Contents

Preface
Acknowledgements

Glossary of Notations

The Challenge of Unification
0.1 Programming paradigms
0.2 Levels of abstraction

0.3 Varieties of presentation
0.4 Alphabets

0.5 Signatures

0.6 Laws

0.7 Challenges that remain

The Logic of Engineering Design

1.1 Observations and alphabets

1.2 Behaviour and predicates

1.3 Conjunction

1.4 Specifications

1.5 Correctness

1.6 Abstraction

1.7 The ideal and the reality of engineering

Relations
2.1 Conditional

xii

xiii

2.2 Composition 48

2.3 Assignment 49
2.4 Non-determinism 51
2.5 The complete lattice of relations 54
2.6 Recursion ’ 56
2.7* Strongest fixed point 61
2.8 Preconditions and postconditions 64
2.9 Variable declarations , 68
Designs 74
3.1 The refinement calculus 76
3.2 Healthiness conditions 82
Linking Theories 86
4.1 Subset theories 88
4.2 Galois connections 97
4.3* Prespecification and postspecification 104
4.4* Simulation , 109
The Algebra of Programs 113
5.1 Assignment normal form 115
5.2 Non-determinism 118
5.3 Non-termination 119
5.4 Recursion 120
5.5 Iteration 125
5.6 Computability 127
5.7* Completeness 128
5.8* From algebraic to denotational semantics 130
Implementation , 133
6.1 Execution 134
6.2 Compilation 141
6.3 Interpretation 148
6.4* Jumps and labels 152
Concurrency ' 160
7.1 Disjoint processes- 162
7.2 Parallel by merge 168
7.3 The spreadsheet principle 175
7.4 Shared array 180
7.5 Synchronisation 182

7.6* Concurrent logic programming 186

vii

8 Communication 194

8.1 Algebra of Communicating Processes (ACP) 199
8.2 Communicating Sequential Processes (CSP) 207
8.3* Data flow 217
9 High Order Programming 232
9.1 Procedures without parameters 233
9.2 Parameter mechanism 238
9.3 Functions 244
9.4* Declarative programming - 249
10 Operational Semantics 258
10.1 Derivation of the step relation 259
10.2 Bisimulation 262
10.3 From operations to algebra 269
10.4* From operational to denotational semantics 272
10.5* Operational semantics of CSP 273
Appendix o: Alphabets 278
Appendix 1: Shared Variables 279
Appendix 2: Primitives 280
Appendix 3: Healthiness Conditions ;, 281
Bibliography 283

Index 295

Preface

A theory of programming explores the principles that underlie the successful prac-
tice of software engineering. As in all branches of engineering, the practice comes
first, both in importance and in historical order. The rapidly spreading benefits of
computer application in modern society are largely due to the efforts and intuitive
genius of teams of programmers, who have gained their skills and understanding
the hard way, by long practice and experience. But now there is another comple-
mentary way for practising software engineers. A study of the relevant scientific
theory can enhance their skills, broaden their range, deepen their understanding
and strengthen their confidence in the accuracy and reliability of their designs and
products. Understanding of a common theory enables experience gained in one
language or application to be generalised rapidly to new applications and to new
developments in technology or fashion; and it is the theory that maintains the
intellectual interest of professional activity throughout a lifetime of achievement.
But best of all, development of a comprehensive and comprehensible theory encap-
sulates the best of the state of the art in the subject, and makes it more readily
available to the next generation of entrants to the profession.

The key to further progress is education; that is the goal of this book. It aims
to attract and inform a class of student who are committed to practical engineering
ideals, and who wish to devote their efforts to study of the relevant scientific foun-
dation. They will probably have exposure already to one or more programming
languages, and expect to meet more in their professional careers. An understand-
ing of the basic concepts which underlie this variety will assist in mastery of new
methods and notations, and in transfer of hard-won experience from one field of
application to another. In a university curriculum, the book may find a place
on a course entitled “principles of programming languages” or “programming lan-
guage semantics”. It would be a useful technical basis for a course on program
verification, or on a software engineering course which takes seriously the normal
engineering concerns of quality, reliability and safety. If such courses do not exist
now, perhaps this book will eventually inspire the development of courses entirely

ix

X Preface

devoted to the theory of programming. An introductory course can be based on
the first six chapters or so; the remaining chapters lead to the edge of current
research.

The book may also attract the interest of students and researchers in math-
ematics, who look to computing science as a source of new applications and exam-
ples, and as a source of new research problems of relevance to the modern world.
Those who have already made a contribution to theoretical computing science may
be inspired to contribute further towards the ideal of unification. It is certain that
progress towards a deeper and broader understanding will depend on the commit-
ment, cooperation, and further major discoveries by specialists in many diverse
fields of research.

The book is wide ranging not only in its subject matter but also in its ap-
proach and style. The early chapters take a rather general philosophical approach,
and the early sections of each chapter devote attention to general background and
motivation. The definitions are accompanied by examples and the theorems by
meticulous proof. The reader is strongly encouraged to skip the elements that are
found uninteresting or incomprehensible; there is a strong possibility that further
reading will solve both these problems. Sections marked with an asterisk may be
profitably omitted on first readmg The following summary is a further guide to
judicious skipping.

The first five chapters justify and introduce the main concepts and methods
used throughout the rest of the book. Chapter 0 relates the goal of unification
to the achievements of other branches of science and mathematics. It surveys the
range of programming methods and languages, and the axes along which they are
classified. It summarises the main methods and conclusions of the book, in a man-
ner suitable for readers who enjoy prior acquaintance with programming semantics.
It ends with a summary of major challenges which have been left for future research.
Chapter 1 draws similar inspiration from a study of general methods of engineering
design, which are found to follow exactly the principles of logical reasoning familiar
in other mathematical and scientific disciplines. The chapter ends with a summary
of the many personal and professional qualities required of the successful engineer,
apart from an understanding of the relevant theory and its practice.

Both these chapters may be lightly skipped by a reader who wants to get on
to the real substance, which begins in Chapter 2. This is a presentation within
predicate calculus of Tarski’s theory of relations, enriched with his fixed point the-
ory, and applied to Dijkstra’s simple non-deterministic sequential programming
language. This language will prove adequate as a framework within which all more
complex languages can be defined. But first, a small inconsistency between relation
theory and practice must be resolved. This is done in Chapter 3, where designs
are introduced as a subclass of relations which can be decomposed into the famil-
iar precondition—postcondition pair of programming calculi like VDM. Chapter 4

Preface xi

develops some of the more elegant general results used in the rest of the book.
Chapter 5 presents a complete algebra for the sequential programming language,
and derives a normal form theorem.

The remaining chapters of the book introduce more advanced programming
language features one by one. They may be studied in almost any combination and
to any depth, with cross references followed at will. Chapter 6 deals with labels,
jumps and machine code, and expounds the principles of correct compilation from a
high level language. Chapter 7 introduces parallel processing based on the shared-
store paradigm. It gives a common parameterised definition of parallel composition
that is reused in the following chapters. Chapter 8 introduces reactive processes,
which allow interaction and communication not only on termination of a program
but also at intermediate stable states while it is running. Chapter 9 deals with
programs that manipulate programs as data. It includes declarative programming,
as incorporated in modern functional and logical programming languages. Chapter
10 unifies the general theory of programming with a popular mode of presentation
in the form of an operational semantics.

Note: A prerequisite for private reading of the book is some acquaintance
with propositional calculus, predicate notation and the concepts of discrete math-
ematics. In the interests of standardisation, and for the general benefit of software
engineers, the mathematical notations are taken largely from the draft interna-

tional standards for Z and VDM.
Tony Hoare

He Jifeng

Oxford, July 1997

A cknowledgements

"The ideas put forward in this book have been inspired or derived from the work
of many earlier researchers. The references are a partial acknowledgement of the
work that has been most influential on the thinking of the authors; they are not
necessarily the earliest source of the ideas.

The following have performed a sterling service to the reader by comments on
earlier drafts of this work: R. Backhouse, J. Baeten, J.W. de Bakker, J.A. Bergstra,
O.-J. Dahl, E.-W. Dijkstra, P. Gardiner, M. Hennessy, R. Joshi, B. von Karger,
H. Langmaack, G. Lowe, G. McCusker, A.J.R.G. Milner, J. Misra, C.C. Morgan,
O. Owe, F. Page, J. Parrow, G.D. Plotkin, A. Ravn, W.P. de Roever, A.W. Roscoe,
A. Sampaio, S.A. Schneider, D.S. Scott, M. Sintzoff, A. Stevens, F. Vaandrager.

The research reported in this book was supported by EPSRC research grant
GR/K58708 “Linking theories for computing science”, the ESPRIT Basic Research
Actions 3104 and 7071 ProCoS and 3006 CONCUR, and the Admiral B.R. Inman
Centennial Chair in Computing Theory at the University of Texas at Austin, and
the Newton Institute Seminar on the Semantics of Programming Languages, and
the James Martin Chair of Computing at the University of Oxford.

Glossary of Notations

Cross references

Section 3.2 Chapter 3 Section 2
3.2L1 Law 1 in Section 3.2
Theorem 3.2.3 Theorem 3 in Section 3.2
Lemma 3.2.7 Lemma 7 in Section 3.2
Example 3.2.5 Example 5 in Section 3.2
Table 3.2.4 Table 4 in Section 3.2
Diagram 3.2.8 Diagram 8 in Section 3.1

Exercise 3.2.10 Exercise 10 in Section 3.1

O end of an example or proof

Logic

= equals

is distinct from

=qf is defined by

iff if and only if

[P] P is true for all values of variables in its alphabet

PAQ P and Q (both true)
PvQ P orQ (one or both true)
-P not P (P is not true)
P=Q if Pthen@

xiii

P=Q

P if and only if @

dz: T e P there exists an r in set T such that P
Vz:TeP forallzinset T, P

Pl Q

Q can be validly deduced from P

P4Q PHQandQP

Sets
€

¢

{}
{a}

is a member of
is not a member of
the empty set

the singleton set containing only a

{z:T|P(z)} the set of all z in T such that P(z)
{f(z)| P(z)} the set of all the values f(z) such that P(z)

SuT S union T

sSNnT S intersect T

S\T S minus T

SCrT S is contained in T

S2T S contains T’

N the set of natural numbers

uc union of collection C of sets

nc intersection of collection C of sets
Sequences

<> the empty sequence

<a> the sequence containing only a

s~t catenation of sequences s and ¢

S the head of sequence s

tail(s) the tail of sequence s

#s the length of s

A* set of all sequences with elements from set A
sl E the subsequence of s omitting elements outside F
s|llt the set of all interleavings of sequences s and ¢

Glossary of Notations

Glossary of Notations

Functions
idg the identity function on set S
{i~e} the singleton function that maps i to e

F:S-T F is a total mapping from S to T’
domain(F) the domain of function F
image(F) the image of function F'

X<F function F' with domain restricted to set X
F(z) the member of T to which F maps z

F-! inverse of F

FoG@G F composed with G, mapping z to F(G(z))
Az :SeF(z) the function that maps each z in S to F(z)
FeG the function Az e (G(z) if z € domain(G) else F(z))
orp the function AX e (PV X)

andg the function AX e (Q A X)

preg the function AX e (J; X)

posty the function AX e (X; K)

impp the function AX e (P = X)

Alphabets

1.1 aP the alphabet of relation P

1.3 inaP the input alphabet of relation P

1.3 outaP the output alphabet of relation P

6.1 alP the set of continuations of program P

64 «alpP the set of entry points of labelled program P
6.4 ol'P the set of exit points of labelled program P
8.0 AP the set of all actions possible for process P

8.3 inchan P the set of input channels of process P

8.3 outchan P the set of output channels of process P

Observations

1.1 z the initial value of variable z
1.1 z’ the final value of variable z

xvi Glossary of Notations

3.0 ok the program has started

3.0 ok’ the program has reached a stable state

6.1 control variable of the execution mechanism

76 ¢q the initial observation of a logic program (called a question)

76 o the resulting sequence of answers

8.0 tr an arbitrary trace of the specified process

8.0 ref an arbitrary refusal of the specified process

8.0 wait the specified process is in an intermediate observable state

Relations

1.5 [P = Q] P implies Q (everywhere)

24 true the universal relation

25 PUQ intersection of P and Q

25 T miracle (the top of the lattice)

2.5 false the empty relation

2.6 ,qu ® P(X) the weakest solution in S of X = P(X)

2.7 vXse P(X) the strongest solution in S of X = P(X)

28 p{Q}r Hoare triple: on precondition p, execution of Q
ensures postcondition r

28 b assertion b

2.8 b7 assumption b

29 varz declaration of variable

29 endz termination of the scope of variable z

29 Py, P with its alphabet augmented by z and z’

31 PFQ the relation ok AP = ok’ AQ

31 De expression e is defined

40 P 3Q P is a refinement of Q, i.e. [P = Q]

43 P/Q the weakest prespecification of Q through P

43 Q\P the weakest postspecification of Q through P

101 — step relation on machine states

10.2 . ~4 strong bisimulation

10.2 =, weak bisimulation

Glossary of Notations

103 = the reflexive transitive closure of —
103 (s, P)t (s, P) is a divergent machine state
10.3 (s,P)C (t,Q) (t, Q) refines (s, P)

103 P~Q P simulates Q and vice versa

104 5 step accompanied by action a

Sequential programming language
21 PQ Pifbelse@

22 P;Q P then Q

23 z:=¢ assign value of e to variable

23 I skip (do nothing, but terminate)

24 PnNnQ ‘non-deterministic choice of P and Q
24 L abort

Labelled programming language

6.1 pP* repeated execution of the step relation P

6.1 P|Q assembly of step relations P and Q

6.2 (s, P, f) the target code: varl;(l=3s)T;P*;(l = f),;endl
63 P text of program P

64 P:S=F P with S asits entries and F as its exits

6.4 P\H P without the exit labels in H

64 H/p P without the entry labels in H

Concurrent programming language
7.1 1:P(z) the relation P(l.z), with observations labelled by !
71 P|Q disjoint parallel composition of P and Q

72 ||lm parallel composition with the merge operation M

Logic programming language

7.6 no always gives an empty sequence of answers
7.6 yes the program which copies the question as its answer
7.6 K|||L interleaves the answers produced by K and L

xviii Glossary of Notations

76 KorL catenates the answers produced by K and L

76 L* apply L to each of the questions and catenate all the answers
76 KandL feed the answers produced by K to L*

76 ! cut: take the first answer

76 -L yes if L has no answer, else no

ACP (Algebra of Communicating Processes)

81 § the deadlocked process
8.1 doas(a) do a then terminate (abbreviated to a)
81 a;P do a then P

81 P+Q P choice Q@

8.1 X P, choice from the family {P, | i € I}

81 P|||Q P interleave Q

8.1 Pllacp@ P in parallel with @, with selective synchronisation
8.1 ogP process P without events in E (encapsulation)

CSP (Communicating Sequential Processes)

82 SKIP the process which does nothing but terminate successfully

8.2 STOP the deadlocked process

8.2 CHAOS the worst process, whose behaviour is unpredictable

82 a— P a then P

82 P|Q P choice @

82 P|l|lQ P interleave Q

8.2 Pllcsp@ P in parallel with @, with synchronisation of identical actions
82 P\E P with events in E hidden

82 P> (Q P chained to Q

82 P®Q the composite choice (P|Q) N Q

Data flow
83 cm communication of value m on channel ¢

8.3 A.(P) the set of messages which P can communicate on ¢
8.3 [P P with each of its channels buffered

Glossary of Notations

83 a?’r~» P wait for an input from channel a then P

8.3 cle~ P output e on channel ¢ then P

83 Pfam P after inpuf of m from channel a

8.3 P|prQ@ parallel composition of data flow processes P and Q

High order programming

9.1 {P} predicate P named as a constant
9.3 TreseP theressuch that P (unique description)
94 P°|Q P if it does not stop, else Q (priority choice)

Precedence

arithmetic operators bind tightest
)

A, V, N, U

n, U

=, = bind loosest

	v.tif
	vi.tif
	vii.tif
	x.tif
	xi.tif
	xii.tif
	xiii.tif
	xiv.tif
	xix.tif
	xv.tif
	xvi.tif
	xvii.tif
	xviii.tif

