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Abstract 
 
This report describes the evaluation of Correlation Matrix Memory (CMM) for edit and 
imputation in the EUREDIT project. CMM neural network methods have been studied at 
University of York for over 15 years, and provide fast, scalable, pattern matching functions for a 
range of applications. The Advanced Uncertain Reasoning Architecture (AURA) embodies 
CMM functionality with additional pre- and post-processing methods to support the 
construction of systems. The AURA class library developed at York is a software 
implementation of this architecture. In EUREDIT, further software has been developed to 
provide the additional functions necessary for edit and imputation, while retaining CMM as the 
core element. Five of the six main datasets available to the EUREDIT project were used in the 
CMM experiments at York. The CMM-based edit and imputation system developed at York has 
particular advantages of being very simple to use, fast and scaleable in operation, and offering 
generally good imputation performance. A new CMM-based error localisation method is 
introduced. Preliminary results show there is some potential benefit in this method, which is 
relatively fast, but further development is needed to refine error localisation performance.  A 
major strength of the CMM-based methods is the relative ease of use and minimal skill 
requirements, particularly for imputation. The CMM based methods are generally very fast in 
computational terms, despite some weaknesses in the current prototype implementation of file 
and data handling components. In summary, the CMM-based system provides a fast, highly-
automated technique for imputation and error localisation.  
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1 Introduction 

This chapter describes the results of applying Correlation Matrix Memory (CMM) neural network methods 
to data editing and imputation in the Euredit project. CMM uses high-performance pattern matching 
techniques to identify the K nearest-neighbours (K-NN) of a given record, allowing one of several alternative 
modes to be used in performing the final imputation step. For edit, essentially the same CMM method is used 
in an edit mode where information about the K-NN for each record is used to determine the “remoteness” (in 
Euclidean distance terms) of each record from it’s neighbouring records. (The assumption is that remote 
records are more likely to be outliers, or to contain errors.) 

This report is concerned primarily with experimental results only. Details of the steps involved in imputation 
and error-localisation using CMM are available in the Euredit report covering deliverables D4.4.1 and 
D5.4.1 (Lees et al, 2002). The CMM experiments discussed here were performed using a generic PC running 
the MS Windows 2000 operating system. The hardware specification comprises: AMD Athlon 1.2 MHz 
processor, L1 cache of 32 KB and L2 cache of 256 KB, and 512 MB of physical memory (RAM). The edit 
and imputation application software used was a combination of existing CMM library functions, existing 
extensions to the CMM software, and specific edit and imputation code developed during the Euredit project. 

Of the six main datasets available to the Euredit project, five were used in the York experiments. Only the 
times series dataset provided by Quantaris was not addressed because the York implementation of E&I was 
unable to deal with this type of data (however, related work at York is applying CMM techniques to time-
series data from a different perspective). The five datasets addressed were DLFS, ABI, SARS, EPE, and 
GSOEP. Of these, all Y2 versions were used for imputation; ABI and EPE Y3 versions only were used in 
error localisation (edit) experiments. Due to lack of time imputation was not attempted using Y3 versions of 
datasets.  

The presentation of results here aims to provide a comparative view of the CMM based methods against 
some of the so-called “standard methods” evaluated in the Euredit project, which include DIS, GEIS, 
SOLAS, and CANCEIS/SCIA. There is no attempt here to compare CMM based methods against any of the 
other “non-standard methods” in Euredit. An overall comparison of all methods evaluated in the Euredit 
project is provided in the User Guide document (Deliverable D6.2 of Euredit).  

 

2 CMM (Correlation Matrix Memory) 
2.1 Method Description 

CMM is a type of neural network that is “trained” to associate pairs of patterns. Most neural networks 
require many training cycles through training data, but CMM only requires a single pass through the training 
data to learn an association. Research at University of York is focused on a special binary version of CMM 
that uses only binary elements in the input and output patterns, and in the weights stored by the network. 
Binary CMM can be implemented very efficiently and the result is a very fast, scalable, pattern matching 
method that can deal with large data sets. Applications typically use the CMM as a kind of filter to remove 
patterns that do not match closely with the input pattern, so that a conventional (but possibly slow) algorithm 
can be applied to the relatively small number of remaining patterns. It is important to understand that CMM 
is trained to represent explicit features of the data, whereas most neural networks are trained to represent 
implicit features of some assumed model, which to some degree “explains” the data in a training set. This 
means that it is not necessary to provide a completely “clean” training set with the CMM method since no 
implicit model assumptions are made.  
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More formally, CMM can be viewed in terms of a correlation matrix M, comprising an array of binary 
elements, initially set to zero. The matrix is trained according to the values of binary input and output 
vectors, by computing an outer product between each input vector Qi and output vector Ri. The result is 
bitwise-logically ORed with the existing matrix resulting in the following update equation: 

( )T
ii

kk RQMM ×∪= −1

Here, Mk is the updated correlation (or weights) matrix after K pairs of input-output patterns have been 
trained, and RT is the transpose of column vector R. To prevent the memory becoming saturated, the input 
and output vectors are chosen to have a small, fixed bit density. To find the set of nearest-matching stored 
patterns, a recall operation is performed. The inner product of the unknown input pattern with the matrix M 
is computed, forming integer-valued elements in an output vector G:  

kT
i

T
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For the work described here, a threshold function known as Willshaw thresholding (Willshaw et al, 1969) is 
used.  Willshaw thresholding operates by setting a ‘1’ in the final binary output when the corresponding 
element in the output vector G contains a value greater than or equal to a threshold value θ  determined as 
the number of bits set to ‘1’ in the input pattern (  in the second equation) presented during recall, since 
this represents the maximum response of any element in the output vector G. As a result, elements of G with 
values below the threshold are set to zero, and all others are set to one.  

TI i

In summary, the final (binary) output vector R is obtained using: 
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and θ  is a positive integer representing the number of bits set to ‘1’ in the input pattern. Further details of 
both training and recalling with CMM can be found in (Austin, 1997). 

The use of CMM for error localisation and imputation involves pre-processing the data to obtain a suitable 
binary pattern representation. The CMM is used in the “first stage” of processing to find a set of best 
matches for each data record. This best match set is then used in a “second stage” of processing to calculate 
Euclidean distances from the record to each match within this neighbourhood. This two-stage approach is 
used because CMM is highly efficient for finding the approximate neighbourhood set very rapidly, but it 
uses only an approximation to Euclidean distance. The second stage “conventional calculation” is then used 
to identify the correct subset of true nearest neighbours using a Euclidean metric. 

For imputation, the best match set represents the empirical distribution in a local region in n-space, near to a 
record having missing values to be imputed. This set is used as the basis of a chosen imputation mode and 
currently five main modes are available: nearest neighbour, random neighbour, mean, weighted mean, and 
median. Each mode thus prescribes the method for selecting a suitable value for imputation from the local 
set. For error localisation, we compute a measure of Euclidean distance for each record to its Kth neighbour 
(for a suitable preset value of K). Essentially, the larger this distance is, the more likely it is that the record in 
question is an outlier. We refer to this process as the DKN (“Distance to Kth Neighbour”) method.  
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Experiments were carried out to evaluate both imputation and error localisation (edit) performance. In 
principle it would have been possible to evaluate a version of the system which combines edit followed by 
imputation, but practical issues ruled out this possibility. The main problem here is due to the fact that edit 
rules are not implemented in the York system (because of the limited project timescale) and, in many cases, 
errors occur as constrained groups of missing values within a single record (e.g. one value is defined to be 
the sum of other values in the group). It does not seem reasonable to expect meaningful imputation of such 
variables without employing edit rules to take account of such constraints.  

When used in Euredit for edit and imputation applications, CMM can be viewed as a highly flexible type of 
index system. For a given dataset, we first decide on the size and structure of the CMM according to the 
amount and types of data concerned. Next we train the CMM by setting certain bits to ‘1’, representing the 
presence of a particular value or range of values in each record. In this case, the trained CMM represents a 
mapping from possible data values to each individual record in the data file that contains those values. At 
this point, we may take another (possibly previously unseen) data record and, using the CMM, determine 
which other records are similar to this query record. In particular, if this data record has some missing values, 
the CMM will identify matches using only the non-missing values.  

The use of CMM for error localisation involves pre-processing the data to obtain a suitable binary pattern 
representation for the CMM. After storing the binary pattern representations for all data records in a CMM 
using “train mode”, the CMM is used in “recall mode” to find a set of best matches for each record. This best 
match set is then used to calculate Euclidean distances from the record to each match within this 
neighbourhood, leading to a measure of Euclidean distance for each record to its Kth neighbour (for a 
suitable preset value of K). Essentially, the larger this distance is, the more likely it is that the record in 
question is an outlier. As mentioned above, we refer to this process as the DKN method. 

Similarly, the use of CMM for data imputation involves pre-processing the data to obtain a suitable binary 
pattern representation for the CMM. After storing the binary pattern representations for all data records in a 
CMM using “train mode”, the CMM is used in “recall mode” to find a set of best matches for each record. 
This best match set is then used to calculate Euclidean distances from the record to each match within this 
neighbourhood. From this point, the best match set may be analysed further in a number of ways to select a 
suitable value to be imputed in place of the missing item. In the experiments described here five main 
“modes” of selecting a suitable value are considered: nearest-neighbour, random neighbour, median, mean 
and weighted-mean (all defined over the local K-neighbourhood). 

 
The procedure for CMM-based imputation and error-localisation is as follows: 
 
Step Operation 
1 Configure the system with suitable pre-processing from external data to binary patterns 
2 Train CMM using a binary pattern representation of every data record 
3 For each record P: 
3.1  Perform a recall from CMM using binary pattern representation of P as a query 
3.2  Find the j best-matches, where j > K (since CMM matching can only approximate Euclidean-

distance based matching) 
3.3  Compute the K-NN subset from the j best-matches as follows: 
3.3.1   Retrieve values from data file for every matching neighbour record 
3.3.2   Find Euclidean distance from P to each matching neighbour record 
3.3.3   Sort the matching neighbours according to distance to find true K-NN subset 

Then either LOCALISE ERRORS: 
4 Store DKN – the distance from record P to it’s Kth neighbour (value of K is preset – see below) in a 

table T 
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5 Determine a threshold (cut-off) distance based on the user-supplied parameter SD. SD is used to help 
determine the threshold so that a distance greater than the threshold indicates an error, while a 
distance equal to, or less than the threshold indicates an acceptable record. The error-status of each 
value in an error record is computed, based on its individual contribution to the DKN value. [NOTE: 
SD specifies a required number of standard deviations in the set of DKN values for the whole dataset, 
but is used only indirectly in setting the threshold.] 

Or IMPUTE: 
6 Impute a suitable replacement for each missing value in P, using the user-selected mode. 
 
 
 
Implementation Issues 

CMM forms a central part of AURA (Advanced Uncertain Reasoning Architecture). AURA is a family of 
techniques developed at York for the construction of high-speed pattern matching systems with a wide range 
of real-world applications. AURA is currently implemented as a C++ class library for a range of platforms, 
and implementations using conventional digital hardware have been demonstrated (Austin, Kennedy, 1998).  

The AURA software library is now a mature and efficient implementation of CMM though the same is not 
true of the additional software produced during the project, which is necessarily of prototype quality only. In 
practice, this means that although fully functional, the system evaluated in the Euredit project does not 
necessarily use system resources as efficiently as one might expect from production-quality software, in 
terms of memory use and speed of computation. In addition the level of testing performed was necessarily 
limited to very basic functional tests. In summary, the core CMM routines are very efficient in speed terms 
but the overall system developed for Euredit also includes many prototype elements and so does not always 
reflect this same level of efficiency.  

The current implementation of imputation for household variables in SARS assumes that records for a given 
household are always adjacent in the input data file. Household data also appears in the GSOEP dataset but 
this is arranged differently, in a form that is not recognised by the current system. It seems unreasonable to 
invent a new method for dealing with household variables to accommodate the variations in each dataset 
encountered.  

Although the current system at York does not support edit rules directly, an indirect method of including edit 
rule failure information has been investigated. This currently assumes a particular file format for error data, 
which exploits the output of a software tool provided to the Euredit project by one of the partners (NAG). 
Basically, this tool provides a report for each of SARS, ABI and EPE datasets indicating the location of 
values that violate (so-called) hard edit rules (where there is no doubt that the value is in error). 
Unfortunately, there was insufficient time to complete this part of the system and so the results reported here 
do not use any externally derived hard error information.  

 
CMM Background 

AURA operation is different from most neural networks (though fundamental similarities remain). The 
AURA approach involves storing and comparing large numbers of features selected from the data. The core 
CMM component of AURA is based on a simple one-layer neural network that uses binary weights and 
Hebbian learning, with origins in the Learning Matrix (Steinbuch, 1961). Fundamentally, the memory 
associates an input pattern with an output pattern. For computational efficiency, a binary version of CMM is 
used that has binary weights and inputs. A threshold function known as Willshaw thresholding (Willshaw et 
al, 1969) is often used to select the best matches in the ‘raw’ CMM outputs. Details of both training and 
recalling with CMMs can be found in (Austin, 1996).  
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A CMM neural network (within the AURA framework) is used to find a smaller subset of records containing 
the K-NN, and then the K-NN rule may be applied to the subset. The subset found by a CMM always 
contains the required data, together with a few unwanted records (Turner et al, 1997). CMM can also be used 
to implement a K-nearest neighbour (K-NN) approach to finding outliers for data editing applications. Some 
related work concerning the implementation of a classifier based on K-NN using AURA technology was 
described in (Zhou et al, 1999). A detailed description of the implementation of a CMM K-NN classifier is 
given in (Zhou et al, 1999).  

To simplify the mapping of continuous variables into binary patterns, continuous values are quantised using 
Robust Uniform Encoding (RUE), which is detailed in (Zhou et al, 1999). RUE is optimal in the sense that 
the number of continuous values assigned to each bin is approximately constant for a given training set. 

An earlier smaller-scale project at University of York investigated the use of CMM methods for imputation 
under contract to Eurostat (contract reference 8223008/SUP-COM) and this is described in a Euredit report 
(Austin and O'Keefe, 1999).  
 
Additional Developments in EUREDIT 

A new method for error localisation termed DKN (“Distance to Kth Neighbour”) was devised independently 
at York but it has since been discovered that similar methods have been described by other authors, for 
example (Byers et al, 1996) and particularly (Ramaswamy et al, 2000).  The DKN method involves analysis 
of the density of data in the local neighbourhood of each point, by calculating a suitable distance metric from 
each point to its nearest neighbours, in particular noting the distance to the Kth neighbour. The rationale for 
this approach is based on the observation that points in a sparse neighbourhood will tend to have a relatively 
large distance to the Kth neighbour, so long as the choice of K is not too large. Using this approach it is 
possible to identify outlying data points in terms of their remoteness from ‘normal’ data points. The DKN 
method is still at the development stage, and details of how best to assign a probabilistic score to values 
considered potentially in error are still being investigated. Nevertheless, some results have been produced 
using CMM with the DKN method although these are probably sub-optimal.  

The system currently provides five main imputation “modes” each of which operates by selecting a suitable 
value from the set of K-NN neighbourhood records, as determined by the CMM and subsequent Euclidean 
distance calculations.  

• Nearest-neighbour mode simply replaces each missing value using the corresponding value copied 
from the neighbour that is nearest in terms of Euclidean distance.  

• Random-neighbour mode simply replaces each missing value using the corresponding value copied 
from a neighbour selected at random in the K-NN neighbourhood.  

• Mean mode replaces each missing value using the corresponding mean value computed over the K-
NN neighbourhood.  

• Weighted-mean mode replaces each missing value using the corresponding value of the Euclidean 
distance weighted-mean, computed over the K-NN neighbourhood. This gives greater weight to 
values belonging to closer neighbours.  

• Median mode replaces each missing value using the corresponding median value computed over the 
K-NN neighbourhood. 

 

A special method was devised to ensure household variables were imputed properly for the SARS dataset. 
These variables are imputed in such a way as to maintain the same value for each member of the household 
as follows:  
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• “parent” and “dependents” relationships are defined in the specification file 

• store the first record in each household and impute any missing values  

• additional records from same household inherit household values from the first record 

The current implementation of this method requires that records for a given household are always adjacent in 
the input data file. 

A modified calculation of distance was introduced as an option by the setting of a flag in the specification 
file. The modified calculation is appropriate when a mix of continuous and categorical variables is present in 
each data record, and treats all categorical variables as a single “pseudo variable” whose value ranges 
between 0.0 when every pair of categorical variables between the two records matches, and 1.0 when all 
categorical variables between the two records are different. Indications suggest that this modified distance 
gives a better ranking of near-neighbours than the standard distance calculation resulting in better overall 
system performance. 

For all Euredit datasets, the CMM-based edit and imputation process is essentially the same. Where 
available, metadata is used to describe each variable in the dataset in terms of type and, in the case of 
categorical and ordinal types, the possible values allowed for that variable. When metadata is not available, 
another application (e.g. a spreadsheet) can be used to quickly examine the range of possible values for each 
variable. The description of each variable plus a small number of other dataset parameters and files names is 
stored (using a particular text format) in a specification file. The flags and values entered in this file control 
the whole edit or imputation process.  
 
The DKN method used for error localisation can be illustrated as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Example illustrating the DKN method of error localisation 

The figure above shows a simple example of the DKN approach applied to a set of points in a 2D plane. In 
this example, the value of K is set at 4. In other words, we are interested in finding the distance to the 4th 
nearest neighbour of each point. For simplicity, we choose just three points P, Q, and R, to illustrate the 
approach.  

Point P has its 4th nearest neighbour at distance P4, point Q has its 4th nearest neighbour at distance Q4, 
while point R has its 4th nearest neighbour at distance R4. Choosing a standard Euclidean metric would 
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result in the ranking R4 > Q4 > P4. The inference that could be drawn from this is that point R is more likely 
to be in a sparse region of the data space and, ultimately, more likely to be a remote or outlying data point. 
Although the choice of K is clearly important, in general, it is not critical. In this example, if K=3 had been 
chosen, the approach would not identify point R so clearly as an outlier, since the 3rd neighbour of point R is 
probably at a distance similar to that of the 3rd neighbour of many other points in the figure. However, 
choosing K=5 would (as with K=4) result in a decision that R is a more likely outlier candidate.  

 
Setting up the system and usability issues 

In working towards the objective of automatic edit and imputation, the York system has been developed as 
much as possible with the aim of minimising effort, skill, and knowledge on the part of an end-user, with all 
the important system parameters having suitable default values. This is seen as a particular strength of the 
York system.  

The Euredit experiments at York use a combination of an existing CMM software library and some specially 
developed software, to provide a prototype imputation and error localisation application. This application is a 
simple command-line program. This command line program is controlled by a number of settings in a simple 
text file. Preparation for a new dataset involves using a simple Java-based GUI to set the values in the text 
file appropriate to the new dataset. The program analyses the specified input data file containing errors and 
missing values, including basic checks for range errors against the acceptable values defined in the text file.  
The program produces either an output file with missing values imputed (in imputation mode) or a file where 
detected error values have been replaced by missing values for imputation (in error localisation mode).  

No particular data analysis is required, but certain basic dataset parameters must be set, as follows: 

• choice of either error localisation or imputation processing (but not both in a single task) 

• name of input data file containing errors and/or missing values 

• name of output data file to contain imputed version of input file, or errors replaced by missing values 

• total number of variables present in the dataset 

• total number of records (i.e. physical text lines) in the dataset 

• whether a header line is present in the data file 

• identification of the type for each variable (continuous, discrete ordinal, categorical, text, or 
“ignore”) 

Some other values can be changed by the user (if required), but default values are determined by the system, 
which normally provide good performance. For imputation, a choice of donor and modelling modes is also 
available to the user, but normally only two of these modes are recommended for best results: weighted 
mean or median. The median mode is recommended when greater robustness against the effect of outliers is 
desired.  

For error localisation, some judgement is needed when setting an additional parameter K. The value of K 
represents the number of neighbouring data points to be considered by the system when identifying errors. 
The best choice for K should be a value greater than the size of the largest error cluster and less than size of 
the smallest non-error cluster (assuming the data is clustered to some extent). Information about such cluster 
sizes is rarely available in practice, but fortunately the precise value is not critical. Generally the value of K 
will be small, and values of 10 and 20 have been found to give reasonable results with Euredit datasets.  

These preparation steps can be achieved fairly quickly but the actual time will depend on features of the 
dataset (particularly the number of variables). In Euredit, the preparation time was typically found to be 30 to 
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40 minutes. It would naturally take more time for a new user on the first few attempts, but special knowledge 
is not required.  The screenshot below shows the GUI used for setting the dataset parameters described 
above. 

 

 

 

 

 

 

 

 

 

 

 
2.2 Evaluation 

This section describes the experimental details and results for each dataset used. Comparative results are 
provided wherever possible, for the CMM experiments and the so-called “standard methods” evaluated in 
Euredit. The remainder of this section is organised by considering results for each dataset, in turn, followed 
by an assessment of the strengths and weaknesses of the CMM approach.  

General note on timings: some tables show times for ‘set up’ and ‘run time’ although the basis on which 
these times is derived is not completely objective, particularly for the ‘set up’ phase, where there is no 
consensus (in the Euredit project) on what activities this should include. ‘Set up’ times for CMM always 
assume a “cold start”, in other words given a new dataset, the time needed to prepare the text file which 
controls the CMM software for the imputation or error localisation process, using system default settings for 
most parameters (see previous section). It is emphasised that detailed or statistical analysis of the data is not 
necessary. For CMM all ‘run time’ figures are for complete end-to-end processing, including training of the 
neural network.  

General note on settings: for all imputation experiments the value of K is selected automatically by the 
system, using an empirically determined heuristic equal to 0.6 of the square root of the number of records in 
the dataset, rounded to the nearest integer. Since the overall ‘run time’ increases according to the number of 
neighbours selected and the number of records requiring imputation, an upper limit of 50 was imposed on the 
value of K for the (larger) SARS dataset.  
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Dataset: ABI Y3 

Technical Summary 
Method:    CMM (plus DKN method) 
Training data set:   sec198(y3).csv 
Hardware used:   MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory in MB: 
512 MB 

Additional software used:  none 
Test scope:     Editing (error localisation) only. 

Edit Criteria  

As described previously, outliers are identified in terms of the size of a metric (DKN), and larger values for 
DKN are considered more likely to indicate outlyingness. Error localisation criteria are specified in terms of 
two parameters: K and SD. K specifies the number of the neighbour whose distance is calculated in the 
CMM (DKN) procedure. SD serves the function of a threshold and is specified in terms of a number of 
standard deviations in the distance measures calculated for each record to it’s Kth neighbour. 

All variables were considered as potentially in error except for simple record identifiers. The error 
localisation approach used was the CMM (DKN) method as described in section 2.1. No logical checks were 
performed other than simple range checks where range information was available. No edit rules were used. 
Of the 6,233 records in the input file, experiment YA30004 rejected 695 records comprising a total of 9,633 
rejected values. Experiment YA30008 rejected 712 records comprising a total of 10,128 rejected values. 

Edit Training 

Essentially, training for edit (error localisation) is exactly the same as for imputation. The difference in 
processing occurs later, when the trained network is used to identify similar records. 

Results 

Table 5.1 below summarises the experimental results reported in this section, where indicative timings are 
shown.  

Table 5.1 Experiment reference information for ABI Y3 data 

Experiment Method Setup (minutes) Run Time (s) Other (s) Total Time (s) 
YA30004 CMM DKN (1) 

(K=10, SD = – 0.1) 
30 33 30 1863 

YA30008 CMM DKN (2) 
(K=20, SD = – 0.1) 

30 33 30 1863 

 IA30001 GEIS 120 22006   29206 

Figures 5.2 to 5.8 show the performance for two versions of the CMM DKN method (with different values of 
the parameter K), and the GEIS method. Results are shown in terms of case-level, and alpha and beta 
measures for each of the variables of primary interest: TURNOVER, EMPTOTC, PURTOT, TAXTOT, 
ASSACQ, and ASSDISP.  
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ABI Case-level performance
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Figure 5.2 Case-level performance for ABI Y3 data 

Figure 5.2 shows case-level performance, with GEIS slightly better in terms of measure A (failure to identify 
records with errors), and the two CMM experiments slightly better in terms of measure B (wrongly 
classifying correct records as having errors). Actual case-level values (rounded) are shown in Table 5.2 
below.  

 

Table 5.2 Case-level results for ABI Y3 data 

 CMM DKN (1) CMM DKN (2) GEIS
G     0.021 0.021 0.022
A     0.873 0.871 0.487
B     0.106 0.109 0.121
C     0.320 0.322 0.224

 

CMM results for these two experiments are very similar in case level performance. All three methods are 
similar in terms of G, the Gini index, although just slightly better for the CMM experiments. The CMM 
experiments are better than GEIS in terms of B, whereas GEIS is better in terms of A and C.  
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ABI TURNOVER
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Figure 5.3 alpha-beta performance for ABI Y3 data: TURNOVER 

In Figure 5.3 GEIS achieves rather smaller values for beta and slightly smaller alpha, compared with CMM. 
Table 5.3 confirms that GEIS performs better than CMM for this variable in terms of alpha, beta, and delta. 
However CMM seems better in terms of all the other performance measures in Table 5.3.  

Table 5.3 Results for ABI Y3 data: TURNOVER 

 CMM DKN (1) CMM DKN (2) GEIS
alpha 0.849 0.849 0.622
beta  0.102 0.105 0.017
delta 0.166 0.169 0.069
RAE   6.806 7.061 21.143
RRASE 0.178 0.301 11.043
RER   9,696 51,777 2,005,507
tj 8.63 8.43 157.41
AREm1 7.07 7.36 22.50
AREm2 1.8 7.1 10,480.0
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ABI EMPTOTC
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Figure 5.4 alpha-beta performance for ABI Y3 data: EMPTOTC 

Figure 5.4 shows alpha-beta performance for variable EMPTOTC. The standard method GEIS has a beta 
score close to zero and is also a little better than CMM in terms of alpha. Table 5.4 gives more detail on the 
results. GEIS is better for alpha, beta and delta scores but the CMM experiments are better for all other 
measures.  

 

Table 5.4 Results for ABI Y3 data: EMPTOTC 

 CMM DKN (1) CMM DKN (2) GEIS
alpha 0.856 0.855 0.669
beta  0.090 0.095 0.001
delta 0.164 0.168 0.065
RAE   7.71 7.77 36.69
RRASE 0.20 0.24 21.00
RER   3,783 21,182 3,026,855
tj 8.14 8.13 294.42
AREm1 7.94 8.05 38.12
AREm2 3.17 5.00 43,572.02
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ABI PURTOT
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Figure 5.5 alpha-beta performance for ABI Y3 data: PURTOT 

Figure 5.5 shows alpha-beta performance for variable PURTOT. The standard method GEIS has a better beta 
score than CMM experiments and is slightly better than CMM in terms of alpha. Table 5.5 gives more detail 
on these results. GEIS is better for alpha, beta and delta scores but the CMM experiments are better for all 
other measures.  

 

Table 5.5 Results for ABI Y3 data: PURTOT 

 CMM DKN (1) CMM DKN (2) GEIS
alpha 0.885 0.884 0.830
beta  0.105 0.107 0.016
delta 0.221 0.222 0.137
RAE   9.96 10.25 23.81
RRASE 0.25 0.37 9.21
RER   12,654 61,459 1,686,835
tj 7.39 7.41 171.68
AREm1 10.54 10.86 24.91
AREm2 4.40 10.35 6,724.03
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ABI TAXTOT
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Figure 5.6 alpha-beta performance for ABI Y3 data: TAXTOT 

Figure 5.6 shows alpha-beta performance for variable TAXTOT. The standard method GEIS is slightly 
better than the CMM results in both alpha and beta scores. Table 5.6 gives more detail on these results. GEIS 
is better for alpha, beta and delta scores but the CMM experiments are better for all other measures.  

 

Table 5.6 Results for ABI Y3 data: TAXTOT 

 CMM DKN (1) CMM DKN (2) GEIS
alpha 0.862 0.859 0.733
beta  0.084 0.090 0.060
delta 0.176 0.181 0.141
RAE   19.150 19.269 28.751
RRASE 0.938 0.945 10.625
RER   150,546 150,546 1,894,894
tj 6.3 6.4 272.3
AREm1 20.3 20.5 32.6
AREm2 125 127 16,919
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ABI ASSACQ

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0.0 0.2 0.4 0.6 0.8 1.0

alpha

be
ta

CMM DKN (1)
CMM DKN (2)
GEIS

Figure 5.7 alpha-beta performance for ABI Y3 data: ASSACQ 

Figure 5.7 shows alpha-beta performance for variable ASSACQ. The standard method GEIS is close to zero 
for beta, but the CMM results are slightly better in alpha scores. Table 5.7 gives more detail on these results. 
GEIS is better for beta and delta scores but the CMM experiments are better for alpha and all other measures.  

 

Table 5.7 Results for ABI Y3 data: ASSACQ 

 CMM DKN (1) CMM DKN (2) GEIS
alpha 0.776 0.763 0.904
beta  0.068 0.075 0.001
delta 0.102 0.110 0.069
RAE   10.322 10.360 39.60
RRASE 0.549 0.552 19.53
RER   20,876 20,876 5,374,471
tj 2.60 2.61 201.41
AREm1 10.97 11.07 40.32
AREm2 14.13 14.39 15,059.93
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ABI ASSDISP
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Figure 5.8 alpha-beta performance for ABI Y3 data: ASSDISP 

 

Figure 5.8 shows alpha-beta performance for the variable ASSDISP. In this case, the CMM-based 
experiments perform better than GEIS in terms of the alpha score, although the GEIS score is virtually zero 
for beta and is somewhat better than the CMM score. Table 5.8 provides more detail, where it can be seen 
that for delta, GEIS also scores slightly better than the CMM experiments. For all other measures CMM 
experiments have much better scores.  

Table 5.8 Results for ABI Y3 data: ASSDISP 

 CMM DKN (1) CMM DKN (2) GEIS
alpha 0.710 0.710 0.949
beta  0.050 0.056 0.000
delta 0.070 .070 0.0770.077 0.0570.057
RAE   RAE   17.19 17.19 24.4424.44 105.27105.27
RRASE RRASE 1.87 1.87 2.842.84 38.9138.91
RER   RER   213,458 213,458 259,744259,744 1,063,6771,063,677
tj tj 2.4 2.4 2.42.4 112.8112.8
AREm1 AREm1 18.30 18.30 26.3526.35 106.51106.51
AREm2 AREm2 55.94 55.94 130.24130.24 2,560.332,560.33

 

In summary the results for TURNOVER and EMPTOTC (Figures 5.3 and 5.4) show CMM is performing 
less well than the other methods for alpha, beta and delta scores, but better for the other criteria. CMM 
performs relatively better for ASSDISP, ASSACQ, also to a lesser extent for TAXTOT and PURTOT. The 
performance of the two CMM experiments is similar in most cases, tending to confirm a trend observed 
during development that the performance of the DKN method is relatively insensitive to minor changes in 
the parameter K (the number of neighbours).  

 

 

H:\AAApcfiles\Euredit\WP 6\CMM Chapter Final v2a.doc   Page 18 of 46 
Ken Lees:  01/05/03  17:07  



Office for National Statistics EUREDIT Project  -- D6.1 Chapter 5  

Dataset: ABI Y2 

Technical Summary 
Method:  CMM  
Training data set:  sec198(y2).csv  
Hardware used:  MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory in MB: 
512 MB 

Additional software used:  none 
Test scope:   Imputation only 

Imputation 
The CMM-based imputation method implemented in Euredit follows the simple strategy of attempting to 
impute all missing values found in a file. The results reported in this section are based on the Y2 version of 
the dataset, which contains missing values but not errors.   

Of the five CMM imputation “modes” available, the two overall best performing experiments described here 
use median (shown as MDN in graphs) and weighted mean (shown as MDN in graphs). The median method 
of imputation determines the local median value by considering only the K neighbouring records of the 
record with a missing value, as described in section 2.1. This value is used as a donor value. This may be 
regarded as a donor method of imputation. The value of K is selected automatically by the system, as a 
function of the number of records in the dataset. The weighted mean method of imputation estimates a 
Euclidean distance-weighted mean value to be imputed by considering only the K neighbouring records of 
the record with a missing value, as described in section 2.1. This may be regarded as a modelling method of 
imputation, where the local Euclidean-distance weighted mean is computed over the local neighbourhood.  
 

Results 

Table 5.9 below shows reference details for experiments discussed in this section and compares times for the 
systems that produced these results.  

 
 
 
Table 5.9: Experiment reference information for ABI Y2 data 
 
Experiment Method Setup (minutes) Run Time (s) Other (s) Total Time (s)
YA20005 CMM median 30 44   1844
YA20004 CMM weighted mean 30 48  1848
OA20001 DIS 120 60 60 7320
IA20001 GEIS 100 3060   9060
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Table 5.10 Results for ABI Y2 data: TURNOVER 

 CMM WMN CMM MDN GEIS (1) DIS
Slope 1.14 1.21 1.12 0.40
t-val 3,944 85 3,281 -15,878
mse   3.48E+08 239.00E+08 0.16E+08 5.53E+08
R^2   0.99 0.73 1.00 0.98
dL1   256 666 161 1,114
dL2   5,185 27,307 3,339 47,507
dLinf 9,509 64,527 7,829 113,389
K-S   0.067 0.097 0.058 0.141
K-S_1 0.00025 0.00009 0.00029 0.00013
K-S_2 0 0.000001 0 0
m_1   103 594 62 860
m_2   2.55E+08 9.97E+08 2.00E+08 52.40E+08
MSE 19,005 19,047 19,010 20,149
AREm1 0.0018 0.0018 0.0018 0.0018
AREm2 0.014 0.014 0.014 0.014

Table 5.10 shows imputation results for the variable TURNOVER. The standard method GEIS appears to 
perform best overall for this variable, but is perhaps only slightly better than CMM weighted mean. Both 
CMM techniques seem to perform better than DIS. 

 

Table 5.11 Results for ABI Y2 data: EMPTOTC 

 CMM WMN CMM MDN GEIS (1) DIS
Slope 0.81 1.13 1.00 0.89
t-val -305.7 170.8 -1.4 -27.0
mse   169,144 165,673 78,667 255,096
R^2   0.963 0.965 0.982 0.966
dL1   18.6 16.8 16.0 26.1
dL2   120 68 47 67
dLinf 162 147 122 216
K-S   0.221 0.182 0.144 0.123
K-S_1 0.00064 0.00082 0.00024 0.00055
K-S_2 0.000019 0.000034 0.000007 0.000021
m_1   0.71 10.25 0.21 5.24
m_2   73,814 18,289 3,691 18,435
MSE 201.7 201.6 201.1 201.5
AREm1 0.0125 0.0125 0.0125 0.0125
AREm2 0.02 0.02 0.02 0.02

Table 5.11 shows imputation results for the variable EMPTOTC. Here again, the standard method GEIS 
appears to perform best overall for this variable. DIS and CMM median are fairly similar in performance. 
CMM weighted mean shows least good performance of the four experiments considered for EMPTOTC, but 
is not significantly different from the other results.  
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Table 5.12 Results for ABI Y2 data: PURTOT 

 CMM WMN CMM MDN GEIS (1) DIS
Slope 1.23 1.34  0.97
t-val 105 113  -259
mse   5.83E+08 9.22E+08  1.28E+08
R^2   0.913 0.903  0.978
dL1   158.8 182.4 5.7 70.5
dL2   4578 5636 32 1648
dLinf 9,338 11,117 199 3,648
K-S   0.115 0.116 0.028 0.082
K-S_1 0.00019 0.00023 0.00001 0.00021
K-S_2 0.000001 0.000003 0 0.000001
m_1   96.00 148.19 1.27 19.34
m_2   52,757,076 61,113,941 362,708 18,408,069
MSE 10,567 10,569 10,354 10,553
AREm1 0.012 0.012 0.012 0.012
AREm2 0.025 0.025 0.025 0.025

Table 5.12 shows imputation results for the variable PURTOT. Here, some key measures for the standard 
method GEIS are not reported by the evaluation system. However, for the measures actually reported, GEIS 
appears to perform best overall for this variable by a significant margin. DIS is generally slightly better than 
the CMM imputation methods. For CMM, the weighted mean experiment performs slightly better than the 
median.  

 

Table 5.13 Results for ABI Y2 data: TAXTOT 

 CMM WMN CMM MDN GEIS (1) DIS
Slope 0.74 1.04 0.82 0.51
t-val -243 9 -41 -1736
mse   39,180 22,010 20,826 28,766
R^2   0.908 0.936 0.946 0.900
dL1   4.8 4.1 5.3 8.0
dL2   28 27 21 97
dLinf 65 45 53 191
K-S   0.189 0.081 0.130 0.096
K-S_1 0.000569 0.00052 0.000419 0.000413
K-S_2 0.000033 0.000007 0.000019 0.000007
m_1   1.39 1.40 1.22 3.54
m_2   90 2,844 190 23,916
MSE 2.999 2.994 2.995 3.010
AREm1 0.0102 0.0102 0.0102 0.0102
AREm2 0.0198 0.0198 0.0198 0.0198

Table 5.13 shows imputation results for the variable TAXTOT. CMM median and GEIS tend to have best 
performance overall and are comparable. CMM weighted mean and DIS perform slightly worse but none is 
particularly bad and their performance is often complementary.  
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Table 5.14 Results for ABI Y2 data: ASSACQ 

 CMM WMN CMM MDN GEIS (1) DIS
Slope 1.91 13.63 1.25 1.25
t-val 12,900 28,168 22,560 11,988
mse   19,241,367 1.01E+09 3,068,957 41,250,330
R^2   0.995 0.812 0.999 0.988
dL1   206 157 46 66
dL2   6,152 8,050 1,685 2,008
dLinf 15,956 23,297 4,773 5,261
K-S   0.235 0.352 0.194 0.103
K-S_1 0.000214 0.000072 0.000163 0.000231
K-S_2 0.000001 0.000001 0 0
m_1   189.7 155.0 33.3 29.1
m_2   1.18E+08 68,412,153 24,563,481 31,254,264
MSE 43.90 57.23 44.53 44.25
AREm1 0.106 0.106 0.106 0.106
AREm2 0.286 0.286 0.286 0.286

Table 5.14 shows imputation results for the variable ASSACQ. Here GEIS performs best overall, but all 
methods perform well for this variable, and the variation in results does not seem large in most cases. 

 

Table 5.15 Results for ABI Y2 data: ASSDISP 

 CMM WMN CMM MDN GEIS (1) DIS
Slope 1.76    
t-val 26.51    
mse   520,682    
R^2   0.922    
dL1   30.68 5.21 67.70 5.42
dL2   318 165 3,998 128
dLinf 708 377 9,877 273
K-S   0.197 0.214 0.058 0.058
K-S_1 0.00130 0.00022 0.00001 0.00024
K-S_2 0.00003 0.000016 0 0.000001
m_1   13.6 5.1 64.0 2.8
m_2   206,406 29,440 17,231,916 61,616
MSE 3.1 3.1 8.6 3.1
AREm1 0.0047 0.0047 0.0047 0.0047
AREm2 0.024 0.024 0.024 0.024

Table 5.15 shows imputation results for the variable ASSDISP. The evaluation measures for three of the 
experiments have not been fully reported by the evaluation software. However, for the measures reported 
DIS and CMM median seem generally similar and are best overall. CMM weighted mean is better than GEIS 
for dL1, dL2, dLinf, m_1, m_2, and MSE measures, but GEIS is better for K-S, K-S_1, and K-S_2.   

In summary, the standard method GEIS tends to perform better than the two CMM experiments for this 
dataset, although CMM is sometimes better than DIS. It is generally difficult to judge which methods are 
performing best, because they are often complimentary. The CMM methods seem easier and faster to set up, 
and provide faster processing of the data.  
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Dataset: EPE Y3 

Technical Summary 
Method:   CMM (in “edit” mode using DKN method) 
Training data set:   epe93na(y3).csv 
Hardware used:   MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory:    512 
MB 

Additional software used:  none 
Test scope:   Editing (error localisation) only. 

Edit Criteria  
All variables were considered as potentially in error except for the first value in each record, which is the 
record identifier. The error localisation approach used was the CMM(DKN) method as described in section 
2.1. Error localisation criteria are specified in terms of two parameters: K and SD. K specifies the number of 
the neighbour whose distance is calculated in the CMM(DKN) procedure. SD serves the function of a 
threshold and is specified in terms of a number of standard deviations in the distance measures calculated for 
each record to it’s Kth neighbour. As described previously, outlier errors are identified in terms of the size of 
a metric (DKN), and larger values for DKN are considered more likely to indicate outlyingness. The method 
is capable of dealing with small as well as large outliers, since these are differentiated only in terms of 
degree of outlyingness by the method.  

 

Results 
EPE Y3 Data Edit (Error Localisation) 

Table 5.16 below summarises the experimental results reported for this dataset. Unfortunately, comparative 
results for standard methods are not available for this dataset, so only CMM experiments are reported. Once 
again, indicative timings are shown, but the set up times are not completely objective, as there is no 
consensus on what activities this should include. For CMM, all run times are for complete end-to-end 
processing, including training of the neural network. Set up times for CMM always assume a “cold start”. In 
other words given a new dataset, the time needed to prepare the text file which controls the error localisation 
process using system default settings for most parameters. 

 
Table 5.16 Experiment reference information for EPE Y3 data 

Experiment Method Setup 
(minutes) 

Run Time 
(s) 

Other (s) Total 
Time (s) 

YE30004 CMM DKN (1): DKN only  
(K=10, SD = – 0.1) 

35 15 15 2130

YE30008 CMM DKN (2): DKN only  
(K=20, SD = – 0.1) 

35 29 15 2144

Figures 5.9 to 5.13 show case-level and alpha-beta performance for two CMM DKN experiments with 
different values of the parameter K. Results are shown for each of the variables of primary interest: 
TOTINVTO, TOTEXPTO, SUBTOT, and RECTOT. Tables 5.17 to 5.21 provide more detailed results for 
these experiments.   
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EPE Case-level performance
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Figure 5.9 Case-level performance for EPE Y3 data 

Figure 5.9 shows case-level performance. The two CMM experiments are virtually identical in case-level 
performance and the actual values (rounded) are shown in Table 5.17 below.  

 

Table 5.17 Case-level results for EPE Y3 data 

 CMM DKN (1) CMM DKN (2)
G     0.017 0.017
A     0.855 0.855
B     0.687 0.687
C     0.793 0.793
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EPE: TOTINVTO
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Figure 5.10 alpha-beta performance for EPE Y3 data: TOTINVTO 

In Figure 5.10 the two CMM experiments have identical performance for the variable TOTINVTO, and this 
is confirmed in Table 5.18.  

 

Table 5.18 Results for EPE Y3 data: TOTINVTO 

 CMM DKN (1) CMM DKN (2)
alpha 0.167 0.167
beta  0.223 0.224
delta  0.222 0.222 0.2230.223
RAE   RAE   0.004 0.004 0.0040.004
RRASE RRASE 0.003 0.003 0.0030.003
RER   RER   27 27 2727
tj tj 1.12 1.12 1.121.12
AREm1 AREm1 0.525 0.525 0.5260.526
AREm2 AREm2 0.869 0.869 0.8690.869
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EPE: TOTEXPTO
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Figure 5.11 alpha-beta performance for EPE Y3 data: TOTEXPTO 

In Figure 5.11 the two CMM experiments have identical performance for the variable TOTEXPTO, and this 
is confirmed in Table 5.19 with only slight differences in AREm1 and AREm2. 

 

Table 5.19 Results for EPE Y3 data: TOTEXPTO 

 CMM DKN (1) CMM DKN (2)
alpha 0.5 0.5
beta  0.176 0.176
delta 0.182 0.1820.182
RAE   RAE   -0.0047 -0.0047 -0.0047-0.0047
RRASE RRASE 0.0012 0.0012 0.00120.0012
RER   RER   3.545 3.545 3.5453.545
tj tj -1.062 -1.062 -1.062-1.062
AREm1 AREm1 0.324 0.324 0.3350.335
AREm2 AREm2 0.553 0.553 0.5620.562
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EPE: SUBTOT

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0

alpha

be
ta CMM DKN (1)

CMM DKN (2)

Figure 5.12 alpha-beta performance for EPE Y3 data: SUBTOT 

In Figure 5.12 the two CMM experiments have identical performance for the variable SUBTOT, which is 
also confirmed in Table 5.20.  

 

Table 5.20 Results for EPE Y3 data: SUBTOT 

 CMM DKN (1) CMM DKN (2)
alpha 0 0
beta  0.0125 0.0125
delta 0.0125 0.0125
RAE   0 0
RRASE 0 0
AREm1 0.890 0.890
AREm2 0.930 0.930
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EPE: RECTOT
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Figure 5.13 alpha-beta performance for EPE Y3 data: RECTOT 

In Figure 5.13 the two CMM experiments have identical performance for the variable RECTOT, and this is 
confirmed in Table 5.21 apart from slight differences in AREm1 and AREm2.  

 

Table 5.21 Results for EPE Y3 data: RECTOT 

 CMM DKN (1) CMM DKN (2)
alpha 0 0
beta  0.081 0.079
delta 0.081 0.079
RAE   0 0
RRASE 0 0
AREm1 0.6220 0.6218
AREm2 0.7192 0.7191

 

In summary, the performance of these two CMM experiments is virtually indistinguishable. This is of 
interest because it tends to confirm the result observed with the ABI Y3 experiments (and also observed 
during development) that the performance of the DKN method is relatively insensitive to minor changes in 
the parameter K (the number of neighbours). As with the ABI Y3 experiments, the two values of K chosen 
were 10 and 20. A greater range of experiments is needed to verify the extent to which this is a general 
result.  
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Dataset: EPE Y2 

Technical Summary 
Method:  CMM  
Training data set:  epe93na(y2).csv 
Hardware used:  MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory in MB: 
512 MB 

Additional software used:  none 
Test scope:   Imputation only 

Imputation 

The CMM-based imputation method implemented in Euredit follows the simple strategy of attempting to 
impute all missing values found in a file. The results reported in this section are based on the Y2 version of 
the dataset, which contains missing values but not errors. 

As with the ABI Y2 dataset, of the five CMM imputation “modes” available, the two experiments described 
here use median (shown as MDN in graphs) and weighted mean (shown as MDN in graphs). The median 
mode determines the local median value by considering only the K neighbouring records of the record with a 
missing value, as described in section 2.1. This value is used as a donor value, and this may be regarded as a 
donor method of imputation. The weighted mean method of imputation estimates a Euclidean distance-
weighted mean value to be imputed by considering only the K neighbouring records of the record with a 
missing value, as described in section 2.1. This may be regarded as a modelling method of imputation, where 
the local Euclidean-distance weighted mean is computed over the local neighbourhood.  
 

Results 
 
Table 5.22 provides reference details and timings for the experiments considered.  
 
 
 
Table 5.22 Experiment reference information for EPE Y2 data 
 
Experiment Method Setup 

(minutes) 
Run 
Time (s) 

Other (s) Total 
Time (s) 

YE20004 CMM weighted mean 30 8  1808
YE20005 CMM median 30 16  1816
OE20001 DIS 180 60 60 10920
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Table 5.23 shows imputation results for the variable TOTINVTO. CMM weighted mean appears to perform 
best overall for this variable, although none of the methods performs particularly well. Both CMM 
techniques seem to perform better than DIS except for m_1, m_2, and MSE.  
 

Table 5.23 Results for EPE Y2 data: TOTINVTO 

 CMM WMN CMM MDN DIS
Slope 1.25 3.86 0.26
t-val 4.25 21.48 -41.14
mse   996,388 956,804 1,106,955
R^2   0.117 0.162 0.040
dL1   100 102 127
dL2   289 300 324
dLinf 670 693 1271
K-S   0.450 0.597 0.646
K-S_1 0.017 0.022 0.012
K-S_2 0.0023 0.0049 0.0024
m_1   77.62 102.03 50.77
m_2   89,442 95,855 59,022
MSE 117 133 106
AREm1 0.096 0.096 0.096
AREm2 0.016 0.016 0.016

 

Table 5.24 below shows imputation results for the variable TOTEXPTO. The standard method DIS performs 
best overall for this variable, although the difference in performance between experiments is not large. CMM 
weighted mean is the slightly better of the two CMM methods tested here. 

Table 5.24 Results for EPE Y2 data: TOTEXPTO 

 CMM WMN CMM MDN DIS
Slope 1.01 3.91 0.84
t-val 1.04 64.08 -24.96
mse   603,250 626,239 206,832
R^2   0.460 0.396 0.884
dL1   50 65 39
dL2   239 283 118
dLinf 1,677 1,944 1,327
K-S   0.447 0.550 0.168
K-S_1 0.0047 0.0088 0.0037
K-S_2 0.0007 0.0018 0.0001
m_1   38.16 65.12 4.23
m_2   78,827 90,300 40,644
MSE 47.63 78.03 34.12
AREm1 0.186 0.186 0.186
AREm2 0.190 0.190 0.190
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Table 5.25 below shows imputation results for the variable SUBTOT. The standard method DIS and CMM 
weighted mean seem to have identical performance for this variable in terms of the reported evaluation 
measures. Unfortunately, most measures for the CMM median method were not reported by the evaluation 
system, but this method performs better than the others for MSE, AREm1, and AREm2.  

Table 5.25 Results for EPE Y2 data: SUBTOT 

 CMM WMN CMM MDN DIS
dL1   1.44  1.44
dL2   2.08  2.08
dLinf 2.88  2.88
K-S   0.48  0.48
K-S_1 0.48  0.48
K-S_2 0.23  0.23
m_1   1.44  1.44
m_2   4.32  4.32
MSE 0.0102 0.0002 0.0102
AREm1 0.0010 0 0.0010
AREm2 0.0002 0 0.0002

 

Table 5.26 below shows imputation results for the variable RECTOT. The standard method DIS and CMM 
weighted mean again seem to have identical performance for this variable, in terms of the limited set of 
reported evaluation measures. The CMM median method performs less well than the others for most of the 
available results. 

Table 5.26 Results for EPE Y2 data: RECTOT 

 CMM WMN CMM MDN DIS
Slope   50  
t-val   29.5  
mse     14,088  
R^2     0.024  
dL1   16.82 22.59 16.82
dL2   32.66 53.77 32.66
dLinf 28.62 130.8976 28.62
K-S   1 0.97 1
K-S_1 0.083 0.056 0.083
K-S_2 0.010 0.018 0.010
m_1   16.82 22.59 16.82
m_2   1,067 2,894 1,067
MSE 0.027 0.306 0.027
AREm1 0.219 0.121 0.219
AREm2 0.106 0.046 0.106
 

In summary, it seems reasonable to judge that the CMM weighted mean experiment is slightly better than 
DIS in overall performance, and CMM weighted mean performs consistently better than the CMM median 
experiment with this dataset and for the variables considered here. It is interesting that the two different 
methods CMM and DIS produce identical results for the variables SUBTOT and RECTOT. The reason for 
this coincidence is not known.  
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Dataset: GSOEP  

Technical Summary 
Method:  CMM  
Training data set:  gsoep(m).csv 
Hardware used:  MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory in MB: 
512 MB 

Additional software used:  none 
Test scope:   Imputation only 

Results 

Table 5.27 shows reference data for the two CMM experiments and the standard method DIS experiment 
discussed in this section.  
 
 
 

Table 5.27: Experiment reference information for GSOEP Y2 data 

Experiment Method Setup Time (minutes) Run Time (s) Other (s) Total (s) 
YG20001 CMM nearest neighbour 40 561   2961
YG20004 CMM weighted mean 40 613  3013
OG20001 DIS 240 120 60 14580
 

 

Tables 5.28 through to 5.33 show imputation results for personal income for years 1991 through 1996. CMM 
median generally provides best performance for all years for measures Slope, t-val, mse, R^2, dL1, and dL2. 
CMM weighted mean generally provides best performance for all years for measures dLinf, K-S, K-S_1, K-
S_2, m_1, and m_2. Both CMM methods are generally better than DIS for personal income in each year.  
 

Table 5.28 Results for GSOEP data: INCOME91 

 CMM WMN CMM MDN DIS
Slope 0.86 0.91 0.84
t-val -20.0 -12.4 -21.1
mse   401,832,598 309,713,976 458,790,920
R^2   0.50 0.59 0.44
dL1   12,525 11,195 13,172
dL2   20,796 17,771 22,322
dLinf 213,135 174,675 249,150
K-S   0.02908 0.061721 0.020772
K-S_1 0.002683 0.010572 0.002034
K-S_2 0.000028 0.00035 0.000015
m_1   19.176 506.163 170.446
m_2   20,092,967 135,309,251 32,806,816
MSE 209,811 229,270 212,806
AREm1 0.009186 0.009186 0.009186
AREm2 0.045946 0.045946 0.045946
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Table 5.29 Results for GSOEP data: INCOME92 

 CMM WMN CMM MDN DIS
Slope 0.90 0.93 0.85
t-val -18.6 -12.8 -26.4
mse   381,285,970 325,343,326 543,518,083
R^2   0.58 0.63 0.46
dL1   11,585 10,501 13,164
dL2   19,980 18,259 25,080
dLinf 180,400 206,472 357,466
K-S   0.048 0.069 0.022
K-S_1 0.008 0.011 0.002
K-S_2 0.000188 0.000417 0.000014
m_1   40.229 501.568 178.928
m_2   66,930,385 113,146,705 212,321,990
MSE 216,289 239,480 240,515
AREm1 0.011627 0.011627 0.011627
AREm2 0.028087 0.028087 0.028087

Table 5.30 Results for GSOEP data: INCOME93 

 CMM WMN CMM MDN DIS
Slope 0.90 0.93 0.63
t-val -16.0 -11.3 -39.4
mse   420,464,830 375,216,220 940,592,280
R^2   0.59 0.63 0.20
dL1   11,882 10,557 20,716
dL2   20,624 19,322 37,505
dLinf 259,720 314,513 430,800
K-S   0.031 0.060 0.073
K-S_1 0.003 0.006 0.012
K-S_2 0.000048 0.000181 0.000488
m_1   210.24 329.23 5763.90
m_2   211,077,806 298,913,640 820,550,842
MSE 256,079 258,510 3,739,006
AREm1 0.009295 0.009295 0.009295
AREm2 0.035688 0.035688 0.035688

Table 5.31 Results for GSOEP data: INCOME94 

 CMM WMN CMM MDN DIS
Slope 0.90 0.93 0.55
t-val -17.7 -13.2 -48.3
mse   493,762,837 34,568,1827 1,123,170,417
R^2   0.53 0.64 0.13
dL1   11,932 10,705 23,405
dL2   23,222 18,953 47,698
dLinf 504,000 218,989 336,000
K-S   0.031 0.042 0.082
K-S_1 0.0024 0.0072 0.021
K-S_2 0.00003 0.00015 0.00069
m_1   56 295 7,140
m_2   98,909,186 51,693,814 1,903,221,243
MSE 300,855 298,196 5,274,514
AREm1 0.031 0.031 0.031
AREm2 0.092 0.092 0.092
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Table 5.32 Results for GSOEP data: INCOME95 

 CMM WMN CMM MDN DIS
Slope 0.93 0.96 0.63
t-val -11.48 -7.16 -35.11
mse   1,193,306,905 1,062,851,544 1,979,718,005
R^2   0.39 0.45 0.11
dL1   13,152 11,632 23,824
dL2   34,516 32,499 51,365
dLinf 1,105,722 1,084,114 1,104,788
K-S   0.047 0.038 0.070
K-S_1 0.0015 0.0020 0.0038
K-S_2 0.00003 0.00004 0.00009
m_1   2,099 1,571 4,089
m_2   1,095,096,630 1,138,478,682 325,270,887
MSE 682,443 490,634 1,958,840
AREm1 0.0176 0.0176 0.0176
AREm2 0.121 0.121 0.121
 

Table 5.33 Results for GSOEP data: INCOME96 

 CMM WMN CMM MDN DIS
Slope 0.89 0.93 0.65
t-val -19.30 -14.70 -40.72
mse   616,937,641 536,884,912 1,244,737,645
R^2   0.560 0.611 0.192
dL1   13,542 12,097 22,641
dL2   24,882 23,026 40,047
dLinf 384,000 426,990 533,200
K-S   0.029 0.054 0.076
K-S_1 0.0024 0.0053 0.0062
K-S_2 0.00003 0.00012 0.00024
m_1   1,234 706 3,065
m_2   404,398,096 488,794,478 308,617,965
MSE 430,947 322,525 1,261,773
AREm1 0.0164 0.0164 0.0164
AREm2 0.0016 0.0016 0.0016
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Tables 5.34 through to 5.39 show imputation results for household income for years 1991 through 1996. 
CMM median generally provides best performance for all years for measures Slope, t-val, mse, R^2, dL1, 
and dL2. CMM weighted mean generally provides best performance for all years for measures K-S, K-S_1, 
and K-S_2. Both CMM methods are generally better than DIS for household income in each year.  

 

Table 5.34 Results for GSOEP data: HHINCO91 

 CMM WMN CMM MDN DIS
Slope 0.78 0.89 0.78
t-val -17.54 -9.99 -14.47
mse   2,395,856,538 1,710,156,061 2,431,426,303
R^2   0.104 0.188 0.063
dL1   33,645 28,410 37,530
dL2   53,816 42,516 51,860
dLinf 538,180 266,015 595,045
K-S   0.042 0.070 0.101
K-S_1 0.0060 0.0093
K-S_2 0.00008 0.00086 0.00043
m_1   671 665 5,167
m_2   655,739,319 411,409,244 521,576,263
MSE 603,008 521,736 3,122,290
AREm1 0.0037 0.0037 0.0037
AREm2 0.0112 0.0112 0.0112

0.0194

 

Table 5.35 Results for GSOEP data: HHINCO92 

 CMM WMN CMM MDN DIS
Slope 0.80 0.88 0.70
t-val -18.10 -11.35 -23.96
mse   2,321,481,767 1,934,871,086 3,818,276,364
R^2   0.164 0.225 0.060
dL1   34,416 30,366 4,2865
dL2   50,519 44,832 70,954
dLinf 459,399 463,633 571,873
K-S   0.041 0.059 0.210
K-S_1 0.0038 0.0090 0.0222
K-S_2 0.00005 0.00033 0.00268
m_1   1,250 983 8,360
m_2   284,472,693 769,233,258 1,108,294,055
MSE 692,381 592,666 7,973,571
AREm1 0.0069 0.0069 0.0069
AREm2 0.0200 0.0200 0.0200
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Table 5.36 Results for GSOEP data: HHINCO93 

 CMM WMN CMM MDN DIS
Slope 0.85 0.94 0.73
t-val -12.78 -5.43 -18.22
mse   2,618,549,410 2,246,139,320 3,779,470,656
R^2   0.189 0.241 0.053
dL1   33,982 30,136 43,860
dL2   51,824 47,300 64,873
dLinf 706,300 679,877 698,600
K-S   0.035 0.081 0.131
K-S_1 0.0046 0.0117 0.0101
K-S_2 0.00007 0.00054 0.00064
m_1   3,734 4,115 7,575
m_2   1,449,509,777 2,091,161,753 1,133,198,575
MSE 2,021,089 2,287,736 6,570,995
AREm1 0.0088 0.0088 0.0088
AREm2 0.0297 0.0297 0.0297

 

Table 5.37 Results for GSOEP data: HHINCO94 

 CMM WMN CMM MDN DIS
Slope 0.830 0.930 0.664
t-val -14.48 -5.97 -24.13
mse   2,470,340,040 1,979,833,601 3,763,918,205
R^2   0.206 0.287 0.055
dL1   33,472 29,282 45,332
dL2   51,138 44,580 69,104
dLinf 474,304 477,936 465,500
K-S   0.050 0.078 0.165
K-S_1 0.0065 0.0142 0.0209
K-S_2 0.00014 0.00061 0.00158
m_1   3,918 4,155 5,094
m_2   858,329,298 1,541,810,260 453,128,500
MSE 2,119,383 2,261,774 3,248,047
AREm1 0.0035 0.0035 0.0035
AREm2 0.0140 0.0140 0.0140

 

In summary, CMM median provides best performance overall in terms of measures Slope, t-val, mse, R^2, 
dL1, and dL2. Conversely, CMM weighted mean provides best performance overall for measures K-S, K-
S_1, and K-S_2, and sometimes for dLinf. Both CMM experiments seem fairly consistent in outperforming 
the standard method DIS. 

H:\AAApcfiles\Euredit\WP 6\CMM Chapter Final v2a.doc   Page 36 of 46 
Ken Lees:  01/05/03  17:07  



Office for National Statistics EUREDIT Project  -- D6.1 Chapter 5  

Table 5.38 Results for GSOEP data: HHINCO95 

 CMM WMN CMM MDN DIS
Slope 0.837 0.921 0.612
t-val -13.05 -6.87 -30.28
mse   3,917,676,497 3,389,727,967 5,246,882,384
R^2   0.139 0.201 0.044
dL1   35,708 31,430 48,774
dL2   63,494 58,184 79,750
dLinf 1,210,388 1,185,277 1,210,388
K-S   0.059 0.076 0.147
K-S_1 0.0034 0.0064 0.0092
K-S_2 0.00008 0.00024 0.00060
m_1   4,319 4,389 5,114
m_2   2,436,463,373 3,031,406,074 714,368,932
MSE 2,408,895 2,431,259 3,276,923
AREm1 0.0214 0.0214 0.0214
AREm2 0.1005 0.1005 0.1005

 

Table 5.39 Results for GSOEP data: HHINCO96 

 CMM WMN CMM MDN DIS
Slope 0.834 0.935 0.617
t-val -13.64 -5.37 -28.96
mse   2,548,703,778 2,104,008,911 3,938,185,505
R^2   0.252 0.325 0.066
dL1   34,696 31,287 47,496
dL2   51,667 45,888 70,178
dLinf 408,612 424,059 532,290
K-S   0.049 0.066 0.149
K-S_1 0.0064 0.0117 0.0142
K-S_2 0.00015 0.00047 0.00104
m_1   4,100 4,312 5,042
m_2   1,057,384,582 1,761,853,557 134,894,910
MSE 2,355,800 2,494,040 3,328,161
AREm1 0.0097 0.0097 0.0097
AREm2 0.0014 0.0014 0.0014
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Dataset: DLFS  

Technical Summary 
Method:  CMM  
Training data set:  lfsn_dk2(miss).csv 
Hardware used:  MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory in MB: 
512 MB 

Additional software used:  none 
Test scope:   Imputation only 

 

Table 5.40 shows reference information for the five CMM experiments, two SOLAS experiments, and two 
DIS experiments discussed in this section. 

Table 5.40: Experiment reference and times for imputation using DLFS Y2 data 

Experiment Method Setup (minutes) Run Time (s) Other (s) Total (s)
YL20002 CMM RND (random neighbour) 30 72   1872
YL20001 CMM NN (nearest neighbour) 30 73  1873
YL20003 CMM MN (mean) 30 82  1882
YL20004 CMM WMN (weighted mean) 30 82  1882
YL20005 CMM MDN (median) 30 82  1882
DL21600 SOLAS (1) 30 600 1200 3600
DL21700 SOLAS (2) 30 600 1200 3600
OL20001 DIS (1) 60 120 60 3780
OL20002 DIS (2) 60 120 60 3780

Table 5.41 shows comparative results for each experiment for the variable INCOME (the only variable to be 
imputed for this dataset).  

Table 5.41 Results for DLFS data: INCOME 

 CMM 
NN 

CMM 
RND 

CMM 
MN 

CMM 
WMN 

CMM 
MDN 

DIS 
(1) 

DIS 
(2) 

SOLAS 
(1) 

SOLAS 
(2) 

Slope 0.832 0.773 0.886 0.886 0.946 0.807 0.834 0.743 0.846
t-val -35.19 -41.41 -28.81 -28.77 -13.89 -40.94 -32.84 -44.65 -24.17
mse   9.57E+09 11.9E+09 6.65E+09 6.65E+09 6.68E+09 10.2E+09 9.66E+09 13.1E+09 9.3E+09
R^2   0.262 0.145 0.424 0.424 0.423 0.224 0.243 0.105 0.190
dL1   62,391 74,261 48,783 48,754 45,132 64,602 63,225 78,753 66,077
dL2   102,680 117,357 81,747 81,714 81,157 107,384 102,042 124,914 97,627
dLinf 850,380 884,379 833,999 834,028 834,249 870,720 869,105 965,724 830,290
K-S   0.060 0.085 0.149 0.149 0.135 0.082 0.058 0.080 0.212
K-S_1 0.0109 0.0136 0.0261 0.0261 0.0218 0.0141 0.0116 0.0137 0.0359
K-S_2 0.0004 0.0007 0.0019 0.0019 0.0011 0.0007 0.0004 0.0006 0.0038
m_1   7,290 10,728 11,516 11,499 1,132 11,251 6,315 11,552 15,112
m_2   8.88E+08 25.4E+08 30.5E+08 30.5E+08 69.0E+08 22.9E+08 5.43E+08 36.2E+08 35.8E+08
MSE 4.9E+06 9.4E+06 10.5E+06 10.5E+06 1.0E+06 10.2E+06 3.9E+06 10.7E+06 17.3E+06
AREm1 0.0468 0.0468 0.0468 0.0468 0.0468 0.0468 0.0468 0.3661 0.3661
AREm2 0.0733 0.0733 0.0733 0.0733 0.0733 0.0733 0.0733 0.3661 0.3661
 

In summary, for measures Slope, t-val, mse, R^2, dL1 and dL2 the three CMM experiments mean, weighted 
mean and median perform best. For measures K-S_1, K-S_2 the CMM nearest neighbour experiment 
performs best. The CMM median experiment seems to stand out in terms of generally good-to-best overall 
performance.  
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Dataset: SARS  

Technical Summary 
Method:  CMM  
Training data set:  newhholdm.csv 
Hardware used:  MS Windows 2000, PC “generic” (unbranded), AMD Athlon 1.2 MHz, L1  

cache: 32 KB;  L2 cache 256 KB, Amount of system physical memory in MB: 
512 MB 

Additional software used:  none 
Test scope:   Imputation only 

Table 5.42 shows reference information for the CMM, CANCEIS/SCIA, and DIS experiments discussed in 
this section.  

Table 5.42: Reported times for imputation using SARS Y2 data 

Experiment Method Setup (minutes) Run Time (s) Other (s) Total Time (s)
YS20001 CMM weighted mean 30 43502   45302
 IS20001 CANCEIS/SCIA 2160 11539  141139
OS20001 DIS 90 345600 60 351060

 

Tables 5.43 and 5.44 show comparative results for the two continuous variables in this dataset, AGE and 
HOURS.  

For the variable AGE, Table 5.43 shows that CANCEIS/SCIA is generally performing best, although CMM 
weighted mean performance is almost as good. Performance for DIS on this variable is not as good. 

Table 5.43 Results for SARS Y2 data: AGE 

 CMM WMN DIS CANCEIS/ SCIA
Slope 0.989 0.846 0.996
t-val -13.28 -216.48 -9.90
mse   94.21 225.94 39.00
R^2   0.820 0.591 0.926
dL1   6.94 11.26 3.67
dL2   9.72 17.45 6.250
dLinf 88 95 79
K-S   0.052 0.132 0.006
K-S_1 0.0204 0.0634 0.0024
K-S_2 0.00070 0.00580 0.00001
m_1   0.025 6.020 0.171
m_2   46 594 17
MSE 0.0011 0.2302 0.0013
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For the variable HOURS, Table 5.44 below shows that CMM weighted mean is generally performing best. 
Performance for DIS and CANCEIS/SCIA on this variable is generally not as good.  

Table 5.44 Results for SARS Y2 data: HOURS 

 CMM WMN DIS CANCEIS/ SCIA
Slope 1.01 0.91 0.87
t-val 8.97 -34.19 -45.67
mse   179 600 572
R^2   0.210 0.066 0.007
dL1   8.61 16.54 16.68
dL2   13.40 24.83 24.52
dLinf 90 90 90
K-S   0.130 0.245 0.201
K-S_1 0.0404 0.1215 0.0876
K-S_2 0.0029 0.0258 0.0138
m_1   3.64 10.94 7.89
m_2   233 327 214
MSE 0.0163 0.138 0.079

 

Table 5.45 shows comparative results for the non-continuous variables in this dataset. The household 
variables are indicated by and asterisk (*) in the table, and these variables are treated differently in the CMM 
experiment during imputation so that these variables are constrained to share a common value for the 
household.  

The CMM weighted mean experiment performs better than DIS and CANCEIS/SCIA for the (non-
continuous) variables: BATH, INSIDEWC, DISTWORK, WORKPLCE, ECONPRIM, and ISCO2. 

In summary, for the continuous variables the CMM weighted mean experiment performs as well or better 
than the two standard methods considered here. For six out of the nineteen categorical variables considered 
(BATH, INSIDEWC, DISTWORK, WORKPLCE, ECONPRIM, and ISCO2), the CMM weighted mean 
experiment performs better than the two standard methods. Considering the remainder, for five variables 
(CARS, HHSPTYPE, ROOMSNUM, TENURE, and LTILL) it is better than the CANCEIS/SCIA 
experiment, and for three variables (QUALEVEL, QUALSUB, and SEX) it is better than the DIS 
experiment. Considering just the categorical variables alone, the DIS experiment tends to perform better on 
the most variables. However, considering all variables, the CMM weighted mean experiment tends to 
perform better on the most variables. 
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Table 5.45 Results for SARS Y2 non-continuous variables 

  CMM WMN DIS CANCEIS/ SCIA 
W 18 105 1175 
D 0.0005 0.0080 0.0399 BATH * 

Eps 0 0 0.03 
W 1062 34 365 
D 0.38 0.44 0.46 CENHEAT * 

Eps 0.370 0.434 0.456 
W 23 82 990 
D 0.001 0.007 0.041 INSIDEWC * 

Eps 0 0 0.03 
W 924 316 1671 
D 0.49 0.56 0.61 CARS * 

Eps 0.482 0.558 0.608 
W 1,730 966 5,499 
D 0.589 0.708 0.731 HHSPTYPE * 

Eps 0.581 0.702 0.725 
W 1,559 932 5,721 
D 0.701 0.786 0.808 ROOMSNUM * 

Eps 0.695 0.781 0.803 
W 4,940 1,758 4,980 
D 0.545 0.624 0.671 TENURE * 

Eps 0.537 0.616 0.664 
W 6,883 48 698 
D 0.422 0.370 0.211 COBIRTH 

Eps 0.415 0.362 0.202 
W 571 3,203 1,724 
D 0.683 0.829 0.819 DISTWORK 

Eps 0.668 0.822 0.811 
W 355 288 1,577 
D 0.128 0.176 0.136 LTILL 

Eps 0.118 0.167 0.126 
W 3,705 920 40 
D 0.290 0.321 0.160 MSTATUS 

Eps 0 0 0 
W 1017.6 9.6 285.9 
D 0.140 0.171 0.049 QUALNUM 

Eps 0.129 0.161 0.037 
W 337 2,494 121 
D 0.534 0.903 0.524 QUALEVEL 

Eps 0.503 0.891 0.500 
W 1,474 2,535 579 
D 0.929 0.985 0.944 QUALSUB 

Eps 0.919 0.981 0.936 
W 2,708 1,287 42 
D 0.276 0.355 0.051 RELAT 

Eps 0.267 0.345 0.040 
W 17.23 654.96 0.41 
D 0.262 0.331 0.230 SEX 

Eps 0.253 0.322 0.220 
W 172 2,939 939 
D 0.183 0.463 0.251 WORKPLCE 

Eps 0.167 0.450 0.236 
W 965 1,949 1,465 
D 0.372 0.704 0.493 ECONPRIM 

Eps 0.358 0.695 0.481 
W 2,216 5,842 3,663 
D 0.857 0.914 0.899 ISCO2 

Eps 0.850 0.910 0.895 
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Strengths and weaknesses of this method 

A major strength of the CMM-based methods is the relative ease of use and minimal skill requirements. This 
is particularly true for the imputation process. With adequate provision of metadata the method is highly 
automated, so that the system will automatically set almost all parameters and use defaults where 
appropriate. At present, a little more judgement is required to use the current error localisation process, but 
this method is still new and further refinement is expected to improve this aspect.  

The CMM based methods are generally very fast in computational terms, despite some weaknesses in the 
current prototype implementation of file and data handling components. These prototype components are 
quite separate from the AURA CMM library (which is now mature and efficient), and are currently reducing 
run time performance especially for larger datasets where AURA and CMM methods would otherwise excel. 
Nevertheless, for smaller datasets these inefficiencies in the edit and imputation prototype are less evident, 
and the York system is typically significantly faster than the “standard methods” in these cases.  

Table 5.46 shows a comparison of the run time and set up time performance for CMM-based experiments 
and the “standard method” experiments DIS, GEIS, SOLAS, and CANCEIS/SCIA (see page 3, and notes on 
timing on page 10) for the same datasets. Speedup factors for basic runtime performance range between 0.2 
and 667. A more practical measure of speedup is also shown which combines run time and set up time, 
giving CMM speedup factors which range from 1.9 to 15.7 times faster than the standard methods. 
Relatively slow runtimes (and hence speedup factors) for the GSOEP and SARS datasets are attributed to 
inefficient file and text handling issues in the prototype edit and imputation system, as described above. 

Table 5.46 Performance speedup of CMM compared with standard methods 

Speedup 
Factor 

(runtime) 

Speedup Factor 
(runtime + setup) Dataset Total 

Records 
Total 

Variables Missing Values Compared with 
Method 

0.2 4.9 GSOEP 5,383 195 20,390 DIS 
0.3 3.1 SARS Y2 492,472 31 648,881 CANCEIS/SCIA 
1.4 4 ABI Y2 6,233 33 2,765 DIS 
1.7 2 DLFS 15,579 15 4,175 DIS 
7.5 6 EPE Y2 1,039 70 2,728 DIS 
8 1.9 DLFS 15,579 15 4,175 SOLAS 
8 7.75 SARS Y2 492,472 31 648,881 DIS 

70 4.9 ABI Y2 6,233 33 2,765 GEIS 
667 15.7 ABI Y3 6,233 33 N/A GEIS 

Table5.46 also demonstrates how the highly-automated features of the York system also contribute to 
significantly shorter times for the whole procedure (including preparation time). With a few additional 
refinements the York system could provide a very effective tool for imputation, requiring: 

• minimal skill/training,  

• modest system requirements,  

• simple set-up,  

• parameter setting/tuning is unnecessary,  

• high-speed/throughput, and  

• generally good performance against Euredit criteria.  
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The method provides reasonable imputation performance in most situations. However at present, CMM-
based imputation is sometimes less effective in situations where significant constraints are imposed by edit 
rules. For example, performance with the ABI Y2 dataset is generally better for the GEIS “standard method” 
than the CMM-based imputation. This is possibly because GEIS ensures that each proposed imputation 
satisfies all edit rules whereas CMM-based imputation does not take any account of edit rules in the 
prototype version, although range limits and specific category value restrictions are implemented. The 
CMM-based method does not implement mechanisms to preserve constraints at present, and imputed values 
are always derived from the properties of similar matching records (units). The method seems more 
successful in those situations where variables to be imputed are not excessively constrained by rules (other 
than basic range or category value checks. Thus performance appears better for datasets like DLFS and 
GSOEP.  

3 Conclusion 
3.1 Discussion of results 

For error localisation using the ABI Y3 dataset, indications are that the current CMM (DKN) approach 
performs less well compared with the results available for the GEIS method, though it should be noted that 
GEIS uses edit rules to identify some errors, while CMM does not use any rules (at present).  

For imputation using the ABI Y2 dataset, performance is generally better than DIS and slightly worse than 
GEIS when compared with these standard methods. Overall, there is not much difference between any of the 
methods compared here. CMM performance tends to be better for variables EMPTOTC, TAXTOT, and 
ASSDISP, and less good for TURNOVER, PURTOT, and ASSACQ.  

For error localisation using the EPE Y3 dataset, no results for standard methods were available for 
comparison. The two CMM experiments performed produced almost identical results, tending to confirm 
earlier indications that the DKN method seems relatively insensitive to minor variations in the value of the 
parameter K (the selected number of neighbours).  

For imputation using the EPE Y2 dataset, CMM weighted mean experiment is slightly better than the 
standard method DIS in overall performance, whereas the CMM median method is generally worse than 
DIS. CMM weighted mean performance was best or equal best for three out of four key variables, and 
second best for the fourth.  

For imputation using the GSOEP dataset, the CMM methods perform very well. CMM median provides best 
performance overall in terms of measures Slope, t-val, mse, R^2, dL1, and dL2. CMM weighted mean 
provides best performance overall for measures K-S, K-S_1, and K-S_2, and sometimes for dLinf. Both 
CMM methods outperform the standard method DIS in most cases. The good performance of CMM methods 
here is a little surprising because the longitudinal structure of the data was not considered at all, and the 
CMM method was used in a highly automated way, using parameter settings provided by the system. 
Overall, the distance-weighted mean mode of imputation gave best results here, which is expected with such 
a dataset composed largely of continuous values. The nearest-neighbour mode also performed quite well and 
seems to perform better than distance-weighted mean in achieving small Kolmogorov-Smirnov distance 
measures. 

For imputation using the DLFS dataset, CMM methods perform well overall, and perform better than other 
methods tested for the particular measures slope and t-val when using the median imputation mode. For the 
Kolmogorov-Smirnov measures, the nearest-neighbour imputation mode is very good, and is better than the 
other CMM modes. The CMM median experiment seems to stand out in terms of generally good-to-best 
overall performance.  
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For imputation using the SARS Y2 dataset, CMM performs as well or better than the two standard methods 
considered for the continuous variables AGE and HOURS. Considering just the categorical variables, the 
standard method DIS tends to perform better on the greater number of variables. However, considering all 
variables, the CMM weighted mean experiment tends to perform better on the greater number of variables. 
The reduced performance with categorical variables can be accounted for in the way the York system is 
currently designed to use only one method of imputation during the imputation task for a given file (e.g. 
mean, or median). This is rather inflexible for some imputation applications, but a simple modification 
enable the most appropriate method of imputation to be used depending on variable type. For categorical 
variables, a new imputation method would be added to perform imputation of the mode value, and this is 
expected to give much better performance with categorical variables, at the same time maintaining the 
current good performance for continuous variables.  

The discussion of results above seems to suggest that different CMM imputation modes are often best suited 
to different types of data. As a rule-of-thumb, the distance-weighted mean mode often gives the best 
performance of the current CMM imputation modes, but occasionally the median mode can give better 
performance (as with the DLSF dataset), and it seems reasonable to speculate that the known bias present in 
that dataset is better modelled using the median imputation mode. Categorical variables are not imputed in an 
optimal way at present, and the best compromise is currently provided by the distance-weighted mean mode 
of imputation, which provides a fair approximation to the modal value. Future work should provide a 
different imputation “mode” for each variable type in a dataset, in particular, categorical variables should be 
imputed by calculating the modal value from the set of neighbours values considered.  

The EPE dataset was known in advance to contain a large number of zero entries, and for some methods it as 
anticipated that this would cause some difficulties. Although the CMM methods did not perform especially 
well with the EPE dataset, there is no particular reason to suppose that this due to the high number of zero 
values present. Assuming these values are not erroneous in some way, the CMM methods will simply treat 
these as legitimate possible values when determining a donor value.  

CMM imputation methods were not attempted with any of the Y3 datasets primarily due to lack of time but 
other factors affected this decision, notably some doubts raised about the comparability of Y3 imputation 
results by other partners. However, in principle it would not require significant resources to perform the 
experiments using Y3 versions of datasets, and it is expected that the CMM methods in general would 
perform well in these conditions.  
 

 
3.2 Weaknesses in the editing/evaluation procedure(s) considered 

Considering the new error localisation method CMM (DKN), the results show there is some potential benefit 
in this method, which is relatively fast. However, further development is needed to investigate more 
carefully the parameter space of the method in relation to error localisation performance.  

For imputation, the CMM based methods with different imputation modes seem to offer good performance 
in many situations, but are sometimes less effective when variables are related via constraints (such as totals 
and their constituent values). To address this issue it would be necessary to extend the current York system 
to allow rules expressing such constraints to be incorporated during processing. This was considered beyond 
the scope of the Euredit project due to the considerable effort required. Current provision for categorical 
variables is inadequate, with the best solution provided at present being the distance-weighted mean mode. A 
relatively simple modification to the York system could allow categorical values to be imputed with the 
modal value of the local neighbourhood, which should yield a good improvement in performance for those 
variables.  
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For both edit and imputation, the absence of a mechanism to incorporate the results of applying edit rule 
checks limits the performance of the system in some situations.  

For the relatively large SARS dataset some problems were encountered with memory usage, which 
contributed to lengthy processing times. These problems can be largely attributed to inefficient file and data 
handling in the York prototype edit and imputation system, since the underlying core CMM implementation 
(in the AURA library) is known to be very efficient and is designed specifically for high-performance in 
large data environments.   

 
3.3 Areas for further study 

A number of areas for further study and improvement have been identified: 
 

• investigate the parameter space of the method in relation to error localisation performance in more 
detail; 

• modification to the York system to allow categorical values to be imputed with the value of the 
mode of the local neighbourhood; 

• review some of the implementation features of the current edit and imputation system at York to 
improve speed and so better exploit the high-speed capabilities of the CMM software (AURA); 

• investigate the feasibility of incorporating a general constraint and “edit rule” processing feature. 
 

The extent to which these areas may be addressed will, of course, be limited beyond the end of the Euredit 
project.  
 

4 Glossary of Terms 

CMM – Correlation Matrix Memory is a type of (artificial) neural network. 

AURA – Advanced Uncertain Reasoning Architecture is a set of methods that supports the use of CMM-
based systems in a range of applications. The AURA software class library is an implementation of AURA 
using C++. 

Imputation “mode” – This refers to one of the five currently available methods that may be selected for the 
final imputation step. The currently available modes are: Nearest-neighbour (NN), Random-neighbour 
(RND), Mean (MN), Weighted-mean (WMN), and Median (MDN). See section 2.1 for details. 

DKN – “Distance to Kth Neighbour” is the CMM-based method for error localisation used in Euredit. See 
section 2.1 for details.  
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