Chapter 3

Designs

In this chapter, we work towards a more precise characterisation of the class of
relations that are most useful in program design, namely those that are expressible
(or at least implementable) in the limited notations of a particular programming
language. As usual, we follow the standard practice of mathematics, which is to
classify the basic concepts by their most important properties. For example, among
the functions of real numbers, it is useful to single out those that are integrable,
or continuous, or differentiable. A similar classification of the basic concept of a
relation is essential to our goal of unifying theories of programming.

A subclass of formulae may be defined in a variety of ways. Sometimes it
is done by a syntactic property, for example that a function can be expressed in
a certain normal form using only a limited vocabulary of operators. Sometimes
the definition requires satisfaction of a particular collection of algebraic laws. And
sometimes the definition is by a general mathematical property: for example, a
polynomial is a function whose higher derivatives all vanish. But the most useful
definitions are those that are given in many different forms, together with a proof
that all of them are equivalent.

The main goal of this chapter is to solve the paradox of non-termination pre-
sented in Section 2.6. We need therefore to define a subclass of relation P which
can be proved to satisfy the zero laws

true; P = true = P;true

Clearly this class must exclude the miraculous predicate false, which fails to sat-
isfy these laws; indeed

true;false = false = false;true

The easiest way to define the required subclass is to use the laws themselves as
the defining property. Unfortunately the class of relations that satisfy the zero

74

Designs 75

laws themselves is too large, and does not have the right closure properties. It
is necessary to define a slightly more restricted class of predicates by means of a
slightly stronger collection of laws known as healthiness conditions. There are four
laws in all, which will be numbered H1, H2, H3 and H4.

Relations satisfying H1 already satisfy the left zero law for true. Section 3.2
introduces the conditions H3 and H4, and shows how the right zero law is also
satisfied. This finally solves the outstanding problem raised in Section 2.6. Rela-
tions satisfying the first two laws can be split into two parts: an assumption, which
a designer can assume will be satisfied before the program starts; and a commit-
ment, which the program has to meet when it terminates. Such pairs of predicates
are called designs; they are amenable to a calculus of refinement — essentially the
same as that described by [14, 129, 130], or that used in the Vienna Development
Method [101]. Section 3.1 shows that the definitions of these earlier calculi can be
proved as theorems in the simpler calculus of relations. In this way, we achieve a
unification of single-predicate theories of programming, like those based on B [7] or
Z [171], with the familiar double-predicate theories of refinement; both of them can
now be used interchangeably or in combination whenever this is most convenient.

The formalisation of the four healthiness conditions depends on a more ex-
plicit analysis of the phenomena of program initiation and termination, and this is
what leads to a solution to the original problem of non-termination. We therefore
introduce into the alphabet of our predicates a pair of Boolean variables to denote
the relevant observations.)

Definition 3.0.1 (ok and ok')

ok records the observation that the program has been started.

ok’ records the observation that the program has terminated. Here, termination
means proper normal termination, without error messages etc.]

If ok’ is false, the program has not terminated and the final values of the program
variables are unobservable: the predicate describing the program should make no
prediction about these values. Similarly, if ok is false, the program has never
started and even the initial values are unobservable. These considerations underlie
the validity of the desired zero laws for sequential composition.

The variables ok and ok’ are not global variables held in the store of any
program, and it is assumed that they will never be mentioned in any expression or
assignment of the program text. Furthermore, they will not be mentioned in any
of the predicates featuring as assumptions or commitments; these are restricted to
just the program variables, either in their dashed or undashed forms. However,
the variables ok and ok’ are included in the list of variables that are existentially
quantified in the definition of sequential composition, and they are included in the
list of universally quantified variables that are abbreviated by square brackets.

76 Desigris
3.1 The refinement calculus

The purpose of the refinement calculus is to assist in the design of a com-
plex software product. As indicated in Section 1.5, the complexity is mastered
by splitting the overall task into well-defined separate subtasks, together with a
proof (given in advance) that the assembly of components that fulfil the separate
subtasks will meet the original overall goal. A design task is generally described
by a pair of predicates: an assumption P which the designer can rely on when the
program is initiated, and a commitment @ which must be true when the program
terminates. The preconditions and postconditions of Section 2.8 are special cases
of assumptions and commitments, but now we relax the restriction that forbids
mention of dashed variables. The main achievement of the refinement calculus is
to show how the assumptions made in one part of the design can be discharged by
commitments made in other parts. Any outstanding assumptions are transmitted
to a more global environment, or eventually to the user of the product. It is just
this careful accounting of assumptions and commitments that enables a large team
of engineers to collaborate successfully in the implementation of a large product.

There is one assumption that every program design must rely on, namely that
the program will be started; that is that ok will be true. And there is one commit-
ment that every design must make, namely that the program will terminate; that
is that ok’ will be true. If the assumption is violated, no constraint whatsoever
is placed on the behaviour of the program: it may even fail to terminate. These
insights permit a precise interpretation of the meaning of an assumption P and a
commitment @ as parts of a single predicate describing the overall behaviour of
the program. This predicate is

(ok A P) = (ok' AQ)

or in words “if the program starts in a state satisfying P, it will terminate, and on
termination @ will be true”.

The basic concept of a design in the refinement calculus deserves a notation
of its own.

Definition 3.1.1 (Design)
Let P and @ be predicates not containing ok or ok’.
(PFQ) =4 (0kAP) = (k' AQ)

A design is a relation whose predicate is (or could be) expressed in this form. D
will stand for the set of designs.]

In the interpretation of programs and specifications as single predicates, cor-
rectness (Section 1.5) is identified with implication. In the refinement calculus, the

3.1 The refinement calculus 77

corresponding ordering is known as refinement. The following theorem shows that
the two orderings are the same. The notation Ple, f/z, y] denotes the result of
simultaneously substituting e for z and f for y in P.

Theorem 3.1.2

[(P1 F Q]) = (Pg F Qz)] iff [P2 = P1] and [(P2 A Ql) = Qz]

Proof (PFQ1) = (P2 Q)] {predicate calculus}
(P Q1)ltrue, false/ok, ok’ = (Pt Q.)[true, false/ok, ok']) A
(P @1)ltrue, true/ok, ok'] = (P F Q2)[true, true/ok, ok']] A

n

(P F @1)[false/ok] = (P;F Q2)[false/ok]] {Def. 3.1.1}
= [P = -BR] A[(P= Q},) = (P = Q)] {predicate calculus}
= [Pg = PI] A [(P2 A Ql) = Qg] [m}

The message of this theorem is that (P - Q) is stronger because it has a weaker
assumption P, and so it can be used more widely; furthermore, in all circum-
stances where (P; - Q;) can be used, (P, Q) has a stronger commitment, so its
behaviour can be more readily predicted and controlled.

' Equivalence of predicate pairs is defined in the normal way by mutual impli-
cation

(PFQ) = (BFQ,)] iff
(PFQ1) = (RF Q)] and [(PFQp) = (PiF Q)]

It follows that all equivalent predicate pairs actually denote the same predicate.
This gives a degree of freedom in the expression of the commitment, which can be
strengthened or weakened in accordance with the equivalences

(PFQ) = (PFPAQ) and [PFQ) = (PFP=Q)

In fact, these examples show that PAQ is the strongest and P = Q is the weakest
commitment predicate for which the equivalence holds. Any other commitment R
that preserves equivalence must lie between them.

(PFQ) = (PFR)] iff [(PAQ) = R] and R = (P=Q)
In the extreme case, we have two alternative characterisations of true, namely

false - false and false I true

78 Designs

The definition of design already solves the first part of the paradox of Section
2.6; the left zero law is valid for all designs.

L1l true;(PF Q) = true (true-; left zero)
Proof true; (P + Q) {def of ; and +}
= J0k?,...etrue A (0k° A P = ok’ A Q) {let ok® = false}
= true]

All that remains is to show that every program can be expressed as a design. Un-
fortunately, this is not so. The problem arises right at the beginning, with our
original definition of assignment. A new definition is needed, which recognises the
role of ok as a precondition.

Definition 3.1.3 (Assignment)
z:=e =g (trueta'=eAy =yA...AZ =2) |

This definition can easily be generalised to solve the postponed problem of unde-
fined expressions in assignments. For each expression e of a reasonable program-
ming language, it is possible to calculate a condition De which is true in just those
circumstances in which e can be successfully evaluated [88, 131]. For example,

D17 = Dx = true
D(e+f) = DeADf
D(e/f) = DeADf A(f#0)

Successful execution of an assignment relies on the assumption that the expression
will be successfully evaluated, so we formulate our new definition of assignment

z:=e =¢ (Deka'=eANy =yA...NZ =2)

Expressed in words, this definition states that

either the program never starts (ok = false) and nothing can
be said about its initial and final values,

or the initial values of the variables are such that evaluation
of e fails (—De), and nothing can be said about the final
values,

or the program terminates (ok’ = true), and the value of z’
is e, and the final values of all the other variables are the
same as their initial values.

3.1 The refinement calculus 79

The definition of the conditional also needs to be modified to take into account the
possibility that evaluation of the condition is undefined

Pab>Q =4 (Db = (BAPV-bAQ))

However, in future we will maintain the simplifying assumption that all program
expressions are everywhere defined. We return to the topic of D in Section 9.3.

The change in the definition of assignment requires us to give a new proof of
the relevant algebraic laws.

L2 (vi=e;vi=f(v)) = (v:= f(e))
L3 v:i=¢(Pab(v)>Q) = (vi=¢P)<ble)> (v:=¢Q)

Proof of L2 (v:=e;v:= f(v)) {Def. 3.1.3}
= (-0kV ok A (v =e));

(mok V ok’ A (V' = f(v))) {2.4L6 and L7}

= -0k V (v =¢); (k' A (v = f(v))) {def‘of i}

= -0k Vok' A (V' = f(e)) {Def. 3.1.3}

= v:= f(e)]

The identity element I was defined as a special case of assignment (v := v),
and therefore needs a new definition

I =4 (truetk a2’ =zAy=yA...AZ=2)
Fortunately, II is the left unit of sequential composition on designs.
L4 O; (PFQ) = (PFQ) (IT—; left unit)

The right unit law, however, is not valid for arbitrary designs; a solution to this
problem is postponed to the next section.

The redefinition of assignment (Definition 3.1.3) is fortunately the only change
that needs to be made to the definitions of Chapter 2. The normal combinators
of the programming language have exactly the same meaning as operators on the
single predicates as they have on the double predicates of the refinement calculus.

Theorem 3.1.4

(1) (AFQ)N(RF Q) = (PAAP F Q1VQy)

@) (AFQ)(RF Q) = (PL<bDPF Qi Q)
() (P F @Q1);(PF Q) = (—(=Py;true) A=(Q1;-P) F Q1;Q,)

80 ' Designs

Proofof 3) (PiF@Q1); (PFQ2) {def of ;}

= (P + Q1)[false/ok]; (P Q2)[false/ok] V

(P F Qq)[true/ok']; (P2 - Q2)[true/ok] {Def. 3.1.1}
= (-okV =P);trueVv

(mok V =P,V @Q1); (P2 F Qy)[true/ok] {2.4L6 and L7}
= (-0kV —P);(trueV (P F Q,)[true/ok]) v

Q1; (P2 F Q2)[true/ok] {2.4L6 and L7}
= =0k V (=P);trueV

(Q1;-P2) Vok A (Q1;Q2) {Def. 3.1.1}
= (=(=P;true) A =(Q1;~F,) F Q1;Q2) o

This theorem shows that all the combinators of the programming language map
designs to designs. Since the primitive assignments have been redefined as designs,
it follows that all predicates expressible as programs without recursion are also
designs. This result will now be extended to recursive programs as well.

The law for disjunction (Theorem 3.1.4(1)) generalises to the union of arbi-
trary sets, and a similar law holds for arbitrary intersections.

Theorem 3.1.5
1) MR- Q)
() Wi(PF Q)

(A B) F (Vi @)
(Vi B) = (A (P = Q) o

This means that designs form a complete lattice under implication ordering. Like
all complete lattices, it contains a bottom element 1p, which is (false + true).
It also has a top element

Tp =4 (true I false) = -0k
This exactly describes a program that can never be started.

The really important property of a complete lattice is that it contains the
weakest fixed point of any monotonic function. We have shown that all program-
ming operators map designs to designs, and since the ordering of designs is the
same as that of relations, the operators remain monotonic. It is this that justifies
recursion in expressing designs and in developing their implementations, because
it ensures that the result of the recursion will still be a design. That completes a
demonstration that all programs are expressible as designs. As a result, they all
satisfy the left zero law L1.

3.1 The refinement calculus 81

This appeal to Tarski’s theorem gives an abstract proof of the validity of
4 as a design notation. The following theorem gives an explicit way of calculat-
ing the assumption and commitment of a recursively defined design. As shown in
Theorems 3.1.4 and 3.1.5, any monotonic function of designs, composed solely by
lattice and programming operators, can be analysed as a pair of functions applied
separately to the assumption and the commitment, for example

(F(P,Q) F G(P, Q)

Here, F' is monotonic in P and antimonotonic in @, whereas for G it is the other
way round. The weakest fixed point is given by a mutually recursive formula.

Theorem 3.1.6
WX, Y)e(F(X,Y)FG(X,Y)) = (PQ) + Q)
where P(Y) = vXeF(X,Y)
and Q@ = uYe(P(Y)=G(P(Y)Y))

Proof Here we only show that (P(Q) F Q) is a fixed point of the recursive equa-
tion

(XFY) = (F(X,Y)FG(X,Y))

and leave to our readers the proof that the fixed point is the weakest.

F(P(@), Q) FG(P@Q), Q) {fixed point, def of P}
= P(Q) F G(P@Q), Q) {(PFQ)=(PH(P=Q))}
= P(Q) H(PQ) =G(PQ), Q) {fixed point, def of Q}
= PQFQ a]

Definition 3.1.3 and Theorems 3.1.4 to 3.1.6 of this section show that all pro-
grams of our language can be expressed solely in terms of predicate pairs, without
ever translating them into single predicates by Definition 3.1.1. In a presentation
of the refinement calculus for intending practitioners, these theorems are often
presented as definitions of the notations of the programming language. There is
no need then to introduce the variables ok and ok’. This overcomes a common
philosophical objection to a variable like ok’, whose value when false will never be
observed. But this objection can be countered: similar encodings, like points at
infinity, are common in mathematics and science, and they can be justified if they
simplify the subsequent definitions, calculations and proofs. For exploration of uni-
fied theories, simplicity is paramount, though for practical application, the more
complicated two-predicate definitions are more helpful. This section has shown
how to get the best of both worlds.

82 Designs

Exercises 3.1.7

(1) Prove that Tp; (P+ Q) =

(2) Prove that (z :=e);true = true;(z:=e¢) = true. O

3.2 Healthiness conditions
The previous section has made a start on defining an interesting subclass of
predicates, namely those that can be written in the form
(kA P) = (o AQ)

where P and @ do not contain ok or ok’. A trivial consequence is that all designs
D satisfy

D = (ok = D)

From this, the left zero law follows trivially. A slightly less trivial consequence is
satisfaction of the left unit law (3.1L4)

D =1I;D

In this section we explore these and additional conditions that can be placed on
designs, to ensure that they satisfy additional desirable laws, such as the right unit
law and the right zero law. By far the easiest way of doing this is to use the laws
themselves to define the desired subclasses.

Definition 3.2.1 (Four healthiness conditions)

A predicate R is said to be H1, H2, H3 and/or H4 according to which of the
following laws it satisfies.

Hl1 R = (ok = R)

H2 [R[false/ok']| = Rtrue/oK']|
H3 R = R/II
H4 R;true = true O

The trouble with such abstract definitions is that it is difficult to see what
they are actually saying about programs or about the observations that can be
made of program behaviour. Fortunately, each of the laws can be given an intu-
itive explanation, obtained often by expanding the definition of the operators. For
example, H1 is the simplest: it requires that the predicate R makes no prediction
about the final values (or even the initial values) of the program variables until at
least the program has started. That is reasonable, because these values are actually

3.2 Healthiness conditions 83

impossible to observe: the understood condition for making the observation does
not hold. The healthiness condition H2 states formally that the predicate R is up-
ward closed in the variable ok’: as ok’ changes from false to true, R cannot change
from true to false. The semantic significance of the condition is not great: if R is a
specification that under certain conditions allows failure to terminate, then R also
allows an implementation which terminates under the same conditions. In other
words, no specification can satisfy H2 if it actually requires non-termination, so H2
is a formal mathematical encoding of the fact that non-termination is something
that is never wanted. Theorems 3.2.4 and 3.2.5 will give a similar interpretation
of the semantic significance of H3 and H4. The next two theorems describe the
exact correspondence between H1 and two of the laws that are definitely needed
in any reasonable algebra for programming.

Theorem 3.2.2 (Algebraic characterisation of H1)

A predicate is H1 iff it satisfies the left zero and left unit laws.

Proof of (<) R {assumption : left unit law}
= II;R {def of I and 2.4L6}
= -ok;R V II;R {—ok;true = -0k and left unit}

—-ok;true;R V R {assumption : left zero law}
= -ok;true V R {—ok;true = -ok}
= -0k VR

(=) true;R {R is H1 and 2.4L6}
= true;-ok V true;R {true; ~ok = true}
= true

IR {def of Il and-2.4L6}
= -ok;R V (oK' A v =v);R {-ok;true = -0k}
= -ok;true;R V okA R {true; R = true}
= -wok;true V ok A R {—ok;true = -ok, R is H1}
= R]

The next theorem states the exact correspondence between the first two
healthiness conditions and the syntactic definition (Definition 3.1.1) of a design
as a pair of predicates.

Theorem 3.2.3 (Healthiness of designs)
A predicate is H1 and H2 iff it is a design.

84 Designs

Proof of (=) R {R satisfies H1}
= -o0kVR {predicate calculus}
= -0k V (—ok' A R[false/ok']) V
(ok’ A R[true/ok']) {R satisfies H2}
= -0k V R[false/ok'| V R[true/ok’] A ok’ {Def. 3.1.1}

= -R|false/ok] + R[true/ok’]
Finally we need to prove that designs satisfy H2.

(PF Q)[false/ok] > {Def. 3.1.1}
= -o0kV-P ’ {predicate calculus}
= -0kV-PVQ {Def. 3.1.1}
= (Pl Q)[true/ok o

The general definition of the assumption in a design allows it to contain
dashed variables as well as undashed variables. This is a freedom which it would
be better to forego, because there is no way in which such an assumption could
be discharged by other components in the program, whether they are executed
previously or subsequently. And a dashed variable in an assumption makes the
implementation too easy. All that is needed is to find some final value for the
dashed variables that makes the assumption false, and then the specification will
be trivially satisfied — but probably not in the desired way.

None of these problems arise if the assumption is a precondition, containing
only undashed variables. Then the responsibility for making the assumption true
can be discharged by the preceding segment of program. This sensible restriction,
observed in all current program calculi, corresponds exactly to the third healthi-
ness condition.

Theorem 3.2.4 (Assumption and precondition)

A design P |- @ is H3 iff its assumption P can be expressed as a condition.

Proof (PFQ) = (P+HQ);I {Theorem 3.1.4}
= (PFQ) = (=(=P;true) Q) {Theorem 3.1.2}
= -P = (-P);true {predicate calculus}
= P = P;true (m}

A significant benefit of H3 is that it permits a simplification of Theorem 3.1.4(3),
replacing —(—P,; true) simply by P,.

If the precondition of a design P F @ is satisfied, the eventual program is
required to terminate and deliver final values for the program variables, and these

3.2 Healthiness conditions 85

must satisfy the predicate Q. But that will be logically impossible if there are
no final values which satisfy Q. This paradox is precluded by H4, which states
that for any initial values of the undashed variables that satisfy P, there exist final
values for the dashed variables that satisfy Q.

Theorem 3.2.5 (Feasibility)

P Q satisfies H4 iff [ok/,2',...,7 ¢ (P + Q)).
Proof Expand Definition 2.2.1 of ;. m]

It is the condition H4 that excludes the miraculous predicate Tp. H4 is called
a feasibility condition; all programs will be proved to satisfy it, and furthermore
if a design fails to satisfy it, there is no program that could ever implement that
design.

Exercises 3.2.6

(1) Prove that sequential composition, non-deterministic and conditional choices
preserve the healthiness conditions.

(2) A design b(v) F Q(v, v') is predeterministic if
[(b(v) A Q(w, 1) AQ(V, v2)) = (v1 =1y)]

Prove that if both R and S are predeterministic, so are R; S and R<1b> S.
(3) Define a condition b to be stable if

b=>bAok

Restrict R to healthy predicates and b to stable conditions, and prove that
R wp b is stable

and that it obeys Dijkstra’s healthiness condition

R wp false = false (absence of miracle) O

	74.tif
	75.tif
	76.tif
	77.tif
	78.tif
	79.tif
	80.tif
	81.tif
	82.tif
	83.tif
	84.tif
	85.tif

