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Chapter 1

Introduction

This report has been prepared for the Defence Evaluation and Research Agency, Malvern, UK,
under grant number CU009-0000004344.

The research was carried out by the author at the University of Oxford, and whilst on
visits to the following institutions: the Federal University of Pernambuco, Trinity College
Dublin, the Stevens Institute of Technology in New Jersey, and the United Nations University,
International Institute for Software Technology in Macau (UNU/IIST).

The author has discussed the steam boiler over a long period of time with many people, in-
cluding: Jean-Raymond Abrial, Dines Bjorner, Eerke Boiten, Christie Bolton, Egon Borger, An-
drew Butterfield, Ana Cavalcanti, Charlie Crichton, Jim Davies, John Derrick, Lindsay Groves,
Daniel Jackson, He Jifeng, Tony Hoare, Steve King, Andrew Martin, Alistair McEwan, Colin
O’Halloran, Augusto Sampaio, Anthony Smith, Ib Holm Serensen, and the Visiting Fellows at
UNU/IIST.

1.1 Circus

The research in this report has influenced the design of Circus, a concurrent refinement
calculus [37] that unifies the Z notation [35, 29, 34, 38], CSP [18, 31], and ZRC [10, 12], a re-
finement calculus for Z. The semantics of Circus is based on Hoare & He’s Unifying Theories of
Programming [19], in which the theory of alphabetised relations is used as a common seman-
tic basis for many diverse paradigms of programming, including imperative programming,
concurrency, and communication, which are fundamental to Circus.

An objective of the design of Circus is to provide a sound development technique based
on the refinement calculus [28] for parallel programming languages including occam [23],
Handel-C [14], and even Java [5, 11]. The effective use of such a calculus requires tool support,
and we use two tools together in analysing Circus specifications: Z/Eves [26, 32] and FDR
[15]. The Z specifications in this document have been parsed and type-checked using fuzz
[36] and the FDR scripts checked using FDR 2.78; a verification using Z/Eves was incomplete
at the date of writing.

In[37], Zis used as the concrete syntax for the theory of alphabetised relations, so a Circus
specification actually denotes a Z specification, in spite of containing terms in the syntax of
CSP. This means that Z tools may be used to analyse entire Circus specifications, not just
those parts written in Z. This is particularly useful when it is not possible or convenient to
reduce a Circus specification to the size where it may be model-checked using FDR, and we
need to verify a development with a theorem prover.



1.2 The steam boiler problem

The steam-boiler problem has established itself as one of the standard problems in software
engineering, alongside the library, the lift, and the telephone exchange. It was first posed
by Bauer from the University of Waterloo [7], and subsequently popularised by Abrial as the
subject of a Dagstuhl workshop [2]. The problem description and twenty-two solutions are
contained in [3]; Abrial’s own solution is published separately in [1].

The problem is to program the control system for a steam boiler, such as might be found
in a power station. The control software is supposed to exist within a physical environment
with the following elements.

e The steam boiler.

A sensor to detect the level of the water in the boiler.

Four pumps supplying the steam boiler with water.

Four pump controllers.

A sensor to measure the quantity of steam being produced.
e An operator’s desk.

A message transmission system.

The steam-boiler’s components have various parameters that constrain their working ca-
pacities; these are described in table 1.1.

parameter | meaning

C the capacity of the boiler

M the minimum water level; if the level remains below M; while
the steam production is at its maximum, then the steam boiler
would be in danger after five seconds

M, the maximum water level; if the level remains above M, without
steam production, then the steam boiler would be in danger
after five seconds

N the minimum normal quantity of water, where M; < Ny

No the maximum normal quantity of water, where N> < M>

w the maximum quantity of steam at the steam-boiler exit

U the maximum gradient of increase of the quantity of steam
U» the maximum gradient of decrease of the quantity of steam
q the measure of the water level

p the capacity of a pump

% the measure of the steam rate

Table 1.1: Parameters and their meanings

After a pump has been switched on, it takes five seconds before water is pumped into the
boiler, because of the need to balance pressures; however, it can be stopped instantaneously.
A pump controller reports on whether there is water passing through its pump.

The program communicates with the physical units through messages that are transmit-
ted over dedicated lines. Transmission times may be neglected and all messages may be
regarded as arriving simultaneously. The control program operates in five different modes.

o Initialisation. The program checks the water and steam sensors for correct operation;
it ensures that the water level is between normal operating limits.



e Normal. This is the standard operating mode, where the program tries to maintain the
water level; there are no unrepaired failures.

e Degraded. The water sensor has not failed, but some other non-vital piece of equipment
has; the program continues to operate.

e Rescue. The water sensor has failed; the program continues to operate.

e Emergency stop. The program enters this mode if it has been instructed to stop, if the
water level is near to one of the overall limits, if a vital piece of equipment has failed,
or if there is some irregularity in the protocol between the program and the physical
equipment.

The program does not terminate and follows a cycle that takes place every five seconds:
receive messages—analyse information—transmit messages.

1.3 The Circus solution

Our solution to the problem consists of four processes operating in parallel.

1. The Timer makes sure that the program’s cycle begins every five seconds.

2. The Analyserinputs messages from the physical units and analyses their content. Once
the analysis is complete, it offers an information service to the Controller.

3. The Controller decides on the actions to be taken, based on the information that it
receives. It generates outputs for the Reporter.

4. The Reporter offers a reporting service to the Controller by gathering its outputs and
packaging them together for dispatch to the physical units. It signals the completion
of the cycle.

Our solution is guided by a desire to find efficient ways of verifying our model; in particu-
lar, we want to use the FDR model checker. There are two obstacles to using a model checker
for a system such as this: the state explosion problem and the presence of loose constants.
FDR can check an impressive number of states, but the rich state of the steam boiler exceeds
this capacity by many orders of magnitude.

Loose constants complicate model checking, since they must be given specific values;
an argument is then required to extrapolate from these specific values to arbitrary ones.
The full steam-boiler system, described at the level of the requirements, depends on sev-
eral loosely-specified constants; any reasonable instantiation of these constants leads to a
massive number of states.

Our solution is to separate the Controller and its finite state machine from the Analyser
and the rich state that it constructs from the history of input messages. The Analyser digests
the incoming messages and makes this digest available to the Controller as abstract events;
this makes the Controller amenable to fully automatic model checking using FDR, having
fewer than one million states and no loose constants to instantiate.

Extrapolation from the abstract behaviour of the Controller to the concrete realities of
the requirements is provided by the Analyser. In fact, it may be viewed as a retrieve function
from the concrete details of the state to an abstract interpretation of those details, in the
sense of data refinement [24, 38].

The sequence of messages involved in the interaction between these five processes is
described in the message sequence chart in figure 1.1. In this diagram, the ainput and aoutput
channels connect to the environment; everything else is internal. The ainfo and areport
represent collections of communications between their respective processes. To understand
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Figure 1.1: Message sequence chart



the sequence of messages in a little more detail, we present an abstraction of the Circus
specification as a pure CSP process.
Both the Controller and the Reporter keep track of the current mode, which is selected
from the following data-type.
datatype Mode = initialisation | normal | degraded | rescue | emergencyStop

NonEmergencyModes = {initialisation, normal, degraded, rescue}
The mode is stored in a simple variable process, which starts off in initialisation mode.

channel getmode, putmode : Mode
ModeStatelnterface = {| getmode, putmode |}

ModeState =
let
MS(m) = putmode?n — MS(n)
O
getmode!m — MS(m)
within

MS(initialisation)
EnterMode(m) = reportmode'!m — putmode!m — SKIP
We must define all the channels from the message sequence chart in figure 1.1. In our
abstract view, channels that carry communications have been reduced to mere synchronisa-

tions, with the exception of the aoutput and reportmode channels, which merely communi-
cate the current mode.

channel ainfo, areport, clocktick, endcycle, endreport, afailuresrepairs, ainput,
apumps, startcycle, startexec, startreport

channel aoutput, reportmode : Mode
We describe the internal interfaces between the processes being composed from left to
right: TAnalyserInterfaceis the interface between the Timer and the Analyserl; TAController-
Interfacel is the interface between the Timerl-Analyserl subsystem and the Controllerl; and
TACReporterinterfacel is the interface between the Timer-Analyserl-Controllerl subsystem
and the Reporterl. The ‘-1’ suffix denotes a component that is refined later in the report.

TAnalyserInterface = {startcycle}

TAControllerinterfacel = {ainfo, startexec}

TACReporterInterfacel =

{| apumps, areport, endreport, afailuresrepairs, reportmode, startreport |}
The Timer signals the start of the cycle and repeats this after every fifth clock tick.

cycletime = 5
cyclelimit = cycletime — 1

TCycle(time) =
(if (time + 1) mod cycletime = 0 then startcycle — SKIP else SKIP);
clocktick — TCycle((time + 1) mod cycletime)

Timer = TCycle(cyclelimit)



The Analyser cycles through its sequence of events, offering as many ainfo events as required.
The information service is terminated by the transmission of data about outstanding failures
and repair acknowledgements. This is followed by the receipt of information about the in-
structions sent to pumps, which is needed by the Analyser in order to maintain its model of
their state.

Analyserl = startcycle — ainput — startexec — InfoServicel
InfoServicel =

ainfo — InfoServicel

O

afailuresrepairs — apumps — Analyserl

We add the Analyser to the Timer, synchronising on its hidden interface.

TAnalyserl =
(Timer|[ TAnalyserInterface ]| Analyserl) \ TAnalyserInterface

The assembly is free from deadlock and livelock.

assert TAnalyserl : [ deadlock free [FD]]
assert TAnalyserl : [ livelock free [FD]]

The Controller’s behaviour is initiated by a startexec event, which it passes on to the Reporter
as a startreport event. The Controller’s task is to generate instructions to control the steam
boiler, based on the information made available to it by the Analyser.

One possibility is that the Analyserinstructs the Controller to perform an emergencyStop.
If this does not happen, then the Controller receives a number of ainfo signals from the
Analyser and takes action on them, depending on the current mode.

Controller] =
startexec —
Startreport —

NewModeAnalysisl,;

getmode?m —
(if m #+ emergencyStop then

Mi:{0..limit} ¢ PutReports(i)
else SKIP );

endreport — Controllerl

The process NewModeAnalysis1 decides on the next mode to enter, given the current mode
and the information made available to it. Once NewModeAnalysisl has completed its work,
the Controller generates some areports, and passes information back to the Analyser on the
required state of the steam-boiler’'s pumps.

NewModeAnalysisl =

ainfo — EnterMode(emergencyStop)

-

((Mi:{0..limit} e Getinfomation(i));

getmode?mode —

if mode = initialisation then InitModeAnalysis1
elseif mode = normal then NormalModeAnalysis]
elseif mode = degraded then DegradedModeAnalysis1
elseif mode = rescue then RescueModeAnalysis1
else SKIP



In each nonemergency mode, it is possible to transit to other modes.
InitModeAnalysis] =
SKIP 1 EnterMode(normal) m EnterMode(degraded) r EnterMode(emergencyStop)
NormalModeAnalysis1 = SKIP m EnterMode(rescue) rm EnterMode(degraded)
DegradedModeAnalysisl = SKIP m EnterMode(normal) m EnterMode(rescue)
RescueModeAnalysis1 = SKIP r EnterMode(normal) m EnterMode(degraded)
Since the Controller is responsible for demanding information and for generating reports, it
is here that we place bounds on the number of exchanges that are possible. If we fail to do
this, then hiding these exchanges will lead to divergence.
limit = 8
Get(event, n) = if n > 0 then event — Get(event,n — 1) else SKIP
Getinformation(n) = Get(ainfo, n)
PutReports(n) = Get(areport, n)

We add a simple mode variable to the Controller and then add the result to the TAnalyser,
hiding the internal interfaces.

TAControllerl =
( TAnalyserl
[ TAControllerInterfacel ]|
( Controllerl
[[ModeStatelnterfacel|
ModeState
) \ ModeStatelnterface
) \ TAControllerInterfacel

The composition is free from livelock.
assert TAControllerl : [ livelock free [FD]]

Notice that the composition isn’t deadlock free, since the Analyser can perform the trace
( startcycle, ainput, startexec, afailuresrepairs )

whilst at the same time, the Controller can perform the trace
( startexec, startreport)

This corresponds to the Analyser having completed a cycle of behaviour in which its in-
formation service was not required, but the Controller paradoxically being in a state where
it actually requires the service. This paradox is resolved by the interaction between the
Controller and the Reporter, which requires that the afailuresrepairs event occurs only after
the Controller has completed its requirement for the information service.

The Reporter starts its cycle with a startreport event.

Reporterl = startreport — ReportServicel



Following this, it repeatedly gathers areport events, paying particular attention to the mode
that the Controller is in, until it receives the signal to end the report phase, whereupon it
does some tidying up. An emergencyStop mode is serious enough to terminate the cycle.

ReportServicel =
O m : NonEmergencyModes e reportmode.m — putmode!m — ReportServicel
Sreport — ReportServicel
rDeportmode.emergencyStop — putmode!emergencyStop — TidyUpl
:DrjdyUp1

Tidying up involves fetching some information from the Analyser about recently failed de-
vices and acknowledgements of information about repairs, dispatching the output to the
physical units, and informing the Analyser about the commands sent to the pumps.

TidyUpl =
endreport —
afailuresrepairs —
getmode?m —
aoutput'm —
apumps —
Reporterl

We add the Reporter to the rest of the components, hiding the internal interface.

TACReporterl =
( TAControllerl
[ TACReporterInterfacel ||
( ( Reporterl
[[ModeStatelnterfacel|
ModeState
) \ ModeStatelnterface
)
) \ TACReporterinterfacel

The entire composition is free from deadlock and from livelock.

assert TACReporterl : [ deadlock free [FD]]
assert TACReporterl : [ livelock free [FD]]

These communicating processes form our abstract view of the steam boiler.
SteamBoilerl = TACReporterl

FDR code for the abstract steam boiler is contained in appendix B. All assertions have
been successfully checked. The next four chapters contain the Circus specification of each
process. Collectively, they refine the abstract specification given here. Appendix B contains
two pure CSP descriptions: the one described in this chapter, and another that is derived
from the Circus specification by abstracting from most of the state details. The refinement
has been checked by FDR.



Chapter 2

The Timer

The Timer process is responsible for signalling to the other processes the start of the pro-
gram’s cycle, and for ensuring that the cycle is repeated every five seconds. It keeps track of
time by counting the number of clocktick events that it has received from the environment.
The TimedSequencer uses two channels:

channel clocktick, startcycle

It declares a small environment containing a variable that maintains the current time, modulo
the cycle time.

process Timer =
begin
cycletime == 5
cyclelimit == cycletime — 1
Time == 0 .. cyclelimit
TimeState = [ time : Time ]
ATimer = [ TimeState;, TimeState' | time' > time ]

The action TCycle increments the time variable; if its new value is zero, then it is time to
start the next cycle; it waits for the next clocktick, before repeating.

TCycle = time := time + 1 mod cycletime;
if time = 0 then startcycle — SKIP else SKIP;
clocktick — TCycle

The Timer initialises the time variable so that the cycle can start, and then behaves like
TCycle:

Timer = time := cyclelimit; TCycle

end Timer

FDR code for the Timer is contained in appendix B. The process is so simple that there
are no assertions to be checked.
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Chapter 3

The Analyser

The Analyser provides an information service for its two clients: the Controller and the
Reporter.

The Analyser acts for its Controller client by accepting messages from the units, analysing
their information content to extract the state of the units and their possible failures, and
then enabling certain events as abstractions of this state. This is done in a simple way by
associating each abstract event with a state-based firing condition.

For its Reporter client, it provides details of outstanding failures and acknowledgements
for repairs carried out on failed equipment. These details are an essential part of the pro-
gram’s output to the operator.

The Analyser provides its information service by maintaining a model of the behaviour
of the various items of equipment in the system. We describe each of these models, the
handling of failures and repairs, and the structure of input messages and their analysis.

3.1 Steam boiler parameters

The requirements describe several constants that are loose parameters of the steam-boiler’s
operation: C is the capacity of the boiler; P is the capacity of a pump; U; is the maximum
gradient of increase; U is the maximum gradient of decrease; and W is the maximum output
rate for the boiler.

| C,P,U,Up, W:N
The critical and working limits of the steam boiler are defined and ordered appropriately.
M, N1, No, Mo : N
My <N =N> =M

Capacities are given in litres and time intervals in seconds.

3.2 Sensors
The abstract models of the water-level sensor, the steam-rate sensor, and the pump are

all rather similar; we call this simple model a unit. The record of the state of a unit is a
generic specification maintaining three quantities: lower and upper-bounds on the unit’s

11



actual measure (a; and a») and a record of its operational state (st) drawn from the generic
parameter (X).

Unit[X] = [aj,a:N; st: X | a; < ap ]

The generic definition is instantiated to specify each kind of unit. First, a sensor may be
judged to be working or to have failed.

SState ::= sokay | sfailed

This free type is used as an actual parameter when we instantiate the Unit as a sensor. The
water quantity sensor maintains lower and upper-bounds on the water level, and a record of
its state.

QSensor = Unit[SState][qay /a1, qaz | a, st/ st]

Initially, the water-level sensor’s lower and upper-bounds are set to the extreme values and
it is judged to be working.

nitQSensor = [ QSensor’ | ga; =0 A qa, = C A gst’ = sokay ]
The steam-rate volume sensor is similar.

VSensor = Unit[SStatel[va, /ay, vao [ az, vst ] st]
InitVSensor = [ VSensor’ | va; = 0 A va, = 0 A vst’ = sokay |

The initial approximation assumes that there is no flow.

3.3 Pumps

A pump’s state is not modelled as merely open or closed, since it takes five seconds before
water starts to pass through it; this intermediate state is pwaiting.

PState ::= popen | pwaiting | pclosed | pfailed

As before, the system maintains lower and upper-bounds for each pump and a record of its
current state.

PumpO0 = Unit[PStatel[pa, /a1, paz | az, pst/ st]

This is not the full story about the model for a pump: there are various invariants that must
also hold.

The requirements tell us that the lower-bound for the i-th pump is zero if one of the
following holds true: the pump is closed; the pump has failed; or the pump’s controller has
failed. If none of these holds, then the lower-bound is assumed to be P. Similarly, the upper-
bound for the i-th pump is P if one of the following holds true: the pump is open; the pump
has failed; or the pump’s controller has failed. If none of these holds, then the upper-bound
is assumed to be zero.

We capture these invariants one at a time. First, if the pump is open, then it is assumed
to have maximal flow.

PumpOpen = [ PumpO | pst = popen = pa; = P A pa» = P ]
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If the pump is waiting for the pressure to balance after opening, then there is no flow; if the
pump is closed, then there is no flow.

PumpWaitingOrClosed =
[ PumpOQ | pst = pwaiting v pst = pclosed = pa; = 0 A pa, = 0]

A pump must satisfy these invariants.

Pump = PumpOpen A PumpWaitingOrClosed
Initially, a pump is closed.

InitPump = [ PumpWaitingOrClosed’ | pst’ = pclosed ]

The requirements give no direct guidance about the initial states of the system’s equipment.
For the initial state of a sensor, it seems uncontroversial to assume that it is working and
that it might take any value within its range. If this is incorrect, then the analyser will detect
that the sensor isn’t working as soon as it sends a reading that seems inappropriate. The
system is designed to cope with this fault by deducing whether the sensor is working or not.

The initial state of a pump is rather different, since there is no clear ‘don’t care’ value,
as there is for a sensor. We initialise the pump to closed; if instead the pump is initially
open, then the program will deduce that it has failed. We need to ask the customer about the
adequacy of the decision taken here.

A pump controller may detect the flow of water in its pump, providing that it has not
failed.

PCState ::= pcflow | pcnoflow | pcfailed
PumpCtr0 = [ Pump; pcst : PCState ]

Again, a number of invariants must hold. First, if the pump is open, then if the controller is
okay, then it should be detecting flow. Formally, one of the following two conditions must
hold.

POpenPCFlowOrFailed =
[ PumpCtr0 | pst = popen = pcst = pcflow v pcst = pcfailed |

If the pump is waiting for the pressure to balance, then if the controller is okay, then it should
not be detecting flow. So, one of the following two conditions must hold.

PWaitingPCNoFlowOrFailed =
[ PumpCtr0 | pst = pwaiting = pcst = pcnoflow Vv pcst = pcfailed ]

If the pump is closed, then if the controller is okay, then it should not be detecting flow.
Again, one of the following two conditions must hold.

PClosedPCNoFlowOrFailed =
[ PumpCtr0 | pst = pclosed = pcst = pcnoflow Vv pcst = pcfailed |

If the pump has failed, but its controller is okay and detects flow, then we can assume that
the pump is flowing at capacity.

PFailedPCFlow =
[ PumpCtr0 | pst = pfailed A pcst = pcflow = pa; = P A pa, = P ]

13



If the pump has failed, but its controller is okay and does not detect flow, then we can assume
that the pump has no flow through it.

PFailedPCNoFlow =
[ PumpCtr0 | pst = pfailed A pcst = pcnoflow = pa; =0 A pap = 0]

Finally, if both the pump and the controller have failed, then we know nothing about the
approximation, and the limits are extreme.

PFailedPCFailed =
[ PumpCtr0 | pst = pfailed A pcst = pcfailed = pa; = 0 A pax = P ]

The pump-controller assembly is specified by these six invariants.

PumpCtr =
POpenPCFlowOrFailed n PWaitingPCNoFlowOrFailed A
PClosedPCNoFlowOrFailed A PFailedPCFlow A PFailedPCFlow A PFailedPCFailed

The pump controller is in its initial state when the pump is in its initial state and when the
controller indicates that there is no water flowing.

InitPumpCtr = [ PumpCtr’ | InitPump A pcst’ = pcnoflow ]

The pump-controller assembly is promoted to a system of four pumps; the system has its
own lower and upper limits, derived from those of the individual pumps.

Pumplndex ==1..4

__ PumpCtrSystem
pumpctr : PumplIndex — PumpCtr
pai,paz : N

pa, = (pumpctr 1).pay + (pumpctr 2).pa, +
(pumpctr 3).pa; + (pumpctr 4).pa;

pax = (pumpctr 1).pa + (pumpctr 2).pa +
(pumpctr 3).pa + (pumpctr 4).pa»

The pump-control subsystem is in its initial state when each controller is in its initial state.

__InitPumpCtrSystem
PumpCtrSystem’

3 InitPumpCtr e
Y i: Pumplndex o pumpctr’ i = 0 PumpCtr’

3.4 Valve

There is no discussion in the requirements of the possible failure of the evacuation valve. This
is a rather puzzling omission, since it seems as unlikely to be a perfect piece of equipment

14



as any other device in the system. This should be discussed with the customer. For the time
being, we do model it as a perfect device.

VState ::= vopen | vclosed

Valve = [ valve : VState ]

InitValve = [ Valve' | valve’ = vclosed ]

A valve has two states and it is initially closed.

3.5 Expected values

During each cycle, we can calculate the values that we expect the parameters to take during
the next cycle. For the water-level and steam-rate sensors, we calculate the range of the
expected upper and lower limits, based on our mathematical model of the steam-boiler’s
dynamics.

CValues = [ gc1, qco, ver, ver = N
Initially, these calculations are as loose as possible.
InitCValues = [ CValues' | gc; =0 A qcy = C Avep =0 Ave; =W ]

Of course, there are invariants relating to our calculations. First, if the valve is open, then
the calculated lower-bound for the water level must be zero.

QLowerBoundValveOpen = [ CValues; Valve | valve = vopen A gc; = 0]

On the other hand, if the valve is closed, then we may calculate the value of this lower-bound
from the formula given in the requirements,

qgci = qay — vap At — 3UIAE? + At pay

where At is the cycle time, for us five seconds, and U; is the maximum gradient of increase
of the quantity of steam.! This calculation simply predicts what the level should be at the
start of the next cycle, based on the value in this cycle: we will have lost some water due to
steam, and gained some due to the input of the pumps. For our own convenience, we assume
that the accuracy in our calculation is good enough (integer arithmetic on values in litres and
rates in litres per second); more accurate results would be obtained with a change to more
suitable arithmetic.

It makes no sense for the steam boiler to be less than empty, and if our calculation pro-
duces a negative result, it is because our approximations were too loose.

QLowerBoundValveClosed =
[ CValues; QSensor; VSensor; Pump; Valve | valve = vclosed A
qgc1 = max{0,qa; — 5 * va, — 12 % Uy + 5 x pa, } ]

L Actually, this is not the formula given in the requirements, since it differs in the final term: where we have
At pay, the requirements state simply pa;. We believe that our formula is correct, but this should really be checked
with the customer.
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The upper-bound may be calculated in a similar fashion; of course, it makes no sense for the
steam boiler to be more than full.

QUpperBound =
[ CValues; QSensor; VSensor; Pump |
qgc; = min{C,qa — 5 xva; + 12 x U, + 5 * pax} ]

We can also calculate the expected value of the steam rate at the start of the next cy-
cle: the lower-bound cannot have changed more than dictated by Us, the maximum gradient
of decrease.

VLowerBound = [ CValues; VSensor | vc; = max{0,va; — 5 x U} |
The upper-bound for the steam-rate sensor is calculated in a similar way to its lower-bound.
VUpperBound = [ CValues; VSensor | v, = min{W,va, — 5 % U;} ]

The input tells us whether the pumps are either open or closed; it does not tell us whether
the pump is waiting to open or if it has failed: these states come from deductions that the
program may make.

InputPState == {popen, pclosed}
The input also tells us whether there is flow or not.
InputPCState == {pcflow, pcnoflow}

We expect the pumps to be in certain states, depending on the command that we issued in
the last cycle.

ExpectedPumpStates
expectedp : Pumplndex — InputPState
expectedpc : Pumplndex — InputPCState

Initially, we have no expectations about the pumps’ states, so the values in the range of
expectedp and expectedpc are arbitrary.

Our equipment is modelled by the state of the water sensor, the steam rate sensor, the
pump control subsystem, the evacuation valve, and the calculations of expected values.

Equipment( =
QSensor A VSensor A PumpCtrSystem A Valve A CValues N ExpectedPumpStates

3.6 Failures and repairs
There is a simple protocol for failures that needs to be observed: once a failure has been
detected, it must be reported; the report is made repeatedly until the operator acknowledges

it; a failed component may be repaired; the program should acknowledge the repair. To
follow the protocol, we keep track of the failures and their acknowledgements
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We start by extracting information on the various equipment failures: the sensors, pumps,
and controllers have been judged to have failed if their state records this fact.
QFailed = [ QSensor | gst = sfailed ]
VFailed = [ VSensor | vst = sfailed ]

PFailed =
[ PumpCtrSystem | (31i: Pumplndex o (pumpctr i).pst = pfailed) ]

PCFailed =
[ PumpCtrSystem | (3i: Pumplndex o (pumpctr i).pcst = pcfailed) ]

The program is required to transmit messages notifying the operator of these equipment
failures; the information comes from the following free type.

UnitFailure ::= (fail | vfail | pfail {( Pumplndex)) | pcfail ({( Pumplndex))
Failures = [ failures, noacks : P UnitFailure | noacks < failures ]
The failures component is derived from existing state information; the noack set records

those failure reports that have yet to be acknowledged by the operator. These two records
are included in the analyser’s model of the equipment.

__ EquipmentFailures
EquipmentQ
Failures

failures =
{ u : UnitFailure; i: Pumplndex |
(u = gfail A QFailed) v (u = vfail A VFailed) v
(u = pfaili A PFailed) v (u = pcfaili A PCFailed) o u}

Since the set of failures is derived, we don’t need to describe its initial state. Initially, there
are no unacknowledged failure reports.

InitFailures = [ Failures' | noacks’ = @ ]

When the operator acknowledges a failure report, the appropriate failure had better be in the
noacks set; the unacknowledged set is updated.

FailuresExpected =

[ Failures; failureacks : P UnitFailure | failureacks < noacks ]
AcceptFailureAcks =

[ AFailures; FailuresExpected | noacks’ = noacks \ failureacks ]

If arepair is reported, then it had better be a repair of a failed piece of equipment; the failures
are updated accordingly.

RepairsExpected =
[ Failures; repairs : P UnitFailure | repairs < failures ]

AcceptRepairs =
[ AFailures; RepairsExpected |
failures’ = failures \ repairs A noacks’ = noacks \ repairs |

17



So, the Analyser’s view of the state of the equipment consists of the state of the sensors,
the pumps, the valve, the invariant calculations of the lower and upper-bounds for the water-
level and steam-production rate, the expected pump states, and the records of failures and
acknowledgements.

Equipment =
( QLowerBoundValveOpen v QLowerBoundValveClosed ) A
QUpperBound A VLowerBound A VUpperBound A
ExpectedPumpStates N EquipmentFailures

The initial value of the valve is undetermined.

InitEquipment =
Equipment’ A InitQSensor A InitVSensor A
InitPumpCtrSystem A InitCValues A InitFailures

3.7 Input messages

We turn now to the input messages that may be received from the physical units. There are
four kinds of messages: signals that instruct the program in various ways; messages that
report the state of individual physical units; messages that report the repair of individual
units; and messages that acknowledge the program’s report of failure of individual units.

An input signal is one of the following: a stop command; an indication that the steam
boiler is waiting; or an indication that the physical units are ready; or an indication that there
has been a transmission failure.

InputSignal ::=
stop | steamBoilerWaiting | physicalUnitsReady | transmissionFailure

Transmission failure may be regarded as a property of the input messages received in a
particular cycle: either there has been a failure or there has not, and we are not saying what
the detection mechanism is, but that there must be one. We have chosen to model this failure
as another kind of signal, and to leave its precise details to a later stage of development.

The Analyser receives from the physical units the state of the pumps, their controllers,
and the readings of each sensor.

UnitState
pumpState : Pumplndex — InputPState
pumpCtrState : Pumplndex — InputPCState
q,v:N

It also receives information on any repairs recently carried out. Since all input messages may
be considered to arrive simultaneously, we describe the type of input messages as containing
these three types of messages, as well as a set of signals.

InputMsg
signals : P InputSignal

UnitState

failureacks, repairs : P UnitFailure
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3.8 Analysing messages

For a given InputMsg, we are interested in whether a certain value was in its expected range
or not.

Expected = [ x?, a1, a> : N | a1 < x? < ap ]

Unexpected = — Expected
A sensor is a unit with additional calculated-bounds and an input for consideration.
Sensor = [ AUnit[SState]; ci, ¢z, ¢y, €5, x? 1N ]

The program detects a sensor failure when it finds that its input is unexpected; if there is a
failure, either detected now or previously, the sensor’s value is taken to be that last calculated,
rather than the current input.

__ CheckAndAdjustSensor
Sensor

Expected = st’ = st
Unexpected = st’ = sfailed
st" = sokay = aj] = x? A a, = X?

!

st =sfailled=a; =c1 A a, =0

These general definitions are instantiated for each sensor.

CheckAndAdjustQ =
QSensor A
CheckAndAdjustSensor[q?/x?, qa, /a1, qaz ]/ az, qcy/c1, qce [ ¢z, gst/ st,
qay/ay, qas/ay, qcy/cy, qcy/cy, gst’/st']
CheckAndAdjustV =
VSensor A
CheckAndAdjustSensor[v?/x?,vay | ay, vax | az, vcy /¢y, Vea | ¢, VSt st,
vay | ay, va,|a,, vey ¢y, ve, | ¢, vst' [ st']

The input message tells the Analyser about the state of the pumps and their controllers;
the Analyser checks to see if this information is consistent with what it expects. For an
individual pump, we have four values: the inputs telling us the current state of pump and
controller, and the expected values. If either value is unexpected, then we assume that the
pump has failed.

__ CheckAndAdjustPump
APumpCtr

pst?, exppst : InputPState
pcst?, exppcst : InputPCState

pst? = exppst = pst’ = pst? A
pst? = exppst = pst’ = pfailed A
pcst? = exppest = pcest’ = pest? A
pcst? + exppcst = pest’ = pcfailed
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This check is promoted to the pump control system by identifying it as a check of the i-th
pump.

__PromotePumpCheck
APumpCtr
APumpCtrSystem
ExpectedPumpStates
pst?, exppst : InputPState
pcst?, exppcst : InputPCState
pumpState? : Pumplndex — InputPState
pumpCtrState? : Pumplndex — InputPCState
i : PumplIndex

O PumpCtr = pumpctr i
pst? = pumpState? i
pcst? = pumpCtrState? i
exppst = expectedp i
exppcst = expectedpc i

SetPumpCtr =
3 PumpCtr; PumpCtr’ o
V pst?, exppst : PState; pcst?, exppcst : PCState; i: Pumplndex e
PromotePumpCheck AN CheckAndAdjustPump

The program keeps a running total of the stop signals received.

__StopPresent
signals? : P InputSignal
stops, stops’ : N

stop € signals?
stops’ = stops + 1

This count is reset if stop is not present and fewer than three have been received in a row.

__StopNotPresent
signals? : P InputSignal
stops, stops’ : N

stop ¢ signals? A stops < 3
stops’ =0

The value is preserved otherwise.

__TooManyStops
signals? : P InputSignal
stops, stops’ : N

stop ¢ signals? A stops = 3
stops’ = stops

AdjustStops = StopPresent v StopNotPresent v TooManyStops
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3.9 The Analyser

We replace the abstract information channel, ainfo, with various channels bearing more pre-
cise information. An informal description of the events occurring on these channels is given

in figure 3.1.

event

interpretation

emergencystop.true

sbwaiting.true
physicalunitsready.true
vzero.true
levelbelowmin
levelabovemax
levelokay.true
failures.false
gfailure.true
nongfailure.true

too many equipment failures
three stop-commands

water level near M» or M;
transmission failure

boiler waiting signal received
physical units ready signal
no steam leaving boiler
water level below Ny

water level above N»

water level in normal range
no failures

level failure

steam, pump, or controller failure

Table 3.1: Events and their interpretations

channel levelbelowmin, levelabovemax

channel emergencystop, failures, levelokay, nonqgfailure, physicalunitsready, qfailure,

sbwaiting, vzero : B

The abstract channel that represents the flow of information about failures and repairs must
also be replaced. The new failuresrepairs channel is used to transmit a pair, denoting the
outstanding failures and acknowledged repairs, respectively.

channel failuresrepairs : (P UnitFailure) x (PP UnitFailure)

Finally, the abstract channel that represents the flow of information about pump commands

must also be replaced.

channel pumps : Pumplndex — InputPState

Information = {| emergencystop, failures, levelabovemax, levelbelowmin, levelokay,
nongqfailure, physicalunitsready, qfailure, sbwaiting, vzero |}

process Analyser =
begin

The Analyser’s state contains the state of the equipment, the last input message, the number
of stops received in sequence, and a record of the past signals received.
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AnalyserState
Equipment
InputMsg
stops : N
signalhistory : P InputSignal

The operation to check and adjust the pump values needs to occur before the rest of the
input analysis, and the following schema is used to promote it.

PumpOp = BEQSensor A EVSensor A EValve A ECValues A EEquipmentFailures
When the Analyser starts up, it initialises the states of its equipment; the stored input mes-
sage is irrelevant; there are no stops; and the signal history is empty.

__InitAnalyserState
AnalyserState’

InitEquipment
stops’ = 0 A signalhistory’ = &

When an input message has been received, it is stored and the sensors, unit states, and
stop-count are adjusted.

__Analyse
AAnalyserState
InputMsg?

OInputMsg’' = OInputMsg?
CheckAndAdjustQ A CheckAndAdjustV
AcceptFailureAcks A AcceptRepairs
SetPumpCtr
AdjustStops
signalhistory’ = signalhistory U signals?

The new state calls for an emergency stop if any of the following are true: it contains at
least three stop commands; the water level is near one of its two danger-limit values; or there
has been a transmission failure. The risk of reaching either M; or M> is assessed by the water
level having exceeded the normal working limits.

DangerZone = [ AnalyserState | gay = My A qa» < M> = qa; < Ny A Ny < qaz ]
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__EmergencyStopCond
AnalyserState

stops = 3 Vv

DangerZone v

= RepairsExpected v

- FailuresExpected v
transmissionFailure € signals

The water level is below the minimum if its lower-bound is below Nj, but not in the danger
zone, and its upper-bound is below No.

LevelBelowMin = [ AnalyserState | My < qay < N1 A qa; < N> |

Similarly, it is above the maximum, providing its upper-bound is above N>, but not in the
danger zone, and its lower-bound is above Nj.

LevelAboveMax = [ AnalyserState | Ny < qa; A No < ga» < Mo |

It is in range, providing that both the upper and lower-bounds are within the working limits.
LevellnRange = [ AnalyserState | Ny < qa; A qa> < No |

The steam rate is zero, providing that both upper and lower-bounds are zero.
RateZero = [ VSensor | va; =0 A vaz = 0]

All physical units are said to be okay, providing that there are no failures.

__AllPhysicalUnitsOkay
AnalyserState

= QFailed N — VFailed N — PFailed A — PCFailed

The water-level sensor is the most sensitive component, and we can tolerate other physical
units failing more easily.

OtherPhysicalUnitsFail = — QFailed A — AllPhysicalUnitsOkay

SteamBoilerWaiting = [ AnalyserState | steamBoilerWaiting € signalhistory ]

PhysicalUnitsReady = [ AnalyserState | physicalUnitsReady € signalhistory ]

The Analyser’s behaviour is simple. First, the state is initialised, and then there is a cycle
of behaviour. On each cycle, the Analyser goes through the following sequence of events.

1. It waits for the beginning of the program’s cycle.
2. It inputs the next message for the physical units.
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3. It processes the inputs.

4. It waits for the beginning of the execution phase.

5. It offers its information service.

6. It stops its information service at the start of the report phase.

Analyser = InitAnalyserState; AnalyserCycle

AnalyserCycle =
startcycle —
input?msg —
SetPumpCtr A PumpOp;
Analyse;
startexec — InfoService

InfoService =
OfferInformation; InfoService
O
failuresrepairs!(noacks, repairs) —
pumps?pumpstate — pumpState := pumpstate;
AnalyserCycle

OfferInformation =
emergencystop.EmergencyStop — SKIP
?bwaiting.SteamBoilerWaiting — SKIP
&E/]zero.RateZero — SKIP
fevelBelowMin & levelbelowmin — SKIP
?evelAboveMax & levelabovemax — SKIP
IDevelokay.LevelInRange — SKIP
Ehysica]um’tsready.PhysicalUnitsReady — SKIP
?ailures.—' AllPhysicalUnitsOkay — SKIP
Sfaﬂure. QFailed — SKIP
goanailure.OtherPhysicalUnitsFail — SKIP

end

The Analyser is added to the Timer, synchronising on the startcycle event.

process TAnalyser =

(Timer |[ TAnalyserInterface ]| Analyser) \ TAnalyserInterface
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It is easy to see that this assembly is free from deadlock and livelock, and this is confirmed
by FDR.

assert TSAnalyser: [ deadlock free [FD]]
assert TSAnalyser: [ livelock free [FD]]

FDR code for the Analyser is contained in appendix B.
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Chapter 4

The Controller

The boiler Controller maintains only one state item: the current mode, which is chosen from
the free type Mode.

Mode ::= initialisation | normal | degraded | rescue | emergencyStop

channel startpumps, stoppumps, openvalve, closevalve, sendprogready
Reports = {startpumps, stoppumps, openvalve, closevalve, sendprogready}

TAControllerInterface = startexec U Information

process Controller =

ModeState = [ mode : Mode |

The Controller starts in initialisation mode, where it performs various checks on the correct
operation of the physical units. Subsequently, it has the behaviour shown in table 4.1.

mode condition

normal no failures

degraded water sensor okay, other component failures

rescue water sensor failed, all other components okay

emergencyStop | two component failures, emergencystop.true, or
transmission failure

Table 4.1: Boiler-controller operation modes

Each time the Controller enters a new state, it reports this fact.
EnterMode (m : Mode) = reportmode!m — mode := m
The Controller starts by entering the initialisation state, then it behaves like ControllerCycle.

Controller = mode := initialisation; ControllerCycle
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Each cycle is started by the startexec event. The first action is to determine if an emergency
stop is required; if so, it enters that mode without further delay. Otherwise, there is a case
analysis, based on the mode left by the last cycle, to decide what to do next. Following
this, the water level in the boiler is adjusted, if necessary. The end of the analysis phase is
signalled by participation in the startreport event.

ControllerCycle =
startexec — startreport — NewModeAnalysis;
AdjustLevel,;
endreport — ControllerCycle

NewModeAnalysis =

emergencystop.true — EnterMode (emergencyStop)

O

emergencystop.false —
if mode = initialisation then InitModeAnalysis
else if mode = normal then NormalModeAnalysis
else if mode = degraded then DegradedModeAnalysis
else if mode = rescue then RescueModeAnalysis
else SKIP

4.1 Initialisation mode

In the initialisation mode, the Controller checks that the operation of the steam boiler can
start. If so, then it checks that the sensor agrees that no steam is being produced, that the
water-level sensor has not failed, that the physical units are ready for action, that the level
of water in the boiler is appropriate, and that there are no other equipment failures. It then
enters the normal mode for operation. In terms of the abstract events made available by the
information service, the Controller checks for the following event-sequence, before entering
normal mode.

( sbwaiting.true,
vzero.true,
gfailure.false,
levelokay.true,
sendprogready,
physicalunitsready.true)

If this event-sequence is not possible, then the Controller responds accordingly. If the steam-
boiler-waiting signal is not received, then the Controller waits for the next cycle. If the rate
of steam production is not zero, then the steam gauge must be defective, since the boiler
has not been put into action yet; we are required to abort the initialisation. If the water-level
sensor has failed, then the program is again required to stop. If the level of water in the boiler
is not in range, then it will be adjusted on the next step following this analysis. If neither the
steam sensor nor the water level have failed, but some other component has, then it must be
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some kind of pump failure; the Controller proceeds in degraded mode.

InitModeAnalysis =
sbwaiting.true —
( vzero.true —
( gfailure.false —
( physicalunitsready.true —
( levelokay.true —
( failures.false — EnterMode (normal)
O
failures.true — EnterMode (degraded) )
O
levelokay.false — EnterMode (emergencyStop) )
O
physicalunitsready.false —
( levelokay.true — sendprogready — SKIP
O
levelokay.false — SKIP ) )
O
gfailure.true — EnterMode (emergencyStop) )
O
vzero.false — EnterMode (emergencyStop) )
O
sbwaiting.false — SKIP

4.2 Normal mode

The Controller proceeds in normal mode, providing that nothing has failed; if the water
sensor fails, it enters rescue mode; if anything else fails, then it enters degraded mode; if
there were too many failures, then the Controller would already have entered the emergency-
stop mode.

NormalModeAnalysis =
failures.false — SKIP
O
gfailure.true — EnterMode (rescue)
m|
nongqfailure.true — EnterMode (degraded)

4.3 Degraded mode

The Controller proceeds in degraded mode, providing that the water sensor hasn’t failed and
that none of the outstanding failures have been repaired. If there are no failures, because
the outstanding repairs have been completed and no further failures were detected by the
Analyser, then the Controller returns to the normal mode. If the water sensor has failed, then
the Controller enters the rescue mode. If there were too many failures, then the Controller
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would already have entered the emergency-stop mode.

DegradedModeAnalysis =
gtailure.false —
( failures.true — SKIP
O
failures.false — EnterMode (normal) )
O
gfailure.true — EnterMode (rescue)

4.4 Rescue mode

The Controller stays in the rescue mode if the water-level sensor hasn’t been repaired; if
it has, then it returns either to normal or to degraded mode, depending on whether there
are further repairs outstanding. If there were too many failures, then the Controller would
already have entered the emergency-stop mode.

RescueModeAnalysis =
gfailure.true — SKIP
O
gtailure.false —
( failures.false — EnterMode (normal)
O
failures.true — EnterMode (degraded) )

4.5 Actions

The action that adjusts the level of water in the boiler depends on what has to be done: raise,
reduce, or retain the level.

AdjustLevel =
levelbelowmin — RaiseLevel
m|
levelabovemax — ReduceLevel
m|
levelokay.true — RetainLevel

If the level needs to be raised, then the pumps are started. The valve may need to be closed,
but this would be in only the initialisation mode. We assume that closing a closed valve has
no undesirable effect.

RaiseLevel =
StartPumps;
if mode = initialisation then CloseValve else SKIP

If the level needs to be reduced, then the pumps are stopped. The valve may be opened
in only the initialisation mode. We assume that opening an open valve has no undesirable
effect.

ReduceLevel =
StopPumps;
if mode = initialisation then OpenValve else SKIP
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To retain the level, we stop the pumps and make sure that the valve is closed in initialisation
mode.

RetainLevel =
StopPumps;
if mode = initialisation then CloseValve else SKIP
Starting and stopping pumps and opening and closing valves are all simple matters.
StartPumps = startpumps — SKIP
StopPumps = stoppumps — SKIP
OpenValve = openvalve — SKIP
CloseValve = closevalve — SKIP

This completes the description of the Controller.

end Controller

process TAController =
(TAnalyser [ TAControllerinterface ]| Controller) \ TAControllerInterface

assert Controller: [ deadlock free [FD]]

assert Controller: [ livelock free [FD]]
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Chapter 5

The Reporter

The final component is responsible for assembling the output to the physical units, which
occurs once during each cycle. The output contains the following information.

e The current mode.

e Signals drawn from the following free type.

OutputSignal ::= programReady
| openValve

| closeValve

| levelFailureDetection

| steamFailureDetection

| levelRepairedAcknowledgement

| steamRepairedAcknowledgement

These inform when the program is ready for operation, whether the valve should be
opened or closed, when the sensors have failed, and when their repairs have been noted.

e Instructions on opening or closing pumps.
o Whether pumps or their controllers have failed.
¢ Acknowledgements noting the repair of pumps and their controllers.

An output is drawn from the schema type OutputMsg.

— OutputMsg
mode : Mode
signals : P OutputSignal
pumpState : Pumplndex — InputPState
pumpkFailureDetection : P Pump
pumpCtrEFailureDetection : P Pump
pumpRepairedAcknowledgement : P Pump
pumpCtrRepairedAcknowledgement : P Pump

It is communicated on the output channel.

channel output: OutputMsg

31



The process is defined as follows.
process Reporter =
The process waits for the start of the report phase; after this, it provides its report service.
Reporter = startreport — ReportService

The report service involves gathering reports until either an emergency stop or the end of
the report phase is detected, after which some tidying up is required.

ReportService =
GatherReports; ReportService
O
reportmode.emergencyStop — mode := emergencyStop; TidyUp
O
TidyUp

Tidying up requires obtaining information about unacknowledged failures and new repairs
from the Analyser, outputing the message to the physical units, and then telling the Analyser
about the commands issued to the pumps.

TidyUp =
endreport —
failuresrepairs?(noacks, repairs) — FailuresRepairs,
output!(0OutputMsg) —
pumps !|pumpState —
Reporter

Reports are added to the various message components as they arrive.

GatherReports =
O m : Nonemergency e reportmode.m — mode := m
?endprogready — signals := signals U {programReady}
Startpumps — pumpState := Pumplndex X {popen}
?toppumps — pumpState := Pumplndex X {pclosed}
Spenva]ve — signals := signals U {openValve}
Slosevalve — signals := signals U {closeValve}

end Reporter
The reporter is added to the other components. The resultis free from deadlock and livelock.

TACReporter =
(TAController || TACReporterinterface ]| Reporter) \ TACReporterInterface
assert TACReporter: [deadlock free [FD]]

assert TACReporter: [livelock free [FD]]
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The steam boiler has the behaviour of the four processes:
SteamBoiler = TACReporter
This is a refinement of the abstract specification.

SteamBoilerl =gp SteamBoiler
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Chapter 6

Analysis

Appendix A contains the informal requirements for the program’s behaviour in each of the
operating modes; these are taken verbatim from [3]. These requirements may be used to
verify the correct behaviour of the Controller. For instance, we have that

In the initialisation mode, the program waits for the steam-boiler waiting message.
How should we interpret this in our model?

The program stays in the initialisation mode at least until the steam-boiler waiting
message has been received.

The exception to this rule is that the program may always enter the emergency-stop mode
if instructed to do so. If this does not happen, then the Controller repeats the following
event-sequence whilst waiting for the steam-boiler waiting message.

( startexec,
startreport,
emergencystop.false,
sbwaiting.false,
levelokay .true,
stoppumps,
closevalve)

It is easy to code this requirement in CSP.

WaitForSBWaiting =
startexec —
startreport —
emergencystop.false —
sbwaiting.false —
levelokay.true —
stoppumps —
closevalve —
endreport —
WaitForSBWaiting
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assert ( Controller
[[{levelabovemax,levelbelowmin,sbwaiting.true, emergencystop.true}]|
STOP
)
S
WaitForSBWaiting
assert WaitForSBWaiting
Erp
( Controller
[[ {levelabovemax,levelbelowmin,sbwaiting.true, emergencystop.true} ]|
STOP
)

A complete analysis of the requirements for the initialisation mode is contained in ap-
pendix B.
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Chapter 7

Conclusion

In this report, we have demonstrated a application of Circus to a sustained case study. Of
particular interest is the architecture of the solution, where we have separated the rich state
and its analysis from the control logic for the problem. The result is a CSP process that is
small enough to analyse with FDR, and yet is clearly related to the problem.

In [3], there are some related solutions. In particular, [8] describe the problem using a
combination of Statecharts [16, 17] and Z [34, 38]. As in Circus, the data structures and their
operations are described in Z, but the reactive behaviour and proof obligations are quite
informal.

Butler, Sekerinski, and Sere [9] use action systems [6] to specify the steam boiler and its
physical environment as a single system. In a refinement step, they separate the two and
introduce notions of equipment failure.

Duvel and Cattel [13] specify and verify the steam boiler using Promela and the SPIN
model checker and simulator [20, 21, 22]; they implement the result in Synchronous C++.
Eight properties were specified in linear temporal logic and then checked using SPIN.

Ledru and Potet [25] use VDM-SL [24, 4] in their solution. They develop an abstract speci-
fication of the boiler with the safety property that it will not explode if the water level is kept
between the extreme limits. This is then refined into an architectural design. The main draw-
back is the lack of support for concurrency in VDM-SL. Schinagl [33] overcomes this problem
by using RAISE [30], a notation strongly related to VDM, but with support for concurrency
based on CCS [27] and CSP [18].
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Appendix A

Requirements for the program’s
modes

A.1 Initialisation mode

The initialisation mode is the mode to start with. The program enters a state in which it waits
for the message STEAM-BOILER_WAITING to come from the physical units. As soon as this
message has been received the program checks whether the quantity of steam coming out of
the steam-boiler is really zero. If the unit for detection of the level of the steam is defective—
that is, when v is not equal to zero—the program enters the emergency-stop mode. If the
quantity of water in the steam-boiler is above N, the program activates the valve of the steam-
boiler in order to empty it. If the quantity of water in the steam-boiler is below N; then the
program activates a pump to fill the steam-boiler. If the program realizes a failure of the water
level detection unit it enters the emergency-stop mode. As soon as a level of water between N;
and N> has been reached the program can send continuously the signal PROGRAM_READY to
the physical units until it receives the signal PHYSICAL_UNITS_READY which must necessarily
be emitted by the physical units. As soon as this signal has been received, the program enters
either the mode normal if all the physical units operate correctly or the mode degraded if any
physical unit is defective. A transmission failure puts the program into the mode emergency
stop.

A.2 Normal mode

The normal mode is the standard operating mode in which the program tries to maintain the
water level in the steam-boiler between N; and N> with all physical units operating correctly.
As soon as the water level is below N; or above N> the level can be adjusted by the program
by switching the pumps on or off. The corresponding decision is taken on the basis of
the information which has been received from the physical units. As soon as the program
recognizes a failure of the water level measuring unit it goes into degraded mode. If the
water level is risking to reach one of the limit values M; or M, the program enters the mode
emergency stop. This risk is evaluated on the basis of a maximal behaviour of the physical
units. A transmission failure puts the program into emergency stop mode.
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A.3 Degraded mode

The degraded mode is the mode in which the program tries to maintain a satisfactory water
level despite the presence of failure of some physical unit. It is assumed however that the
water level measuring unit in the steam-boiler is working correctly. The functionality is the
same as the preceding case. Once all the units which were defective have been repaired, the
program comes back to normal mode. As soon as the program sees that the water level is
risking to reach one of the limit values M; or M, the program enters the mode emergency
stop. A transmission failure puts the program into emergency stop mode.

A.4 Rescue mode

The rescue mode is the mode in which the program tries to maintain a satisfactory water level
despite of the failure of the water level measuring unit. The water level is then estimated
by a computation which is done taking into account the maximum dynamics of the quantity
of steam coming out of the steam-boiler. For the sake of simplicity, this calculation can
suppose that exactly n liters of water, supplied by the pumps, do account for exactly the
same amount of boiler contents (no thermal expansion). This calculation can however be
done only if the unit which measures the quantity of steam is itself working and if one can
rely upon the information which comes from the units for controlling the pumps . As soon as
the water measuring unit is repaired, the program returns into mode degraded or into mode
normal. The program goes into emergency stop mode if it realizes that one of the following
cases holds: the unit which measures the outcome of steam has a failure, or the units which
control the pumps have a failure, or the water level risks to reach one of the two limit values.
A transmission failure puts the program into emergency stop mode.

A.5 Emergency stop mode

The emergency stop mode is the mode into which the program has to go, as we have seen
already, when either the vital units have a failure or when the water level risks to reach one
of its two limit values. This mode can also be reached after detection of an erroneous trans-
mission between the program and the physical units. This mode can also be set directly from
outside. Once the program has reached the emergency stop mode, the physical environment
is then responsible to take appropriate actions, and the program stops.
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Appendix B

FDR code

-- Abstract steam-boiler code

-- checked with FDR 2.78: 15.10 14.6.01

datatype Mode = initialisation | normal | degraded | rescue |
emergencyStop

NonEmergencyModes = { initialisation, normal, degraded, rescue }
channel getmode, putmode: Mode

ModeStateInterface = {| getmode, putmode |}

ModeState =
Tet
MS(m) = putmode?n -> MS(n)
[]
getmode!m -> MS(m)
within

MS(initialisation)
EnterMode(m) = reportmode!m -> putmode!m -> SKIP
channel ainfo, areport, clocktick, endcycle, endreport,
afailuresrepairs, ainput, apumps, startcycle, startexec,
startreport
channel aoutput, reportmode : Mode

TAnalyserInterface = { startcycle }

TAControllerInterfacel = { ainfo, startexec }
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TACReporterInterfacel =
{] apumps, areport, endreport, afailuresrepairs, reportmode,
startreport |}

cycletime = 5
cyclelimit = cycletime - 1
Time = { 0 .. cyclelimit }

TCycle(time) =
(if ( time + 1 ) % cycletime == 0 then startcycle -> SKIP else SKIP);
clocktick -> TCycle(( time + 1 ) % cycletime)

Timer = TCycle(cyclelimit)
Analyserl = startcycle -> ainput -> startexec -> InfoServicel

InfoServicel =
ainfo -> InfoServicel

(]

afailuresrepairs -> apumps -> Analyserl

TAnalyserl =
( Timer [| TAnalyserInterface |] Analyserl ) \ TAnalyserInterface

assert TAnalyserl :[ deadlock free [FD] ]
assert TAnalyserl :[ 1livelock free [FD] ]

Controllerl =
startexec ->
startreport ->
NewModeAnalysisl;
getmode?m ->
( if m != emergencyStop then
[“1i: £ 0 .. Timit } @ PutReports(i)
else SKIP );
endreport -> Controllerl

NewModeAnalysisl =
ainfo -> EnterMode(emergencyStop)
[~
(
C|17] i: £ 0 .. 1imit } @ GetInformation(i) );
getmode?mode ->
if mode == initialisation then InitModeAnalysisl
else if mode == normal then NormaTModeAnalysisl
else if mode == degraded then DegradedModeAnalysisl
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else if mode == rescue then RescueModeAnalysisl
else SKIP
)

InitModeAnalysisl =
SKIP |”| EnterMode(normal) || EnterMode(degraded) |~|
EnterMode (emergencyStop)

NormalModeAnalysisl =
SKIP |”| EnterMode(rescue) |~| EnterMode(degraded)

DegradedModeAnalysisl =
SKIP |”| EnterMode(normal) |~ | EnterMode(rescue)

RescueModeAnalysisl =
SKIP |”| EnterMode(normal) |~| EnterMode(degraded)

Timit = 8
Get(event,n) = if n > 0 then event -> Get(event,n-1) else SKIP
GetInformation(n) = Get(ainfo,n)

PutReports(n) Get(areport,n)

TAControllerl
( TAnalyserl
[| TAControllerInterfacel |]
( Controllerl
[| ModeStateInterface |]
ModeState
) \ ModeStateInterface
) \ TAControllerInterfacel

assert TAControllerl :[ Tlivelock free [FD] ]
Reporterl = startreport -> ReportServicel

ReportServicel =

[] m: NonEmergencyModes @ reportmode.m -> putmode!m -> ReportServicel
(]
areport -> ReportServicel
[]
reportmode.emergencyStop ->

putmode!emergencyStop ->

TidyUpl

(]
TidyUpl
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TidyUpl =
endreport ->
afailuresrepairs ->
getmode?m ->
aoutput!m ->
apumps ->
Reporterl

TACReporterl =
( TAControllerl
[| TACReporterInterfacel |]
(
( Reporterl
[l ModeStateInterface |]
ModeState
) \ ModeStateInterface
)
) \ TACReporterInterfacel

assert TACReporterl :[ deadlock free

assert TACReporterl :[ Tivelock free

SteamBoilerl = TACReporterl
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channel Tevelbelowmin, Tevelabovemax

channel emergencystop, failures, levelokay, nongfailure,
physicalunitsready, gfailure, sbwaiting, vzero: Bool

Analyser = AnalyserCycle
AnalyserCycle = startcycle -> ainput -> startexec -> InfoService

InfoService =
OfferInformation; InfoService

[]
afailuresrepairs ->
apumps ->
AnalyserCycle
OfferInformation =
(17| b: Bool @ emergencystop.b -> SKIP )
[]
C 17| b: Bool @ sbwaiting.b -> SKIP )
[]
C |7l b: Bool @ vzero.b -> SKIP )
[]

( Tevelokay.true -> SKIP
[~
( levelokay.false -> SKIP
[]

( Tevelabovemax -> SKIP
[ 7]

Tevelbelowmin -> SKIP

)
)
)
[]
C |7| b: Bool @ physicalunitsready.b -> SKIP )
[]
( ( failures.false -> SKIP
[]
gfailure.false -> SKIP
[]
nongfailure.false -> SKIP
)
[~
( failures.true -> SKIP
[

]

45



( ( gfailure.true -> SKIP

[]
nonqgfailure.true -> SKIP
)
[~
( gfailure.true -> SKIP
[]
nongfailure.false -> SKIP
)
[ ™1
( gfailure.false -> SKIP
[]
nonqgfailure.true -> SKIP
)
)
)
)
TAnalyser =
( Timer
[| TAnalyserInterface |]
Analyser

) \ TAnalyserInterface
assert TAnalyser :[ deadlock free [FD] ]
assert TAnalyser :[ Tivelock free [FD] ]

AbsAnalyser =
Analyser
[[ e <- ainfo,
c.b <- ainfo
I
e <- { Tevelbelowmin, Tevelabovemax },
<- Bool,

c <- { emergencystop,
failures,
Tevelokay,
nongfailure,
physicalunitsready,
gfailure,
sbwaiting,
vzero

o

1]

AbsTAnalyser =
TAnalyser
[[ e <- ainfo,
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c.b <- ainfo

e <- { levelbelowmin, levelabovemax },

b <- Bool,

c <- { emergencystop,
failures,
Tevelokay,

nongfailure,
physicalunitsready,
gfailure,
sbwaiting,

vzero

1]
assert Analyserl [FD= AbsAnalyser

assert TAnalyserl [FD= AbsTAnalyser
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channel startpumps, stoppumps, openvalve, closevalve, sendprogready

Information =
{| emergencystop, failures, levelabovemax, levelbelowmin, levelokay,
nongfailure, physicalunitsready, qfailure, sbwaiting, vzero |}

Reports =
{ startpumps, stoppumps, openvalve, closevalve, sendprogready }

TAControllerInterface = union( { startexec }, Information )
Controller = ControllerCycle

ControllerCycle =
startexec -> startreport -> NewModeAnalysis;
AdjustLevel;
endreport -> ControllerCycle

NewModeAnalysis =
emergencystop.true -> EnterMode(emergencyStop)
(]
emergencystop.false ->
getmode?mode ->

if mode == initialisation then InitModeAnalysis
else if mode == normal then NormalModeAnalysis
else if mode == degraded then DegradedModeAnalysis
else if mode == rescue then RescueModeAnalysis
else SKIP

InitModeAnalysis =
sbwaiting.true ->
( vzero.true ->
( gfailure.false ->
( physicalunitsready.true ->
( levelokay.true ->
( failures.false -> EnterMode(normal)

[]
failures.true -> EnterMode(degraded)
)
[]
Tevelokay.false -> EnterMode(emergencyStop)
)
(]

physicalunitsready.false ->
( levelokay.true -> sendprogready -> SKIP
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[]
Tevelokay.false -> SKIP
)
)
[]
gfailure.true -> EnterMode(emergencyStop)
)
[]
vzero.false -> EnterMode(emergencyStop)
)
[]
sbwaiting.false -> SKIP

NormalModeAnalysis =
failures.false -> SKIP
[]
gfailure.true -> EnterMode(rescue)
[]

nongfailure.true -> EnterMode(degraded)

DegradedModeAnalysis =
gfailure.false ->
( failures.true -> SKIP
(]
failures.false -> EnterMode(normal)
)
[]

gfailure.true -> EnterMode(rescue)

RescueModeAnalysis =
gfailure.true -> SKIP
[]

gfailure.false ->
( failures.false -> EnterMode(normal)

(]
failures.true -> EnterMode(degraded)

)

AdjustLevel =
getmode?m ->
if m == emergencyStop then SKIP

else
Tevelbelowmin -> Raiselevel
[]
Jevelabovemax -> Reducelevel
(]

Tevelokay.true -> RetainLevel

RaiselLevel =
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StartPumps;
getmode?mode ->

if mode == initialisation then CloseValve else SKIP
ReducelLevel =
StopPumps;
getmode?mode ->
if mode == initialisation then OpenValve else SKIP

RetainLevel =

StopPumps;
getmode?mode ->
if mode == initialisation then CloseValve else SKIP

StartPumps = startpumps -> SKIP
StopPumps = stoppumps -> SKIP
OpenValve = openvalve -> SKIP
CloseValve = closevalve -> SKIP

MSController =
( Controller
[| ModeStateInterface |]
ModeState
) \ ModeStateInterface

assert MSController :[ deadlock free [FD] ]

assert MSController :[ Tivelock free [FD] 1]

TAController =
( TAnalyser
[| TAControllerInterface |]
MSController
) \ TAControllerInterface

AbsTAController =
TAController
[[ f <- areport
I

f <- { startpumps, stoppumps, openvalve, closevalve,
sendprogready }
1]
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TACReporterInterface =
union( {| startreport, reportmode, endreport, afailuresrepairs,

apumps |}, Reports )
Reporter = startreport -> ReportService

ReportService =
GatherReports; ReportService
[]
reportmode.emergencyStop ->
putmode!emergencyStop ->
endreport ->
TidyUp
[]
endreport -> TidyUp

TidyUp =
afailuresrepairs ->
getmode?m ->
aoutput!m ->

apumps ->
Reporter
GatherReports =
[] m: NonEmergencyModes @ reportmode.m -> putmode!m -> SKIP
(]
sendprogready -> SKIP
[]
startpumps -> SKIP
[]
stoppumps -> SKIP
(]
openvalve -> SKIP
[]

closevalve -> SKIP

TACReporter =
( TAController
[| TACReporterInterface |]
( ( Reporter
[| ModeStatelInterface |]
ModeState
) \ ModeStateInterface

)
) \ TACReporterInterface
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assert TACReporter :[ deadlock free [FD] ]
assert TACReporter :[ livelock free [FD] ]

assert TACReporterl [FD= TACReporter
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-- In the initialisation mode, the program waits for the steam-boiler
-- waiting message.

WaitForSBWaiting =
startexec ->
startreport ->
emergencystop.false ->
sbwaiting.false ->
Tevelokay.true ->
stoppumps ->
closevalve ->
endreport ->
WaitForSBWaiting

assert ( MSController
[l { Tevelabovemax, Tevelbelowmin, sbwaiting.true,
emergencystop.true } |]
STOP
)
[FD=
WaitForSBWaiting

assert WaitForSBWaiting
[FD=
( MSController
[l { Tevelabovemax, levelbelowmin, sbwaiting.true,
emergencystop.true } |]
STOP
)
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-- As soon as the sbwaiting message has been received, the controller
-- checks to see if the quantity of steam coming out of the boiler
-- really is zero; if it isn’t, then it enters emergency stop.

alphaMoveToSBWaiting =
{ startexec, emergencystop.false, sbwaiting.true }

MoveToSBWaiting =
startexec ->
startreport ->
emergencystop.false ->
sbwaiting.true ->
SKIP

RUN(s) =
Tet
R=1[] x: s@x ->R
within
R

alphaMSC =
union( Information,
union( Reports,
{ startexec, startreport, endreport }
)
)

CheckSteamRateIsZero =
MoveToSBWaiting;
vzero.false ->
reportmode!emergencyStop ->
endreport ->
Idle

Idle =
startexec -> startreport -> emergencystop.false -> endreport -> Idle

assert ( MSController
[l { emergencystop.true, sbwaiting.false, vzero.true } |]
STOP )
[FD=
CheckSteamRateIsZero

assert CheckSteamRatelIsZero
[FD=
( MSController
[l { emergencystop.true, sbwaiting.false, vzero.true } |]
STOP )
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-- If the quantity of water in the steam boiler is above N2, then it
-- activates the valve in order to empty it.

alphaMoveToRateZero =
union( alphaMoveToSBWaiting, { vzero.true } )

MoveToRateZero = MoveToSBWaiting; vzero.true -> SKIP

alphaMoveToPhysicalUnitsNotReady =
union( alphaMoveToRateZero,
{ gfailure.false, physicalunitsready.false } )

MoveToPhysicalUnitsNotReady =
MoveToRateZero;
gfailure.false ->

physicalunitsready.false ->
SKIP

alphaMoveToPhysicalUnitsNotReadylLevelAboveMax =
union( alphaMoveToPhysicalUnitsNotReady,
{ levelokay.false, levelabovemax } )

MoveToPhysicalUnitsNotReadylLevelAboveMax =
MoveToPhysicalUnitsNotReady;
levelokay.false ->
Tevelabovemax ->
SKIP

TestLevelAboveMaxStopPumpsOpenValve =
MoveToPhysicalUnitsNotReadylLevelAboveMax;
stoppumps ->

openvalve ->
CHAOS (aTphaMSC)

alphaTestl =
union( alphaMoveToPhysicalUnitsNotReadylLevelAboveMax,
{ emergencystop.true,
sbwaiting.false,
vzero.false,
gfailure.true,
physicalunitsready.true,
Tevelokay.true,
Tevelbelowmin,
startreport } )

assert TestLevelAboveMaxStopPumpsOpenValve
[FD=
( MSController
[l alphaTestl |]
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MoveToPhysicalUnitsNotReadylLevelAboveMax
)
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-- If the quantity of water in the steam boiler is below N1, then
-- activates the pumps to fill it.

CheckInitBelowNl =
MoveToPhysicalUnitsNotReady;
levelokay.false ->
Tevelbelowmin ->
startpumps ->
closevalve ->
STOP

assert MSController [T= CheckInitBelowNl

alphaMoveToPhysicalUnitsNotReadylLevelBelowMin =
union( alphaMoveToPhysicalUnitsNotReady,
{ levelokay.false, levelbelowmin } )

MoveToPhysicalUnitsNotReadylLevelBelowMin =
MoveToPhysicalUnitsNotReady;
Tevelokay.false ->

Tevelbelowmin ->
SKIP

TestLevelBelowMinStartPumpsCloseValve =
MoveToPhysicalUnitsNotReadylLevelBelowMin;
startpumps ->

closevalve ->
CHAOS (aTphaMSC)

alphaTest2 =
union( alphaMoveToPhysicalUnitsNotReadyLevelBelowMin,
{ emergencystop.true,
sbwaiting.false,
vzero.false,
gfailure.true,
physicalunitsready.true,
Tevelokay.true,
Tevelabovemax,
startreport } )

assert TestLevelBelowMinStartPumpsCloseValve
[FD=
( MSController
[l alphaTest2 |]
MoveToPhysicalUnitsNotReadylLevelBelowMin
)
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-- If the program realises a failure of the water level detection unit
-- it enters the emergency stop mode.

alphaTest3 =
union( alphaMoveToRateZero,
{ emergencystop.true,
sbwaiting.false,
vzero.false,
gfailure.false,
startreport

)

TestWaterLevelFailureEmergencyStop =
MoveToRateZero;
gfailure.true ->
reportmode.emergencyStop ->
CHAOS (aTphaMSC)

assert TestWaterLevelFailureEmergencyStop
[FD=
( MSController
[l alphaTest3 |]
MoveToRateZero

)
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-- As soon as a level between N1 and N2 has been reached, the program
-- can send continuously the signal sendprogready until it receives
-- the signal physicalunitsready.true.

alphaTest4 =
{ physicalunitsready.true, emergencystop.true, sbwaiting.false,
vzero.false, gfailure.true, levelokay.false, levelabovemax,
Tevelbelowmin }

TestlLevelInRangeSendProgReady =
startexec ->
startreport ->
emergencystop.false ->
sbwaiting.true ->
vzero.true ->
gfailure.false ->
physicalunitsready.false ->
levelokay.true ->
sendprogready ->
levelokay.true ->
stoppumps ->
closevalve ->
endreport ->
TestLevelInRangeSendProgReady

assert TestlLevelInRangeSendProgReady
[FD=
( MSController
[l alphaTest4 |]
STOP
)

assert ( MSController
[l alphaTest4 |]
STOP
)
[FD=
TestlLevelInRangeSendProgReady

59



-- As soon as [physicalunitsready.true] signal has been received, the
-- program enters either the mode normal, if all the physical units
-- operate correctly, or the mode degraded, if any physical unit is
-- defective.

WaitForPhysicalUnitsReadyNoFailures =
RUN(diff(alphaMSC, {physicalunitsready.true, emergencystop.true,
vzero.false, gfailure.true}))

InsistOnNormal =
WaitForPhysicalUnitsReadyNoFailures
[]
physicalunitsready.true ->
levelokay.true ->
failures.false ->
reportmode.normal -> RUN(alphaMSC)

assert MSController
[l alphaMSC |]
InsistOnNormal :[ deadlock free [FD] ]

WaitForPhysicalUnitsReadyFailures =
RUN(diff(alphaMSC, {physicalunitsready.true, emergencystop.true,
vzero.false, gfailure.true}))

InsistOnDegraded =
WaitForPhysicalUnitsReadyFailures
[]
physicalunitsready.true ->
levelokay.true ->
failures.true ->
reportmode.degraded -> RUN(alphaMSC)

assert MSController

[l alphaMSC |]
InsistOnDegraded :[ deadlock free [FD] ]
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