
CSP and Kripke structures

Ana Cavalcanti1, Wen-ling Huang2, Jan Peleska2, and Jim Woodcock1

1 University of York
2 University of Bremen

Abstract. A runtime verification technique has been developed for CSP
via translation of CSP models to Kripke structures. With this technique,
we can check that a system under test satisfies properties of traces and re-
fusals of its CSP model. This complements analysis facilities available for
CSP and for all languages with a CSP-based semantics: Safety-Critical
Java, Simulink, SysML, and so on. Soundness of the verification depends
on the soundness of the translation and on the traceability of the Kripke
structure analysis back to the CSP models and to the property specifica-
tions. Here, we present a formalisation of soundness by unifying the se-
mantics of the languages involved: normalised graphs used in CSP model
checking, action systems, and Kripke structures. Our contributions are
the unified semantic framework and the formal argument itself.

Keywords: semantic models, UTP, formal testing, runtime verification

1 Introduction

CSP [18] is a well established process algebra with consistent denotational, opera-
tional and axiomatic semantics that have been thoroughly studied. A commercial
model checker, FDR3 [8] and its predecessors, has been in widespread use for
years and has encouraged industrial take up. For finite processes, FDR3 provides
a semantics in terms of normalised graphs: deterministic finite automata with
edges labelled by events and nodes by sets of maximal refusals.

Recently, this semantics has been used to develop a runtime verification tech-
nique for CSP [16]. In this approach, a specification of traces and refusals of a
CSP process is translated to a safety LTL formula. Runtime verification of the
resulting property is then carried out using a technique that assumes that the sys-
tem under test (SUT) behaves like an unknown Kripke structure. (Although the
technique does not require the construction of the Kripke structure, its sound-
ness is established in terms of an unknown Kripke structure that models the
SUT.) Soundness of the CSP technique is argued via translation of the FDR3
normalised graphs to nondeterministic programs, and then to Kripke structures.

Based on the Kripke structures, we can apply an existing runtime verifi-
cation technique that defines practical health monitors (error-detection mecha-
nisms) [12]. They do not provide false positives or negatives and can be activated
at any time during the execution of an SUT. Using the technique in [16], health
monitors can be created based on specifications of CSP processes and, there-
fore, based on any language for which a CSP-based semantics exists. Some very

normalised
graphs

reactive
processes

Kripke
structures

ν κ

traces/
maximal
refusals

η
θ

ζ

Fig. 1. New UTP theories and their relation to reactive processes

practical examples are Safety-Critical Java [7], Simulink [4], and SysML [14].
For Safety-Critical Java, this technique can complement assertion-based analy-
sis techniques that use JML [2] and SafeJML [9], which support reasoning about
data models and execution time, with facilities to reason about reactivity.

Soundness is rigorously argued in [16] based on the following premises:

1. the semantics of finite CSP processes as a normalised graph, as originally
described in [17, Chapter 21] and then implemented in FDR3, is consistent
with the CSP semantics;

2. a mapping of the normalised graphs into nondeterministic programs defined
in [16] preserves the semantics of CSP;

3. a semantics in terms of Kripke structures for these nondeterministic pro-
grams, defined in [16] in terms of their operational semantics, preserves the
semantics of the programs; and

4. a mapping of a safety LTL formula of a particular form to a trace and refusal
specification defined in [16] captures the semantics of the safety formula in
the failures model.

With these results, we can then conclude that the notion of satisfaction in the
failures model corresponds to the notion of satisfaction in Kripke structures.

In this paper, we still take (1) as a premise: it is widely accepted and vali-
dated both in the standard semantic theories of CSP [18] and in the extensive
use of FDR3 (and its predecessors). We, however, go further and formalise the
notions of semantics preservation in (2) and (3). We carry out this work using
Hoare and He’s Unifying Theories of Programming [11], a relational semantic
framework that allows us to capture and relate theories for a variety of pro-
gramming paradigms. A UTP theory for CSP is already available, as are many
others (for object-orientation [20], time [19], and so on). Finally, as pointed out
in [16], (4) is trivial because the mapping from the safety LTL formula subset
under consideration to trace and refusal specifications is very simple.

In formalising (2) and (3), we define UTP theories for normalised graphs and
Kripke structures. The nondeterministic programs are action systems and are

encoded in the UTP theory for reactive processes. Galois connections between
these theories establish semantic preservation. Unification is achieved via an
extra UTP theory that captures a kind of stable-failures model, where traces
are associated with maximal refusals. Galois connections with this extra theory
identify the traces and maximal refusals of a normalised graph, an action system,
and a Kripke structure. Figure 1 gives an overview of our results.

In the unified context of the theory of traces and maximal refusals, we define
satisfaction for CSP normalised graphs and for Kripke structures. The properties
that we consider are the conditions, that is, predicates on a single state, of
that theory of traces and maximal refusals. The Galois connections are used to
establish the relationship between satisfaction in CSP and in Kripke structures.

Besides contributing to the UTP agenda of unification of programming the-
ories, we open the possibility of using the runtime verification technique of
Kripke structures for other languages with a UTP semantics, such as, Circus [15],
rCOS [13], Handel-C [3], and SystemC [21].

The approach is restricted to the, still significant, class of divergence-free
programs. Divergence freedom is a standard assumption in testing techniques,
where observation of divergence is perceived as deadlock.

Next, we give an overview of the UTP and the existing theory of reactive pro-
cesses. Our theories are presented afterwards: normalised graphs in Section 3,
Kripke structures in Section 4, and traces and maximal refusals in Section 5.
Section 3 also gives the Galois connection between graphs and reactive pro-
cesses, and Section 4 between reactive processes and Kripke structures. Finally,
Section 5 gives the Galois connections between graphs, reactive processes and
Kripke structures and traces and maximal refusals. In Section 5, we also define
satisfaction and present our main result: soundness of the CSP runtime verifica-
tion technique. We conclude and present related and future work in Section 6.

2 A UTP theory of reactive processes

In the UTP, relations are defined by predicates over an alphabet (set) of obser-
vational variables that record information about the behaviour of a program. In
the simplest theory of general relations, these are the programming variables v ,
and their dashed counterparts v ′, with v used to refer to an initial observation of
the value of v , and v ′ to a later observation. The set of undecorated (unprimed)
variables in the alphabet αP of a predicate P is called its input alphabet inαP ,
and the set of dashed variables is its output alphabet outαP .

A condition is a predicate whose alphabet includes only input variables. If
outαP = inα(P)′, that is, the input and output alphabet match, in the sense
that, for each variable of the input alphabet v there is a corresponding variable
v ′ of the output alphabet, and vice-versa, the relation is homogeneous.

Theories are characterised by an alphabet and by healthiness conditions de-
fined by monotonic idempotent functions from predicates to predicates. The
predicates of a theory with alphabet a are the predicates on a that are fixed

R1(P) =̂ P ∧ tr ≤ tr ′

R2(P) =̂ P [〈〉/tr , (tr ′ − tr)/tr ′]
R3(P) =̂ (II C wait B P)

Table 1. Healthiness conditions of the theory of reactive processes

points of the healthiness conditions. As an example, we consider the existing
theory of reactive processes used in our work to model action systems.

A reactive process interacts with its environment: its behaviour cannot be
characterised by the relation between its initial and final states only; we need
to record information about the intermediate interactions. To that end, the al-
phabet of the theory of reactive processes includes four extra observational vari-
ables: ok , wait , tr , and ref and their dashed counterparts.

The variable ok is a boolean that records whether the previous process has
diverged: ok is true if it has not diverged. Similarly, ok ′ records whether the
process itself is diverging. The variable wait is also boolean; wait records whether
the previous process terminated, and wait ′ whether the process has terminated
or not. The purpose of tr is to record the trace of events observed so far. Finally,
ref records a set of events refused, previously (ref) or currently (ref ′).

The monotonic idempotents used to define the healthiness conditions for
reactive processes are defined in Table 1. The first healthiness condition R1
is characterised by the function R1(P) =̂ P ∧ tr ≤ tr ′. Its fixed points are all
predicates that ensure that the trace of events tr ′ extends the previously observed
trace tr : history is never undone. R2 requires that P is unaffected by the events
recorded in tr , since they are events of the previous process. Specifically, R2
requires that the relation specified by P is not changed if we substitute the
empty sequence 〈〉 for tr and the new events in tr ′, that is, the subsequence
tr ′ − tr , for tr ′. Finally, the definition of R3 uses a conditional. It requires that,
if the previous process has not terminated (wait), then a healthy process does
not affect the state: it behaves like the identity relation II .

The theory of reactive processes is characterised by the healthiness condition
R =̂ R1 ◦ R2 ◦ R3. The reactive processes that can be described using CSP can
be expressed by applying R to a design: a pre and postcondition pair over ok ,
wait , tr and ref , and their dashed counterparts. In such a process R(pre ` post),
the precondition pre defines the states in which the process does not diverge, and
post the behaviour when the previous process has not diverged and pre holds.

Typically, a theory defines a number of programming operators of interest.
Common operators like assignment, sequence, and conditional, are defined for
general relations. Sequence is relational composition.

P ; Q =̂ ∃w0 • P [w0/w ′] ∧ Q [w0/w], where outα(Q) = inα(Q)′ = w ′

The relation P ; Q is defined by a quantification that relates the intermediate

n,n ′ : N Source and target nodes
e : Σε Labels of the transitions
r ′ : F(FΣε) Labels of the target nodes.

Table 2. Alphabet of the normalised graph theory

values of the variables. It is required that outα(P) is equal to inα(Q)′, which is
named w ′. The sets w , w ′, and w0 are used as lists that enumerate the variables
of w and the corresponding decorated variables in the same order.

A central concern of the UTP is refinement. A program P is refined by a
program Q , which is written P v Q , if, and only if, P ⇐ Q , for all possible
values of the variables of the alphabet. We write [P ⇐ Q] to represent the
universal quantification over all variables in the alphabet. The set of alphabetised
predicates in the theory of relations form a complete lattice with this ordering.

As well as characterising a set of healthy predicates via their fixed points,
healthiness conditions can be viewed as functions from arbitrary relations to
predicates of the theory that they define. Since they are monotonic idempotents,
their images, that is, the theory that they characterise, are also complete lattices
under refinement. In these theories, recursion is modelled by weakest fixed points
µX • F (X), where F is a monotonic function from predicates to predicates.

In presenting our theories in the next sections, we define their alphabet and
healthiness conditions, and prove that the healthiness conditions are monotonic
and idempotent. Finally, we establish Galois connections between them.

3 A UTP theory for normalised graphs

A normalised graph (N ,n0, t : N × Σ 7→ N , r : N → P(PΣ)) is a quadruple,
where N is a set of nodes, n0 is the initial node, t defines the transitions between
nodes from N labelled with events from a set Σ, and r defines labels for states
as sets of (maximal) refusal sets, that is, sets of sets of events from Σ. In the
normalised graphs for processes handled by FDR3, N and Σ are finite, and so
are t and the sets of maximal refusals in the range of r .

Alphabet We take N and Σ as global constants, and define the alphabet to
contain the variables in Table 2. The predicates define a graph by identifying
the source and target nodes n and n ′ of the transitions, their associated events e,
and the labelling r ′ of the target nodes. The initial node is always ι, a constant
of type N . In ι, only the special event ε is available. The set Σε = Σ ∪ {ε}.

Example 1. We consider the graph for a → c → STOP 2 b → c → STOP
shown in Figure 2 . It is defined in our UTP theory by the following relation.

EG =̂ n = ι ∧ e = ε ∧ n ′ = n1 ∧ r ′ = {{c, ε}} ∨
n = n1 ∧ e ∈ {a, b} ∧ n ′ = n2 ∧ r ′ = {{a, b, ε}} ∨
n = n2 ∧ e = c ∧ n ′ = n3 ∧ r ′ = {{a, b, c, ε}}

We observe that n1, n2 and n3 are arbitrary node identifiers: values in N . 2

n
1

n
2

n
3

a

b

c

{c} {a,b} {a,b,c}

Fig. 2. Normalised graph for a → c → STOP 2 b → c → STOP

HG1(G) =̂ G ∧ r ′ 6= ∅

HG2(G) =̂ G ∧ (n = ι⇒ e = ε) ∧ ∀X : r ′ • ε ∈ X ∧ n ′ 6= ι

HG3(G) =̂ G ∧ DetEdges(G)
DetEdges(G) =̂ ∀n, e • #{n ′, r ′ | G • n ′} ≤ 1

HG4(G) =̂ G ∧ DetRefs(G)
DetRefs(G) =̂ ∀n ′ • #{n, e, r ′ | G • r ′} ≤ 1

HG5(G) =̂ G ∧ AccEvents(G)
AccEvents(G) =̂ ∀ e1 • (∀n ′

1, r
′
1 • ¬ G(n ′, e1,n

′
1, r

′
1))⇒ ∀X : r ′ • e1 ∈ X

HG6(G) =̂ G ∧ ∃n, e,n ′, r ′ • G

Table 3. Healthiness conditions of the normalised-graph theory

The input and output alphabets do not match, and so the relations of this
theory are not homogeneous. By including just r ′ in the alphabet (instead of
r and r ′), we avoid the need to specify the labelling information for a node
repeatedly whenever it is used as a source or a target of a transition (and the
associated healthiness condition to ensure that duplicated information is consis-
tent). Since the initial node is always ι, for which refusal information is irrelevant,
it is enough to define the labels of the target nodes to get information for all
(reachable) nodes. Normalised graphs are supposed to be connected.

Healthiness conditions Table 3 defines the healthiness conditions of our theory.
HG1 requires all nodes to have a non-empty label: every label contains at least one
set X , and, as specified by HG2, each X contains ε. HG2 is concerned with ι and
ε; from ι, the only possible event is ε, which is then always refused, and, besides,
no transition leads back to ι. HG3 requires that, for any node n and event e, there
is at most one transition: the graph is deterministic. Similarly, HG4 establishes
that all transitions that target a node n ′ define the same label: labelling is unique.
HG5 requires that, if there is no transition from a node n ′ for an event e1, then
e1 is in all refusals X of the label r ′ of n ′. We write G(w , x , y , z) to denote the
predicate G [w , x , y , z/n, e,n ′, r ′]. Finally, HG6 rules out the empty graph false.

All of HG1 to HG6 are conjunctive (that is, of the form HC(P) =̂ P ∧ F (P),
for a function F (P) that is monotonic or does not depend on P). So, they
are all monotonic, idempotent, and commute [10]. Commutativity establishes
independence of the healthiness conditions. We can then define the healthiness

condition HG of our theory as the composition of HG1 to HG6. Commutativity
implies that HG is an idempotent, just like each of HG1 to HG6.

Connection to reactive processes In [16], graphs are transformed to nondetermin-
istic programs of a particular form. They are action systems: initialised nonde-
terministic loops, with part of the state at the beginning of each iteration visible.
These are, therefore, reactive processes, that communicate to the environment
the value of the relevant state components at the start of a loop.

For a graph G , the corresponding action system AS (G) in [16] is as follows.

Definition 1.

AS (G) =̂
var n, tr , ref • n, tr , ref := ι, 〈〉, Σ;
µY • vis!(tr , ref)→

Skip C ref = Σε B u e : Σε \ ref •
tr := tr a 〈e〉;
n, ref : [true,∃ r ′ • G ∧ ref ′ ∈ r ′];
Y

The program uses a local variable n as a pointer to the current node as it
iterates over G . The initial value of n is ι. As the loop progresses, the program
accumulates the traces of events tr and records a refusal ref in r . Their values
are initialised with the empty sequence 〈〉 and the whole set of events Σ (but
not ε). The values of tr and ref are communicated in each step of the iteration
via a channel vis. It is the values that can be communicated that capture the
traces and maximal refusals semantics of G .

The loop is defined by a tail recursion (µY • . . . ; Y). Its termination
condition is ref = Σε, that is, it terminates when there is a deadlock. Otherwise,
it chooses nondeterministically (u) an event e that can be offered, that is, an
event from Σε \ref , updates tr to record that event, and then updates n and ref
as defined by G using a design. The postcondition ∃ r ′ • G ∧ ref ′ ∈ r ′ defines
the new values of n and ref ; the value of ref is also chosen nondeterministically.

Example 2. For the process in Example 1, the corresponding reactive process
obtained from the graph in Figure 2, is equivalent to that shown below, where
we unfold the recursion and eliminate nondeterministic choices over one element.

var n, tr , ref • n, tr , ref := ι, 〈〉, {a, b, c};
vis!(tr , ref)→ tr := tr a 〈ε〉; n, ref := n1, {c, ε};
u e : {a, b} • vis!(tr , ref)→ tr := tr a 〈e〉; n, ref := n2, {a, b, ε};

vis!(tr , ref)→ tr := tr a 〈c〉; n, ref := n3, {a, b, c, ε};
vis!(tr , ref)→ Skip

2

Besides the healthiness conditions of reactive processes, as defined in Section 2,
the processes of interest here satisfy the healthiness condition below.

R4(P) =̂ P ∧ ran tr ′ ⊆ {|vis|}

It ensures that all events observed in the trace are communications over the

channel vis. Together with R1, R4 guarantees that this holds for tr and tr ′.
The function ν(G) defined below maps a graph G to a reactive process. It

provides an abstract specification for AS (G) using directly the observational
variables of the reactive process theory, rather than programming constructs.
In the definition of ν(G), we use a node-labelling partial function node(G) that
maps traces to nodes of G . It is well defined, because an essential property of
a normalised graph is that, for every trace, there is a unique node to which it
leads [18, p.161]. Normalised graphs are deterministic, as ensured by HG3.

Definition 2. ν(G) =̂ R(true ` νP (G)) where

νP (G) =̂ tr < tr ′ ⇒
∃ trM , refM • (trM , refM) = msg ◦ last (tr ′) ∧

(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
C trM = 〈〉 B(
∃ r ′ • refM ∈ r ′ ∧
G [node(G)(front trM), last trM ,node(G)(trM)/n, e,n ′]

)



We define ν(G) as a design that specifies that it never diverges: the precondition
is true. The postcondition νP (G) defines that if an event has occurred (tr < tr ′),
then the behaviour is given by the failure (trM , refM) communicated in the last
event recorded in tr ′. We use the function msg(vis.(trM , refM)) =̂ (trM , refM).
With trM and refM , νP (G) specifies that what happens next depends on whether
the failure emitted contains the empty trace (trM = 〈〉). If it does, then G has
to have a node reachable via 〈〉. Otherwise, the last two elements of the trace
must describe a transition in G . The target of this transition has a set of refusal
sets r ′; the refusal set in the failure must be an element of r ′.

The function ν(G) is the left (upper) adjoint of a Galois connection between
the theories of normalised graphs and reactive processes. To establish this result,
and others in the sequel, we use the relationship between an R2-healthy assertion
ψ used as a postcondition and the process Proc(ψ) that implements ψ. We define
Proc(ψ) =̂ R(true ` ψ), as a reactive design that requires that the process does
not diverge and establishes ψ. Moreover, for a reactive design P , we define a sim-
ple way to extract its postcondition Post(P) =̂ P [true, true, false/ok , ok ′,wait].
The functions Proc and Post form a Galois connection.

Theorem 1. The pair (Proc,Post) is a Galois connection.

Proof A design φ ` ψ is defined by ok ∧ φ ⇒ ok ′ ∧ ψ. So, in R(φ ` ψ), the
values of ok and ok ′ in ψ are defined by the design to be true. Moreover, the
value of wait is defined by R3 to be false. Therefore, below we consider, without
loss of generality, that ψ does not have free occurrences of ok , ok ′, or wait .

Post ◦ Proc(ψ)

= (Proc(ψ))[true, true, false/ok , ok ′,wait] [definition of Post]

= (R(true ` ψ))[true, true, false/ok , ok ′,wait] [definition of Proc]

= R1 ◦ R2((true ` ψ)[true, true, false/ok , ok ′,wait]) [substitution in R(D)]

= R1 ◦ R2(ψ[true, true, false/ok , ok ′,wait]) [substitution in a design]

= R1 ◦ R2(ψ) [ok , ok ′, and wait are not free in ψ]

= R1(ψ) [ψ is R2]

⇒ ψ [definition of R1 and predicate calculus]

Next, we prove that Proc ◦ Post(P) = II , so we have a co-retract. Also, from
the above proof, we conclude that (Proc,Post) is a Galois correspondence if the
postconditions are additionally R1 healthy. We use the notation Pb

a to stand for
the substitution P [a, b/wait , ok ′], and use t and f for true and false.

Proc ◦ Post(P)

= R(true ` Post(P)) [definition of Proc]

= R(true ` P [true, true, false/ok , ok ′,wait]) [definition of Post]

= R(true ` (R(¬ P f
f ` P t

f)[true, true, false/ok , ok ′,wait]))

[reactive-design theorem: P = R(¬ P f
f ` P t

f)]

= R(true ` R(¬ P f
f ⇒ P t

f)) [substitution]

= R(true ` R2(¬ P f
f ⇒ P t

f))

[R = R1 ◦ R2 ◦ R3 and R1 ◦ R3(P ` R1 ◦ R3(P)) = R1 ◦ R3(P ` Q)]

= R(true ` ¬ P f
f ⇒ P t

f) [assumption: P is R2]

= R(¬ P f
f ` P t

f) [property of a design]

= P [reactive-design theorem]

2

For graphs and reactive processes we have the following result.

Theorem 2. ν(G) defines a Galois connection.

Proof From the definition of ν(G), we have that ν(G) = Proc ◦ νP (G). Since
νP (G) is monotonic and universally disjunctive, it defines a Galois connection
between normalised graphs and (R2-healthy) assertions. Moreover, from The-
orem 1, we know that Proc defines a Galois connection between R2-healthy
assertions and reactive processes. Since the composition of Galois connections is
a Galois connection itself, the required result follows. 2

With the above theorem, we formalise the point (2) described in Section 1.

4 A UTP theory for Kripke structures

A Kripke structure (S , s0,R : P(S ×S),L : S → PAP ,AP) is a quintuple, where
S is the set of states, s0 is the initial state, R is a transition relation between
states, and L is a labelling function for states. The labels are sets of atomic
propositions from AP that are satisfied by the states. R is required to be total,
so that there are no stuck states in a Kripke structure.

pc = 1
(< >,{c, })ε ε

pc = 1
(< ,b>,{a,b, })ε ε

pc = 1
(< ,b,c>,{a,b,c, })ε ε

pc = 2

pc = 1
(< ,a>,{a,b, })ε ε

pc = 1
(< ,a,c>,{a,b,c, })ε ε

pc = 0 pc = 1
(<>,)Σ

Fig. 3. Kripke structure for a → c → STOP 2 b → c → STOP

In our theory, states are identified with the valuations of variables v . These
valuations define the properties satisfied in the states, and so define L and AP .
Moreover, the variables in our theory include pc : 0 . . 2 (for program counter)
and its dashed counterpart pc′. The value of pc in a state defines whether it is
initial, in which case the value of pc is 0, intermediate state, pc = 1, or final,
pc = 2. Satisfaction of properties is checked in the intermediate states.

In Kripke structures for reactive processes, the other variables of interest are
tk : seqΣε, whose value is the trace performed so far, and refk : PΣε, whose value
is the current refusal, and their dashed counterparts t ′k and ref ′

k . We present,
however, a theory that is not specific to these variables, and then present an
extra healthiness condition for Kripke structures for reactive processes.

Example 3. Figure 3 gives the Kripke structure for the process in Example 1
and corresponding program in Example 2. In Figure 3, we give the values of the
variables tk and refk in each state as a pair. For the states in which pc = 0 or
pc = 2, however, the values of these variables is arbitrary and not given. We note
that there are states that are not represented in Figure 3, namely those whose
values of tk and refk are not failures of the process. If, however, we consider
the set of states labelled by failures of the process, there are no stuck states. In
particular, the states for which pc = 2 have self-transitions. 2

Alphabet Our theory of Kripke structures is simply a relational theory with
alphabet pc, pc′ : 0 . . 2 and arbitrary additional variables v and v ′.

Example 4. The relation EK for the Kripke structure in Figure 3 is as follows.

pc = 0 ∧ pc′ = 1 ∧ t ′k = 〈 〉 ∧ ref ′
k = Σ ∨

pc = 1 ∧ tk = 〈 〉 ∧ refk = Σ ∧ pc′ = 1 ∧ t ′k ∈ {〈a〉, 〈b〉} ∧ ref ′
k = {a, b, ε} ∨

pc = 1 ∧ tk = 〈a〉 ∧ refk = {a, b, ε} ∧ pc′ = 1 ∧ t ′k = 〈a, c〉 ∧ ref ′
k = {a, b, c, ε} ∨

pc = 1 ∧ tk = 〈b〉 ∧ refk = {a, b, ε} ∧ pc′ = 1 ∧ t ′k = 〈b, c〉 ∧ ref ′
k = {a, b, c, ε} ∨

pc = 1 ∧ tk ∈ {〈a, c〉, 〈b, c〉} ∧ pc′ = 2 ∨
pc = 2 ∧ pc′ = 2

2

Healthiness conditions Table 4 presents the healthiness conditions. From the
initial state, we move to an intermediate state, and there is no transition back

HK1(K) =̂ K ∧ ValT ValT =̂ pc = 0 ∧ pc′ = 1 ∨ pc = 1 ∧ pc′ 6= 0 ∨ pc = 2 ∧ pc′ = 2
HK2(K) =̂ SelfT ; K SelfT =̂ pc = pc′ ∧ (pc = 1⇒ v = v ′)
HK3(K) =̂ K ; SelfT
HK4(K) =̂ K ∧ ∃ v , v ′ • K [0/pc]

Table 4. Healthiness conditions of the Kripke-structure theory

to the initial state or out of the final state. All this is ensured by HK1. With
HK2 we establish that the value of v when pc = 0 or pc = 2 is arbitrary.
Similarly, with HK3 we establish that the value of v ′ when pc′ = 2 is arbitrary.
SelfT specifies transitions that keep the value of pc, but that preserve v only
in intermediate states. These are a kind of self transitions. We use v = v ′ to
refer to the conjunction v1 = v ′

1 ∧ . . . ∧ vn = v ′
n including an equality for each

variable in v and v ′. Finally, HK4 requires that either the Kripke structure is
empty, or there is a transition from the initial state.

HK1 is conjunctive and so idempotent, and monotonic since ValT does not
depend on K . For HK2 and HK3, monotonicity follows from monotonicity of
sequence. Idempotence follows from the result below [11, p.90].

Lemma 1. SelfT ; SelfT = SelfT

Proof

SelfT ; SelfT

(pc = pc′ = 0 ∨ pc = pc′ = 1 ∧ v = v ′ ∨ pc = pc′ = 2); SelfT

[definition of SelfT]

= (pc = pc′ = 0; SelfT) ∨
(pc = pc′ = 1 ∧ v = v ′; SelfT) ∨
(pc = pc′ = 2; SelfT)

[property of sequence]

= (pc = pc′ = 0; pc = pc′ = 0) ∨
(pc = pc′ = 1 ∧ v = v ′; pc = pc′ = 1 ∧ v = v ′) ∨
(pc = pc′ = 2; pc = pc′ = 2)

[property of sequence]

= SelfT [property of sequence and definition of SelfT]

2

HK4 is conjunctive and so idempotent, and monotonic since ∃ v , v ′ • K [0/pc] is
monotonic on K . Commutativity of HK1 with HK2 and HK3 are proved next.

Lemma 2. HK1(HK2(K)) = HK2(HK1(K))

Proof

HK1(HK2(K))

= (SelfT ; K) ∧ ValT [definitions of HK1 and HK2]

= ((SelfT ; K) ∧ pc = 0 ∧ pc′ = 1) ∨
((SelfT ; K) ∧ pc = 1 ∧ pc′ = 1) ∨
((SelfT ; K) ∧ pc = 2 ∧ pc′ = 2)

[predicate calculus]

= ((SelfT ∧ pc = 0); (K ∧ pc′ = 1)) ∨
((SelfT ∧ pc = 1); (K ∧ pc′ 6= 0)) ∨
((SelfT ∧ pc = 2); (K ∧ pc′ = 2))

[property of sequence]

= ((SelfT ∧ pc′ = 0); (K ∧ pc′ = 1)) ∨
((SelfT ∧ pc′ = 1); (K ∧ pc′ 6= 0)) ∨
((SelfT ∧ pc′ = 2); (K ∧ pc′ = 2))

[definition of SelfT]

= ((SelfT ∧ pc′ = 0); (pc = 0 ∧ K ∧ pc′ = 1)) ∨
((SelfT ∧ pc′ = 1); (pc = 1 ∧ K ∧ pc′ 6= 0)) ∨
((SelfT ∧ pc′ = 2); (pc = 2 ∧ K ∧ pc′ = 2))

[property of sequence]

= (SelfT ; (pc = 0 ∧ K ∧ pc′ = 1)) ∨
(SelfT ; (pc = 1 ∧ K ∧ pc′ 6= 0)) ∨
(SelfT ; (pc = 2 ∧ K ∧ pc′ = 2))

[definition of SelfT]

= SelfT ; (pc = 0 ∧ K ∧ pc′ = 1) ∨
(pc = 1 ∧ K ∧ pc′ 6= 0) ∨
(pc = 2 ∧ K ∧ pc′ = 2)

[property of sequence]

= SelfT ; (K ∧ ValT) [definition of ValT]

= HK2(HK1(K)) [definitions of HK1 and HK2]

2

Lemma 3. HK1(HK3(K)) = HK3(HK1(K))

Proof

HK1(HK3(K))

= (K ; SelfT) ∧ ValT [definitions of HK1 and HK3]

= ((K ; SelfT) ∧ pc = 0 ∧ pc′ = 1) ∨
((K ; SelfT) ∧ pc = 1 ∧ pc′ = 1) ∨
((K ; SelfT) ∧ pc = 2 ∧ pc′ = 2)

[predicate calculus]

= ((K ∧ pc = 0); (SelfT ∧ pc′ = 1)) ∨
((K ∧ pc = 1); (SelfT ∧ pc′ 6= 0)) ∨
((K ∧ pc = 2); (SelfT ∧ pc′ = 2))

[property of sequence]

= ((K ∧ pc = 0); (SelfT ∧ pc = 1)) ∨
((K ∧ pc = 1); (SelfT ∧ pc 6= 0)) ∨
((K ∧ pc = 2); (SelfT ∧ pc = 2))

[definition of SelfT]

= ((K ∧ pc = 0 ∧ pc′ = 1); (SelfT ∧ pc = 1)) ∨
((K ∧ pc = 1 ∧ pc′ 6= 0); (SelfT ∧ pc 6= 0)) ∨
((K ∧ pc = 2 ∧ pc′ = 2); (SelfT ∧ pc = 2))

[definition of SelfT]

= ((K ∧ pc = 0 ∧ pc′ = 1); SelfT) ∨
((K ∧ pc = 1 ∧ pc′ 6= 0); SelfT) ∨
((K ∧ pc = 2 ∧ pc′ = 2); SelfT)

[property of sequence]

= ((K ∧ pc = 0 ∧ pc′ = 1) ∨
(K ∧ pc = 1 ∧ pc′ 6= 0) ∨
(K ∧ pc = 2 ∧ pc′ = 2)); SelfT

[property of sequence]

= (K ∧ ValT); SelfT [definition of ValT]

= HK3(HK1(K)) [definitions of HK1 and HK3]

2

Commutativity of HK1 and HK4 is simple because they are both conjunctive.
Commutativity of HK2 and HK3 is established in [11, p.90]. Finally, commuta-
tivity of HK2 and HK4, and of HK3 and HK4 are established next.

Lemma 4. HK4(HK2(K)) = HK2(HK4(K))

Proof

HK4(HK2(K))

= (SelfT ; K) ∧ ∃ v , v ′ • (SelfT ; K)[0/pc] [definitions of HK4 and HK2]

= (SelfT ; K) ∧ ∃ v , v ′ • SelfT [0/pc]; K [property of sequence]

= (SelfT ; K) ∧ ∃ v , v ′ • pc′ = 0; K [SelfT [0/pc] = (0 = pc′)]

= (SelfT ; K) ∧ ∃ v , v ′ • K [0/pc] [property of sequence]

= SelfT ; (K ∧ ∃ v , v ′ • K [0/pc]) [property of sequence]

= HK2(HK4(K)) [definitions of HK4 and HK2]

2

Lemma 5. HK4(HK3(K)) = HK3(HK4(K))

Proof

HK4(HK3(K))

= (K ; SelfT) ∧ ∃ v , v ′ • (K ; SelfT)[0/pc] [definitions of HK4 and HK3]

= K ; (SelfT ∧ ∃ v , v ′ • (K ; SelfT)[0/pc]) [property of sequence]

= K ; (SelfT ∧ pc′ = pc ∧ ∃ v , v ′ • (K ; SelfT)[0/pc][pc/pc′])

[definition of SelfT]

= (K ∧ pc′ = pc ∧ ∃ v , v ′ • (K ; SelfT)[0/pc][pc/pc′]); SelfT

[property of sequence]

= (K ∧ ∃ v , v ′ • (K ; SelfT)[0/pc][pc/pc′]); (pc′ = pc ∧ SelfT)

[property of sequence]

= (K ∧ ∃ v , v ′ • (K ; SelfT)[0/pc][pc/pc′]); SelfT [definition of SelfT]

= (K ∧ ∃ v , v ′ • (K [0/pc]; SelfT [pc/pc′])); SelfT [property of sequence]

= (K ∧ ∃ v , v ′ • ∃ v0, pc0 • K [0, v0/pc, v ′] ∧ pc0 = 1⇒ v0 = v ′); SelfT

[property of sequence]

= (K ∧ ∃ v , v ′ • ∃ v0 • K [0, v0/pc, v ′] ∧ ∃ pc0 • pc0 = 1⇒ v0 = v ′); SelfT

[predicate calculus]

= (K ∧ ∃ v , v ′ • ∃ v0 • K [0, v0/pc, v ′] ∧ ((∀ pc0 • pc0 = 1)⇒ v0 = v ′));
SelfT

[predicate calculus]

= (K ∧ ∃ v , v ′ • ∃ v ′ • K [0/pc]); SelfT [predicate calculus]

= (K ∧ ∃ v , v ′ • K [0/pc]); SelfT [predicate calculus]

= HK3(HK4(K)) [definitions of HK4 and HK3]

2

We cannot introduce a healthiness condition HK(K) = (true; K) ⇒ K that
requires that a Kripke structure is not empty; (like H4 in the case of designs) it
is not monotonic. So, we keep false in the lattice; it represents miracle, as usual.

Connection from reactive processes As mentioned above, for modelling processes,
the additional variables are tk and refk , and their dashed counterparts t ′k and
ref ′

k . In this more specific setting, we have the extra healthiness condition below.

HK5(K) =̂ K ∧ ValRT
ValRT =̂ t ′k = 〈〉 ∧ pc = 0 ∧ pc′ = 1 ∨

t ′k 6= 〈〉 ∧ pc = pc′ = 1 ∧ tk = front t ′k ∨
pc′ = 2

The property ValRT defines valid reactive transitions. From the initial state,
we reach just the empty trace, and each transition between intermediate states
capture the occurrence of a single event: the last event in t ′k .

As discussed previously, we can represent a CSP process G by a reactive
process P that outputs in a channel vis the failures of G with maximal refusals. In
other words, the events of P define the failures of G . Below, we define how, given
a reactive process P whose events are all communications on vis, we construct
a corresponding Kripke structure κ(P) whose states record the failures of G . To
model the state of the action system before it produces any traces or maximal
refusals, we let go of HK1 and allow transitions from states for which pc = 2
back to an intermediate state with pc′ = 1.

Definition 3. κ(P) =̂ κI ◦ Post(P)where

κI (P) =̂ ∃wait ′, tr , tr ′, ref , ref ′ • P ∧ Iκ

Iκ =̂



tr = tr ′ ∧ pc = 2 ∧ pc′ = 1 ∨
#(tr ′ − tr) = 1 ∧

pc = 0 ∧ pc′ = 1 ∧ (t ′k , ref ′
k) = msg ◦ last (tr ′) ∨

#(tr ′ − tr) > 1 ∧
pc = 1 ∧ pc′ = 1 ∧
(tk , refk) = msg ◦ last ◦ front (tr ′) ∧ (t ′k , ref ′

k) = msg ◦ last (tr ′) ∨
¬ wait ′ ∧ #(tr ′ − tr) > 1 ∧

pc = 1 ∧ pc′ = 2 ∧ (tk , refk) = msg ◦ last ◦ front (tr ′) ∨
¬ wait ′ ∧ pc = 2 ∧ pc′ = 2


In defining κ(P), of interest is the behaviour of P when the previous process
did not diverge (ok ′ is true) and terminated (wait is false) and P has not di-
verged (ok ′ is true). This is the postcondition of P , as defined by Post . The
postcondition has in its alphabet the variables wait ′, tr , tr ′, ref , and ref ′. In

defining κI , these variables are quantified, and used in Iκ to define the values of
pc, tk , refk , pc′, t ′k , and ref ′

k from the theory of kripke structures.
If only one output has occurred (#(tr ′−tr) = 1), then the event vis.(t ′k , ref ′

k)
observed defines the state that can be reached from the initial state of the Kripke
structure. When more events have occurred, we define a transition between
the intermediate states characterised by the last two events. Prefix closure of
P ensures that we get a transition for every pair of events. When P termi-
nates (¬ wait ′), we get two transitions, one from the last event to the final
state (pc′ = 2), and the loop transition for the final state.

To establish that κ(P) defines a Galois connection, we use a result in [11]
proved below. It considers functions L and R between lattices A and B (ordered
by v) with alphabets a and c, when L and R are defined in terms of a predicate
I over the alphabet defined by the union of a and c. We can see these functions
as establishing a data refinement between A and B with coupling invariant I .

Theorem 3. L and R defined below are a Galois connection between A and B.

L(PC) =̂ ∃ c • PC ∧ I and R(PA) =̂ ∀ a • I ⇒ PA

Proof

PA v L(PC)

= [(∃ c • PC ∧ I)⇒ PA] [definition of L and v]

= [PC ⇒ (I ⇒ PA)] [predicate calculus]

= [PC ⇒ ∀ a • I ⇒ PA] [predicate calculus]

= [PC ⇒ R(PA)] [definition of R]

= R(PA) v PC [definition of v]

2

This result can be used to prove the following theorem.

Theorem 4. κ(P) defines a Galois connection.

Proof From Theorem 1, we know that Post defines a Galois connection. Theo-
rem 3 establishes that κI defines a Galois connection as well. Their composition,
which defines κ, therefore, also defines a Galois connection. 2

The above theorem formalises the point (3) mentioned in Section 1.

5 A UTP theory for traces and maximal refusals

This is a theory of conditions (predicates on a single state) with alphabet okM ,
trM and refM . These variables are similar to those of the theory of reactive pro-
cesses, but refM records only maximal refusals. We use the notion of refinement
in this theory to define satisfaction for relations in all our theories.

As can be expected, there is a rather direct Galois connection between reac-
tive processes and definitions of traces and maximal refusals in this theory.

Definition 4. θ(P) =̂ θP ◦ Post(P) where

θP (P) =̂ ∃wait ′, tr , tr ′, ref , ref ′ • P ∧ Iθ
Iθ =̂ okM = (tr ′ > tr) ∧ (okM ⇒ (trM , refM) = msg ◦ last (tr ′))

In defining the failures of θ(P), we need the postcondition of P . From that, we
obtain failures once P has started communicating, so okM is characterised by
(tr ′ > tr). If we do have a failure, it is that last communicated via vis in tr ′.

Theorem 5. θ(P) defines a Galois connection.

Proof Similar to that of Theorem 4. 2

The healthiness conditions of a theory of traces and refusals are well known [18].
We record, however, via the healthiness condition HM below the role of okM , as
a flag that indicates whether observations are valid.

HM(M) =̂ okM ⇒ M

(This is just the healthiness condition H1 of the UTP theory of designs, which
first introduces the use of ok). The predicates of our theory of traces and maximal
refusals are used as conditions in our satisfaction relations presented next.

5.1 Satisfaction for normalised graphs

The function η(G) defines a Galois connection between the theory of normalised
graphs and the theory of traces and maximal refusals.

Definition 5. η(G) =̂ ∃n, e,n ′, r ′ • okM ⇒ G ∧ Iη where

Iη =̂

 (n = node(G)(〈〉)) C trM = 〈〉 B


n = node(G)(front trM) ∧
e = last trM ∧
n ′ = node(G)(trM) ∧
refM ∈ r ′




As required, we define η(G) by characterising traces trM and refusals refM using
the variables n, e, n ′ and r ′ from the theory of graphs. If okM is true, then trM
is empty if the current node n can be reached with the empty trace (that is, it
is the initial node). Otherwise, the trace is that used to reach n concatenated
with 〈e〉. Moreover, refM is a refusal in the label r ′ of the target node.

To establish that η(G) is the left adjoint of a Galois connection between
the theories of normalised graphs and of maximal refusals, we use the following
general result, similar to that in Theorem 3.

Theorem 6. L and R defined below are a Galois connection between A and B.

L(PC) =̂ ∃ c • b ⇒ PC ∧ I and R(PA) =̂ ∀ a • I ⇒ PA

where b is a boolean variable in the alphabet a of A, and HC(PA) = b ⇒ PA is
a healthiness condition of the lattice B.

Proof

PA v L(PC)

= [(∃ c • b ⇒ PC ∧ I)⇒ PA] [definition of L and v]

= [(∃ c • b ⇒ PC ∧ I)⇒ (b ⇒ PA)] [HC]

= [(∃ c • PC ⇒ I)⇒ PA] [case analysis on b]

= [PC ⇒ ∀ a • I ⇒ PA] [predicate calculus]

= [PC ⇒ R(PA)] [definition of R]

= R(PA) v PC [definition of v]

2

This result can be used to prove the following theorem.

Theorem 7. η(G) defines a Galois connection.

Proof. Direct application of Theorem 6.

Using η(G), we can use refinement in the theory of traces and maximal refusals
to define satisfaction as shown below.

Definition 6. For a property φ and a graph G, we define G sat φ =̂ φ v η(G).

Normalised graphs G have the same traces and maximal refusals as the reactive
program ν(G) that it characterises.

Theorem 8. η(G) = θ ◦ ν(G)

Proof

θ ◦ ν(G)

= ∃ tr , tr ′ • νP (G) ∧
okM = (tr ′ > tr) ∧ (okM ⇒ (trM , refM) = msg ◦ last (tr ′))

[definitions of θ and ν]

= ∃ tr , tr ′ •

tr < tr ′ ⇒
∃ trM , refM • (trM , refM) = msg ◦ last (tr ′) ∧

(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
C trM = 〈〉 B∃ r ′ • refM ∈ r ′ ∧

G [node(G)(front trM), last trM ,node(G)(trM)
/n, e,n ′]







∧
okM = (tr ′ > tr) ∧ (okM ⇒ (trM , refM) = msg ◦ last (tr ′))

[definition of νP]

= ¬ okM ∨
∃ tr , tr ′ •

∃ trM , refM • (trM , refM) = msg ◦ last (tr ′) ∧
(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
C trM = 〈〉 B(
∃ r ′ • refM ∈ r ′ ∧

G [node(G)(front trM), last trM ,node(G)(trM)/n, e,n ′]

)



∧
(tr ′ > tr) ∧ (trM , refM) = msg ◦ last (tr ′)

[case analysis on okM]

= ¬ okM ∨
∃ tr , tr ′ •

(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
C trM = 〈〉 B(
∃ r ′ • refM ∈ r ′ ∧

G [node(G)(front trM), last trM ,node(G)(trM)/n, e,n ′]

)


∧
(tr ′ > tr) ∧ (trM , refM) = msg ◦ last (tr ′)

[predicate calculus]

= ¬ okM ∨
(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
C trM = 〈〉 B(
∃ r ′ • refM ∈ r ′ ∧

G [node(G)(front trM), last trM ,node(G)(trM)/n, e,n ′]

)


∧
∃ tr , tr ′ • (tr ′ > tr) ∧ (trM , refM) = msg ◦ last (tr ′)

[predicate calculus]

= ¬ okM ∨
(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
C trM = 〈〉 B(
∃ r ′ • refM ∈ r ′ ∧

G [node(G)(front trM), last trM ,node(G)(trM)/n, e,n ′]

)


[predicate calculus]

= ¬ okM ∨
(∃n, e,n ′, r ′ • G ∧ n = node(G)(〈〉))
C trM = 〈〉 B(
∃n, e,n, r ′ • refM ∈ r ′ ∧

G ∧ n = node(G)(front trM) ∧ e = last trM ∧ n ′ = node(G)(trM)

)


[predicate calculus]

= ∃n, e,n ′, r ′ • okM ⇒ G ∧
(n = node(G)(〈〉))
C trM = 〈〉 B(
refM ∈ r ′ ∧
n = node(G)(front trM) ∧ e = last trM ∧ n ′ = node(G)(trM)

)


[property of conditional]

= η(G) [definition of η]

2

This establishes that our transformations preserve traces and maximal refusals.
So, to check satisfaction for a graph G , we can use θ ◦ ν(G), instead of η(G).

5.2 Satisfaction for Kripke structures

The function ζ(G) defines a Galois connection between the theory of Kripke
structures and the theory of traces and maximal refusals.

Definition 7.

ζ(K) =̂ ∃ pc, pc′, tk , t
′
k , refk , ref ′

k • K ∧
okM = (pc ∈ {0, 1}) ∧ (okM ⇒ trM = t ′k ∧ refM = ref ′

k)

The traces trM and refusals refM that are captured are those of the target states.

Theorem 9. ζ(K) defines a Galois connection.

Proof Direct consequence of Theorem 3. 2

Using ζ, we can use refinement in the theory of traces and maximal refusals to
define satisfaction for Kripke structures as shown below.

Definition 8. For a property φ and a Kripke structure K , we define

K sat (pc′ = 1⇒ φ) =̂ φ v ζ(K ∧ pc′ = 1)

The Kripke structures ζ ◦ κ(P) have the same traces and maximal refusals as
the reactive process P that they characterise.

Theorem 10. θ(P) = ζ(κ(P) ∧ pc′ = 1)

Proof

ζ(κ(P) ∧ pc′ = 1)

= ζ


∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧#(tr ′ − tr) = 1 ∧ pc = 0 ∨

#(tr ′ − tr) > 1 ∧ pc = 1 ∧ (tk , refk) = msg ◦ last (front tr ′) ∨
tr ′ = tr ∧ pc = 2

 ∧
pc′ = 1 ∧ (t ′k , ref ′

k) = msg ◦ last (tr ′)


[definition of κ(P) and predicate calculus]

=



∃ pc, pc′, tk , t
′
k , refk , ref ′

k •
∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧ tr = tr ′ ∧ pc = 2 ∨

#(tr ′ − tr) = 1 ∧ pc = 0 ∨
#(tr ′ − tr) > 1 ∧ pc = 1 ∧ (tk , refk) = msg ◦ last (front tr ′)


∧
pc′ = 1 ∧ (t ′k , ref ′

k) = msg ◦ last (tr ′)


∧
okM = (pc ∈ {0, 1}) ∧ (okM ⇒ trM = t ′k ∧ refM = ref ′

k)


[definition of ζ]

=


∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧
∃ pc, t ′k , ref ′

k •(
tr = tr ′ ∧ pc = 2 ∨
#(tr ′ − tr) = 1 ∧ pc = 0 ∨ #(tr ′ − tr) > 1 ∧ pc = 1

)
∧

(t ′k , ref ′
k) = msg ◦ last (tr ′) ∧

okM = (pc ∈ {0, 1}) ∧ (okM ⇒ trM = t ′k ∧ refM = ref ′
k)


[predicate calculus]

=


∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧∃ pc •

tr = tr ′ ∧ pc = 2 ∨
#(tr ′ − tr) = 1 ∧ pc = 0 ∨ #(tr ′ − tr) > 1 ∧ pc = 1

 ∧
okM = (pc ∈ {0, 1}) ∧ (okM ⇒ (tM , refM) = msg ◦ last (tr ′))


[predicate calculus]

=

(
∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧

okM = tr ′ > tr ∧ (okM ⇒ (tM , refM) = msg ◦ last (tr ′))

)
[predicate calculus]

= θ(P) [definition of θ(P)]

2

This establishes the semantic preservation of our transformation.
As a consequence, it is direct that, to check satisfaction for a graph G , we

can use κ ◦ ν(G), instead of η(G), as shown below.

Theorem 11. G sat φ⇔ κ ◦ ν(G) sat (pc′ = 1⇒ φ)

Proof

G sat φ

= φ v η(G) [definition of sat]

= φ v θ ◦ ν(G) [Theorem 8]

= φ v ζ(κ ◦ ν(G) ∧ pc′ = 1) [Theorem 10]

= κ ◦ ν(G) sat (pc′ = 1⇒ φ) [definition of sat]

2

This is the main result of this paper.

6 Conclusions

We have presented novel UTP theories for normalised graphs and Kripke struc-
tures that model programs. They are complete lattices under the UTP refinement
order. Our relation of interest, however, is satisfaction. To justify the soundness
of a novel runtime-verification technique based on CSP, we have defined satis-
faction for graphs and Kripke structures. With that, we have established that
satisfaction of failure specifications in CSP can be soundly verified using a Kripke
structure that preserves the traces and maximal refusals of the CSP model.

Temporal model checking of UTP designs (pre and postcondition pairs) based
on Kripke structures is discussed in [1]. Like we do, [1] defines satisfaction as an
extra relation in a lattice ordered by refinement. Satisfaction is defined for states,
and temporal logic operators are modelled as fixed-point operators. We adopt
a similar notion of state as variable valuations, but do not formalise temporal
operators. On the other hand, we define explicitly a theory of Kripke structures,

rather than encode them as designs. Moreover, we capture the relationship be-
tween Kripke structures and failure models: directly to action systems encoded
as reactive processes and indirectly to normalised graphs. As far as we know, we
give here the first account of automata-based theories in the UTP.

An issue we have not covered is the relationship of our theories with the
existing UTP CSP theory [11, 6]. That amounts to formalising the operational
semantics of CSP and the normalisation algorithm of FDR3. Since maximal re-
fusals cannot be deduced from maximal refusals from the denotational semantics
of CSP [18, p.124], we do not expect an isomorphism between the theories.

An important property of normalised graphs and Kripke structures that is
not captured by our healthiness conditions is connectivity. The definition of
a monotonic idempotent that captures this property is left as future work. For
Kripke structures, we also do not capture the fact that there are no intermediate
stuck states. If we consider that every assignment of values to v is a valid state,
then this can be captured by the function HK6(K) = (K ; true)⇒ K .

Acknowledgements The work of Ana Cavalcanti and Jim Woodcock is funded by
the EPSRC grant EP/H017461/1 and the EU INTO-CPS. No new primary data
were created during this study. The work of Wen-ling Huang and Jan Peleska is
funded by the grant ITTCPS – Implementable Testing Theory for Cyber-physical
Systemsas part of the German Universities Excellence Initiative.

References

1. Anderson, H., Ciobanu, G., Freitas, L.: UTP and Temporal Logic Model Checking.
In:Unifying Theories of Programming, LNCS, vol. 5713, pp. 22–41. Springer (2010)

2. Burdy, L.et al: An overview of JML tools and applications. STTT 7(3), 212 – 232
(2005)

3. Butterfield, A.: A denotational semantics for handel-c. FACJ 23(2), 153–170 (2011)
4. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: From Control Law Diagrams to

Ada via Circus. FACJ 23(4), 465–512 (2011)
5. Cavalcanti, A.L.C., Huang, W.L., Peleska, J., Woodcock, J.C.P.: Unified

Runtime Verification for CSP - Extended version. Tech. rep., University
of York, Department of Computer Science, York, UK (2015), available at
www-users.cs.york.ac.uk/~alcc/CHPW15.pdf

6. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction to CSP in Unifying
Theories of Programming. In: Refinement Techniques in Software Engineering.
LNCS, vol. 3167, pp. 220–268. Springer (2006)

7. Cavalcanti, A.L.C., Zeyda, F., Wellings, A., Woodcock, J.C.P., Wei, K.: Safety-
critical Java programs from Circus models. RTS 49(5), 614–667 (2013)

8. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 A Mod-
ern Refinement Checker for CSP. In: TACAS. pp. 187–201 (2014)

9. Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, A Specification
Language for SCJ with Support for WCET Specification. In: JTRES. ACM (2010)

10. Harwood, W., Cavalcanti, A.L.C., Woodcock, J.C.P.: A Theory of Pointers for the
UTP. In: ICTAC. LNCS, vol. 5160, pp. 141–155. Springer (2008)

11. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall (1998)

12. Huang, W.L., Peleska, J., Schulze, U.: Contract Support for Evolving SoS. Public
Document D34.3, COMPASS (2014)

13. Liu, Z., Jifeng, H., Li, X.: rCOS: Refinement of Component and Object Systems.
In: FMCO. LNCS, vol. 3657. Springer-Verlag (1994)

14. Miyazawa, A., Lima, L., Cavalcanti, A.L.C.: Formal Models of SysML Blocks. In:
ICFEM. LNCS, vol. 8144, pp. 249–264. Springer (2013)

15. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for
Circus. FACJ 21(1-2), 3–32 (2009)

16. Peleska, J.: Translating Testing Theories for Concurrent Systems. In: Correct Sys-
tem Design, Essays Dedicated to Ernst-Rüdiger Olderog on the Occasion of his
60th Birthday. LNCS, Springer (2015)

17. Roscoe, A.W. (ed.): A Classical Mind: Essays in Honour of C. A. R. Hoare. Prentice
Hall International (UK) Ltd. (1994)

18. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,
Springer (2011)

19. Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process algebraic frame-
work for specification and validation of real-time systems. FACJ 22(2), 153–191
(2010)

20. Zeyda, F., Santos, T.L.V.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: A modular the-
ory of object orientation in higher-order UTP. In: FM. LNCS, vol. 8442, pp. 627–
642. Springer (2014)

21. Zhu, H., He, J., Qin, S., Brooke, P.: Denotational semantics and its algebraic
derivation for an event-driven system-level language. FACJ 27(1), 133–166 (2015)

