Walks on Networks

Prof. Richard C. Wilson

Dept. of Computer Science
University of York
Random Walks

• Random walks have found multiple uses in the analysis of graphs and networks

• Closely related to
 – Spectral methods
 – Heat kernel and diffusion processes

• Used for
 – Matching
 – Embedding
 – Characterisation
 – Graph-based processing
Random walks algorithms

Algorithms

- **Image smoothing**: heat-kernel can be used as an anisotropic filter for structure preserving image smoothing.

- **Graph simplification**: can be used to reduce graphs to simpler structures such as trees and strings that are more easily manipulated.

- **Embedding**: Can embed graphs in space so as to preserve diffusion distance or commute time between nodes.

- **Permutation invariants**: can be derived from structure of random walks.

- **Consistent labelling**: Relaxation labelling can be realised as a process of running a continuous time random walk on graph where nodes are object-label assignments and edges represent label compatibility.
Graph Analysis

- **Gori, Maggini & Sarti**: Graph Matching using Random Walks.

- **Robles-Kelly & Hancock**: String Edit Distance, Random Walks & Graph Matching.

- **Meila & Shi**: A Random Walks View of Spectral Segmentation.
Random walk embeddings

Embeddings

• **Borgwardt**: Random walk kernels on graphs.

• **Lafon et al**: Diffusion map. Commute time is average of diffusion time over all paths connecting a pair of nodes.

• **Qiu and Hancock**: Commute time for image segmentation and multi-body tracking.
Random Walk Evolution

- Weighted adjacency matrix
 \[A_{uv} = \begin{cases}
 w(u, v) & (u, v) \in E \\
 0 & \text{otherwise}
 \end{cases} \]

- Degree matrix
 \[D_{uu} = \sum_{v \in V} A_{uv} \]

- Transition matrix
 \[T = D^{-1} A \]

- Time evolution of vertex prob.
 \[p_t = Tp_{t-1} = T^t p_0 \]

- Steady state
 \[p_s = Tp_s \]
 Steady state is determined by the leading eigenvector of \(T \) \((\lambda=1)\)
Graph Kernels

- Random Walk Kernel (Gartner et al 2003)
 - Count the number of matching walks between two graphs

 \[K(G_1, G_2) = \sum_{(i,j) \in V_x} \sum_{k=0}^{\infty} \varepsilon_k [A_x^k]_{ij} \]

 - \(A_x \) is the product graph of \(G_1 \) and \(G_2 \)
 - \(k \) is the walk length
 - The number of walks becomes very large
 - The random walk graph kernel suffers from the problem of tottering

 - Reduces expressive power and masks structural differences
Backtrackless Random Walk

- A random walk of length k is a sequence of vertices
 \[u_1, u_2, \ldots, u_{k+1} \]
 - Such that $e_i = (u_i, u_{i+1}) \in E$

- A backtrackless random walk has the additional condition
 \[e_i \neq e_{i+1} \]
 - A sequence of oriented edges, excluding backtracking step

(a) Original Graph (b) Digraph (c) Oriented Line Graph
Backtrackless Random Walk Kernel

- The backtrackless random walk kernel is
 \[K(G_1, G_2) = \sum_{(i,j) \in V_x} \sum_{k=0}^{\infty} \varepsilon_k \left[A_x^k \right]_{ij} \]

- Defined on the product graph of the OLGs
 \[V_x(G_1 \times G_2) = \{ (v_1, v_2) \in V_1 \times V_2 \} \]
 \[E_x(G_1 \times G_2) = \{ ((u_1, u_2), (v_1, v_2)) \} \]
 \[(u_1, u_2) \in E_1 \land (v_1, v_2) \in E_2 \]

- By eliminating the reverse edges in the OLG, we eliminate backtracking

- Complexity is a problem
 - Efficient method to compute given in (Aziz, Wilson Hancock SIMBAD’11)
Commute Time

- Commute-time embedding [Qui, Hancock, 2007]
- **Hitting time** $Q(u,v)$: Expected time to arrive at v, starting from u

- **Commute time** $CT(u,v)$: Round trip time
 \[CT(u,v) = Q(u,v) + Q(v,u) \]

- **Green’s function** for graph (spectral representation)
 - Type of pseudo-inverse of Laplacian
 \[G(u,v) = \sum_{i=2}^{\left|V\right|} \lambda_i^{-1} \phi_i(u)\phi_i(v) \]

- **Relationship**
 \[Q(u,v) = \frac{vol}{d_v} G(v,v) - \frac{vol}{d_u} G(u,u) \]
Commute Time

- Commute time
 \[CT(u, v) = Q(u, v) + Q(v, u) \]
 \[= \frac{\text{vol}}{d_u} G(u, u) + \frac{\text{vol}}{d_v} G(v, v) - \frac{\text{vol}}{d_u} G(u, v) - \frac{\text{vol}}{d_u} G(v, u) \]
 \[= \text{vol} \sum_{i=2}^{\mid V \mid} \frac{1}{\lambda_i} (\phi_i(u) - \phi_i(v))^2 \]

- Commute-time embedding
 \[Y = \sqrt{\frac{\text{vol}}{\Lambda}} \Phi^T \]

Preserves CT as distances between vertices
Quantum commute time [Emms, Hancock, Wilson 2008]
Quantum Walk

• A *Quantum Walker* obeys the laws of quantum mechanics

• Described by a complex wave function ψ
 – Amplitude may be negative, state probability is $\psi \psi^*$
 – Evolution must be reversible
 – Observation collapses wave function

• Richer structure due to interference

• [Emms et al; QIC 2009, PR 2009, IVC 2009]
Quantum Walk Evolution

- Evolution matrix $U = VC$
 - Unitary (rather than stochastic) matrix $U^\dagger U = I$
- Coin matrix (Grover coin) C
- Transition matrix V
- Time evolution of wavefunction. $\psi_t = U \psi_{t-1} = U^t \psi_0$
- No steady state
- As walk is reversible, walks must be labelled by current and previous vertex (u,v)
 - Walk is on edges of graph
Quantum Walk

• Evolution matrix

\[U_{(a,b),(b,c)} = \frac{2}{d_b} - \delta_{ac} \quad (a,b),(b,c) \in E \]

• Example

Initial state \[\psi_0 = |(a,e)\rangle \]

Next state \[\psi_1 = -\frac{1}{2}|(e,a)\rangle + \frac{1}{2} \left(|(e,b)\rangle + |(e,c)\rangle + |(e,d)\rangle \right) \]
Structure of Quantum Walk

- **Spectrum of** U **is** $\left\{ \pm 1^{2|E|-2|V|}, \pm \sqrt{1-\lambda_i} \right\}$ [Emms et al 2009]
 - λ_i are the eigenvalues of the random walk
 - No difference to random walk
 - Spectrally, powers of U not interesting

- **The positive support of** U **is**
 $$Sp^+(U)_{ij} = \begin{cases} 1 & \text{if } U_{ij} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- **A graph connecting vertices which have positive amplitude for the quantum walk**

- **Encodes interference effects**

- **$Sp^+(U)$ is the oriented line graph of G**
 - Backtrackless random walk
A strongly regular graph with parameters \((n,k,l,m)\) is a \(k\)-regular graph on \(n\) vertices for which each pair of adjacent vertices share \(l\) common neighbours and each pair of non-adjacent vertices share \(m\) common neighbours.

Example

- \(k=5\)
- \(m=0\)
- \(l=2\)

There is no proven poly-time algorithm for SRG isomorphism.
• The spectrum of $Sp^+(U)$ does not distinguish SRGs of the same family [Emms et al 2009]
• Nor does $Sp^+(U^2)$ (the two-step paths with positive amplitude)
• But $Sp^+(U^3)$ gives different spectra for all tested pairs of SRGs
 – Eg SRG(36,15,6,6) has 32548 members all of which are spectrally unique
• Why U^3
 – First order in which positive and negative amplitude walks can interfere (triangles in graph)
Cospectral trees

| $|V|$ | Number of Trees | Number with a Cospectral partner using L | Number with a Cospectral partner using $S^+(U^3)$ |
|-----|----------------|---|--|
| ≤ 10 | 198 | 0 | 0 |
| 11 | 235 | 6 | 0 |
| 12 | 551 | 6 | 0 |
| 13 | 1301 | 18 | 0 |
| 14 | 3159 | 30 | 0 |
| 15 | 7741 | 48 | 0 |
| 16 | 19320 | 68 | 0 |
| 17 | 48629 | 221 | 0 |
| 18 | 123867 | 230 | 0 |
| 19 | 317955 | 440 | 2 |
| 20 | 823065 | 648 | 2 |
| 21 | 2144505 | 1056 | 24 |
| 22 | 5623756 | 1563 | 32 |
| 23 | 14828074 | 2858 | 68 |
| 24 | 39290897 | 3623 | 290 |
Quantum Walk Graph Matching

- Take two graphs to be matched. [Emms et al 2009]
- Auxiliary vertices join vertices from each graph
- Begin QRW on A in configuration \(\psi \) and on B in configuration \(-\psi\)
- If graphs are isomorphic, walks contribute equal and opposite amplitude for matching vertices at the auxiliary vertices
 - Zero amplitude indicates match
- Similar graphs should have similar walks and large destructive interference
Non-isomorphic graphs

Matching found for non-isomorphic graphs using distribution of amplitudes

False matches modelled by a Gaussian distribution, σ_f:

$$p(x|\text{false}) = \frac{1}{\sqrt{2\pi} \sigma_f} e^{-\frac{x^2}{2\sigma_f^2}}$$

True matches modelled by a double exponential distribution, $\sigma_t << \sigma_f$:

$$p(x|\text{true}) = \frac{1}{\sigma_t \sqrt{2}} e^{-\frac{\sqrt{2}|x|}{\sigma_t}}$$
Graph Calculus

- Discrete Laplacian L used in many applications on graphs
- Diffusion processes
 - Continuous time random walk
 \[\frac{dH(t)}{dt} = -LH(t) \]
- Wave solutions of Schrodinger's equation
 - Wave kernels signatures
 \[i \frac{\partial \Psi(t)}{\partial t} = L\Psi \]
- Discrete Laplacian has connectivity but no length
Graph Calculus

• Geometric realization of graph \mathcal{G} [Friedman & Tillich 2004]
 – Interval (length) associated with each edge
 – Metric graph with certain boundary conditions

• Leads to the idea of a two-part Laplacian
 \[\Delta = \Delta_V d\mathcal{U} + \Delta_E d\mathcal{E} \]

• Vertex-based part Δ_V coincides with concept of discrete Laplacian

• Edge-based Laplacian Δ_E has interesting properties
 – Solutions exist on edges
Edge-based Differential Equations

1. Heat equation
 - Edge-based heat kernel
 \[
 \frac{\partial f(t)}{\partial t} = -\Delta_E f(t)
 \]

2. Wave equation
 \[
 \frac{\partial^2 f(t)}{\partial t^2} = -\Delta_E f(t)
 \]

3. Relativistic heat equation
 \[
 \frac{\partial^2 f(t)}{\partial t^2} + \alpha \frac{\partial f(t)}{\partial t} = -\Delta_E f(t)
 \]

In contrast to discrete Laplacian, last two exhibit finite propagation speed
 - Models transmission times in networks
• The eigensystem of Δ_E comes in two parts
• Eigenfunctions supported on the vertices
 – Eigenvalues and eigenfunctions determined by random walk matrix T
• Eigenfunctions which are zero on the vertices
 – Eigenvalues and eigenfunctions determined by backtrackless random walk via adjacency matrix of OLG
• Contains structure from both classical RW and backtrackless RW
Conclusions

• Random walks are a powerful tool for analysing network structure
• We have explored the use of a number of different types of walk
 – Random walk (heat kernel)
 – Backtrackless walks (graph kernels)
 – Quantum walks (spectra and matching)
• Edge-based Laplacian is an interesting future direction
 – Contains structure from RW and BRW
 – Finite speed of signal propagation for networks where transmission time matters