputs at the two points, xi and xj . We assume a function k(, ) that calculates
the covariance of f evaluated at two points: k(xi,xj) = Σij . The covariance
function must generate a non-negative definite covariance matrix for any set of
points. We imploy the following covariance function;

k(xi,xj) = exp{−1
2
‖xi − xj‖2

r2
}

This function captures the intuition that correlations should be high between
points that lie close together in the input space. r describes the size of the
‘neighbourhood of influence’. As r increases the neighbourhood grows, resulting
in a prior that favours smoother functions.

We have a training sample S = (X,y) = {xi, yi}n
i=1 with which we will

calculate a posterior distribution over the function space. We assume that each
label yi is equal to an output value ti corrupted with Gaussian noise (mean zero,
variance λ2).

P (y|t) ∝ [−1

2
(y − t)′Iλ−2(y − t)]

This assumption allows us to derive a Gaussian form for the distribution we
desire: P (t|z, S), the distribution for the output t for a new test point z, given
the training set S; S.

P (t, t|z, X) = P (t, t|y, z,X) =
P (y|t, z,X)P (t, t|z, X)

P (y|z,X)
∝ P (y|t)P (t, t|z, X)

The denominator is ignored, as it does not depend on the choice of hypothesis. The
first factor P (y|t) is the weighting given to a particular hypothesis identified by its
output values on the training set inputs.

We marginalise over t: P (t|z, S) =
∫

P (y|t)P (t, t|z, X)dt. A useful feature of
a Gaussian process is that this predictive distribution is also Gaussian and an exact
analytic form can be produced using matrix manipulations[11]. The mean and variance
of the predictive distribution are given by:

f(z) = y′(Σ + λ2I)−1kz (15)

V (z) = kzz − (kz)′(Σ + λ2I)−1kz (16)

11This presentation is based on [5][11]
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where Σ is the covariance matrix, kz
i = k(z,xi), the vector resulting from the

kernel applied to each training point and the test point and kzz = k(z, z), the
covariance of the test point with itself.
V (x) estimates the variance at each prediction point. We generate multiple

imputations by calculating the mean of the missing value using f(z) and adding
gaussian residuals of variance V (z).

Multiple Imputation Experiments

We estimate the standard deviation of the mean of DLFS income variable under
an MCAR missingness pattern, with rate 30%. There are 7000 observed values
and 3000 imputed.

The noise parameter λ and the parameter r (for the covariance function) are
found by cross-validation. For normalised data λ = 2, r = 0.35.

Results presented below show the confidence intervals for the mean estimated
with 10 multiple imputations drawn from the Gaussian process. We calculate
the intervals at the 90, 95 and 99% levels. As the missing data mechanism is
MCAR, we know that the mean has standard deviation, σ√

(nobs)
, where nobs is

the number of the observed data ans σ is the sample variance.

Table 4. Results: Multiple Imputation

algorithm 90% 95% 97.5 99%

true 1700 2100 2600 3000

svm 1400 1800 2200 2600

The Kolmogorov-Smirnoff measure for a singly imputed dataset with a GP
gave 0.7, and improvement of 30% over the SVM, although not nearly as good
as the best result.

We show that the confidence intervals calculated by the GP give too small
confidence intervals at the 90%,95% and 99% levels, by a factor of a fifth. This
shortfall is due to the Bayesian model for the noise being incorrect. Observation
of figure 10 shows that skewed noise.
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3.2 Dataset SARS: Sample of Anonymised Records

3.2.1 Technical Summary

Method: SVM regression, classification, multiclassification
Data: ‘newhholdm’ Sample of Anonymised Records Y2
Training Dataset: A subset of complete units
Hardware used: DEC Alpha UNIX mainframe.
Software use: MATLAB 6.0 and C code
Test scope: Imputation only
Preprocessing: normalisation, design variables.
Training-data size: multiclass: 2000 units in each class,

regression: 3000 units total
Processing time (per variable)
Set up time: 5 minutes
Training: 120 mins.
Testing time: 5 mins.
Total: 130 mins.
Full Total: × 25 variables = 2 days.

3.2.2 Data Description

The data is a 1% sample of household records from the 1991 UK census, totalling
nearly half a million records. Each row represents one person and each item on
the row describes a feature of the house they live in or their job and education.
For example one variable describes the number of rooms in the person’s house,
another the number of qualifications they have.

The exact number of records is 492,472. There are 31 variables in total. Two
of the variables are treated as scalar; age and hours worked. Two variables are
binary valued: sex and ltill. All other variables are multi-class discrete valued.

Table 5. Evaluation Data: #Missing items for each variable.

HHSPTYPE ROOMSNUM TENURE AGE DISTWORK
29045 33516 25821 39150 12103

HOURS LTILL MSTATUS RELAT RESIDSTA
16638 34511 49409 29829 39348

QUALNUM QUALEVEL QUALSUB SEX WORKPLCE
29578 3161 3172 34586 12319

ECONPRIM ISCO2 ISCO1
12801 26086 26086

The dataset is hierarchical: the census questionnaire contains a section relat-
ing to the household and a separate section for each household member. In order
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to create a rectangular data matrix12, the data is tabulated with the household
information copied to each respondent. Values (and missingness) for the house-
hold variables are therefore identical for each household member. Household
variables should therefore be imputed identically for all members.

The imputation problem is posed in two forms; the ‘Y2’ form with missing
values, and the ‘Y3’ form with errors and missing values. We attempt imputa-
tion of both. Cleaning of Y3 is limited to removal of out-of-range values, no edit
rule checks are made. Variables have a relatively low rate of missingness. In
table 6 we describe the missingness pattern. 33% of rows are missing no items,
34% are missing one item, and so on.

Table 6. Rate of missingness for SARS

#missing 0 1 2 3 4 5 6-9
% rows 33 34 20 9 2 1 1

We note that ISCO1 is derived from ISCO2 and thus has identical missing-
ness pattern. Naturally this means that one cannot be used as an input variable
for the other.

Various other relationships between variables are also known apriori through
common sense. For example age will dictate whether the respondent has a job.
If age is less than 16, the variable ISCO will take the value ‘not applicable’.
Such clear-cut relationships can be conveyed through edit rules and logical or
deductive imputation may be possible.

Evaluation Data and Development Data The full experiments are performed
on SARS ‘evaluation data’ consisting of records from region 1 and regions 3
to 12. For these experiments Euredit partners are issued only the incomplete
data, ONS retaining the true values. Imputed datasets are returned to ONS for
independent evaluation.

In addition to the evaluation experiments exploratory experiments are per-
formed on a portion of SARS data collated in region 2, known as ‘development
data’. This dataset contains 45,000 records, with missingness as described in
table 7. This data is considered large enough for useful comment to be made.

For the development data we are issued with both the complete dataset
and a version with missing values and errors. We are thus able to to evaluate
performance ourselves.

On this smaller dataset we obtain estimates of relative performance by com-
paring the SVM with a group-mean benchmark. See the appendices for a de-
scription of the group-mean benchmark algorithm. It operates similarly to DIS.

We note that the Wald statistics is proportional to the size of data imputed.
If we calculate the Wald statistic for a dataset consisting of the conjunction of

12We make the dataset rectangular as this makes handling by standard software more
straightforward.
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Table 7. Development Data: Missing items for each variable

HHSPTYPE ROOMSNUM TENURE AGE DISTWORK
2558 3970 2150 3623 1147

DISTWORK HOURS LTILL MSTATUS RELAT
1147 1548 3185 4624 2728

two identical copies of the data, it is twice the value of the original. As the
evaluation data is 11 times the size of the development dataset, we therefore
expect the Wald statistic to be 11 times bigger.

A priori suitability of SVM

SARS has various features that we know to be relevant to the set-up procedure
and our expectations of success. Before imputing with the SVM we made the
following observations.

Variable types: Most variables are categorical, and the dimensionality (31 vari-
ables) is relatively low. In addition, there is a vast amount of data available.
From such characteristics we can infer that non-parametric methods are likely
to perform well. It would therefore be sensible to compare any semi-parametric
method with a non-parametric method, such as DIS. Especially as such ap-
proaches are more transparent.

In addition we note that many of the variables contain low frequency classes.
Donor methods naturally maintain the frequencies of these classes. SVMs ignore
rare classes in any region where they are not modal.

Missing data pattern: The low rate of missingness (see table 6 above), favours
the application of SVM. Only 13% of units lack more than 2 values. See sec-
tion 2.4 for a description of how we handle missing input variables. When the
missingness rate is low a ‘quick and dirty’ method was deemed acceptable: we
‘estimate’ each missing input variable, using its mean.

Training data: SVM training requires the solution of a convex quadratic pro-
gramme, a computationally expensive task scaling with O(n3). SARS contains
approximately 100,000 complete records. This is more training data than our
SVM implementation can handle, however it is almost certainly more than the
task actually requires. We can learn the correlation adequately from a few
thousand data points.

We use as much data as can be handled in a timely fashion. For regression
we use 3000 units, for classification 2000 per class. Given the low dimensionality
and simple correlations it is unlikely that this policy leads to significantly poorer
results.
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Hierarchical structure: Members of one household are correlated, for example,
spouses will typically be of similar age. This means that the rows are not inde-
pendent and identically distributed (iid). More importantly strong correlations
between household members will not be learned by the SVM.

We note that over 10% of households contain only one person however. An
optimal strategy may be to impute these units using the SVM, and to use ap-
propriate heuristics for larger households where correlations between household
members can be exploited.
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3.2.3 Imputation

Data Cleaning: Values out of range were removed. Very rare classes (less than
1% of training size) were removed as the SVM cannot train with extremely
unbalanced data.

Variable Selection: We use all variables for training, apart from index vari-
ables. It is noted that some variables are derived and are therefore always
mutually absent (e.g. ISCO1, ISCO2). Therefore we do not train with ISCO1
when predicting ISCO2 and vice versa.

Preprocessing: Normalisation of all variables is carried out. This leads to each
input variable having comparable influence.

Model parameter settings: We apply an SVM with ‘rbf’ kernel. Our aim is
to evaluate this kernel as a generic non-linear SVM model. See section 2.2 for
a discussion of other kernels.

We apply SVM classification and regression to SARS. The error trade-off
parameter C and σ (the kernel parameter) are set by cross-validation for both
types. For scalar variables, ε (the width of the ‘tube’) is also set by cross-
validation. Below in table 8 we give the ranges of values. C values that gave
good performance were low (5 and 20 for most variables) indicating that training
error was high. The kernel parameter, σ normally lies in the range [d

4 , d], where
d is number of input variables.

Table 8. Cross-validated settings

parameter settings
σ 8 12 16 20 24
C 5 20 80 300
ε 0 0.01 0.05 0.1 0.2

# cross-validation settings = 5 × 4 × 5 = 100

Training data selection For training data we select units that lack no values
at all. At least 30% of the data is complete. For regression we take 3000 units.
For (multi)classification we select 2000 units in each class maximum. If the
classes are unequally sized, we draw proportional to the ratio. I.e. if class 1
appears twice as often as class 2, we pick 2000 of class 1 and 1000 of class 2.
This may lead to the deletion of very rare classes from the training set. For
example, the 4th variable bath indicates whether the household has exclusive
use of a bathroom (1) , shared use (2) or none at all (3).The relative frequencies
of these values are; 100 : 0.7 : 0.01. Less than 1% of people share a bathroom.
Less than one in ten thousand have no bathroom at all. It would distort the
distribution to include respondents with no bathroom. In any case, it is unlikely
that there is any region of input space where this value is modal.
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3.2.4 Results

We present results for the scalar variables first, and then consider selected dis-
crete variables. Comparison is made with results from EUREDIT partners who
used standard methods. In addition to the full-scale experiments evaluated by
ONS, we present results of exploratory experiments performed on ‘Develop-
ment data’, a labelled portion of the data containing 45,000 units. We were
able to evaluate experiments on this smaller subset quickly ‘in-house’, and esti-
mate performance.

The scalar variables are age in years and length of working week in hours.
These variables bear obvious relationships with others in the dataset. For ex-
ample, all children will have zero for hours worked. The variables ISCO and
econprim will also be informative for these variables.

We tabulate the Pearson correlation coefficient (slope), the mean absolute
error (mae), the root-mean-square-error (rmse), the worst-case error (worst-
case) and the Kolmogorov-Smirnoff measure (K-S).

Imputation of AGE

In figure 8 we plot the two regression variables against each other. The number
of hours worked is (non-linearly) correlated with age. The dark line represents
the average number of hours worked for each year-group, the lighter lines show
plus and minus one standard deviation.

Figure 8. age vs. hours
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Many people in the age range 16-20 are in higher education and so reduce
the average working week. Similarly early retirement leads to a gradual overall
reduction in the average hours worked per week. All respondents in the age
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range 71-80 are recorded as having 71 years. Similar grouping is supplied for
the subsequent decades. This explains the sharp peaks at the upper end of the
graph.

Development data: As a reality check the group-mean approach (described
above), was evaluated using grouping variables econprim and relat. This ap-
proach yielded a rmse of 11, and a KS value of 0.19. The SVM produced a
result of 9 and 0.092. The simple benchmark is not much worse than the SVM.

In another exploratory experiment we imputed all household-heads with
their spouse’s age plus two (for those respondents who had a spouse). This
gave a rmse of 4.4. Similarly we imputed each child with the household head
minus twenty-eight. This yielded a rmse of 6.1. These household dependent
heuristics perform better than the SVM by a large margin.

Evaluation data: Table 9 presents results for the evaluation data and compares
with DIS. The SVM preserves the true values much better than DIS.

Table 9. Evaluation Results: age

Partner Algorithm slope mae rmse worst-case KS

ONS DIS 0.85 11.3 17.5 95 0.13
RHUL SVM(rbf) 0.86 6.5 9 91 0.10

Neither DIS nor SVM exploit heuristics based on household structure. The
SVM outperforms the standard method, but results on region 2 data indicate
that household dependent heuristics will perform better still.

Imputation of HOURS

This variable records the number of hours worked per week. It takes values
in the range [1-81]. ‘Inapplicable’ is denoted by -9, and used for children for
example or retired people. It is possible that this variable would be better
imputed in stages. First -9 values using a classifier and then a regression for the
other variables. We took a naive approach and imputed everything with SVM
regression.

Development data: Imputing 1548 items, Group-mean with variables ISCO1
and econprim achieved rmse of 9.3 and KS equal to 0.34. The SVM achieved
rmse of 12 and KS = 0.24.

Evaluation data: Results in table 10 show the SVM to offer an improvement
over the DIS for preservation of true values. The Kolmogorov-Smirnoffmeasures
are similar however.
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Table 10. Evaluation Results: hours

Partner Algorithm slope mae rmse worst-case KS

ONS DIS 0.91 16.5 25 90 0.25
RHUL SVM(rbf) 1.03 9.5 13.9 81 0.26

Imputation of SEX

For all discrete valued variables results are given for the Wald-statistic (W), and
the error rate (D). For both of these statistics, less is better.

The sex variable is self-explanatory. One would expect heuristics that ex-
ploited the household structure to be successful.

Development data: The group-mode with covariates ISCO2 and econprim
imputed 315 subgroups, achieving an error of 0.28 and Wald-statistic of 80.

Evaluation data: Results in table 11 show the SVM with rbf kernel outper-
forming DIS on both measures.

Table 11. Evaluation Results: sex

Partner Algorithm W D
ONS DIS 654 0.33
RHUL SVM(rbf) 22 0.27

Imputation of MARITAL STATUS

This variable takes five values. The first two classes occur much more frequently
than the last three.

Table 12. Classes: marital-status

value 1 2 3 4 5

meaning single married remarried divorced widowed
%freq 40.5 41.5 5.5 4.5 7

There may be no regions where classes 3-5 are modal. Hence predictive
techniques like SVM will not impute to these classes. As a strategy for mini-
mum error rate this is correct, for preservation of the marginal distribution it
is incorrect.
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Development data: The group-mean achieved an error rate of 0.16 and a
Wald-statistic of 260. We used variables relat, persinhh, age(discretised) and
econprim.

Evaluation data: For this data the SVM has provided lower error, but not
preserved the distribution well. It is probable that the smaller classes are never
modal, and therefore are not imputed to.

Table 13. Evaluation Results: marital-status

Partner Algorithm W D

ONS DIS 919 0.32
RHUL SVM(rbf) 2900 0.19

The benchmark results point to the existance of simple relationships readily
exploited by the group-mean algorithm.

Imputation of LTILL

ltill is a binary variable. Just over 1 in 10 respondents are long-term sick (14%).
Missingness occurs at a rate of 10%: approimately 40,000 items are missing.

The 27th variable econprim encoding the ‘Primary economic position’ is
closely related to ltill. If econprim has value 8 (permanently sick) then ltill has
value 1 with probability > 0.99.

Development data: The group-mean with variables econprim, age andmarital−
status, achieving D=0.11, W= 270. If we use econprim alone, we achieve an
error rate of 11%, and a Wald-statistic of 350. DIS offers better preservation of
marginal distribution.

Evaluation data: Results presented in table 14 show the SVM to have discov-
ered a dependency, but to have preserved the distribution less well than DIS.

Table 14. Evaluation Results: ltill

Partner Algorithm W D
ONS DIS 211 0.17

RHUL SVM(rbf) 740 0.12

Imputation of RELAT

This variable describes the respondents relationship to the household head. ‘0’
indicates the household head themselves, ’1’ their spouse and so on. Values are
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in the range [0-16]. The classes are of very different sizes, the table below gives
percentage frequencies. The most common values (> 1% frequency) are shown
in table 15. Common sense informs us that certain variables will be correlated
with relat, for example age.

Table 15. Classes: relat

value 0 1 2 3 4 5
meaning head of spouse cohab- son/ child of etc

household itee daughter cohabitee ...
%freq 41 22 3 31 1 ...

Development data: The group-mean benchmark attained D=0.17 and W=163
with variables sex, maritalstatus, age and econprim. We applied the SVM to
the same subset of data. This attained a much lower error rate than the group-
mean benchmark, scoring D =0.07, W = 43%. Investigation revealed that the
variable pnum was strongly predictive for the SVM. When this variable was
added to the group-mean variables, performance improved to the same level as
the SVM.

Common sense might have told us that the head of the house completes
the questionnaire and will thus submit their details first, then their spouse and
children. However, this kind of correlation is due to the way the information
is acquired, and seems ‘accidental’. It is clear that manual variable selection
might well miss this type of dependency.

Ultimately the performance of the group-mean and the SVM are close for
this exploratory experiment. Moreover, an automated variable selection strategy
would have discovered the value of using pnum for the group-mean algorithm.

Evaluation data: In table 16 we present results for the evaluation data, and
compare with those from DIS.

Table 16. Evaluation Results: relat

Partner Algorithm W D

ONS DIS 1286 0.354
RHUL SVM(rbf) 232 0.07

The optimal imputation of age involved use of domain knowledge. This
might hold for this variable, although error here is already low. Clearly, if
another record in the household has relat value 0(= head of household), then it
is fair to deduce that the given record will not have this value. Similar inferences
concern the value for spouse.
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The SVM with rbf kernel performs near to the optimal. It is notable how
much the results exceed that of the Donor Imputation System (DIS). This is
because the variable pnum was not used as a covariate. Our group-mean algo-
rithm was able to attain much improved performance using this varible, and its
approach is very similar to that of DIS.

Imputation of HHSPTYPE

hhsptype takes values in [1-14]. There is an ordering in these values, but the
variable is treated here as categorical. 20% of units take value detached, 40%
are semidetached, 30% are terraced, and 6% are residentialf lats. All others
categories together make up the remaining 4% of units.

Development data: The benchmark algorithm, using variables rooms, tenure
and persinhh achieved D= 0.57, W= 980 on region 2. Imputations are wrong
more than half of the time. The SVM achieved D=0.514, W = 108. Observation
of the cross-tabulated imputations and true values showed that classes 1 and
3 overlapped to a degree of 25%. A large number of class 1 and class 3 values
were imputed as class 2 however. Although class 4 was smaller its frequency was
well preserved. The comparable error rates indicate that a simple correlation
underlies exists between hhsptype and the other variables.

Evaluation data: In table17 we see the SVM error tallies with those estimated
on region 2, and are comparable with other results for D. SOM achieved better
performance for the Wald-statistic, but slightly worse error rate. By reassigning
class 2 predictions to class 1 and 3 we could improve our Wald-statistic at the
expense of a higher error rate also.

Table 17. Evaluation Results: hhspace

Partner Algorithm W D
ONS DIS 970 0.71

RHUL SVM(rbf) 1620 0.56

Imputation of TENURE

tenure is a categorical variable with values in the range [1-7]. In table 18 we
tabulate the meaning and frequency of occurence of the possible values. The
class sizes are unbalanced.

Development data: The group-mean benchmark was used with 3 variables;
hhsptype,age and econprim, where the last two variables relate to the household
head. This simple algorithm achieved D= 0.38 and W=200 on region 2, where
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Table 18. Classes: tenure

val. 1 2 3 4 5 6 7
mean. own own priv. rent. priv. rent. rent. rent. hous. rent. publ.

outright buying furnish. unfurn. job assoc. sector
%freq. 21 49 3 3 1 1 22

2150 items were imputed. We ran the SVM on the same subset of data and
achieved an error rate of 0.36 and a Wald statistic of 257. Classes 4, 5 and
6 were largely ignored, hence the large Wald statistics. The SVM does not
outperform the much simpler technique.

Evaluation data: Below we present some selected results from the full dataset
experiments. Complete tables can be found in the appendices. The SVM has
learned the dependency reasonably well.

Table 19. Evaluation Results: tenure

Partner Algorithm W D

ONS DIS 1800 0.62
RHUL SVM(rbf) 3000 0.35

The error and Wald-statistic tally with our estimates from region 2. The
good error rate also indicates that the SVM has found whatever correlation
exists in the data.

Imputation of ROOMS

The variable rooms counts the number of separate rooms in the house and lies
in the range [1-16]. However table 20 shows that the distribution is strongly
skewed. The low frequency values at the top of the range will be ignored by
predictive methods.

Table 20. Classes: rooms

#rooms 1 2 3 4 5 6 7 8 9 -16

%relative freq 2 8 17 27 22 17 4 2 1

Development data: The group-mean benchmark used 3 variables: persinhh,
hhsptype and ISCO1, where the last two variables relate to the household head.
All members of the household are imputed identically on household variables.
This benchmark achieved D= 0.67 and W=798.
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Table 21. Evaluation Results: rooms

Partner Algorithm W D

ONS DIS 970 0.70
RHUL SVM(rbf) 5500 0.66

Evaluation data: In table 21 we present results for the SVM and DIS. Error
rates are comparable, but the SVM performs worse on marginal distribution.
Donor methods are better able to preserve rare classes than predictive methods.

Summary of SARS results

Preprocessing: We do not investigate more sophisticated variable selection.
However it is possible that this would be beneficial. For example, we could
remove household variables for imputation of individual variables.

Training phase: We can build an adequate model with a small percentage of
the training sample available. Validation on training sets of size 500, 1000,
2000 etc showed small improvement over 1000 units. Training and validation
times were about 60 minutes for each variable for 100 settings. The full dataset
required over a day to process. Rare classes caused some practical problems.
More than 4 samples are required for 4-fold cross-validation of course. In fact 20
or 30 instances are required if the data is separated randomly. When there were
not enough we deleted the rare classes. In some cases we deleted the variables
altogether.

Test phase: The SVM test-phase is linear in the number of points to estimate.
Once the SVM is trained, imputing 1,000 values requires less than 10 seconds
with our implementation. For this dataset, where there are about 1 million
missing items in total, the test phase takes approximately 3 hours.

Performance: We have tabulated results for the following variables; age, sex,
ltill, marital − status, relat, hours, tenure, hholdtype and rooms. The SVM
was in the top two or three for preservation of true values for all of these vari-
ables. The performance on relat was excellent. Where a dependency existed,
the SVM finds it reliably, both for scalar and categorical variables. Given that
no variable selection was performed or stratification this result is remarkable.

SARS scalar variables: KS measure The results are not conclusive for the
preservation of marginal distribution. KS measure for age and hours was av-
erage to poor, but not outstandingly bad. We know that the SVM imputes at
the expected value in the case of scalar variables. This will remove noise from
the dataset, and result in a ‘compression’ of the distribution.
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SARS discrete variables: Wald Statistic The W measure for categorical vari-
ables was never the worst and for sex was close to the optimal. However, if
correlations are weak we have no reason to expect good preservation of marginal
distribution. The effect of imputing the maximum aposteriori class will be to
compress the distribution. In this respect the SVM can only be optimal if there
is no noise at all: if P (Y |X) has a peak at the expectation, and zero height
elsewhere. The compression effect can be lessened by adding residuals to the
predictions. This has not been investigated here.

Hierarchical structure: The census is a hierarchical dataset. Within a house-
hold the distribution of each member is dependent on the other members. For
example, the age of a child will be strongly correlated with the age of a par-
ent. The SVM system applied here does not exploit this structure. The SVM
assumes each row is i.i.d.

Results obtained by Statistics Finland for the age variable show that such
relationships can be usefully exploited. When compared with with other algo-
rithms not exploiting data-dependent heuristics, the SVM performed reasonably
for this variable. It should also be noted that 10% of the households have only
one occupant. For these respondents no household heuristics can be used.

SARS Y3: Tables are given in the Appendix for SARS Y3. Results were
comparable with SARS Y2. The perturbations did not seem to strongly affect
the performance of the algorithm.
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3.3 ABI: Annual Business Inquiry

3.3.1 Technical Summary

Method: SVM Regression Imputation
Training data set: Completed portion of ABI Sector 1 1998(Y2)
Hardware used: DEC Alpha UNIX
Software used: MATLAB, SVM in C-code
Test scope: Imputation only
Editing of Y3: None performed.
Processing time for each variable:

set-up time: 5 minutes
cross-validation: (125 settings)
125 * 4-fold * 30 secs 250 minutes
training time 1 minute
testing time 0.5 minutes

TOTAL per variable 4.5 hours

3.3.2 Data description

This dataset contains information concerning 6233 businesses, each having com-
pleted a questionnaire known as the ‘Annual Business Inquiry’. The question-
naire concerns various financial characteristics such as expenditure on personnel
or equipment. Each row in the dataset is a business, each column contains an
answer to one of the questions. ABI has two questionnaires with one (the ‘short’
version) only asking for summary information. Variable values for questions not
on the short form are set to (-9) for businesses answering the short form. There
are four ‘reference variables’ acquired independently from the dataset.

The dataset exists in two forms, Y2 which is missing values, and Y3 which is
missing values and also contains perturbed or erroneous values. We performed
experiments on both datasets. We do not attempt to clean the Y3 data.

We reduce the dimensionality of this dataset to 16 variables for the imputa-
tion process. We chose those variables common to the long and short form ques-
tionnaires and the fully observed reference variables as well ref ,class,weight,
turnreg, empreg and formtype13.

All of the imputation variables are non-negative scalar valued, representing
sums of money, with the exception of employ and empreg, which encode the
number of employees.

There are a few records far removed from the others in the input space. These
can be called ‘representative outliers’; correctly measured units with some vari-
ables taking values very much larger than all the others. These records are
for multi-nationals. Below we show a histogram of log(TURNOVER+1) parti-
tioned in 10 bins. The skewness of the marginal distribution of TURNOVER

13An appendix contains the meta-data file.
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is apparent. We calculate the third moment; m3 = 1
n

∑n
i=1(xi −mean(x))3 to

get a measure of the skewness. For TURNOVER, m3 = 7e+17.

0 2 4 6 8 10 12 14 16
0

500

1000

1500
log(turnover+1)

Figure 10. log(turnover)

Missing data pattern The data contains 6233 records of which over 4000 are
completely observed. In Table 22 below we show the number of units with no
variables missing, one variable missing and so on. This is a relatively benign
pattern. Of the 1052 units that are missing values, only one tenth have more
than one value missing. There in total 85 different missing data patterns. It is
therefore feasible to train a separate SVM for each.

Table 22. sec298y2 missing data pattern

num. missing in row 0 1 2 3 4 5 6
num. of units 4932 1052 135 27 67 18 2
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3.3.3 Imputation Setup

Selection of data for training For training we select 3000 units from the fully
observed portion. This number can be handled in a timely fashion.

Preprocessing The index and weight variables were deleted before training.
All remaining variables were normalised. No log transform was used. No strat-
ification was used. No editing was performed in the main experiments. Regres-
sion was used for all variables. The SVM was evaluated as an automated tool
and therefore we wished to do a minimum of preprocessing.

Model Order All experiments are performed with an rbf kernel. This kernel
has one parameter, σ. The other model parameters, C and ε are found by cross-
validating the settings shown in Table 23. We compare 125 models in about 4
hours.

Table 23. Cross-validated settings

parameter settings
σ 3 6 9 12 15
C 2 5 10 20 100
ε 0 0.01 0.05 0.1 0.2 1

Our cross-validation routine compares models with respect to the root-mean-
square-error(rmse). When the best setting includes a top or bottom value (e.g.
15 for σ), we evaluate more settings (e.g. σ = 20, 25, 30...).

Ultimately very low capacity models are chosen, close to linear. The pa-
rameter σ is more than 200 for all variables apart from assacq. Optimal C is
500; also relatively high. The tube width ε was 0.01, or 0 for most variables
indicating low noise. Due to the skewness of the data, the normal range of σ
was not effective. This kernel parameter normally takes values less than the di-
mension of the input space. As σ grows the global influence of each data-point
gets larger.

3.3.4 Results

We imputed variables common to the short and long forms that were missing val-
ues. In this section we give results for TURNOV ER, EMPLOY , ASSDISP
and ASSACQ. Full results are given in the appendices. In addition to the
results evaluated independently by ONS (in Tables 26,29,38 and 35) we give
results for ‘development’ experiments. We took the fully labelled portion of
the sector 2 1998(Y2) dataset and used half for training and half for testing.
This allowed us to evaluate various models in house and make estimates for
performance. We make comparison with linear techniques
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Imputation of TURNOVER

TURNOVER is a scalar variable, describing the total turnover of the company
in the year 1988. In Table 24 are some statistics taken from the fully observed
units in the ABI Y2 evaluation data. The distribution is clearly skewed. ABI
contains records for multi-nationals and businesses with just one employee.

Table 24. Summary: TURNOVER

range mean variance median inter-quart. 95% range
[0-1.3e7] 18,699 7e10 276 [110-1028] [0-24735]

TURNOVER is correlated strongly with ’TURNREG’ (0.986), ’PURESALE’
(0.995) and ’PURTOT’ (0.998)14, where the Pearson correlation coefficient is
given in brackets. Using these variables we performed an exploratory experi-
ment on the fully observed portion of the data (4932 rows). Half of the data was
used for training and half for test. Linear regression was performed using the
three variables above with highest correlation. The experiment was repeated
with a log transform of all variables. The results below show that good preser-
vation of true values is possible, and that a log transform helps to improve KS
performance by reducing the effect of the larger values.

Table 25. Development results: TURNOVER (linear regression)

Vars slope mae rmse worst-case KS
14, 6, 7 0.998 255 15800 22400 0.575

log 14, log 6, log 7 0.998 131 24800 33000 0.024

The missing-data pattern is ‘benign’. When TURNOVER is absent (136
units), variables PURESALE and PURTOT are observed in all except five cases.
TURNREG is never missing. We therefore expect to do a good job of preserving
values with linear regression. Nevertheless a non-linear SVM was used. We wish
to know how well an automated procedure functions.

Table 26. Evaluation results: TURNOVER

Experiment algorithm slope mae rmse worst-case KS m1 m2
CA2001 Lin Reg. 0.9 130 3400 8100 0.05 60 2e10
R2005 SVM(rbf) 1.14 480 4000 15000 0.76 60 2e8
R2008 SVM (rbf) 0.97 690 1600 8300 0.67 620 6e7

OA2001 DIS 0.40 1100 48000 113000 0.14 860 5e9

The results from multivariate linear regression (CA2001) are the best of those

14see the appendices for a description of these variables
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presented. For SVM the KS measure shows poor performance(log transform was
not used), but all other measures are comparable with the CA2001.

In summary, the problem does not seem to require more than linear regres-
sion. We expect the SVM to learn some of the noise and so perform slightly
worse than standard linear methods. If good KS measure is desired, log trans-
forms should be used. Our patching heuristic for missing input variables is
naive, but few test units needed to be patched.

Imputation of EMPLOY

EMPLOY is an integer valued variable, describing the number of people em-
ployed at the business. It will clearly be correlated with the reference variable,
EMPREG, which is fully observed. EMPREG is an ordinal valued variable how-
ever. The integers [1-6] each represent an interval, for example 1=0-9 employees.
EMPREG and EMPLOY are therefore not linearly correlated.

Table 27. Summary: EMPLOY

range mean variance median inter-quart. 95% range
[0-131368] 232 8300000 5 [2-17] [350]

EMPLOY is also correlated with EMPTOTC(0.981), TURNOVER(0.977)
and PURTOT (0.967), where the Pearson correlation coefficient is given in
brackets. We performed exploratory experiments as described in the section
for TURNOVER.

Table 28. Development results: EMPLOY (linear regression)

vars slope mae rmse worst-case KS
7, 4, 5 0.980 8.592 1206.609 1612.206 0.773

log 7, log 4, log 5 0.801 12.211 3299.477 4787.297 0.243

Log transform greatly reduces KS error at the expense of increasing rmse and
mae. We expect the SVM to beat these results as it can exploit the non-linear
dependency of EMPREG.

The missing-data pattern is ‘benign’ for this variable. The correlated co-
variates are missing once in the units that must be imputed. There are only 27
values missing. Estimation of input variables is less of an issue. We therefore
expect to do a reasonable job of preserving values with a linear technique.

Preservation of true values is possible as strong correlations exist in the
data. The results from multivariate linear regression (CA2001) and from the
DIS are the best here. SVM performed worse than the donor method on all
measures, and comparably with the linear regression (CA2001). The SVM with
rbf kernel is expected to perform similarly to the linear regression when the
spread parameter σ is large. Log transforms were not used.
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Table 29. Evaluation results: EMPLOY

experiment algorithm slope mae rmse worst-case KS m1 m2
CA2001 Lin Reg. 1.11 4.2 72.20 161 0.38 1 15000
R2008 SVM (rbf) 0.38 7.9 66 148 0.46 4.43 14000

OA2001 DIS 0.86 5.3 28 53 0.08 1.9 7000

The KS value and the reasonable rmse indicate that outliers have had a
strong effect on the model. The mae is high when compared with the others.

Imputation of TAXTOT

TAXTOT is a scalar variable, describing the total cost of all capital assets
acquired. The statistics presented below show the variable to be skewed.

Table 30. Summary: TAXTOT

range mean variance median inter-quart. 95% range

[0 124112] 303 1.2e7 4 [1-14] [369]

TAXTOT is correlated strongly with ’TURNOVER’ (0.873), ’STOCKEND’
(0.884) and ’EMPLOY’ (0.906)15, where the Pearson correlation coefficient is
given in brackets. Using these variables we performed an exploratory experi-
ment on the fully observed portion of the data (4932 rows). Half of the data was
used for training and half for test. Linear regression was performed using the
three variables above with highest correlation. The experiment was repeated
with a log transform of all variables. The results below show that good preser-
vation of true values is possible, and that a log transform helps to improve KS
performance by reducing the effect of the larger values. We ran an SVM with
and without taking a log of the variables. The effect was less marked than for
linear linear regression (which performed better on most measures). The KS
measure was improved considerably.

Table 31. Development results: TAXTOT

vars slope mae rmse worst-case KS
lin reg no func 4, 10, 13, 0.427 43.308 1851.880 2369.338 0.962
lin reg log 4, 10, 13, 0.963 10.321 2211.953 3520.825 0.293

SVM rbf log 0.901 25.427 10377.535 16788.018 0.246
SVM rbf all vars 0.604 22.392 4052.936 5148.043 0.359

The missing data mechanism is benign. 127 values are to be imputed, and on
only 11 occasions is one of the correlated variables missing, never more than one.

15see the appendices for a description of these variables
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The results below represent a selection from those produced for the EUREDIT
project.

Table 32. Evaluation results: TAXTOT

partner algorithm slope mae rmse worst-case KS m1 m2
OA2001 DIS 0.51 8.1 97.3 190 0.10 3.6 24000
RA2008 SVM (rbf) 0.18 12 34.1 363 0.63 8.0 269
CA2001 Lin. Reg 1.0 3.4 10.4 30 0.29 0.6 134

SVM results are poor. Given the successful application of linear techniques
this might be due to not using log transform of input variables, or the fact that
sampling weights were not used in training the SVM.

Imputation of ASSACQ

ASSACQ is a scalar variable, describing the total cost of all capital assets ac-
quired. It is strongly skewed upwards.

Table 33. Summary: ASSACQ

range mean variance median inter-quart. 95% range

[-9- 573,415] 751 1.5e8 0 [-9-12] [804]

ASSACQ is correlated with TURNOVER(0.951), TURNREG(0.963) and
EMPTOTC(0.967), where the Pearson correlation coefficient is given in brack-
ets. We perform an exploratory experiment using the fully labelled portion of
the dataset as described for TURNOVER. Linear regression was performed with
three variables most strongly correlated with ASSACQ.

Table 34. Development results: ASSACQ (linear regression)

vars slope mae rmse worst-case KS
no func 4, 14, 5, 0.639 113.935 3566.615 3814.209 0.976

log 4, 14, 5, 0.626 51.498 15671.005 23121.884 0.702

The missing-data pattern is relatively benign for this variable. There are 200
missing ASSACQ values. TURNOVER is missing just 5 times with ASSACQ
and EMPTOTC just once. The results for the real missing data pattern are
shown below.

SVM has performed reasonably on some measures. The DIS is superior on
most however. The performance of the linear algorithm is less good. It seems
possible that this variable is non-linearly correlated with some of the others in
the dataset.
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Table 35. Evaluation results: ASSACQ

partner algorithm slope mae rmse worst-case KS m1 m2
OA2001 DIS 1.25 50 1678 4773 0.3 25 2.2e7
RA2005 SVM (rbf) 1.8 90 3700 10300 0.19 33 3.9e7
CA2001 Lin. Reg 3.8 115 6000 17600 0.09 105 6.2e7

Imputation of ASSDISP

ASSDISP is a scalar variable, describing the total proceeds from captial asset
disposal. It is strongly skewed upwards.

Table 36. Summary: ASSDISP

range mean variance median inter-quart. 95% range

[-9 255615] 114 1.4e7 0 [-9 0] [44]

The completed portion of ASSDISP contained one very large outlier. This
was removed before modelling. The remainder of the data is correlated with
TURNOVER(0.812), PURESALE(0.813) and PURTOT(0.817), where the Pear-
son correlation coefficient is given in brackets. We perform an exploratory ex-
periment using the rest of the fully labelled portion of the dataset, totalling
4931 units. Experiment is as described for TURNOVER. Log transform does
not help here. Visualisation of the data split by CLASS and EMPREG shows
these variables to be important. We expect to improve upon the results below
therefore.

Table 37. Development results: ASSDISP

vars slope mae rmse worst-case KS
no func 4, 6, 7, 0.668 8.801 587.563 622.362 0.874

log 4, 6, 7, 0.093 11.859 952.464 1250.552 0.908

The missing-data pattern is relatively benign for this variable. There are
152 missing ASSDISP values. The three covariates above are missing on 20 of
these units, but only ever one at a time. The results for the real missing data
pattern are shown below.

Development results were reasonably indicative. 50% of values are zero,
and this has not been well preserved. As a result SVM KS results are poor.
Visualisation of the problem indicates that stratification by class may improve
imputation of zeros.
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Table 38. Evaluation results: ASSDISP

partner algorithm slope mae rmse worst-case KS m1 m2
OA2001 DIS 0.59 6.9 109.3 265.6 0.27 0.92 45000
RA2005 SVM (rbf) 0.02 10.3 157.1 384.7 0.46 2.99 24000
CA2001 Lin. Reg 3.46 56.6 131.8 0.09 1.94 14200

3.4 Strengths and Weaknesses

We have performed experiments on three datasets using SVM imputation: DLFS,
ABI and SARS. Here we give strengths and weaknesses of the SVM approach
as observed on these datasets. We relate each point to a dataset. In addition
we make some comparisons with two standard methods: donor imputation and
multivariate linear regression.

♦ strengths ♦

DLFS

♦ SVM preserves true values on income variable, with no fine tuning or
stratification. The non-linear correlation with age variable is learned.
The performance is matched by the augmented linear regression, but the
SVM requires no manual variable selection. SVM outperformed DIS by
a considerable margin on all PTV measures and also on KS measure.
Moreover DIS requires manual variable selection. SVM performed well
with minimal intervention and was relatively quick to set up and run
(approx. 2 hours).

♦ The Gaussian process is a non-linear model closely related to the SVM
for regression. This model makes the stronger assumptions that the noise
distribution is Gaussian. However given that this is reasonable, we show
how multiple imputations can be produced for the income variable.

SARS

♦ SVM performs well on scalar variables, age and hours giving rmse nearly
half that of standard methods such as DIS. Kolmogorov-Smirnoff mea-
sure is also no worse than DIS. Although heuristics exploiting household
relationships are useful (see results from Statistics Finland) , 10 % of
respondents are single person households. For these records we cannot
exploit such heuristics and therefore SVM would be a reasonable option.

♦ SVM offers superior PTV performance to DIS on most categorical vari-
ables. Where the classes are well represented SVM also preserves distribu-
tions. However where small classes exist, the SVM tends to ignore them
(this phenomenon was observed on development data).
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♦ SVM required minimal intervention. Standard pre-processing was used
and no variable selection, about from removal of indexes.

♦ We may ultimately prefer to use a donor method, perhaps because of the
preservation of the distribution of rare classes. However the SVM can be
used as a quick way to estimate the best achievable PTV .

ABI

♦ SVM found the linear dependency and gave reasonable results for TURNOVER
beating DIS and the linear regressor on slope and rmse.

♦ SVM provided reasonable results on ASSACQ, beating the linear regressor
on slope, mae and rmse.

♦ SVM required minimal intervention16.

� weaknesses �

DLFS

� The SVM did not inform us which variables were most important for the
prediction, or how they influenced the income. The augmented multivari-
ate linear model is more easily inspected and provided results comparable
to the SVM.

SARS

� The SVM is not able to exploit the hierarchcial structure17. E.g. age
was more accurately imputed using a simple heuristic that exploited the
household structure.

� Rare classes (> 5%) are ignored. The SVM algorithm will not succeed
in training on very unbalanced data. A donor method such as DIS will
sample from the donor pool randomly and will occasionaly impute the
rarest classes.

� The SVM may be superfluous to requirements. Non-linear dependencies
do not exist for most variables. Where SVM outperformed DIS it was
more to do with bad selection of matching variables. Only two variables
were scalar18.

� Experiments on development data indicate comparable performance with
much simpler conceptual and algorithmic requirements.

16See weaknesses below however.
17some careful data preparation might allow a dataset of couples to be created, for example

such that each unit contained details of two people. The SVM would then be able to explore
dependencies within this pair. This data manipulation was not investigated here however

18Clearly if a dataset is made of categorical variables, no non-linear solution is possible.
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ABI

� For imputation of ASSDISP the SVM was found not to be proof against
outliers. SVM regression requires manual data-cleaning as much as stan-
dard linear regression.

� For imputation of TURNOVER we found that interpolation for larger
values was poor. The rbf kernel requires the points in the input space to
be evenly spaced. The strongly skewed data failed this, with much of the
data clustered close to zero with a few large outliers of order 106. Log
transforms are recommended.

� For ABI, the correlations were strongly linear for most variables, possibly
with the exception of ASSACQ and ASSDISP. If a correlation is linear
the SVM can offer no more than a linear regressor, and here performed
considerably less well and trained more slowly.
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4 Conclusions

4.1 Discussion of Results

In sections 3.1 - 3.3 we presented results for SVM imputation. In this section we
attempt to generalise. Can SVM offer more than simpler existing techniques?
Donor methods and multivariate linear regression are well understood and im-
plemented in standard softare. Will a new method repay the investment of
time?

We judge an imputation technique upon both quantifiable performance, and
also ‘softer’ usability issues. Performance in turn is measured through several
criteria, some for preservation-of-true-values(PTV ) and others for preservation
of marginal distribution(PMD). Of course these performance criteria are all
proxies for the real objective: preservation of the full joint distribution. How-
ever, there is no easy way of measuring this directly.

Prioritising the criteria will inevitably be problem and variable-dependent.
Indeed if we know in advance the analysis that will be performed on the imputed
dataset, this may also influence our choice of imputation technique and how we
apply it.

We first make some points about the assumptions that underlie the SVM,
and the performance that can be expected. Secondly we make some remarks
about ‘usability’.

Many of the points made will hold of feed-forward artificial neural nets also.
Only when applied to data of higher (> 50) dimension do we expect neural nets
to perform very differently from an SVM. Both algorithms model a non-linear
dependency and both are relatively difficult to interpret.

� Performance Issues �

SVM is good for PTV The SVM searches for a discriminant or regressor that
minimises a measure of PTV on the training set. In the case of the former,
it seeks to minimise the misclassification error. For scalar variables it seeks
to minimise mae or rmse. Hence we expect it to do well on these criteria of
imputation quality.

However the SVM does not learn the form of the noise distribution P (Y |X).
We showed that the Gaussian Process can, subject to certain assumptions.

PTV versus PMD In figure 11 two regressors are shown these can be taken to
be SVM models. We wish to impute Y given X . On the left are two correlated
variables and the other much rather uncorrelated variables. Imputing Y on the
interpolant will give optimal PTV in both cases as this is the error measure
used to fit the models. However, if the conditional distribution is broad (see
(b) in the figure), optimal PTV will give poor PMD and poor preservation of
the joint distribution. Imputing on the regressor will massively compress the
distribution. On such datasets PTV is a misleading measure.
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Figure 11. Performance measures are problem dependent
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Figure 12. (a) Unimodal and (b) multimodal regression problems

As our goal is preservation of the joint distribution, we would better impute
the variable Y by randomly drawing from all Y values. Imputing the Y in
the left hand figure would be best achieved by adding residuals also. This will
naturally produce worse PTV .

Multi-modal distributions The SVM is does not model P (Y |X), but rather
gives a point estimate for E(Y |X). In the preceding section we gave an example
of one problematic dataset. Another distribution that is problematic for SVM
is shown in figure 12. The conditional expectation is a poor estimate for mul-
timodal distributions such as that on the right. Given X two regions of Y are
probable. The SVM will imputed to the region between them.

In contrast, a donor method will draw values from the local conditional
distribution and will thus impute values from both dense regions.

Performance: Improvement over standard methods? We will assume stan-
dard methods consist of donor imputation and multivariate logistic regression.

Donor Method The donor method is non-parametric and closely related to the
nearest-neighbours algorithm. Typically non-parametric techniques are thought
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to offer poor performance on high-dimensional problems, because they perform
local density-estimation for which data requirements are exponential in the di-
mension (see chapter 1 [1]). Semi-parametric models are more ‘global’ and, in
the case of SVM, avoid density-estimation. They are thought to come into their
own as the dimension increases.

Are DLFS, SARS and ABI problems in which the density is too low for
non-parametric techniques?

DLFS was successfully modelled with 4 variables: age, sex, business and
education. We partition age into 6 intervals. These variables together partition
the space into 6 × 2 × 4 × 4 = 172 subspaces. Given a training set of 10,000
units we find these subspaces having 60 points each on average. This is a good
number for estimating income locally.

SARS has 100,000 complete units; enough to model any variable locally.
Non-parametric methods will work well if the matching variables are chosen
correctly. There are no compelling reasons for supposing apriori that donor
methods will not work.

DIS requires hand picked matching variables. In one case (imputation of
SARS relat) a relevant variable was missed. SVM used the pnum variable
and achieved a five-fold improvement in error rate. It would seem sensible to
augment DIS with a routine for automatically selecting matching variables.

Performance differences are because DIS does not impute with the expected
value but with a donor value, so poorer PTV performance is no surprise. In
this sense DLFS results do not compare like with like. On SARS the DIS results
were inferior occasionally because of poor matching variable selection, but this
could be solved through a simple search routine.

Linear Method DLFS contained a weak non-linear correlation which was mod-
elled effectively by adding interaction and quadratic terms to the set of depen-
dent variables (see results from CBS Holland CL2001). There is adequate data
to estimate the parameters. ABI data was also successfully modelled by linear
techniques.

� Usability Issues �

Edit rules Common-sense or ‘domain knowledge’ may be exploited for impu-
tation. When certain relationships are known to hold between the variables it
is encoded in ‘hard’ or ‘soft’ edit rules. Such rules specify regions of zero or low
probability. An edit rule might be of the form: ‘All school-children are unmar-
ried’. We desire an imputation device firstly to be consistent with these rules.
Ideally we could seed the algorithm with the rules and they would guide the
estimation of the imputation model. A system that allowed the user to extract
the decisions of the imputation algorithm as rules that are of the form of edit
rules would be more appealing still. Donor methods are of this type, but SVM
is not. We discuss intelligibility further below.
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Automated Imputation The SVM was applied in a largely automated fashion.
We did not remove outliers or transform the data prior to imputation (taking
logs for example). We also did not stratify the data or perform variable selection.
In this sense, we evaluate SVM as an automated imputation tool, requiring
minimum intervention from the user19. Given this fact performance relative to
DIS is impressive.

Speed of application The SVM automatically learns the parameters of a non-
linear model. A single training phase on 5000 units takes a few minutes. How-
ever we must perform model order selection which requires comparing the per-
formance of a number of models on a validation set. This is time consuming.

We must set the cross-validation ranges, and choose appropriate preprocess-
ing. The algorithm can cross-validate and train in about 2 hours on a sample
of 5000 units. Testing is quick in comparison with training.

Intelligibility To trust a model is behaving sensibly it helps if we can ‘read’
it in some sense. We would like to understand the dependency or correlation
that is implicit in the parameters. In addition it is useful to know if the learned
imputation model is consistent with hard and soft edit rules.

Intelligibility is rather subjective of course. Experienced practioners will
know how to interpret their models better. It is clear however that approaches
such as the group-mean more transparent than semi-parametric methods such
as SVM.

Consider the application of group-mean algorithm to the imputation of in-
come in DLFS. We found that age and job-type were the best variables for
forming sub-groups. We impute a missing value on a unit by taking the mean
of all people of the same age and same job-type. Any user can understand this
procedure. In comparison, the SVM outputs a model of the form:-

ŷ = f(z) =
n∑

i=1

αiyik(xi, z)

Where we wish to predict (impute) the Y value of a unit z, and {xi, yi}n
i=1

is the training set.
Those training points, xi that have non-zero αi are the most difficult to clas-

sify. They are known as support vectors and lie close to the decision boundary.
Such points are not class archetypes, but are rather points on the periphery of
class clusters.

Given the implicit feature space supplied by the kernel, we cannot easily say
which variables are supplying information for making the predictions, or how
these variables are interacting to produce an estimate. Moreover the mathe-
matics that describes the algorithm is relatively complex.

19We should add that we are unable to assess to what degree the other techniques used in
the project were fine-tuned.
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Of course SVM users would claim that the technique comes into its own
chiefly on datasets that contain correlations that could never by understood by
humans20. Indeed if a model can be cashed out into an expression that makes
sense to a human, perhaps it shouldn’t have been modelled with an SVM in the
first place.

SVM as a lower marker for PTV The SVM might still be useful on ‘low-
complexity’ problems however as it is generally able to provide a lower limit for
rmse. Perhaps we wish to ultimately impute with a donor method; DIS may be
easier to integrate with edit rules and better preserve the marginal distribution.
However we may wish to know how well21 the donor method is preserving true
values. We therefore run the SVM first on a validation set. This should give us
a lower bound for PTV . Comparison with the less flexible donor method will
indicate how well the matching variables have been chosen.

Usability: Improvement over standard methods?

Donor methods: The donor method is transparent and relatively ‘usable’. As
noted above the SVM can act as a guide in estimating the best possible PTV .
Although SVM itself is not a transparent model, it can be used in this way to
provide some security for less flexible methods such as the donor method.

Multivariate Regression: The SVM is not as transparent as standard regres-
sion, where the parameters can inform us of the importance of each independent
variable. On DLFS the tuned linear model performed well and was straightfor-
ward to inspect. The SVM however offers a more automated solution.

20See the section 4.2 for two examples of such problems
21relative to the best possible
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4.2 Weaknesses in the evaluation procedure considered

Choice of datasets: We believe that the datasets investigated here contain
correlations that can be exploited with linear techniques and involve few vari-
ables. SVM has shown strong performance on problems where many features
are together correlated with the output variable, or when the correlation is
non-linear.

DLFS, SARS and ABI all have dimension less than 30. The SVMs strengths
are its non-linear modelling capabality and its effectiveness in high-dimensional
spaces. The datasets considered here do not pose problems of this type. The
SVM cannot show huge improvement over the other algorithms if the correla-
tions are linear, or involve few variables.

The SVM algorithm is mathematically complex and the learned model is
difficult to interpret. In this sense SVMs are similar to neural nets. If the
dependency is non-linear or exploits many variables we cannot understand it
whatever technique we use. However if the dependency is low dimensional and
close to linear we will prefer techniques that can be ‘read’.

In summary the choice of datasets was such that the superior modelling
flexibility of the SVM was superfluous to requirements.

Residuals and PTV : As discussed in section 4.1, PTV and PMD can be
in competition. If there is any noise on the data, techniques that minimise
PTV will impute at the conditional expectation22. This will lead to a compres-
sion of the distribution.

It would therefore make sense to evaluate algorithms both before and after
residuals are added. Comparison before would show how well the conditional
expectation is preserved. Comparison after residuals are added will show how
well the marginal distibution is preserved.

22for categorical variables, optimal PTV will lead to all imputations at the conditional
mode.
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4.3 Areas for further study

Other Kernels

In our experiments here we concentrated on the rbf kernel. This kernel induces
highly non-linear models, and has performed well in many application areas.
We note that many other kernels are available and are areas for further study.

Multiple Imputation

Some intitial experiments using Gaussian Processes for multiple imputation have
been performed. This model is algorithmically identical to the SVM for regres-
sion, despite its basis in Bayesian learning. The stronger assumption of the
Bayesian framework allowed us to estimate the variance of the (gaussian) pre-
dictive distribution. Thus were we able to add residuals to predictions and
generate multiple imputations in an efficient manner.

For the Danish Labour Force Survey it is clear that the Gaussian assump-
tion is poor. We see from fig.10 that income is skewed upward, given age.
We presented some first results for the model however, showing too optimistic
confidence intervals for an MCAR missing data pattern.

The Gaussian Process model is highly efficient. Exact expressions for the
mean and variance are found with straightforward matrix manipulations. Fur-
ther investigation of this approach to scalar variable imputation with non-
Gaussian noise models is timely.

SVMs for large data

Recent research [4][15][8] has investigated heuristics for scaling to millions of
datapoints. The svm-torch implementation used in our experiments employs a
chunking heuristic[3], and is able to handle a training set of size 10000× 31 in
approximately 60 seconds.

SVM Donor Methods

We believe that drawing from the pool of nearest support vectors may be one
approach for maintaining variation in the imputations.
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5 Glossary of Terms

1. bias

Given a hyperplane: y = w · x + b in IRn, the bias b is the distance to the
origin from the plane in the direction of y. The bias is also known as the
intercept.

2. bias

The bias is also the name given to the systematic difference between the
model and the true hypothesis. Given a training set of size N , we denote
predictions from our algorithm at x0 as ŷ0. The mean squared error for
estimating at point x0 is:-

MSE(x0) = EN [f(x0) − ŷ0]2
= EN [ŷ0 − EN (ŷ0)]2 + [EN (ŷ0) − f(x0)]2

= VarN (ŷ) + Bias2(ŷ0)

We expect the learned model to err from the truth, f(x0) due to the
random draw of the training set. But if the family of models from which
we choose our best fit is limited we may not have access to a model that
approximates f() well. The bias describes how far the best fit model is
from the truth.

bounds on the Generalisation Error

We wish to state with authority the performance level of a learning ma-
chine, given certain assumptions. Typically a bound tells us the following:
Given a training set of size n and a modelling family of capacity h, the
generalisation error of a binary classifier will not be worse than ε, with
confidence δ. Normally δ will be fixed at a 95% confidence level, for ex-
ample.

The bounds that motivate the Support Vector Machine make the single
assumption that the train and test data are iid. (see Generalisation Error).

capacity

High capacity model families can learn highly non-linear functions. Lin-
ear models clearly have low capacity. Capacity can be measured by VC-
dimension. We also speak equivalently about the flexibility of the family
or the bias. Higher flexibility increases the risk of overfitting. The family
of quadratic regression functions:- f(x) = a + bx + cx2 has low capacity
than the cubic functions f(x) = a + bx + cx2 + dx3. As the capacity of
the family goes up, we expect the bias (defn. 2 given above) to decrease.

convex quadratic programme

minimise −1
2 y′Hy + cy s.t. y ≤ 0; A vector optimisation problem

that can be termed as a quadratic function subject to linear constraints
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on a convex space. Such problems are well understood and a number of
efficient algorithms exist for solving them in polynomial time.

dual form

When an algorithm has a dual form, it can be reparameterised so that the
solution is of the form; w =

∑
αixi, where xi are the training points and

αi are the parameters sought. The solution is a weighted sum of training
data. The SVM algorithm exploits a dual form parameterisation.

The standard form of the algorithm may have a parameterisation that is
of size proportional to the dimensionality of the data xi. If the data xi

lives in a high dimensional space changing to the dual form may result in
considerable computational savings.

ε-insensitivy tube

This term refers to a special loss function used in SVM regression. Nor-
mally training errors are measured as

∑
t ‖yt − ŷt‖ or as

∑
t(yt − yt)2.
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Figure 13. Errors are counted outside the tube

In SVM regression these measures are augmented. A zone around yt within
which errors are not calculated is introduced. In figure 13 we see lines ε
above and below the regressor.

If the data lies in this tube, it contributes no error. Formally, we consider
the error on each point to be max(‖yt − yt‖ − ε, 0). See also figure 5 in
section 2.3.

feature selection

The selection of variables which are useful for a data-modelling task. Fea-
ture selection may be essential for a learning task to be completed in a
reasonable time. Also, learning machines may be mislead by variables
that are noisy. We may think of feature selection as taking a subset of the
original features or as a functions of the original inputs.

feature vector

The training data is projected to a feature space F . The new representa-
tion, denoted by φ(x) is sometimes known as the feature vector.
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flexibility

A flexible model family will be able to learn complex non-linear depen-
dencies. Flexibility is equivalent to capacity. VC-dimension is a measure
of flexibility.

functional relationship

The SVM models the condtional expectation or the conditional mode. If
these values are to be good estimates for the conditional probability there
must be a functional relationship between the input and output variables.
I.e. y = f(x1, x2, . . . , xn) + η where η is zero mean noise. The SVM does
not model non-functional relations.

Gaussian process

The Gaussian Process is a type of stochastic process, in which any finite
selection of variables Y (x) has a multi-variate normal distribution.

We normally assume a function k(Y1, Y2) exists that calculates the co-
variance of two variables Y1, Y2. Calculation of all covariances produces a
matrix C.

A Gaussian process may be used as a non-linear interpolation function
that is fitted in a Bayesian Framework. It is similar to the kernelised
ridge regression algorithm.

generalisation error

The true error or generalisation error is the performance we would get if
we tested the model f̂(·) on an infinite number of draws from P (X,Y ),
the distribution from which the training set was drawn.

errortrue =
∫

[Y �= f̂(X)] dP (X,Y )

implicit projection

The kernel function (see below) equates the projection and dot-product of
two vectors. Using the kernel function allows us to finesse the calculation
of projections φ(x), φ(z). Hence the projection is described as implicit.

iid assumption

The SVM picks a model that minimises a bound on the generalisation
error given only one assumption. The assumption is that train and test
data are independently and identically distributed (iid). This assumption
does not generally hold in the case of imputation problems. If the missing
data mechanism is ‘missing completely at random’ then the units to be
imputed will be iid with the units that are observed for that variable.

If the missing data mechanism is ‘missing at random’, then units missing
values can still be modelling with the SVM. The MAR assumption is that,
given a subset of observed variables the observed and unobserved units
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are iid. For example, consider a scenario in which male respondents to a
survey uniformly at random fail to answer a question about their income,
but women always answer. If every respondent gives their gender, the
missingness will be MAR. Within the group of male respondents the train
and test data are iid.

input vector

The input vector is the instantiation of the variables that are conditioned
on, when we are modelling P (Y |X1, . . .Xn) or E(Y |X1, . . . , Xn), the input
vector is (x1, x2, . . . , xn).

kernel function

A function, k(·, ·) that equates the projection of two vectors to a feature
space F , and the calculation of the dot-product between them in that
space.

〈φ(xi) · φ(xj)〉F = k(xi,xj)

label

In the context of machine learning, most datasets distinguish one variable
as the output variable to be predicted. This variable is also known as the
label. In the context of imputation we may wish to predict more than one
of the variables. A given variable may therefore be an input variable and
an output variable at different times.

Lagrange multipliers

Variables that are used to incorporate constraints into the objective func-
tion of an optimisation problem. fnew(x, λ1, λ2, . . . , ) = f(x)+

∑
i λigi(x)

is created, where f is the function to be minimised, gi(x) ≥ 0 are the
constraints, and λi are Lagrange multipliers (which are constrained to
be positive). fnew has a saddle point which corresponds to the smallest
feasible value of the original function. We wish to minimise fnew with
respect to w, b and maximise it with respect to the αt;

margin

SVM classification minimises a regularised error function. This function
consists of two elements, one is a cumulative error measure and the other
is a parameter relating to the capacity of the model called the margin. In
fact for linearly separable classification problems the margin is the distance
of the closest point to the decision surface (see fig. 2).

The margin is dimension independent. We can calculate its size in the
implicit feature space. In feature spaces maximisation of the margin pe-
nalises the more exotic features.

Mercer’s theorem

Mercer’s theorem gives the conditions for a function to have an implicit
feature space.
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objective function

The SVM is formulated as a quadratic optimisation problem. In other
words, to find the parameters of the model, a problem of the form;

Maximise ‖w(x)‖2 such that g(x) ≥ 0

The objective function is the part of the problem that is to be maximised
or minimised, such that the constraints are not violated.

overfitting

Consider a regression problem where we know that the output label is
functionally related to the input variables, but that there is measurement
error on the output label. See the figure above.

Our goal is to minimise some measure of discrepancy between the predic-
tions and the true labels. By modelling the training set exactly however,
we will fit our interpolant to the noise on each training point, and not the
signal, which is our goal. We therefore aim to chose a modelling family of
limited flexibility. We want one that is able to fit to be flexible enough to
model the dependency, but not so flexible that the noise in the measure-
ments will influence the model. If the model learns the noise, we say that
it has overfitted.

The goal of regression or classification is to learn a dependency. The
success of this task is measured in more than one way. If we assume that
a variable y is functionally dependent on a number of variables x, but that
there is noise in the y measurement, we can see that fitting an interpolant

semi-parametric techniques

Parametric techniques have limited flexibility. They are more likely to
have bias. Non-parametric techniques are more flexible, but can be slower
to apply. They may also suffer from overfitting, and perform badly in
high-dimensions.

Semi-parametric attempt to to have the best of both worlds, and avoid
the problems of each. Flexible modelling is offered, but the number of
parameters is controlled.

slack variables

We model the error of each training point relative to the model with slack
variables ξ. This allows us to simplify the formulation of a quadratic
programme.

soft-margin

If we know that are data is separable, we specify a feasible region that
allows no mistakes on the training set. This is equivalent to letting the
trade-off parameter C tend to infinity. This is known as training with a
‘hard-margin’. If we allow mistakes to be made on the training set, we
use a ‘soft-margin’.
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support vectors

The solution to the SVM quadratic programme is a set of parameters αb.
In the case of pattern recognition, the decision function is

f(z) =
n∑

i=1

αiyi〈φ(xi) · φ(z)〉

where (xi, yi)ni=1 are the training pairs. Those points which have non-zero
αi are support vectors. These correspond to the training points on or over
the margin, including any points that are misclassified.

test set/training set

Given a particular variable to impute Y, the dataset can be partitioned
into two subsets. Those that are observed in Y, and those that are not.
The latter are the units to be imputed, and are known collectively as the
test set. The former or some subset of it is the training set.

universal approximation

A model family containing models that will approximate any continuous
interpolation or discrimination surface arbitrarily closely is said to have
the property of universal approximation. SVMs and feed-forward neural
nets have been proved to be universal approximators. An algorithm that
successfully searches such a family will produce models with zero bias(see
above).

validation set

The training phase sets a certain number of parameters, but usually there
are one or two that relate to the noise level that are not learned through
training, known as model order parameters. For the SVM one such param-
eter is C. These extra parameters are estimated by training a number of
models with different settings and comparing their performance on what
is known as a validation set. In the case of the SVM we might train 5
models with C values: 4,20, 100, 500 and 1000. Of course, in order to
calculate performance the validation set must be a subset of the (labelled)
training data not used for training. For this reason the validation set is
also known as the ‘hold-out’ set. We pick the SVM with model order
parameters that give lowest error on the validation set. Cross-validation
is the name given to the process of estimating a parameter by comparing
performance on hold-out sets.

weight vector

SVM finds a linear solution in a feature space. In the case of classification
we seek a linear discriminant function of the form; f(x) = sign[〈w ·x〉+b],
where w is the weight vector. The weight vector w is normal to the
seperating hyperplane.
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Wolfe dual

To solve a convex quadratic optimisation problem Lagrange multipliers
are used. In effect a new objective function fnew is created that is a
composition of the old objective function f and the constraints g ≥ 0.

fnew(x) = f(x) + λigi(x)

We seek the minimum f that satisfies the given constraints. It is known
that the the saddle point of fnew in the new parameter space (x, λ) is our
solution.

We find expressions for our primal variable x at this saddle point, in terms
of λ and substitute out x.

The new problem, in terms only of λ is the Wolfe Dual. This must be
maximised.
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A SARS Region 2: Group-mean benchmark

To estimate the relative performance of the SVM we implemented a simple
group-mean algorithm. The algorithm subdivides the data according to a given
set of variables and then imputes each subgroup with its mean or mode. For
example, when imputing the first variable age, we divide the data into groups
according to the value on econprim. 12 subgroups are created (the number
of classes in econprim + the class of those lacking a value). Each of these
groups is further subdivided according to relat value (which has 17 classes+
those lacking a value) . This resulted in 164 populated groups. In theory there
would be (11 + 1) × (17 + 1) = 216 subgroups, but some of these are empty.
Each unit missing an age value was imputed with the mean of its subgroup.
The variables are selected by hand.

The group-mean algorithm requires scalar variables (e.g. age) to be discre-
tised, by dividing the range into a number of intervals23. We also underline
that this algorithm imputes with the mean or mode, rather than a randomly
drawn member of the group (which is how DIS works). This gives poorer Wald-
statistic, but better preservation of true values. As we are comparing with SVM
which also minimises error this was appropriate.

23we use 6 intervals
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