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Graphs and Networks

Graphs and networks are all around us

‘Simple’ networks
10s to 100s of vertices



Graphs and networks

PIN Social Network

‘Complex’ networks
1000s to millions of vertices



What is a network?

• A network consists of
– a set of vertices (representing parts, elements, objects, features etc)

– a set of edges (relationships between parts)

• The vertices of a network are often indistinguishable (or at
least hard to tell apart)
– If we can tell one vertex from another reliably, this is a different

(easier) problem(easier) problem

• Information encoded in the relationships, not the parts
themselves



Graph and Networks

There are many interesting questions to ask about network:

What is the structure of a network?

Are there parts? (clustering)

How are they connected?

Do the parts look the same? (similarity, stationary)Do the parts look the same? (similarity, stationary)

Are two networks the same? (isomorphism)

How similar are they? (inexact matching)

Can we tell two types of network apart? (features)

How can we model a set of networks? (models)



A Network

• Vertices denote objects and edges denote a relationship
between a pair of vertices

Vertex

Edge

• Vertices and edges may have discrete labels or continuous
measurements associated with them
– The graph is then called attributed or an attributed relational graph

(ARG)

• A particular type of ARG has weights on the edges [0,1]
representing the strength of the connection
– Called a weighted graph



A Network

• Graphs can be undirected or directed.
– Directed means the edges have a direction to them

• The degree of a vertex is the number of edges connected to
that vertexthat vertex
– For directed graphs we have in-degree and out-degree



A Network

• Networks are structural – it is the arrangement of edges
that matters
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• In order to compare the edges, we need to know which is
which

• We can do this by labelling the vertices

• In a ‘pure’ network, there is no intrinsic difference between
the vertices

• We do not know which labelling is the best and there are n!
labellings



Notation

• Common notation

V is the set of vertices (|V| is the order of the graph)

E is the set of edges (|E| is the size of the graph)
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A is an attribute functions, maps vertices and edges onto their
attributes

   edgedirected,,, VvVuvue



Key Graph Theory Problems

• Graph Isomorphism
– Is there a mapping between the vertices which makes the edges

sets of the graphs identical?

– Unknown computational complexity

• Maximal Clique
– A clique is a set of vertices which are all mutually connected

– Finding the Maximal Clique is NP-complete– Finding the Maximal Clique is NP-complete

• Maximum Common Subgraph (MCS)
– Find two subgraphs which are isomorphic between two graphs

– Can be reduced to maximal clique

• Graph Edit Distance (GED)
– An example of inexact similarity between two graphs

– Under some conditions reducable to MCS

– More on this later...



Labelling

• Key point: A graph or network does not change when
we label it in a different way

• So if we want to measure something useful about a graph (
graph feature), then either

We need to make sure the labelling is the sameWe need to make sure the labelling is the same
every time (matching)

or
We need to make features which do not depend

on the labelling (invariance)



Graph Spectrum



Matrix Representation

• Spectral Graph Theory and related methods depend on the
matrix representation of a graph

• A Matrix Representation X of a network is matrix with
entries representing the vertices and edges
– First we label the vertices

– Then an element of the matrix Xuv represents the edge between vertices u
and vand v

– Xuu represents the vertex u

– The most basic example is the adjacency matrix A























00110

00100

11010

10101

00010

5

4

3

2

1

54321

1
2

3

4

5



Matrix Representation

• For an undirected graph, the matrix is symmetric

• The adjacency contains no vertex information; The degree matrix D
contains the degrees of the vertices

– degree=number of edges containing that vertex

• The Laplacian (L) is
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• Signless Laplacian
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Matrix Representation

• Normalized Laplacian

• Entries are
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Incidence matrix

• The incidence matrix of a graph is a matrix describing the relationship
between vertices and edges

• Relationship to signless Laplacian
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Matrix Representation

• Consider the Laplacian (L) of this network

































20110

01100

11310

10131

00011

5

4

3

2

1

54321

1
2

3

4

5

1

2













00011

10113

2

1

54321

• Clearly if we label the network differently, we get a different matrix

• In fact

represents the same graph for any permutation matrix P of the n
labels
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Characterisations

• Are two networks the same? (Graph Isomorphism)
– Is there a bijection between the vertices such that all the edges are

in correspondence?

• Interesting problem in computational theory
– Complexity unknown

– Hypothesised as separate class in NP-hierarchy, GI-hard

• Graph Automorphism: Isomorphism between a graph and• Graph Automorphism: Isomorphism between a graph and
itself

• Equivalence between GI and counting number of GAs

G1
G2

G1
G2



Characterisations

• An equivalent statement: Two networks are isomorphic iff
there exists a permutation matrix P such that

• X should contain all information about the network
– Applies to L, A etc not to D

TPPXX 12 

X is a full matrix
representation

– Applies to L, A etc not to D

• P is a relabelling; changes the order in which we label the
vertices

• Our measurements from a matrix representation should be
invariant under this transformation (similarity transform)

representation



Eigendecomposition

• At the heart of spectral graph theory are matrix
eigenvalues and eigenvectors

– X is the square matrix we are interested in

– λ is an eigenvalue of the matrix

– u is an (right) eigenvector of the matrix

• Left eigenvector

uXu 

• Left eigenvector

• For a symmetric matrix
– Always n orthogonal eigenvectors

– Eigenvalues real

– Left & right eigenvectors the same

TT uXu 



Spectral Graph Theory

• Any square matrix has an eigendecomposition (into
eigenvectors and eigenvalues)

• When dealing with undirected graphs – these have a square
and symmetric matrix representation

• The eigendecomposition is then
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Spectral Graph Theory

• Later on, I will talk about transition matrices and directed
graphs

• These have non-symmetric matrix representations
– Left and right eigenvalues are the same, but left and right

eigenvectors are different

 UUX T
LR

– Real or complex-conjugate pairs for eigenvalues

1 UU

LR



Perron-Frobenius Theorem

Perron-Frobenius Theorem:

If X is an irreducible square matrix with non-negative entries,
then there exists an eigenpair (λ,u) such that

0



 

i

u

i

 R

Applies to both left and right eigenvector

• Key theorem: if our matrix is non-negative, we can find a
principal(largest) eigenvalue which is positive and has a
non-negative eigenvector

• Irreducible implies associated digraph is strongly
connected

0ju



Spectral Graph Theory

• The graph has a ordered set of eigenvalues (λ0, λ1,… λn-1)

• Ordered in terms of size (I will use smallest first)

• The (ordered) set of eigenvalues is called the spectrum of
the graph

• I will discuss how the spectrum and the eigenvectors
provide useful information about the graph



A note on computation

• Many efficient computational routines available for
eigendecomposition
– Most notably Lapack + machine specific optimisations

– N3 complexity

• Suitable for networks with thousands of vertices

• Problematic for networks of 10000+ vertices

• Often such networks are sparse
– Very low edge density

• In nearly all cases, you only need some of the largest
eigenvalues

• For sparse network, small set of eigenvalues, use the
Lanczos method



Spectrum

Theorem: The spectrum is unchanged by the relabelling
transform

• The spectrum is an acceptable graph feature

Corollary: If two graphs are isomorphic, they have the same

12

12



 TPPXX

Corollary: If two graphs are isomorphic, they have the same
spectrum

• This does not solve the isomorphism problem, as two
different graphs may have the same spectrum



Spectrum

• These two graphs have the same spectrum using the
Laplacian representation

[5.24]
[3]2

2
0.76

[5.24]
[3]2

2
0.76

• This is a cospectral pair

• Necessary but not sufficient...

• The matrix representation we use has a big effect on how
many of these cospectral graphs there are

0.76



Cospectral graphs

• How many such graphs are there and how does it depend
on representation? (Zhu & Wilson 2008)

*50 trillion
graphs of size

13*



Cospectrality

• Open problem: Is there a representation in which nearly all
graphs are determined by the spectrum (non-cospectral)?

• Answer for trees: No, nearly all trees are cospectral

• In practice, cospectrality not a problem
– Two randomly selected graphs have tiny chance of being

cospectral

• If we pick graphs from a specialised family, may be a• If we pick graphs from a specialised family, may be a
problem
– Regular, strongly regular graphs



Spectrum of A

Spectrum of A:

• Positive and negative eigenvalues
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• Bipartite graph
– If λ is an eigenvalue, then so is -λ

– Sp(A) symmetric around 0

Eigenvectors:

• Perron-Frobenius Theorem (A non-negative matrix)
– n-1 is largest magnitude eigenvalue

– Corresponding eigenvector xn-1 is non-negative

01  n



• Bipartite graph

• Adjacency has form
Au Bu

• Adjacency has form

• If (uA uB)T is an eigenvector with eigenvalue  then
(uA -uB)T is an eigenvector with eigenvalue -

• The adjacency spectrum is symmetric around zero
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Spectrum of L

Spectrum of L

• L positive semi-definite

• There always exists an eigenvector 1 with eigenvalue 0
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• There always exists an eigenvector 1 with eigenvalue 0
– Because of zero row-sums

• The number zeros in the spectrum is the number of
disconnected components of the graph.



Spanning trees

• A spanning tree of a graph is a tree containing only edges
in the graph and all the vertices

• Example

• Kirchhoff’s theorem
The number of spanning trees of a graph is
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Spectrum of normalised L

Spectrum of

• positive semi-definite

• As with Laplacian, the number zeros in the spectrum is the

20 110 
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L̂
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• As with Laplacian, the number zeros in the spectrum is the
number of disconnected components of the graph.

• Eigenvector exists with eigenvalue 0 and entries

• ‘scale invariance’

 Tnddd 21



Information from Spectrum

• We can get useful information direct from the spectrum:

• The Laplacians are positive semidefinite with smallest
eigenvalue 0
– Normalized Laplacian has max eigenvalue 2

• Sp(L) for a graph of disconnected components is the union
of the spectra of all the components
– Hence the number of zero eigenvalues counts the number of

components

• Spectra of Graphs [Brouwer & Haemers, Springer]



Information from Spectrum

• For regular graphs, the spectrum of A and L directly
related

• Smallest eigenpair of A becomes largest of L

AL k
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AIL

ID

• Smallest eigenpair of A becomes largest of L

• For non-regular graphs, eigenpairs are not simply
connected
– But small eigenvalues of A correspond in some sense to large

eigenvalues of L



Coding Attributes

• So far, we have considered edges only as present or absent
{0,1}

• If we have more edge information, can encode in a variety
of ways

• Edges can be weighted to encode attribute

• Include diagonal entries to encode vertices• Include diagonal entries to encode vertices
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Coding Attributes

• Note: When using Laplacian, add diagonal elements after
forming L

• Label attributes: Code labels into [0,1]

• Example: chemical structures

Edges

─ 0.5

═ 1.0

Aromatic 0.75

Vertices

C 0.7

N 0.8

O 0.9



Coding Attributes

• Spectral theory works equally well for complex matrices

• Matrix entry is x+iy

• Can encode two independent attributes per entry, x and y

• Symmetric matrix becomes Hermitian matrix
– Unchanged by conjugate transpose †, transpose+complex

conjugate

• Eigenvalues real, eigenvectors complex
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Coding Attributes

• Example: Shape skeletons

• Shock graph has vertices where shocks meets and edges
with lengths l and angles θwith lengths l and angles θ

• Encode as complex weight

• Naturally hermitian as
ijijijij
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Similarity



Similarity of Networks

• How can we measure the similarity of two networks?

• Key idea: Graph Edit Distance(GED)

• Edit operations
– Vertex insertion, deletion

– Edge insertion, deletion

– Relabelling a vertex

• Associate a cost with each operation

• Find a sequence of edit operations which transforms one
network into the other

• The minimum possible cost of a sequence is the graph edit
distance

• NP-complete so we cannot actually compute it



GED - example

Edge deletion
Cost ed

Vertex deletion
Cost vd

Edge insertion
Cost eiG1

The sequence of edit

operations is an edit path
Vertex relabel

Cost vl

G2

operations is an edit path

E
c(E)=ed+vd+ei+vl

)(min),( 21 EcGGGED
E





Graph similarity

• The simplest form of GED is zero cost for vertex
operations and relabelling
– Then equivalent to Maximum Common Subgraph [Bunke, PAMI

1999]

• Since we cannot compute GED, we generally resort to
approximate methods
– Compute matches– Compute matches

– Compare features

• If we can get good features, we can use them to compare
graphs



Spectral Similarity

• How good is the spectrum for similarity comparisons?
[Zhu, Wilson 2008]



Spectral Features

• The eigendecomposition of a matrix representation is

• We used the eigenvalues in the spectrum, but there is
valuable information in the eigenvectors.
– Unfortunately the eigenvectors are not invariant U→PU

– The components are permuted

• Spectral approach partially solves labelling problem

TUUX 

• Spectral approach partially solves labelling problem
– Reduced from a similarity transform to permutation



Theorem: The eigenvector components are permuted by the
relabelling transform

The columns of U are ordered by the eigenvalues, but the

Eigenvectors
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The columns of U are ordered by the eigenvalues, but the
rows still depend on the labelling

Additional problem: If eigenvalues repeat, then U is not
unique
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Spectral Features

• Can we use the eigenvectors to provide features for a
network?

• Observation:

is a polynomial which does not change when the variables
are permuted

• Part of a family of elementary symmetric polynomials

3231213212 ),,( xxxxxxxxxS 

• Part of a family of elementary symmetric polynomials
invariant to permutation [Wilson & Hancock 2003]

• Hence if u is an eigenvector, Sr(u) is a network feature
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• Shape graphs distributed by polynomial features



Spectral Features

Theorem:

All graphs which have simple spectra can be distinguished
from each other in polynomial time

• Simple spectrum means than there are no repeated eigenvalues in the
spectrum

• Hence the eigendecomposition is unique

• Then we can order the components of the eigenvectors in polynomial
time

– For example by sorting

• Comparison then determines if they are isomorphic

• Open Problem: Repeated eigenvalues, difficult
graphs for isomorphism and labelling ambiguity
are all connected in a way not yet understood



Partitioning



Spectral Partitioning

• The clustering problem is a central one for
networks

• Also called community detection

• Partition the network into parts

– Highly connected within parts

– Weakly connected between parts

• Spectral Graph theory can address this problem



Graph Partitioning

A graph cut is a partition of a graph into two disjoint sets

Partition P
Partition Q

Cut edges

The size of the cut is the number of edges cut, or the sum of
the weights for weighted graphs

The minimum cut is the cut with smallest size
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Graph Partitioning

• Assume edges indicate similarity

• The goal of clustering is to maintain high intracluster
similarity and low intercluster similarity

• Cut measures cost of partition in terms of similarity
– But must be compared to overall similarity of partitions

• Can measure overall similarity with association• Can measure overall similarity with association

Normalized cut
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Shi & Malik 2000



Normalized cut

Define partition vector x such that

Then
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With a bit of transformation we can turn this into a matrix
form

And we should try to minimise Ncut to find the best partition
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Normalized cut

• As it is, the problem is hard because y is discrete

• Take the relaxation of the problem, i.e. y allowed to take
real values

• Solution is easily given by solving the eigenvalue problem
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Normalized Cut

• If we want the smallest Ncut, then we should choose the
eigenvector with smallest eigenvalue

• 0 is an eigenvalue of , with corresponding eigenvector

– But z=u0 does not satisfy condition

L̂
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Normalized Cut

• However the eigenvector with second smallest eigenvalue
does satisfy this condition

• This is called the Fiedler vector and gives an approximate
solution to min normalized cut 0D1yT

zDy

xz
2/1

1


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• The sign of the components of the Fiedler vector gives the
partition
– Eg

zDy 
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Partition 1 Partition 2



Node centrality

• Another issue of interest for complex networks is node
centrality
– How important or significant is a node in a network

• Simple measures of node centrality

• Degree centrality
– Just the degree of the vertex or sum of weights

– Simple but completely local

• Betweeness centrality
– Measures how many shortest paths between other vertices pass

through this vertex

• Closeness centrality
– Finds the ‘median’ vertex, in the sense of the one which is closest

to the rest



Centrality from spectral graph theory

• There is a solution to the centrality problem from
spectral graph theory

• Idea: The centrality of u is proportional to the
centrality of its neighbours
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• A simple rearrangement of this gives

• An eigenvector of A will give a centrality measure
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Eigenvector Centrality

• We also require non-negative centrality

• Perron-Frobenius Theorem guarantees for non-negative A
the principal eigenvector is non-negative

• Eigenvector centrality given by principal eigenvector of A

uxu  0



Random Walks



Random Walks

• Spectral features are not tightly coupled to structure

• Can we explore the structure of the network?

• A random walker travels between vertices by choosing an
edge at random

• At each time step, a step is taken down an edge



Discrete Time Random Walk

• Imagine that we are standing at vertex ui

• At each time, we chose one of the available edges with equal
probability

• Then the probability of arriving at vertex uj is
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Discrete Time Random Walk

• We can write this in matrix form

• T is the transition matrix of the walk

– Stochastic (rows sum to 1)
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– Largest magnitude eigenvalue 1

• If we start in state π0 then at time t
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Discrete Time Random Walk

• What happens after a very long time?
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Discrete Time Random Walks

• After a very long time, the walk becomes stationary

– Only the largest (left) eigenvector of T survives

– This is the principal eigenvector of T (with λ=1) and is easy to solve; it is

πTπ 

|| E

d
π i

i 

– After a long time, we are at each node with a probability proportional to its
degree

• It is natural to think of the probability as a measure of centrality

• In this situation, eigenvector centrality (of T) coincides with degree
centrality

|| E



PageRank

• One important application for centrality is for the web

– More central pages are more important

• Idea:

– Surfer clicks links to new pages at random

– May also quit and start fresh at a random page (‘teleporting’)

– Importance of page is prob of ending up there

• Links are directed, but makes no difference to the formulation

JADT   1)1(
– J is matrix of all-ones (teleportation transitions)

– α is the probability of starting over

• Eigenvector centrality for T is the PageRank (Google) of each page

JADT   1)1(



Walk spectra

• T is another matrix representation, although it is not
symmetric
– As before can use spectrum as a graph feature

– Same in character as spectra of other representations

• Symmetric representation can be provided by support
graph
– Edge in support graph if there is an n-step path between start and– Edge in support graph if there is an n-step path between start and

end vertices

– Equivalent to non-zero entry in Tn

• S(Tn) is the support of Tn, set non-zero entries to 1
– Adjacency matrix of support graph

• Look at the spectrum of S(Tn)

• For regular graphs, directly related to spectrum of A,T



Differential Equations



Differential Equations on Graphs

• A whole host of important physical processes can be
described by differential equations

• Diffusion, or heat flow

• Wave propagation
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Laplacian

• is the Laplacian differential operator

• In Euclidean space

• Different in non-flat spaces

• Take a 1D discrete version of this
– i, i-1,i+1 denote neighbouring points
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Laplacian

• A graph which encodes the neighbourhood structure

• The Lapacian of this graph is

• Apply L to a vector (a ‘function’ taking values on the
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• Apply L to a vector (a ‘function’ taking values on the
vertices)

• So the graph Laplacian is a discrete representation of the
calculus Laplacian
– Vertices are points in space

– Edges represent neighbourhood structure of space

– Note minus sign!
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Diffusion

• On a network, we identify the Laplacian operator 2 with
the Laplacian of the network L

• Discrete space, continuous time diffusion process

-L2
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Heat Kernel

• Solution
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• Heat kernel H(t)

• Hij(t) describes the amount of heat flow from vertex i to j at
time t

• Essentially another matrix representation, but can vary
time to get different representations
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Diffusion as continuous time random walk

• Consider the following walk on a k-regular graph
– At each time step:

• stay at the same vertex with probability (1-s)

• Move with prob. s to an adjacent vertex chosen uniformly at random

• This is called a lazy random walk

• Transition matrix
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Diffusion as continuous time random walk

• Let s be a time-step

• n=t/s is the number of steps to reach time t
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• Small times

Spectral representation
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Heat Kernel

• Trace of H is a network feature [Xiao, Wilson, Hancock
09]

• Describes a graph based on the shape of heat as it flows
across network
– How much heat is retained at a vertex at time t
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Heat Kernel Trace
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• Diagonal elements of the heat kernel have been used to
characterise 3D object meshes [Sun et al 2009]

• Describes a particular vertex (for matching) by heat
content at various times

• Global version to characterise whole mesh

Heat Kernel Signature
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Subgraph Centrality

• We can use the heat kernel to define another type of node
centrality measure

• Consider the following adjacency matrix as a weighted
graph (with weights 1/√dudv on the edges)
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1

ˆ 

 ADDA

• The weighted sum of all paths of length k between two
vertices u and v is given by

 uv
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Subgraph Centrality

• Total communication between vertices is sum over paths of
all lengths

• α allows us to control the weight of longer paths vs shorter

• What should α be?
– Number of possible ways to go increases factorially with k

 





0

ˆ
k

uv
k

uvC A

– Number of possible ways to go increases factorially with k

– Longer paths should be weighted less

 





0

ˆ
!k

uv
k

k

uv
k

t
C A



Subgraph centrality

• Subgraph centrality (Estrada, Rodríguez-Velázquez 2005):
centrality is the ability of vertex to communicate with others

• Relationship to heat kernel
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• Actually subgraph centrality uses A, but results coincide
exactly for regular graphs
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Graph Complexity



Complexity

• What is complexity?

• Entropy

– Number of ways of arranging system with same macroscopic
properties

• Ensemble – collection of systems with identical
macroscopic properties

WS ln

macroscopic properties
– Compute probability of particular state
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Graph Complexity

• The complexity of a graph is not a clearly defined term

• An empty graph has no complexity, but what about the
complete graph?

• Different definitions serve different purposes

• Coloring complexity

• Number of ways to color a graph• Number of ways to color a graph

• NP-hard to compute

• Randomness complexity

• Distribution on set of graphs

• Shannon entropy of distribution

• Statistical complexity

• Based on edge/vertex graph statistics



Graph Complexity

• Heterogeneity Index [Estrada 2010]

• Complexity is non-uniformity of vertex degrees
– Irregular graphs are complex
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Von-Neumann entropy

• Mixtures of quantum systems are characterised by a
density matrix ρ

• This matrix completely characterizes an ensemble of
quantum systems

• The ensemble is a probabilistic mixture of quantum
systems in a superposition of states

• There is a natural measure of the entropy of the system, the• There is a natural measure of the entropy of the system, the
von Neumann entropy
– An extension of classical entropy

• ρ is an hermitian matrix with trace 1
)lnTr( S



Von Neumann Entropy

• is a symmetric (so hermitian) matrix with trace |V|

• So we can use as the density matrix of a quantum
system, with the von Neumann entropy as its complexity

• Von Neumann graph complexity
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Approximate von-Neumann Entropy

• Von Neumann entropy can measure complexity of graphs
from spectrum, connection to structure not clear

• Approximation:
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Approximate von Neumann Entropy

• Approximate vNE directly connected to structure
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Von Neumann Entropy

• Von Neumann entropy can also be used to control
modelling complexity [Han et al 2010]

• Minimum description length criterion

• Log-likelihood of model given observed data + cost of

)()|( MSXMLLMDL 

• Log-likelihood of model given observed data + cost of
describing model

• Model cost is entropy



Another complexity

• Partition function for graphs

• E(H) is the energy of graph H

• Can define energy level of graph as [Gutmann 1978]
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• This derives from statistical mechanics
– Graphs are particles with ‘heat’ and random motion
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Another complexity

• Boltzmann distribution

• P(G) is the probability of a thermalized particle appearing
in state G at temperature T
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Directed Graphs



Directed graph

• Directed graphs pose some interesting questions for
spectral methods

• A will be non-symmetric
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Walks on directed graphs

• The random walk transition matrix can be defined as
– We select an out-edge at random

• Walk does not (necessarily) have nice properties

ADT -1
out

Note D is still formed from row-
sums (out-degree)

1 2 3 4

• 1 and 4 are sink nodes – once we arrive we can never leave

• Inverse of Dout not defined when such nodes exist (dout=0)
– Modify so that the entry is 0 in this case

-1
outD



Walks on directed graphs

• Consider starting a walk at 2, with time t=0
– At time t=1 there is prob 0.5 of being at 1

– There is some additional probability of the sequence 2→3 →2 →1

1 2 3 4


– There is some additional probability of the sequence 2→3 →2 →1

– Therefore

• Now consider starting at 3
– By symmetry

• Conclusion: limiting distribution of random walk on
directed graph depends on initial conditions
– Unlike the case of undirected graph
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Walks on directed graphs

• Initialise at 1

• Walk follows sequence 1→ 2→3 →1 → 2…

• Walk is periodic
– No limiting distribution

1

23

– No limiting distribution



Walks on directed graphs

Strongly connected directed graph:
There exists a path between every pair of vertices

Therefore there are no sinks

• Strongly connected implies that T is an irreducible matrix
and we can apply the Perron-Frobenius theorem to show
(as in the undirected case) that there is a unique non-
negative left eigenvector:negative left eigenvector:

– Which has eigenvalue 1

• There may be other eigenvectors with absolute eigenvalue
1
– If there are, then the walk is periodic

πTπ 



Walks on directed graphs

• In spectral theory for directed graphs, we normally confine
ourselves to graphs which are
– Strongly connected (T is irreducible)

– Aperiodic (T has a single eigenvector with eigenvalue magnitude
1)

• Then the walk converges to a limiting distribution of π

• The solution for π is non-trivial unlike the undirected walk• The solution for π is non-trivial unlike the undirected walk



Laplacian of directed graph

• We can use the walk to define the Laplacian on a directed
graph

• The details are a little technical, see [2]

• Let Φ be a diagonal matrix with the elements of π on the
diagonal

• Laplacian:  ΦTΦTΦL T
2

1
• Laplacian:

• Normalized Laplacian:

• Symmetric

• Coincide with undirected definitions
[2] Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, Fan Chung 2005
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