
A Simple Protocol

Safety-Critical Java Program and its Circus Model

Ana Cavalcanti, Andy Wellings, and Frank Zeyda

October 12, 2011

Contents

1 External Events 3
1.1 External Inputs . 3
1.2 External Outputs . 3

2 Framework Model 4
2.1 Safelet Framework Process . 4
2.2 Mission Sequencer Framework Process . 4
2.3 Mission Framework Process . 5
2.4 Event Handler Framework Process . 6

3 MainSafelet 7
3.1 Application Process . 7
3.2 Composite Process . 7
3.3 Java Code . 7

4 MainMissionSequencer 8
4.1 Application Process . 8
4.2 Composite Process . 8
4.3 Java Code . 9

5 MainMission 10
5.1 Application Process . 10
5.2 Composite Process . 10
5.3 Java Code . 11

6 Handler1 13
6.1 Framework Process . 13
6.2 Application Process . 13
6.3 Composite Process . 13
6.4 Data Object . 14
6.5 Java Code . 14

7 Handler2 16
7.1 Framework Process . 16
7.2 Application Process . 16
7.3 Composite Process . 16
7.4 Data Object . 17
7.5 Java Code . 18

1

8 List 19
8.1 Data Object . 19
8.2 Java Code . 21

9 System 23

2

1 External Events

section Events parents scj toolkit , scj library

1.1 External Inputs

The in event is used to periodically communicate the next input, and the out even to request an output to
be sent on the network.

channel in : Z

channel out

1.2 External Outputs

The following channels are used to establish a connection to the network and send the data.

channel enable

channel send : Z

channel disable

3

2 Framework Model

2.1 Safelet Framework Process

section SafeletFW parents SafeletChan,MissionSequencerChan, scj prelude

process SafeletFW =̂ begin

SetUp =̂ setUpCall −→ setUpRet −→ Skip

Execute =̂ start sequencer −→ done sequencer −→ Skip

TearDown =̂ tearDownCall −→ tearDownRet −→ Skip

• SetUp ; Execute ; TearDown ; end safelet app −→ Skip

end

2.2 Mission Sequencer Framework Process

section MissionSequencerFW parents MissionSequencerChan,MissionChan, scj prelude

process MissionSequencerFW =̂ begin

Start =̂ start sequencer −→ Skip

Execute =̂ µX • getNextMissionCall −→ getNextMissionRet ?next−→
if next 6= nullMId −→ start mission .next −→ done mission .next −→X
8next = nullMId −→ Skip
fi

Finish =̂ end sequencer app −→ end mission fw −→ done sequencer −→ Skip

• Start ; Execute ; Finish

end

4

2.3 Mission Framework Process

section MissionFW parents MissionId ,MissionChan,HandlerChan, scj prelude

process MissionFW =̂ begin

stateState
mission : MissionId
handlers : FHandlerId
terminating : boolean

Init
State ′

mission ′ = nullMId
handlers ′ = ∅
terminating ′ = jfalse

Start =̂ Init ; start mission ?m −→mission := m

AddHandler =̂ val handler : HandlerId • handlers := handlers ∪ {handler}
Initialize =̂ initializeCall .mission −→

µX • (register ? h −→ (AddHandler(h) ; X) @ initializeRet .mission −→ Skip)

StartHandlers =̂ 9 h : handlers • start handler . h −→ Skip

StopHandlers =̂ 9 h : handlers • stop handler . h −→ done handler . h −→ Skip

Execute =̂ (StartHandlers ; activate handlers −→
stop handlers −→ StopHandlers ; done handlers −→ Skip)
J∅ | {| stop handlers, done handlers |} | {terminating}K

(Methods 4 done handlers −→ Skip)

Cleanup =̂ cleanupCall .mission −→ cleanupRet .mission −→ Skip

Finish =̂ end mission app .mission −→ done mission .mission −→ Skip

requestTerminationMeth =̂
requestTerminationCall −→

if terminating = jfalse−→
terminating := jtrue ; stop handlers −→ Skip

8 terminating = jtrue −→ Skip
fi ;

requestTerminationRet −→ Skip

terminationPendingMeth =̂
terminationPendingCall −→
terminationPendingRet ! terminating −→ Skip

Methods =̂ µX • (requestTerminationMeth @ terminationPendingMeth) ; X

• (µX • Start ; Initialize ; Execute ; Cleanup ; Finish ; X) 4 end mission fw −→ Skip

end

5

2.4 Event Handler Framework Process

section EventHandlerFW parents MissionChan,HandlerChan

processEventHandlerFW =̂ handler : HandlerId •
begin

stateState
active : BOOL

Init
State ′

active ′ = FALSE

StartHandler =̂ start handler . handler −→ active := TRUE

ActivateHandler =̂ activate handlers −→ Skip

DispatchHandler =̂ enter dispatch −→ stop handler . handler −→ leave dispatch −→ Skip

• (µX • Init ; ((StartHandler ; ActivateHandler) @ ActivateHandler);
if active = TRUE −→DispatchHandler
8 active = FALSE −→ Skip
fi ; X) 4 end mission fw −→ Skip

end

6

3 MainSafelet

3.1 Application Process

section MainSafeletApp parents scj toolkit , scj library

process MainSafeletApp =̂ begin

setUpMeth =̂ setUpCall −→ Skip ; setUpRet −→ Skip

tearDownMeth =̂ tearDownCall −→ Skip ; tearDownRet −→ Skip

Methods =̂ µX • (setUpMeth @ tearDownMeth) ; X

• Methods 4 end safelet app −→ Skip

end

3.2 Composite Process

section MainSafelet parents SafeletFW ,MainSafeletApp

channelset MainSafeletChan == SafeletMethChan ∪ {| end safelet app |}

process MainSafelet =̂ (SafeletFW J MainSafeletChan K MainSafeletApp) \MainSafeletChan

3.3 Java Code

package jtres;

import javax.safetycritical.MissionSequencer;

import javax.safetycritical.Safelet;

public class MainSafelet implements Safelet {

public void setUp() { }

public MissionSequencer getSequencer() {

/* Created in Immortal Memory */

return new MainMissionSequencer();

}

public void tearDown() { }

}

7

4 MainMissionSequencer

4.1 Application Process

section MainMissionSequencerApp parents MissionIds, scj toolkit , scj library

process MainMissionSequencerApp =̂ begin

stateMainMissionSequencerState
mission done : boolean

Init =̂ mission done := jfalse

getNextMissionMeth =̂ getNextMissionCall −→
if ¬ mission done = jtrue−→

(mission done := jtrue;
getNextMissionRet !MainMissionId −→ Skip)

8¬ (¬ mission done = jtrue)−→
getNextMissionRet !nullMId −→ Skip

fi

Methods =̂ µX • getNextMissionMeth ; X

• Init ; (Methods 4 end sequencer app −→ Skip)

end

4.2 Composite Process

section MainMissionSequencer parents MissionSequencerFW ,MainMissionSequencerApp

channelsetMainMissionSequencerChan == MissionSequencerMethChan ∪ {| end sequencer app |}
process MainMissionSequencer =̂

(MissionSequencerFW J MainMissionSequencerChan K MainMissionSequencerApp)\
MainMissionSequencerChan

8

4.3 Java Code

package jtres;

import javax.realtime.PriorityParameters;

import javax.safetycritical.Mission;

import javax.safetycritical.MissionSequencer;

import javax.safetycritical.PriorityScheduler;

import javax.safetycritical.StorageParameters;

public class MainMissionSequencer extends MissionSequencer {

public boolean mission_done;

public MainMissionSequencer() {

super(

/* Let MainMissionSequencer run at max priority. */

new PriorityParameters(

PriorityScheduler.instance().getMaxPriority()),

new StorageParameters(10000, 10000, 10000));

mission_done = false;

}

public Mission getNextMission() {

if (!mission_done) {

mission_done = true;

/* Created in Immortal Memory */

return new MainMission();

}

else {

return null;

}

}

}

9

5 MainMission

5.1 Application Process

section MainMissionApp parents scj toolkit , scj library ,
Handler1,Handler2,List ,MissionIds,HandlerIds

process MainMissionApp =̂ begin

stateMainMissionApp State
list : List

Below we do not explicitly pass the parameter objects of type PriorityParameters, AperiodicParameters,
PeriodicParameters, and StorageParameters. Also we do not pass the Aperiodic[Long]Event object to which
the handler is bound. We assume that all of this is determined by the implementation architecture.

initializeMeth =̂ initializeCall .MainMissionId−→
list :− newList;
(var handler1 : Handler1Class •

handler1 :− newHandler1Class(list);
Handler1Init . handler1−→ Skip;
register .Handler1Id −→ Skip);

(var handler2 : Handler2Class •
handler2 :− newHandler2Class(list);
Handler2Init . handler2−→ Skip;
register .Handler2Id −→ Skip);

initializeRet .MainMissionId −→ Skip

cleanupMeth =̂
cleanupCall .MainMissionId −→ Skip;
cleanupRet .MainMissionId −→ Skip

missionMemorySizeMeth =̂
missionMemorySizeCall .MainMissionId −→ Skip;
missionMemorySizeRet .MainMissionId ! 131072−→ Skip

Methods =̂ µX • (initializeMeth @ cleanupMeth @ missionMemorySizeMeth) ; X

• (Methods 4 end mission app .MainMissionId −→ Skip)

end

5.2 Composite Process

section MainMission parents MissionFW ,MainMissionApp

channelsetMainMissionChan ==
{| initializeCall , initializeRet , cleanupCall , cleanupRet , register , end mission app |}

process MainMission =̂

(MissionFW J MainMissionChan K MainMissionApp) \MainMissionChan

10

5.3 Java Code

package jtres;

import javax.realtime.AbsoluteTime;

import javax.realtime.RelativeTime;

import javax.realtime.PriorityParameters;

import javax.realtime.PeriodicParameters;

import javax.safetycritical.AperiodicLongEvent;

import javax.safetycritical.Mission;

import javax.safetycritical.PriorityScheduler;

import javax.safetycritical.Services;

import javax.safetycritical.StorageParameters;

/* All objects in this class are created in mission memory. */

public class MainMission extends Mission {

/* Elements of the Architecture */

private Events events;

private Interrupts interrupts;

/* Mission Memory Variable */

private List list;

public void initialize() {

/* Initialise the Architecture (Not in the Circus Model) */

initArchitecture();

/* Create Persistent Objects in MissionMemory */

list = new List();

/* Periodic Event Handler: Handler1 */

Handler1 handler1 = new Handler1(list,

new PriorityParameters(

PriorityScheduler.instance().getNormPriority()),

new PeriodicParameters(

new AbsoluteTime(0, 0), new RelativeTime(100, 0)),

new StorageParameters(4096, 4096, 4096));

/* Register Handler */

handler1.register();

/* Aperiodic Event Handler: Handler2 */

Handler2 handler2 = new Handler2(list,

new PriorityParameters(

PriorityScheduler.instance().getMinPriority() + 6),

new StorageParameters(10000, 10000, 10000),

events.out);

/* Register Handler */

handler2.register();

}

public void initArchitecture() {

/* Create SCJ Events */

11

createEvents();

/* Create Interrupt Handlers */

createInterrupts();

}

/* Create SCJ Events */

public void createEvents() {

events = new Events();

}

/* Create Interrupt Handlers */

public void createInterrupts() {

interrupts = new Interrupts(events);

interrupts.register();

interrupts.setPriorities();

}

public void cleanup() { }

public long missionMemorySize() {

return 131072;

}

}

12

6 Handler1

6.1 Framework Process

section Handler1FW parents EventHandler ,HandlerIds

processHandler1FW =̂ EventHandlerFW (Handler1Id)

6.2 Application Process

section Handler1App parents Handler1Class,Handler1Chan,Handler1Const ,HandlerIds,Events

process Handler1App =̂ begin

stateHandler1State
this : Handler1Class

Init =̂ Handler1Init ? obj −→ this :− obj

handleAsyncEventMeth =̂

val x : N • wait 1..Handler1Deadline ; this.handleAsyncLongEvent(x)

Execute =̂ enter dispatch −→
(Dispatch J {this} | {| release handler |} | ∅ K Release) \ {| release handler |}

Dispatch =̂ µX • (leave dispatch −→ Skip) @
(release handler −→ (in ? x −→ handleAsyncEventMeth(x) � 5) ; X)

Release =̂ (µX • (release handler −→ Skip � 0) ; wait 100 ; X)4 leave dispatch −→ Skip

Terminate =̂ done handler .Handler1Id −→ Skip

• (µX • Init ; Execute ; Terminate ; X)4 end mission fw −→ Skip

end

6.3 Composite Process

section Handler1 parents Handler1FW ,Handler1App

process Handler1 =̂

(Handler1FW J HandlerAppSyncChan K Handler1App) \HandlerAppHideChan

13

6.4 Data Object

section Handler1Class parents scj toolkit , scj library ,List

class Handler1 =̂ begin

stateHandler1 State
list : List

initialHandler1 Init
Handler1 State ′

list? : List

list ′ = list?

Although the program contains code to execute this method in mission memory, by virtue of an inner class
that implements Runnable, we do not make this explicit in the statement below but use newM () in the List
class. This slightly reduces the tracability between the Circus model and Java code.

public handleAsyncLongEvent =̂ val x : Z • list .insert(x)

end

6.5 Java Code

package jtres;

import javax.realtime.AbsoluteTime;

import javax.realtime.RelativeTime;

import javax.realtime.PeriodicParameters;

import javax.realtime.PriorityParameters;

import javax.realtime.PriorityScheduler;

import javax.realtime.MemoryArea;

import javax.realtime.RawMemory;

import javax.realtime.RawInt;

import javax.safetycritical.PeriodicEventHandler;

import javax.safetycritical.StorageParameters;

import javax.safetycritical.MissionMemory;

public class Handler1 extends PeriodicEventHandler {

/* Device Register */

public final static long IN_DATA_REGISTER_ADDRESS = 0;

private final RawInt in_data_register =

RawMemory.createRawIntAccessInstance(

RawMemory.IO_MEM_MAPPED, IN_DATA_REGISTER_ADDRESS);

/* Shared Data in Mission Memory */

private List list;

public Handler1(List list,

PriorityParameters priority,

PeriodicParameters period,

StorageParameters storage) {

14

super(priority, period, storage, "Handler1");

this.list = list;

}

public void handleAsyncEvent() {

/* Read input value from hardware here. */

/* We assume the the reading is asynchronous (non-blocking). */

int value = in_data_register.get();

System.out.println("[Handler1] input " + value + " received");

MissionMemory mission_memory =

(MissionMemory) MemoryArea.getMemoryArea(this);

mission_memory.executeInArea(new MissionMemoryEntry(value));

}

/* The insert() method allocates data and hence the call it must be carried

* out in MissionMemory. */

class MissionMemoryEntry implements Runnable {

public int value;

public MissionMemoryEntry(int value) {

this.value = value;

}

public void run() {

list.insert(value);

}

}

}

15

7 Handler2

7.1 Framework Process

section Handler2FW parents EventHandler ,HandlerIds

processHandler2FW =̂ EventHandlerFW (Handler2Id)

7.2 Application Process

section Handler2App parents Handler2Class,Handler2Chan,Handler2Const ,HandlerIds,Events

process Handler2App =̂ begin

stateHandler2State
this : Handler2Class

Init =̂ Handler2Init ? obj −→ this :− obj

handleAsyncEventMeth =̂

var size : N •
size := this.size() ; wait 0..7;
enable −→ Skip;
(send ! size −→ Skip;
disable −→ Skip) � 15

Execute =̂ enter dispatch −→Dispatch

Dispatch =̂ µX • (leave dispatch −→ Skip) @
(out −→ handleAsyncEventMeth ; X)

Terminate =̂ done handler .Handler2Id −→ Skip

• (µX • Init ; Execute ; Terminate ; X)4 end mission fw −→ Skip

end

7.3 Composite Process

section Handler2 parents Handler2FW ,Handler2App

process Handler2 =̂

(Handler2FW J HandlerAppSyncChan K Handler2App) \HandlerAppHideChan

16

7.4 Data Object

section Handler2Class parents scj toolkit , scj library ,List

class Handler2 =̂ begin

stateHandler2 State
list : List

initialHandler2 Init
Handler2 State ′

list? : List

list ′ = list?

The definition of the handleAsyncEvent method as a data operation is trivial here since we do not change
the state of the object. As the behaviour of the method involves output communications, handleAsyncEvent
has to be specified as an action in any case.

public handleAsyncEvent =̂ Skip

end

17

7.5 Java Code

package jtres;

import javax.realtime.*;

import javax.safetycritical.*;

public class Handler2 extends AperiodicEventHandler {

/* Object to access the network (Resides in MissionMemory). */

private Network network;

/* Shared Data in Mission Memory */

private List list;

public Handler2(List list,

PriorityParameters priority,

StorageParameters storage,

AperiodicEvent event) {

super(priority, storage, event, "Handler2");

/* Created in Mission Memory */

Network network = new Network();

/* Set ceiling to execute network methods at the highest priority. */

Services.setCeiling(network,

javax.safetycritical.PriorityScheduler.instance().getMaxPriority());

}

public void handleAsyncEvent() {

int size = list.size();

/* The following method calls all execute at a high priority. */

/* We moreover consider their execution as instantaneous. */

network.enable();

network.send(size);

network.disable();

}

}

18

8 List

In this section I provide a model for the implementation of the List class in the abstract model. We would
expect that it data-refines the List class specified in the paper. Note that none if it can be type-checked at
the moment with the CZT Circus tools.

8.1 Data Object

section List parents scj toolkit , scj library

class List =̂ begin

stateLState
val : int
next : List
empty : boolean

public initial init =̂
next := null ;
empty := jtrue

Public Methods

The abstract insert(Z) operation is implemented in terms of calls to two private (internal) synchronized
methods contains(int) and clear(). This is a choice made by the implementation.

public sync insert =̂ val value : int •
if size() = 50−→ clear()
8¬ size() = 50−→ Skip
fi ;
if contains(value) = jtrue −→ insert(x)
8¬ contains(value) = jtrue −→ Skip
fi

public sync size =̂ res ret : int •
var size : int • size := 0;
varnode : List • node :− this ;
µX • if ¬ (node.empty = jtrue)−→

(node := node.next ; size := size + 1)
8¬ ¬ (node.empty = jtrue)−→ Skip
fi ;
ret := size

19

Private Methods

private sync contains =̂ val value : int ; res ret : boolean •
var contains := jfalse;
varnode : List • node :− this ;
µX • if ¬ (node.empty = jtrue)−→

if node.val = value −→ contains := jtrue
8¬ (node.val = value)−→ (node := node.next ; X)
fi ;

8¬ ¬ (node.empty = jtrue)−→ Skip
fi ;
ret := contains

Below we use the newM construct to create an object in mission memory. Similarity we have newI, newR
and newP to create an object in immortal, per release and private memory, respectively.

private sync append =̂ val value : int •
varnode : List • node :− this ;
µX • if ¬ (node.empty = jtrue)−→

(node := node.next)
8¬ ¬ (node.empty = jtrue)−→ Skip
fi ;
node.val := value;
if node.next = null−→node.next :− newMList
8¬ node.next = null−→node.next .empty := jtrue
fi ;
node.empty := jfalse

private sync clear =̂ empty := jtrue

Logical Methods

Logical method to obtain the elements of the list as a set. May be needed for data refinement.

logical sync elems =̂ res col : P int •
if node.empty = jtrue −→ col := ∅
8¬ node.empty = jtrue −→ col := next .elems() ∪ {val}
fi

end

20

8.2 Java Code

package jtres;

/* A simple implementation of List. */

public class List {

private int val;

private List next;

private boolean empty;

/* Invariant: !node.empty => node.next != null. */

/* However note that it is not an equivalence! */

public List() {

next = null;

empty = true;

}

/* Public Methods (Specification) */

/* The following method must execute within the deadline for Handler1. */

public synchronized void insert(int value) {

if (size() == 50) {

clear();

}

if (!contains(value)) {

append(value);

}

}

/* The following method must execute within the deadline for Handler2. */

public synchronized int size() {

int size = 0;

List node = this;

while (!node.empty) {

node = node.next;

size++;

}

return size;

}

/* Private Methods (Internal) */

private synchronized boolean contains(int value) {

boolean contains = false;

List node = this;

while (!node.empty) {

if (node.val == value) {

contains = true;

}

node = node.next;

}

21

return contains;

}

private synchronized void append(int value) {

List node = this;

while (!node.empty) {

node = node.next;

}

node.val = value;

/* We cannot just overwrite node.next as memory is not reclaimed. */

if (node.next == null) {

node.next = new List();

}

else {

/* Bug pointed out by Andy. We need to ignore the former list. */

node.next.empty = true;

}

node.empty = false;

}

private synchronized void clear() {

empty = true;

}

}

22

9 System

section System parents MainSafelet ,MainMissionSequencer ,MainMission,Handler1,Handler2

Channel Sets

channelset MissionSequencerSyncChan ==
{| start sequencer , done sequencer |}

channelset MissionSyncChan ==
{| start mission, done mission, end mission fw |}

channelset MissionHideChan ==
{| start mission, done mission |}

channelset AllHandlersSyncChan ==
{| start handler , stop handler , done handler , activate handlers, end mission fw |}

channelset AllHandlersHideChan ==
{| start handler , stop handler , done handler , activate handlers |}

Handlers Process

channelset HandlerSyncChan ==
{| activate handlers, end mission fw |}

processHandlers =̂ (Handler1 J HandlerSyncChan K Handler2)

System Process

channelset SystemMethChan ==
SafeletMethChan ∪MissionSequencerMethChan ∪MissionMethChan ∪HandlerMethChan

channelset SystemHideChan ==
SystemMethChan ∪ {| end mission fw |}

processSystem =̂ ((((((MainSafelet

JMissionSequencerSyncChan K MainMissionSequencer) \MissionSequencerSyncChan)

JMissionSyncChan K MainMission) \MissionHideChan)

JAllHandlersSyncChan K Handlers) \AllHandlersHideChan) \ SystemHideChan

23

