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Figure 1: UML diagram for the concurrent CD, program

1 Introduction

The purpose of the CD, is to detect potential collisions of aircraft located by a radar device. We take
the program discussed in [8] as a basis for the definition of our requirements. It uses a cyclic executive,
and embeds the assumption that the radar collects (and buffers) a frame of aircraft positions that becomes
available for input periodically. In each iteration, the CD,: (1) reads a frame; (2) carries out a voxel-hashing
step that maps aircraft to voxels; (3) checks for collisions in each voxel; and (4) records and reports the
number of detected collisions. Unlike [8], we allow aircraft to enter or leave the radar frame.

Since the majority of the computation burden is in the checking for collisions in step (3), we propose a
version of the CD, where this task is parallelised. As a result, we obtain an SCJ program that illustrates
the features of SCJ Level 1. Our aim with the concurrent CD,, is, most of all, to provide a genuine and more
representative Level 1 application. Due to the novelty of the SCJ paradigm and technology, such applications
are still difficult to come by in the public domain. On the other hand, even though we are not specifying a
particular radar system, concurrent collision detection is a reasonable target to improve the performance of
such an application. The program code is available via http://www.cs.york.ac.uk/circus/hijac/.

A voxel is a volumetric element; all voxels together subdivide the entire space. The voxels in the CD,
superimpose a coarse 2-dimensional grid on the x-y plane with the height of a voxel extending along the
entire z-axis. Thus, the altitude of aircraft is abstracted away. This reduces the number of necessary collision
tests: after mapping aircraft to the voxels that are intersected by their interpolated trajectories, it is sufficient
to test for possible collisions within each voxel. Details of the algorithm can be found in [8].

The concurrent CD,, consists of a single mission that instantiates seven handlers. Figure 1 presents a UML
class diagram that illustrates the design. The classes shaded are part of the SCJ API. The classes CDxSafelet,
CDxMissionSequencer and CDxMission implement the safelet, the mission sequencer, and the mission. The
behaviour of the setUp() and tearDown() methods of CDxSafelet is void, and getSequencer () simply re-
turns an instance of CDxMissionSequencer. Likewise, getNextMission() returns an instance of CDxMission
when called for the first time. Since the mission does not terminate, getNextMission() is not called again.

In the mission execution, first the initialize () method of CDxMission is called. It creates the handler
objects and shared data in mission memory. The handler classes are InputFrameHandler, "OutputCollisions-
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Figure 2: Parallel CD, control flow

Handler”, ReducerHandler, and DetectorHandler. We choose to create four instances of DetectorHandler,
possibly corresponding to a scenario in which we have four processors. The refinement in the remainder of the
report can, however, proceed without significant changes in the presence of a different number of instances.
A more general design for the CD, could allow the configuration of the number of instances; our program,
however, is enough to illustrate the main aspects of our technique.

The shared data is held by public fields of CDxMission. The currentFrame and state fields record the
current and previous frame of aircraft positions; recording previous positions is important for calculating
their predicted motions. As we divide and distribute the computational work, work holds the partitions of
voxels to be checked by each of the detection handlers, and collisions is used to accumulate the result of
the detection. Another shared object control plays a crucial part in orchestrating the execution of handlers.

Figure 2 summarises the control mechanism of the SCJ application. The three software events, reduce,
detect and output, are used to control execution of the handlers. The program design ensures that the
handlers effectively execute sequentially in each cycle, apart from the four instances of DetectorHandler,
which carry out their work concurrently.

The InputFrameHandler is the only periodic handler. It is released at the beginning of each cycle to
interact with the hardware to read the frame into currentFrame and update state accordingly. Afterwards,
it releases the ReducerHandler, via the reduce software event, to carry out the voxel-based reduction step.
This handler also partitions and distributes the work among the detector handlers by populating work.
Once this is done, it concurrently releases all DetectorHandler instances by firing the detect event. These
handlers carry out the actual detection work and store their result in collisions. The mechanism for
releasing OutputCollisionsHandler, which outputs the number of collisions to an external device, uses the
shared object control. Its class type DetectorControl provides a method notify(int id), which is called
by the detector handlers at the end of each release. It fires the event output when all detection work is
done. This illustrates that sharing may occur not only to exchange data between handlers, but also in the
design of execution control, and our refinement strategy will have to cater for this.

Our program highlights various features of the SCJ mission framework: the subdivision of a mission into
handlers, the control of handlers via software events, and the sharing of data for both data communication
and control purposes. The verification of this program not only has to address functional correctness, but
also must show that the flow of activities in Figure 2 can be executed within the duration of a cycle.



2 Preliminaries

In this section, we present preliminary definitions of types, operators and functions that are used later on in
the models.

2.1 Extensions

We have already introduced a nondeterministic wait statement with the following semantics.

wait S =g [1¢:5 @ waitt

It turns out to be useful to have an alternative construct that allows us to refer to the actual time waited
via a bound identifier.

waitt: S ® A(t) =g | | t:5 @ waitt; A(t)

With this, A can obtain information regarding the delay resulting from the wait; this is used in a few places
in specifying the models, in particular for the E anchor.

In addition to the above, we introduce several further extensions to the SCJCircus language.
1. A generic Array class to model one-dimensional Java arrays of a given type.
2. Methods to get and set the elements of an array as well as obtain its size:
o getA(index :int) : T
o setA(index : int, value : T)
e length() : int

3. Support for simple for loops. This is via the action construct for i = ng to n; ® A(i).
4. Support for the creation of software events. For this we have the newEvent construct.

5. Software events are fired using the fire construct.

2.2 Reals

We postulate the existence of a type R for real numbers.
‘ R:PA
Cacr

By introducing R as a subset of A (arithmos), we can immediately reuse all arithmetic and relational operators
on numbers. Formally, we have to elaborate the semantics of those operators for elements of R. Here,
however, we content ourselves that this can be done in principle, rather than providing an axiomatisation
of the reals. Such an axiomatisation has been developed in Z, for instance, in [1] and is illustrated by the
ProofPower-Z theorem prover [7]. Real numbers are require in the sequel to define the vector schema type
used to characterise positions and motions of aircrafts in 3-dimensional space.

2.3 Vectors

Vectors are used to represent the positions and motions of an aircraft.

Vector
z:R

‘/7

z: R

We characterise vectors by a schema binding (record) with three real components, z, y and z.



Construction The following function constructs a vector from scratch.

‘ MEVector : R x R x R — Vector

Vz,y,z: R e MkVector(z,y,2z) = (z ==z,y ==y, 2z == 2)

Zero and unit vector These are defined by explicitly giving the underlying coordinates.

ZeroV == MkVector(0,0,0)
UnitV == MkVector(1,1,1)

Addition and subtraction Addition and subtraction are defined component-wise.

function 30 leftassoc (_ +v )
_+4v _: Vector x Vector — Vector

Vv, v 2 Vector @ vy +y vg = (& == v1.2 + 12.2,y == v1.Yy + 1.y, 2 == 1.2 + VU2.2)

function 30 leftassoc (_ —y _)

_—vy _: Vector x Vector — Vector

YV, vg : Vector @ vy —y 19 = (& == 0.0 — 9.2,y == V.Y — V2.Y, 2 == V1.2 — V.2

Scalar product The scalar product multiplies a vector with a real number.

function 40 leftassoc (_ *y _)
- _*y —: R x Vector — Vector
Vr:R; v: Vector e rxy v=(x==r*xv.z,y==r*0v.y,z==r%0v2)

Dot product The dot (or inner) product multiplies two vectors.

function 50 leftassoc (_ -y _)
‘ _ v —: Vector x Vector - R
‘ Yy, v2 : Vector @ vy -y va = (v1.2 % v2.2) + (v1.y * v2.y) + (v1.2 * v2.2)

We subsequently use the dot product to introduce the length of a vector.

Square of a vector The square multiplies a vector with itself.

function (_?)

‘ 2 Vector » R
} 2

Vuv: Vector e v =v -y v
Length of a vector We use the common definition | v | = Vv2.
function (| _|)
| = Vector = R
‘ Vou: Vector e |v|x|v|=10?



2.4 Trajectories

Trajectories are modelled by a pair consisting of a position and a motion vector.
Trajectory == Vector x Vector

The points on a trajectory ¢ are given by the formula ¢.1 4y z *y ¢.2 where z ranges over the interval [0; 1].

Distance of Trajectories The notion of distance between trajectories is introduced below.

‘ distance : Trajectory x Trajectory — R

‘ YV t, ta : Trajectory e distance(ty, t2) =
wd: R

Jz:R|0<z<1e

Ve:R|0<z<1e

(tg.]. +v Ty t2.2) -V (tl.]. +v Ty .

= | A
S |(t2.1 +vTky t2.2) -V (tl.l +v Ty tl.

|
)
We note that this is not the minimal distance between ‘any’ two points on each trajectory. The CD, makes
the simplifying assumption that aircrafts move at constant speed, so the result is an approximation of the

actual minimal distance. In terms of the computation, we calculate the smallest distance between two points
that simultaneously traverse each trajectory.

d 2
d 2

Collisions The threshold distance between two trajectories to flag a collision is given by the constant
below. We leave its precise value implicit.

 THRESHOLD : R
' 0< THRESHOLD

The relation below determines whether two trajectories collide.

relation (collide _)
- collide _ : P ( Trajectory x Trajectory)
‘ YV ty, ty : Trajectory e collide(ty, ta) < distance(ty, ta) < THRESHOLD

2.5 Miscellaneous

The following operation calculates the sum of all elements in a sequence.

. Y:(seqR) >R
‘ Vs:seqRe X s = if s = () then 0 else head(s) + X (tail(s))

3 Anchor A

In this section, we present the abstract model of the parallel CD,,.

3.1 Aircrafts

The type Aircraft represents aircrafts as they may enter the radar.
Aircraft == seq, byte

We identify aircrafts by their call sign which consists of a non-empty sequence of bytes.



3.2 Frames

A frame records the positions all of aircrafts in a radar frame. It is modelled by virtue of a (finite) partial
function that maps aircrafts to vectors representing their positions in airspace. The number of aircrafts in a
radar frame is restricted by a constant MAX_AIRCRAFTS.

. MAX_AIRCRAFT : N;

Frame == {f : Aircraft + Vector | # f < MAX_AIRCRAFT}

The domain of a function implicitly determines the aircrafts that are currently in view of the radar.

3.3 Collision Sets

We introduce a utility function that calculates the collision set for a frame of aircraft positions and motions.
This is the set of all colliding aircrafts.

- CalcCollisionSet : (Frame x Frame) — F (Aircraft x Aircraft)

‘ Y posns, motions : Frame | dom posns = dom motions e
‘ CalcCollisionSet(posns, motions) =
ay, ag : Aireraft | a1 € dom posns A ay € dom posns A
{ collide((posns ay, motions a1 ), (posns az, motions az)) }

By definition, this set is symmetric: (a1, a2) € colldide(ty, t2) < (a2, a1) € colldide(ty, ta).

3.4 Channels

We require two channels for external interactions: one channel next_frame to input the next radar frame
and another channel output_collisions to output the number of collisions at the end of the cycle.

channel next_frame : Frame

channel output_collisions : N

We note that the value communicated by output_collisions is an upper bound for the exact number of
collisions modulo symmetry. (Symmetry means (ay, az) and (az, a1) are not viewed as separate collisions.)
This is due to efficiency and the voxel algorithm we use. That is, voxel hashing in certain cases may record
colliding aircraft pairs in more than one voxel, namely if both aircrafts are close to the boundary between
those voxels. The original CD, manually removes such duplicates but we decided not to do so in our parallel
implementation to simplify the program (another handler would be required for the removal step).

3.5 Constants

The following three constants specify the duration of a detection cycle (FRAME_PERIOD) as well as
deadlines for the input (INT_DL) and output (OUT_DL) communications.

'\ FRAME_PERIOD : TIME
‘ INP_DL : TIME

‘ OUT_DL : TIME
|

INP_DL+ OUT_DL < FRAME_PERIOD

We leave the precise values of the constants implicit. The paper [8] specifies them in terms of frames per
seconds rather than periods, but this is just a technicality as we can convert between these measurements.



3.6 System

Below is the process for the behavioural requirements of the parallel CD,.

process ABReqsCDx = begin

__state AStateCDzx
posns : Frame
motions : Frame

dom posns = dom motions

__Init
AStateCDz’

posns’ = & A motions’ = @

_ RecordFrame
AAStateCDzx
frame? : Frame

posns’ = frame?
motions’ = {a : dom posns’ e a — if a € dom posns then (posns’ a) —v (posns a) else ZeroV'}

__ ClalcCollisions
=AStateCDx
colls! : N

T collset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# collset) div 2)

BReql = next_frame? frame —
RecordFrame;
var colls : N @ CalcCollisions ; output_collisions! colls — BReq1

® [nit ; BReql

end

The process for the timing requirements of the parallel CD,, is as follows.

process ATReqsCDz = begin
TReql = (TReqCycle » FRAME_PERIOD || wait FRAME_PERIOD) ; TReql
TReqCycle =
next_frame ? frame @ t —
wait 0..(FRAME_PERIOD — t — OUT_DL)
(output_collisions ? ¢ — skip) « OUT_DL
® TReql

end

) <« INP_DL;

The requirements of the abstract system are specified by the system process below.
system CDz = ABReqsCDz [ { next_frame, output_collisions |} | ATReqsCDzx

We have one behavioural requirement (BRegl) and one timing requirement (7TRegl). The behavioural



requirement specifies the result of the collision detection. It is defined by a recursion that inputs the
next frame via a synchronisation on next_frame, updates the process state while calculating the new aircraft
motions (RecordFrame), computes the collisions and deposits them in the local variable colls (CalcCollisions),
and outputs them on the channel output_collisions. Any number greater than the precise number of collisions
may be output unless there are no collisions (in that case 0 must be output). Since the collision set is
symmetric, the actual number of collisions is obtained by dividing the cardinality of the set by 2. The
calculation of the collision set makes use of the CalcCollisionSet function defined earlier on in Section 3.2.

The time-wise behaviour in each cycle is captured by the local action TReqCycle. It is used in defin-
ing the overall timing requirement TReql. Its specification states that TReqCycle is executed once in
each cycle and has to terminate within the period (... » FRAME_PERIOD). The interleaving with
wait FRAME_PERIOD ensures that moreover we do not terminate before the period expires.

The specification of TReqCycle imposes a deadline, too, (INP_DL), namely on the input communication
on next_frame. This is an imposition on the environment to make the next frame available within a certain
period of time once the program is ready to accept it. We record in ¢ the time it took to communicate the
next frame from when the communication was first offered. The subsequent nondeterministic wait provides
freedom to the implementation to use up to FRAME_PFERIOD — t — OUT_DL units of time to calculate
the collisions and then output the result on the output_collisions channel. The environment has to accept
the output within OUT_DL time units from when it is offered by the program. This can prevent a situation
in which the environment delays the communication on output_collisions right to the end of the cycle, and
the infrastructure may thus not have time to initiate the next cycle.

We note that using wait FRAME_PERIOD — t — OUT_DL rather than wait FRAME_PERIOD — t is
a modelling decision to ensure that the environment is potentially given not less that OUT_DL time units
to accept the output, and that an implementation cannot restrict this allowance.

The CDz system process yields the specification of the entire system. This is a parallelism between
the two requirement processes A BReqsCDx and ATReqsCDx. The processes synchronise on both external
channels nezt_frame and output_collisions.

10



Field Type Location Access Mode Memory Area

simulator Simulator CDxMission shared immortal
frameBuffer FrameBuffer Simulation shared immortal
currentFrame RawFrame CDxMission shared mission
state StateTable CDxMission shared mission
voxel_map HashMap ReducerHandler local per release
work Partition CDxMission shared mission
collisions int CDxMission shared mission
control DetectorControl CDxMission shared mission

’ factories PersistentData ReducerHandler local mission

Table 1: Analysis of relevant shared and local data in the parallel CD,,.

4 Anchor O

In this section, we discuss the construction of the O anchor. This is done in three refinement phases as
explained in [6]. They are namely CS (concrete state), SD (shared data) and EL (elimination). We first
examine the shared data in the CD, program and then proceed with the refinement model(s) for each phase.

4.1 Shared Data

To guide the data refinements in this step, Table 1 summarises the relevant shared and local fields of the
parallel CD, SCJ program. All data resides in either mission or immortal memory except for voxel_map,
which is local to ReducerHandler; we have to consider voxel_map in the O anchor data refinements though
because other shared data depend on its presence in the model; this is in particular to formulate a suitable
retrieve relation for work.

Below we give a brief explanation of the purpose of each variable.

e The simulator and frameBuffer objects are part of the simulation. The FrameBuffer class provides
the mechanism for reading the next radar frame from the hardware. In the original CD,,, frameBuffer
was located in a class ImmortalEntry whose name we changed to Simulator. The frameBuffer object
is not directly represented as part of the model since we abstract from the details of the mechanism
that interact with the hardware, as well as the storage to buffer device data for radar frames.

e The currentFrame variable corresponds to the posns component of the abstract model. Its type
RawFrame records this data by virtue of various arrays of primitive types: int[], byte[] and float[].
These hold the call signs and positions of the aircrafts.

e The state variable of type StateTable holds the previous positions of aircrafts. It thus does not
encode the motions vectors directly, but we can construct them from the content of currentFrame
and state. Unlike RawFrame, StateTable records the positions by way of a (customised) CHashMap.
It also manages the allocation of Vector3d objects for positions as to avoid memory leaks.

e The voxel_map field is local to ReducerHandler and thus not shared. It records the result of the voxel
hashing operation and is needed to specify essential properties of the algorithm as well as the retrieve
relation for work (which is shared). It thus becomes relevant to the O anchor.

e The work variable of type Partition is used to divide and record the computational work assigned to
each detection handler. The Partition class provides some methods that facilitate this. This object
is shared between the DetectorHandler classes as well as ReducerHandler who initialises it.

11



e The collisions variable accumulates the number of collisions detected by the parallel detection han-
dlers. It is concurrently accessed by them via synchronised methods to avoid data races.

e The control variable holds an object of type DetectorControl which is used to orchestrate the
execution of the detector handlers and the output handler.

e The factories variable resides in mission memory despite being local. It is an artifacts of our program
design to pre-allocate shared objects. This is important to avoid dynamic allocations in mission memory
while the mission executes. We ignore it in the O anchor as it is introduced during algorithmic
refinement.

The above analysis yields the following correspondence between abstract model variables and concrete pro-
gram variables. The posns and motions state components of ABReqsCDz are exactly represented by the
currentFrame and state variables in the program (CS phase). The other variables refer to shared and local
data that has to be introduced as part of the SD phase of the O anchor, apart from the simulation-related
classes and factories. The control object is also not considered in the O anchor as it will be introduced
later on in the design, namely in the E anchor when refining the control behaviour.

We have omitted the shared objects for SCJ events in Table 1; this is because they are not considered as
data objects. We next examine the refinements that introduce the aforementioned class objects for shared
data into the model. For the CS and EL phases, we have a single (data) refinement, whereas for the SD phase
we carry out the refinement in two incremental steps. Apart from the finalising EL model, none of the models
discard existing state components but merely extend the state of the previous process. To disambiguate the
names of state components inside the retrieve relations, we use subscripts.

12



4.2 Phase CS

In the first phase of the O anchor, we data-refine the abstract model variables posns and motions into their
concrete representations in the program. This is via the shared objects currentFrame and state of class type
RawFrame and StateTable. They are used to record the current and previous positions of aircrafts.

Refining State

The state of the refining process is given by the following state schema.

0CSStateCDzx
posnsy = Frame

motions; : Frame
currentFrame; : RawFrame
statey : StateTable

"7
L

The class types RawFrame and StateTable are specified in Appendix A.1 and A.2. We note that we retain
the abstract state components as auxiliary variables following Morgan’s approach [9].

Retrieve Relation

The retrieve relation is given by the following schema that associates abstract and concrete states.

__ OCSRetrCDzx
AStateCDx
0CSStateCDx

posnsy = posns A\ motions; = motions
currentFrame; # null A state; # null
Aa : Aircraft | currentFrame; . find(a) # —1 e
let i == currentFrame; . find(a) o
posns = currentFramey . positions . getA(3 * 1),
Mk Vector | currentFrame; . positions . getA(3 % i + 1),
currentFrame; . positions . getA(3 % i + 2)

Aa : Aireraft | currentFrame; . find(a) # —1 o
let prev == state; . position_map . get(MkCallSign(a)) e
motions = if prev # null
then posns(a) —y MkVector(prev . x, prev .y, prev . 2)
else ZeroV

For reasons of definedness, we require currentFrame; and state; not to be null. We observe that the abstract
state is expressed as a function of the concrete state. This enables a calculations approach to derive the
refining data operations. Here, we do not fully simplify the calculated refining operations though.

13



Refining Process

The process for the first data refinement of the Anchor O is given below. We target the refinement of

ABReqsCDzx, that is the abstract behavioural requirements.
operations have been calculated; as mentioned before, they are not fully simplified yet.

process OCSBReqsCDx = begin
__state OCSStateCDzx

The new state invariant and refined data

posnsy : Frame

motions; : Frame

currentFrame; : RawFrame
statey : StateTable

dom posns; = dom motions;
currentFrame; # null A state; # null
Aa : Aireraft | currentFrame; . find(a) # —1 e

let i == currentFrame; . find(a) o
posns; = currentFramey . positions . getA(3 * 1),
Mk Vector | currentFramey . positions . getA(3 x i + 1),
currentFramey . positions . getA(3 * i + 2)
Aa : Aireraft | currentFrame; . find(a) # —1 e
let prev == state; . position_map . get(MkCallSign(a)) e
motions; = if prev # null
then posnsi (a) —y MkVector(prev . z, prev .y, prev . z)
else ZeroV
—Init
0CSStateCDx’
posns; = & A motions] = &

currentFrame] = new RawFrame A state; = new StateTable

[
posns; =

posns; =

I
posns; =

motions;

__ RecordFrame
AOCSStateCDzx

frame? : Frame

frame?

Xa : Aircraft | currentFrame; . find(a) £ —1 e
let i == currentFrame; . find(a) o
currentFramey . positions

A a: Aireraft | currentFramey . find(a) # —1
let i == currentFramey . find(a) o
currentFrame; . positions

. getA(3 x 1),
Mk Vector | currentFramey . positions .
currentFramey . positions .

. getA(3 x 1),
MkVector | currentFrame; . positions .
currentFrame] . positions .

motions; = {a : dom posns; @ a — if a € dom posns; then (posns| a) —v (posnsy a) else ZeroV }

getA(3 i+ 1),
getA(3 i+ 2)

getA(3 i+ 1),
getA(3x i+ 2)

Aa : Aireraft | currentFramey . find(a) # —1 e
let prev == state; . position_map . get(MkCallSign(a)) e

= if prev # null
then posns] (a) —y MkVector(prev
else ZeroV

X, prev .y, prev . z)
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__CalcCollisions
=0CSStateCDx
colls! : N

Jcollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posnsy, motions,) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# coliset) div 2)
Aa : Aireraft | currentFrame; . find(a) # —1 e
let i == currentFrame; . find(a) o
posns; = currentFramey . positions . getA(3 * i),
Mk Vector | currentFrame; . positions . getA(3 x i + 1),
currentFramey . positions . getA(3 * i + 2)

Xa : Aircraft | currentFrame; . find(a) £ —1 e
let prev == state; . position_map . get(MkCallSign(a)) e
motions; = if prev # null
then posns; (a) —y MkVector(prev . z, prev .y, prev. z)
else ZeroV

BReql = next_frame? frame —
RecordFrame;
var colls : N @ CalcCollisions ; output_collisions! colls — BReq1

® [nit; BReql

end

The local action BReql and the main action remain exactly as in ABRegsCDz. Simulation laws in Circus [4]
establish that this yields a valid process refinement of ABReqsCDz. A detailed proof of this is omitted but
not difficult. Regarding the data operations, we expect that further refinement later on in the AR phase of
the E anchor transforms them into executable code, so simplification of the refined data operations can (an
probably should) be postponed in this anchor. Automatic tools can in principle assist the simplification and
enable the developer to take full advantage of the calculational approach. This single refinement concludes
the CS phase. We next turn to the SD phase where shared data is introduced.

4.3 Phase SD

This phase is divided into two incremental refinements to leverage the proof effort.

e The first refinement introduces the shared variable collisions whose purpose is to hold the detected
number of collisions after each detection cycle.

e The second refinement introduces the shared variable work, concurrently with the local variable
vozel_map. Whereas the work component divides the computational work, voxel_map determines
the result of the voxel hashing operation and is required to specify the retrieve relation for work.

We present the process model for each refinement step.

Refinement 1

In the first refinement of the SD phase, we introduce the shared collisions variable. It holds the result of the
collision detection at the end of each cycle.

Refining State

The state of the refining process is given by the following state schema.
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0SD1StateCDzx
posnss : Frame
motionss : Frame
currentFrames : RawFrame
statey : StateTable
collisionss : int

"7

Again, all state components of the previous model are retained. Subscripts are used for disambiguation.

Retrieve Relation

The retrieve relation of the first refinement of SD is specified below.

__ OSD1RetrCDzx
0CSStateCDx
0SD1StateCDx

posnss = posns; N\ motionsy = motions;
currentFrames = currentFrame; N states = state;
Jcollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posnsa, motionss) e
(# collset = 0 A collisionsy = 0) V (# collset > 0 A collisionsy > (# collset) div 2)

We constrain the value of collisionss similar to colls! in the CalcCollisions action. This reflects the intention
of refining CalcCollisions by an assignment colls := collisionss.

Refining Process
The process for the first refinement of the SD phase is presented in the sequel.

process OSD1BReqsCDz = begin

__state OSD1StateCDzx
posnss = Frame
motionss : Frame
currentFrames : RawFrame
statey : StateTable
collisionsy : int

dom posnsy = dom motionss
currentFrames # null A statey # null
Xa : Aircraft | currentFrames . find(a) £ —1 e
let i == currentFrames . find(a) o
pOSNSy = currentFrames . positions . getA(3 * 1),
Mk Vector | currentFrames . positions . getA(3 x i + 1),
currentFrames . positions . getA(3 % i + 2)

Aa : Aireraft | currentFrames . find(a) # —1 e
let prev == states . position_map . get(MkCallSign(a)) e
motionss = if prev # null
then posnss(a) —y MkVector(prev .z, prev .y, prev . z)
else ZeroV

Jcollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posnsa, motionss) e
(# collset = 0 A collisionse = 0) V (# collset > 0 A collisionsy > (# collset) div 2)
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__Init
0S8D1StateCDx’

posnshy = & A motionsy = &
currentFrame}, = new RawFrame A statel, = new State Table
collisionsy = 0

__ RecordFrame
AOSD1StateCDx

frame? : Frame

posnsy = frame?
motionsy = {a : dom posnsj e a +— if a € dom posnsy then (posnsh a) —y (posnss a) else ZeroV'}
Aa : Aireraft | currentFrames . find(a) # —1 e
let i == currentFrames . find(a) o
POSNSy = currentFrames . positions . getA(3 * i),
Mk Vector | currentFrames . positions . getA(3 x i + 1),
currentFrames . positions . getA(3 % i + 2)

Aa : Aircraft | currentFramel . find(a) £ —1 e
let i == currentFramel, . find(a) o
posnsh = currentFramel . positions . getA(3 * i),
Mk Vector | currentFramel . positions . getA(3 x i + 1),
currentEFrame) . positions . getA(3 * i + 2)

Aa : Aireraft | currentFramel . find(a) # —1 e
let prev == state) . position_map . get(MkCallSign(a)) e

motionsy = if prev # null
then posns)(a) —y MkVector(prev .z, prev .y, prev . z)
else ZeroV
J collset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posnsy, motions)) e
(# collset = 0 A collisionsy = 0) V (# collset > 0 A collisions, > (# collset) div 2)
— CalcCollisions
Z20SD1StateCDx
colls! : N

colls! = collisionsy

BReql = next_frame? frame —
RecordFrame;
var colls : N @ CalcCollisions ; output_collisions! colls — BReq1
® /nit ; BReql
end
As a result of this first refinement stage of SD, RecordFrame in the refined process not only records the
radar frame and updates the previous aircraft positions but also calculates the collisions. Contrary, the

CalcCollisions operation now simply returns the value of the shared variable collisionss rather than per-
forming any calculation as it was the case before.
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Refinement 2

The second refinement of SD introduces the shared variable work of type Partition. It is a shared object
between the handlers and used to distribute the computational work determined by wvozel_map. We hence
concurrently introduce the local variable voxel_map, too. The latter records aircraft positions and motions in
a HashMap object that maps Vector2d to List[Motion] objects. In the program, this corresponds to the voxel
hashing performed by ReducerHandler of which voxel_map is a local variable. The type Vector2d is used
to index the voxel space. The Motion class records the call sign, current position, and previous position of
an aircraft, and List models a standard (Java) list. The class specifications for Partition, Motion, Vector2d,
HashMap, and List can all be found in the Appendix A.

Refining State

The state of the refining process is given by the following state schema.

__08D25tateCDx
posnss : Frame
motionss : Frame
currentFramesz : RawFrame
states : StateTable
works : Partition
collisionss : int

Again, all state components of the previous model are retained. Subscripts are used for disambiguation. We
note that vozrel_map has not been added as a state component.

Retrieve Relation

The retrieve relation of the second refinement relates work and vozel_map.

__ OSD2RetrCDzx
0SD1StateCDx
0SD2StateCDx

posns3 = pPosnsy N\ motionss = motionss
currentFrames = currentFrames A states = states
works # null
Jwvozel_map : HashMap|Vector2d, List[Motion]] | voxel_map # null e
YV ay, ag : Aireraft | {a1, a2} C dom posnss e
(a1, a2) € CalcCollisionSet(posnss, motionss) =
31 : List[Motion] | | € vozel_map . values() . elems() @
MkMotion(ay, posnss a; — v motionss ay, posnss ai) € 1. elems() A
MkMotion(ag, posnss ag — v motionss ag, posnss ag) € 1. elems()
vozel_map . values() . elems() = |J{i : 1 .. 4 @ works . getDetectorWork(i) . elems()}
collisionss = collisionss

As before, voxel_map and work must not be null to avoid undefinedness issues. We observe vozel_map has
been introduced as a local variable rather than a state component of the process. Above we furthermore
make use of an auxiliary function MkMotion, loosely specified below.

‘ MkMotion : Aircraft x Vector x Vector — Motion

It yields a Motion object for an Aircraft and its previous and current position. It corresponds to the construc-
tor of the Motion class in the SCJ program of the parallel CD,. We recall that the logical method elems()

18



returns the elements of a List object as a set. The results of the method call works . getDetector Work(1)
determines the voxels to be checked by detector ¢; it is of type List[List[Motion]]. The method call
vozel_map . values() returns the list of values in the hash table (it is also of type List[List[Motion]]).

Refining Process
The process for the second refinement of the SD phase is presented below.

process OSD2BReqsCDz = begin

__state OSD2StateCDx
posnss : Frame
motionss : Frame
currentFrames : RawFrame
states : StateTable

works : Partition
collisionss : int

dom posnsz3 = dom motionss
currentFrames # null A states # null A works # null
Jwvozel_map : HashMap|Vector2d, List[Motion]] | voxel_map # null e
Aa : Aircraft | currentFrames . find(a) £ —1 e
let i == currentFrames . find(a) @
posns3 = currentFrames . positions . getA(3 x i),
Mk Vector | currentFrames . positions . getA(3 x i + 1),
currentFrames . positions . getA(3 * i + 2)

Aa : Aircraft | currentFrames . find(a) # —1 e
let prev == states . position_map . get(MkCallSign(a)) e
motionss = if prev # null
then posnss(a) —y MkVector(prev . z, prev .y, prev . z)
else ZeroV

Va1, ag : Aircraft | {a1, a2} C dom posnss e
(a1, a2) € CalcCollisionSet(posnss, motionss) =
31 : List[Motion] | | € vozel_map . values() . elems() ®
MkMotion(ay, posnss a; —y motionss ay, posnss ai) € 1. elems() A
MkMotion(ag, posnss az — v motionss ag, posnss ag) € 1. elems()

vozel_map . values() . elems() = J{i:1..4 e works . getDetector Work (i) . elems() }

Jcollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posnss, motionss) e
(# collset = 0 A collisionss = 0) V (# collset > 0 A collisionss > (# collset) div 2)

_Init
08D2StateCDx’

posnsy = & N\ motions; = &
currentFramel = new RawFrame
statel, = new State Table

workl = new Partition(4)
collisionsy = 0
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__ RecordFrame
AOSD2StateCDzx
frame? : Frame

posnsh = frame?
motionsy = {a : dom posns} e a +— if a € dom posnss then (posnsh a) —y (posnss a) else ZeroV'}
Jwvozel_map : HashMap[Vector2d, List[Motion]] | voxel_map # null e

Xa : Aireraft | currentFrames . find(a) # —1 o

let i == currentFrames . find(a) o
pOSNS3 = currentFrames . positions . getA(3 x i)
Mk Vector | currentFrames . positions . getA(3 * i —|— 1),
currentFrames . positions . getA(3 x i + 2)

Aa : Aircraft | currentFramel . find(a) £ —1 e
let i == currentFramel . find(a) e
posnsh = currentFrame} . positions . getA(3 * i)
MkVector | currentFramel . positions . getA(3 ¢ —I— 1),
currentFramej . positions . getA(3 % i + 2)

Aa : Aircraft | currentFramel . find(a) # —1 e
let prev == statel . position_map . get(MkCallSign(a)) e
motionsh = if prev # null
then posnsi(a) —y MkVector(prev .z, prev .y, prev. z)
else ZeroV

Y ay, ag : Aircraft | {a1, az} C dom posnsj e
(a1, a2) € CalcCollisionSet(posnss, motionss) =
31 : List[Motion] | | € vozel_map . values() . elems() ®
MkMotion(ay, posnsy a; —y motions ay, posnss a1) € 1. elems() A
MkMotion(ag, posnss az —y motionsy az, posnss az) € 1. elems()

vozel_map . values() . elems() = J{i:1..4 e work} . getDetector Work(s) . elems() }

Jcollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posnss, motionss) e
(# collset = 0 A collisionsy = 0) V (# collset > 0 A collisionsy > (# collset) div 2)

_ ClalcCollisions
=085D2StateCDx
colls! : N

colls! = collisionss

BReql = next_frame? frame —
RecordFrame;
var colls : N @ CalcCollisions ; output_collisions! colls — BReq1

® /nit ; BReql

end
With the above refinement we have introduced all shared data. In addition to recording the frame, updating
the motions and calculation collisions, RecordFrame here also constructs the voxel map and carries out the
calculation for dividing the computational work between the detector handlers by setting work.

This concludes the models for SD and in order to finalise the O anchor, the subsequent and last phase
eliminates the auxiliary model variables posnss and motionss.
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4.4 Phase EL

In the EL phase we remove the model variables posnss and motionss which so far have been kept as auxiliary
variables to facilitate the formulation of retrieve relations and operation refinements. This is achieved by
turning them into local constants within the state schema and data operations.

Not to clutter up the models, we introduce the following global functions F' and G.

F : RawFrame — Frame

V currentFrame : RawFrame e

F(currentFrame) =
Xa : Aircraft | currentFrame . find(a) £ —1 e
let i == currentFrame . find(a) o

currentFrame . positions . getA(3 x i),
Mk Vector | currentFrame . positions . getA(3 i + 1),
currentFrame . positions . getA(3 i + 2)

G : RawFrame x StateTable — Frame

Y currentFrame : RawFrame; state : StateTable o
G(currentFrame, state) =
Aa : Aireraft | currentFrame . find(a) # —1
let prev == state . position_map . get(MkCallSign(a)) e
if prev # null
then F'(currentFrame)(a) —y MkVector(prev.x, prev. y, prev . z)
else ZeroV

They calculate the abstract state components posns and motions from the concrete state components
currentFrame and state. The functions are introduced solely to simplify the presentation of the models.

Refining Process
The process for the result of the EL stage is presented below.

process OBReqsCDz = begin

__state OStateCDz
currentFrame : RawFrame
state : StateTable

work : Partition

collisions : int

currentFrame # null A state # null A work # null
Jwozel_map : HashMap|Vector2d, List[Motion]] | vozel_map # null e
dposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A motions = G(currentFrame, state) A

|
Y ay, ag : Aircraft | {a1, ax} C dom posns e

(a1, a2) € CalcCollisionSet(posns, motions) =
31 : List[Motion| | | € vozel_map . values() . elems() o A
MkMotion(ay, posns a1 —y motions ay, posns ar) € 1. elems() A
MkMotion(ag, posns ay —y motions ag, posns ag) € 1. elems()

vozel_map . values() . elems() = J{i: 1..4 e work . getDetectorWork (i) . elems()} A

|
T eollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A collisions = 0) V (# collset > 0 A collisions > (# collset) div 2)
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__Init
OStateCDz’

currentFrame’ = new RawFrame
state’ = new StateTable

work’ = new Partition(4)
collisions’ =0

__ RecordFrame
AOStateCDx
frame? : Frame

I posns, motions : Frame; posns’, motions’ : Frame |
dom posns = dom motions A dom posns’ = dom motions’ e
Jwvozel_map : HashMap|Vector2d, List[Motion]] | voxel_map # null e
posns = F(currentFrame) A motions = G(currentFrame, state) A
posns’ = F(currentFrame') A\ motions’ = G(currentFrame’, state’) A
posns’ = frame? N\
motions’ =
{a : dom posns’ e a — if a € dom posns then (posns’ a) —v (posns a) else ZeroV} A

Y ay, ag : Aireraft | {a1, a2} C dom posns’ e
(a1, a2) € CalcCollisionSet(posns’, motions') =
31 : List[Motion] | I € vozel_map . values() . elems() o A
MkMotion (a1, posns’ a; —y motions’ ay, posns’ ay) € 1. elems() A

MkMotion(ag, posns’ az — v motions’ ag, posns’ az) € 1. elems()
|

vozel_map . values() . elems() = J{i:1..4 e work’. getDetectorWork(i) . elems()} A

\
T collset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns’, motions’) e
(# collset = 0 A collisions’ = 0) V (# collset > 0 A collisions’ > (# collset) div 2)

__CalcCollisions
=0StateCDx
colls! : N

colls! = collisions

BReql = next_frame? frame —
RecordFrame;
var colls : N @ CalcCollisions ; output_collisions! colls — BReq1

® nit ; BReql

end

With this process, we can now specify the top-level O anchor process.
system OCDz = OBReqsCDx [ { next_frame, output_collisions [} | ATReqsCDzx

Because the data refinements only affect the process for the behavioural requirements, the process for the
timing requirements is the same as in the a abstract model. The simplification, decomposition and algorith-
mic refinement of the data operations RecordFrame is still due. This is an issue for the subsequent E anchor,
which we discussed in detail in the next section.
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5 Anchor E

In this section, we present the models for the E anchor. This anchor consists of the following five phases.
1. CP (collapse parallelism)
2. MS (mission architecture)

handler architecture)

3. HS (
4. SH (encapsulate shared data)
5. AR (

algorithmic refinement)

In comparison to the serial line example in [6], we subdivided the MH phase (missions and handlers) into
two separate phase, one for the missions (MS) and one for the handlers (HS). Moreover the order of the SH
phase and former MH phase has been reversed. The reason for this is that the latter determines the design
that gives rise to atomic data operations emerging during SH. In the CD,, this is, in particular, access to
the shared collisions variable and also the refinement of a barrier mechanism that emerges during Stage 5
of MH. Clearly, we cannot refine those atomic operations before the design is in place, and for this reason
SH has to be postponed until the missions and handlers design has fully emerged.

The MS, HS and SH phases are additionally subdivided into a number of logical stages which are explained
as we go along. This revealed a set of refinement patterns which, along with the respective laws, are presented
in detail too; a cumulative list of all elementary laws and high-level laws is included in Appendix B. The
E anchor is overall the most challenging and interesting of the models and at the heart of the refinement
approach; it also posses a few significant challenges for automation.

5.1 Phase CP

The process after performing the collapsing of parallelism is given below.

system FCPCDz = begin

__state FCPStateCDx
currentFrame : RawFrame
state : StateTable
work : Partition
collisions : int

currentFrame # null A state # null A work # null

Jwvozel_map : HashMap[Vector2d, List[Motion]] | voxel_map # null e

I posns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A motions = G(currentFrame, state) A

|
Va1, ag : Aircraft | {a1, a2} C dom posns e

(a1, az) € CalcCollisionSet(posns, motions) =
31 : List[Motion] | | € vozel_map . values() . elems() ® A
MkMotion(ay, posns a1 —yv motions ay, posns ay) € 1. elems() A

MkMotion(ag, posns ay —y motions as, posns ag) € 1. elems()
|

vozel_map . values() . elems() = J{i: 1..4 e work . getDetectorWork(i) . elems()} A

\
Jcollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A collisions = 0) V (# collset > 0 A collisions > (# collset) div 2)
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__Init
ECPStateCDx’

currentFrame’ = new RawFrame
state’ = new StateTable

work’ = new Partition(4)
collisions’ =0

__ RecordFrame
AECPStateCDzx
frame? : Frame

I posns, motions : Frame; posns’, motions’ : Frame |
dom posns = dom motions A dom posns’ = dom motions’ e
Jwvozel_map : HashMap|Vector2d, List[Motion]] | voxel_map # null e
posns = F(currentFrame) A motions = G(currentFrame, state) A
posns’ = F(currentFrame') A\ motions’ = G(currentFrame’, state’) A
posns’ = frame? N\
motions’ =
{a : dom posns’ e a — if a € dom posns then (posns’ a) —v (posns a) else ZeroV} A

Y ay, ag : Aireraft | {a1, a2} C dom posns’ e
(a1, a2) € CalcCollisionSet(posns’, motions') =
31 : List[Motion] | I € vozel_map . values() . elems() o A
MkMotion (a1, posns’ a; —y motions’ ay, posns’ ay) € 1. elems() A

MkMotion(ag, posns’ az — v motions’ ag, posns’ az) € 1. elems()
|

vozel_map . values() . elems() = J{i:1..4 e work’. getDetectorWork(i) . elems()} A

\
T collset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns’, motions’) e
(# collset = 0 A collisions’ = 0) V (# collset > 0 A collisions’ > (# collset) div 2)

__CalcCollisions
=ECPStateCDx
colls! : N

colls! = collisions

StartCycle = (next_frame ? frame @ t; — (RecordFrame ; CalcStep(t1))) < INP_DL

CalcStep = valt: TIME @ waitw : 0.. (FRAME_PERIOD — OUT_DL —t) e
var colls : int ® CalcCollisions ; OutputStep(t, w, colls)

OutputStep = valt; : TIME; valw : TIME; val colls : int ®

output_collisions! colls @ to — .
( wait FRAME_PERIOD — (t, + w + 1) ) * OUT-DLi StartCycle

® [nit ; StartCycle

end

The definitions of the process state as well as the Init, RecordFrame and CalcCollisions data operations
are exactly as in OBReqsCDx. The parallelisms with ATReqsCDzx, however, has been collapsed, giving rise
to the new actions StartCycle, CalcStep and OutputStep. The necessary refinement steps and laws are not
further discussed here, however the overall refinement procedure ought to be automatable.
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5.2

Phase MH

In this section, we give a full and meticulous account of the refinement steps carried out during the MH
phase. The detailed work on the parallel CD, models revealed a finer subdivision of refinements during this
phase, namely into six stages. The journal paper [6] explains the purpose of each stage in more detail.

Stages of the MH phase

1.

L

Definition of cycle timings.

Decomposition of data operations that are implemented across different missions and handlers.
Distribution of time budgets.

Transformation of sequential data operations into parallel handler actions.

Transformation of parallel data operations into parallel handler actions.

Extraction of the missions and handlers.

In the remainder of the section, we discuss the elementary refinement steps for each stage.
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5.2.1 Stage 1l

In Stage 1 we introduce a cyclic design that embeds the overall timing requirements. Part of this is to
introduce an interleaving with a wait statement and distribute deadlines in order to localise them to their
corresponding prefixes as much as this is possible. In our case study, we specifically introduce an inter-
leaving with wait FRAME_PERIOD and distribute deadlines on the communications on next_frame and
output_collisions. This stage involves a sequence of low-level refinements using distribution laws for dead-
lines and extraction laws for interleaving with a wait; we identify them as we go along. For readability, we
occasionally highlight mathematical text in colour to emphasise which part of an action or process has been
affected by a transformation.

Flatten Local Actions

We first flatten the three local actions StartCycle, CalcStep, OutputStep into a single local actions which
corresponds to the behaviour of the system and hence will be called System. The flattening facilitates the
application of subsequent refinement laws; it is justified by the copy rule.

system CDzE_MH1 = begin

System =
next_frame ? frame @ t; —
RecordFrame;
wait w : 0.. (FRAME_PERIOD — OUT_DL — t;) ®
var colls : int ® CalcCollisions; < INP_DL

output_collisions! colls @ to — '
(wait FRAME_PERIOD — (b +w+ 1)) ™ OUT_DL;

System
® [nit; System
end

We note that the state and data operations of the process are omitted as they are similar to the ones of
ECPCDz, the result of the CP phase. In what follows, we merely focus on the refinement of the System
action and ignore the rest of the process. Process refinement is established by monotonicity laws, as usual.

Narrow Time Budgets

An objective of the refinement in this stage is to remove reference to the locally bound variables t; and w
in order to remove the wait block and time prefix, and subsequently distribute the deadline on next_frame.
The respective subsequent refinement is facilitated by narrowing the time budget for the computation in
each cycle. Here, in particular, we narrow the time budget determined by the

wait w : 0.. (FRAME_PERIOD — OUT_DL — t,) ® A(ty, w)

statement. The following two laws enable the respective action refinement.

Circus Time Law 1 (narrow-time-budget-1)
wait t) .. &p C wait ] ..t provided # <] and t) <t
Circus Time Law 2 (narrow-time-budget-2)
waitw:t ..o ® A C waitw: ..t ® A provided #; <t and t) <t

The first law applies to simple nondeterministic waits whereas the second applies to wait blocks.
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We thus perform the following refinement.

System
C “application of the law narrow-time-budget-2 using t; < INP_DL”

next_frame ? frame @ t; —
RecordFrame;
wait w : 0.. (FRAME_PERIOD — OUT_DL — INP_DL) e
var colls : int ® CalcCollisions; < INP_DL

output_collisions ! colls @ ty —> .
<wait FRAME_PERIOD — (t; + w+t5) ) OUT_DL;

System

To apply the law, we require a local (contextual) assumption ¢; < INP_DL. Suitable opening and closing
rules for the window inference mechanism that realises action refinement introduce assumptions like the
above. To give an example, constructs of the form (¢ @t — A(t)) <« d are expected to have special opening
rules that introduce the contextual assumption ¢ < d when shifting the focus to A(t). We see that the
introduction of contextual assumptions during refinement is mostly a technical issue; we will not further
discuss it here but point to the literature on window inference [| and mechanised Circus refinement [11].

Introduce Interleaving for Cycle Time

In this step, the aim is to replace the inner wait FRAME_PERIOD — (t; +w + t3) with an outer interleaving
with wait FRAME_PERIOD. This interleaving was already present in the abstract ATReqsCDzx process,
however, has been removed during the CP phase. To achieve this we require the following law.

Circus Time Law 3 (time-prefix-elim)
(c@t — waitt; — t) 4« d = ((¢ — skip) « d) || waitt; provided d <t

It yields the refinement given next.

. = “application of the law time-prefix-elim using OUT_DL < FRAME_PERIOD — t; — w”

next_frame ? frame @ t; —
RecordFrame;
waitw : 0.. (FRAME_PERIOD — INP_DL — OUT_DL) e
var colls : int ® CalcCollisions; < INP_DL
((outputcollz’sions ! colls — skip) « OUTDL)

| wait FRAME_PERIOD — (t; + w) ’
System
The proviso OUT_DL < FRAME_PERIOD — t; — w is discharged by the contextual assumptions
(1) t4 < INP_DL and
(2) w< FRAME_PERIOD — INP_DL — OUT_DL
using elementary laws of linear arithmetics. This relies on another opening rule for window inference that

applies to actions of the form wait w : & .. {; ® A(w) and introduces the local assumption # < w < #;.

Extract Interleaving for Cycle Time

We next extract the interleaving with wait FRAME_PERIOD — (t; + w) to the outer level. This requires
a number of extraction laws for interleaving with a basic wait ¢ statement. Below we present them.
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Circus Time Law 4 (extract-inter-wait-seq)
Op; (A]|waitt) = (Op; A) ||| wait ¢
provided Op is a data operation and wrtV(Op) N FV(t) = @
Circus Time Law 5 (extract-inter-wait-var)
varz : T ® (A||waitt) = (varz: T @ A) ||| wait ¢
provided z & FV (t)
Circus Time Law 6 (extract-inter-wait-waitblock)
waitw : t ..t @ (A(w) ||| waitt — w) = (waitw : &1 .. &> ® A(w)) ||| wait
provided t; <t
Circus Time Law 7 (extract-inter-wait-prefix)
(c@t — (A(t) ||| wait (&, — t))) €« d = ((c@t — A(t)) < d) ||| wait &
provided d <t

The laws allow us to proceed with the refinement as follows.

. = “application of extraction laws for interleaving”

next_frame ? frame @ t; —»
RecordFrame;
wait w : 0.. (FRAME_PERIOD — INP_DL — OUT_DL) e
var colls : int ® CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL;
System
Il wait FRAME_PERIOD

< INP_DL

We omitted the detailed refinement steps for this transformation; they are straight-forward.

Remove Unused Time Variables
We observe that the local constants #; and w, introduced by the time prefix and wait block, are not referenced
anymore. The two laws below justify their removal.
Circus Time Law 8 (remove-unused-time-prefix)
c@t— A = ¢c— A provided t ¢ FV(A)
Circus Time Law 9 (remove-unused-wait-block)
waitw: T @ A = wait T; A provided w ¢ FV(A)
Application of the above laws yields the following simplified action.

. = “application of the laws remove-unused-time-prefix and remove-unused-wait-block”

next_frame ? frame —
RecordFrame;
wait0.. (FRAME_PERIOD — INP_DL — OUT_DL) e
var colls : int ® CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL;
System
Il wait FRAME_PERIOD

<« INP_DL

The removal of the locally bound ¢ and w was essential in order to distribute the outer synchronisation
deadline on next_frame. This is done in the last sub-step of Stage 1.
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Distribute Deadlines
The primary law we use in this sub-step is
Circus Time Law 10 (distr-sync-deadline-seq)
(c— (A1; A)) 4 d = ((c— Ay) € d); Ay
We also require a basic law that distributes a prefix over a sequence.

Circus Law 1 (distr-prefix-seq)
c—> (Al, Ag) = (C—)Al), A2

The application of the two laws in sequence yields

“application of the law distr-prefix-seq”

(next_frame ? frame — RecordFrame);
walt 0..(FRAME_PERIOD — INP_DL — OUT_DL);
var colls int ® CalcCollisions; <« INP_DL
(output_collisions ! colls — skip) « OUT_DL;
System
|| wait FRAME_PERIOD

= “application of the law distr-sync-deadline-seq”

(next_frame ? frame — RecordFrame) « INP_DL;
wait0.. (FRAME_PERIOD — INP_DL — OUT_DL);
var colls : int ® CalcCollisions;
(output_collisions ! colls — skip) <« OUT_DL;
System
|| wait FRAME_PERIOD

In a final sub-step, we extract the sequence with System from the inner block. This uses associativity
of sequential composition as well as a basic law to extract the sequence with System from the variable
declaration. These laws shall not be presented here but can be found in Appendix B.1.

. C “application of associativity and distribution laws to extract sequence with System”

(nezt_frame ? frame — RecordFrame) <« INP_DL;
wait0.. (FRAME_PERIOD — INP_DL — OUT_DL);
var colls : int ® CalcCollisions; ;
(output_collisions ! colls — skip) 4 OUT_DL
|| wait FRAME_PERIOD
System

The above action concludes Stage 1 of the MH phase. All deadlines have been localised to the corresponding
synchronisations. Besides, we have narrowed the time budget and introduced the cycle time. We notice,
however, that the time budget is still captures by a single wait; it is decomposed later on in Stage 3.
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5.2.2 Stage 2

In this stage we decompose the data operations to match them to the design of missions and handlers. Here,
this is, in particular, the RecordFrame data operation. The decomposition is performed in two separate
refinements which we present in the sequel.

Refinement 1

The first refinement decomposes the RecordFrame into three sequential data operations. Specifically, they
are StoreFrame, ReduceAndPartition Work and DetectCollisions.

system CDzE_MH2A = begin
state CDxMH2AState == ECPStateCDzx

__Init
CDxMH?2AState’

currentFrame’ = new RawFrame

state’ = new StateTable

vozel_map’ = new HashMap[Vector2d, List| Motion]]
work’ = new Partition(4)

collisions’ =0

__StoreFrame
ACDzMH?2AState

frame? : Frame

I posns, posns’ : Frame; motions, motions’ : Frame |
dom posns = dom motions A dom posns’ = dom motions’ e
posns’ = frame? N\
motions’ =
{a : dom posns’ e a — if a € dom posns then (posns’ a) —y (posns a) else ZeroV} A
posns = F(currentFrame) A motions = G(currentFrame, state) A
posns’ = F(currentFrame’) A motions’ = G(currentFrame’, state’)

_ ReduceAndPartition Work
ACDzMH?2AState

currentFrame’ = currentFrame A state’ = state
Iposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) N\ motions = G(currentFrame, state) A

Y ay, ag : Aircraft | {a1, a2} C dom posns e
(a1, az) € CalcCollisionSet(posns, motions) =
31 : List[Motion] | I € vozel_map’ . values() . elems() o
MkMotion (a1, posns a1 — v motions ay, posns a1) € 1. elems() A
MkMotion(ag, posns ay —y motions ag, posns ag) € 1. elems()

__DetectCollisions
ACDzMH?2AState

currentFrame’ = currentFrame N state’ = state N\ voxel_map’ = vozel_map N work’ = work
dposns : Frame; motions : Frame | dom posns = dom motions e

posns = F(currentFrame) A motions = G(currentFrame, state) A

|
Feollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A collisions’ = 0) V (# collset > 0 A collisions’ > (# collset) div 2)

30



Data Operation Handler Instances Execution

StoreFrame InputFrameHandler 1 sequential
ReduceAndPartitionWork  ReducerHandler 1 sequential
DetectCollisions DetectorHandler 4 parallel

Table 2: Mapping of data operations in CDxE_MH1A to handlers in the program.

_ ClalcCollisions
=CDzMH?2AState
colls! : N

dposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A\ motions = G(currentFrame, state) A

(
eollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# coliset) div 2)

System =
(next_frame ? frame — StoreFrame) <4 INP_DL;
ReduceAndPartition Work;
DetectCollisions;
wait0.. (FRAME_PERIOD — INP_DL — OUT_DL); ;
var colls : int ® CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL
Il wait FRAME_PERIOD
System

® [nit ; System
end

We observe that the RecordFrame data operation has been removed from the model: its behaviour is now
realised by the sequence of StoreFrame, ReduceAndPartition Work and DetectCollisions in StartCycle. The
decomposition of RecordFrame is necessary for the subsequent design that splits its behaviour between the
handlers of the mission. Table 2 summarises which handler(s) of the application caters for which data
operation in the model. We note that DetectCollisions is implemented by four handler instances.

In addition to refining data operations, we also carry out a minor action refinement of the System action
in the above process. After decomposition, the following fragment emerges in the System action.

next_frame ? frame —
StoreFrame;
ReduceAndPartition Work;
DetectCollisions

<« INP_DL

The action refinement binds the prefix to the StoreFrame data operation and distributes the deadline through
the sequence. This is similar to the refinement in the last sub-step of Stage 1, using exactly the same laws.
. = “application of the laws distr-prefix-seq and distr-sync-deadline-seq”

(next_frame ? frame — StoreFrame) <4 INP_DL;
ReduceAndPartition Work;
DetectCollisions

In general, the decomposition of RecordFrame essentially extracts conjuncts of the schema predicate that
modify the value of specific variables. In principle, this can be automated, subject to guidance by the user.
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Refinement 2

The second refinement further decomposes the DetectCollisions data operation into a conjunction. This is
desirable because the behaviour of this operation will later be implemented by parallel handlers.

system CDzE_MH2B = begin
state CDxMH?2BState == ECPStateCDx

__Init
CDxMH?2BState’

currentFrame’ = new RawFrame
state’ = new StateTable
vozel_map’ = new HashMap[Vector2d, List| Motion]]
work’ = new Partition(4)
collisions’ = 0

__StoreFrame
ACDzMH?2DBState
frame? : Frame

Jposns, posns’ : Frame; motions, motions’ : Frame |
dom posns = dom motions A dom posns’ = dom motions’ e
posns’ = frame? N\
motions’ =
{a : dom posns’ e a — if a € dom posns then (posns’ a) —y (posns a) else ZeroV} A
posns = F(currentFrame) N\ motions = G(currentFrame, state) A
posns’ = F(currentFrame’) A motions’ = G(currentFrame’, state’)

_ ReduceAndPartition Work
ACDzMH?2BState

currentFrame’ = currentFrame A state’ = state
Iposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A\ motions = G(currentFrame, state) N

Va1, ag : Aireraft | {a1, a2} C dom posns e
(a1, az) € CalcCollisionSet(posns, motions) =
31 : List[Motion] | I € vozel_map’ . values() . elems() o
MkMotion (a1, posns a1 — v motions ay, posns ay) € 1. elems() A
MkMotion(ag, posns ag —y motions ag, posns ag) € 1. elems()

__ CalcPartCollisions
=CDxMH?2BState
peolls! : int
i7:1..4

peolls! =
ay : Aireraft; ag @ Aircraft |
31 : List[Motion] | | € work . getDetector Work(i?). elems() o
d v, vy : Vector; wy, ws : Vector e
# MkMotion(ay, v, wr) € 1. elems() A
MkMotion(ag, v2, we) € 1. elems() A
collide((vy, w; —v v1), (v, w2 —y va))

div 2
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__SetCollisionsFromParts
ACDzMH?2BState
collsbag? : bag int

currentFrame’ = currentFrame A state’ = state
vozel_map’ = vozel_map N work’ = work
Is :seqint | s = items collsbag? e collisions’ = ¥ s

DetectCollisions =
var colls1, colls2, colls3, colls4 : int ®
(3i? : Z o CalcPartCollisions|[colls1/pcolls!] A i?
(3i? : Z o CalcPartCollisions|[colls2/pcolls!] A i?
(34?7 : Z o CalcPartCollisions[colls3/pcolls!] A i? =3
(Fi? : Z o CalcPartCollisions|collsd/pcolls!] A i7 = 4
SetCollisionsFromParts([ colls1, colls2, colls3, colls4 ] )

1) A
2) A
) A
)

__CalcCollisions
=CDxMH?2BState
colls! : N

Iposns : Frame; motions : Frame | dom posns = dom motions e

posns = F(currentFrame) N\ motions = G(currentFrame, state) A

(
T collset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# coliset) div 2)

System =
(next_frame ? frame — StoreFrame) <4 INP_DL;
ReduceAndPartition Work;
DetectCollisions;
wait0.. (FRAME_PERIOD — INP_DL — OUT_DL);
var colls : int ® CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL
| wait FRAME_PERIOD
System

® [nit ; System

end

Two data operations CalcPartCollisions and SetCollisionsFromParts have been introduced in this refine-
ment. The first one calculates the collisions result for a particular partition of the subdivided work. The
second one merges all partial results (this is just adding them together). The merge operation is specified
in terms of a bag to emphasise that the order in which the results are computed and merged is immaterial.
This will later on be exploited when parallelising DetectCollisions at the level of actions.

We note, however, that the behaviour of the detector handlers is not fully parallelised yet in this model.
In particular, the effect of SetCollisionsFromParts has to be distributed into the handlers. This cannot be
done at the level of data operations though due to the absence of sharing.

This model concludes Stage 2 of the MH phase. All refinement at the level of data operations is completed
here and subsequent stages focus on the refinement of actions. In general, decomposition of data operations
is a non-trivial design task; automation through tools may be envisaged for particular patterns.
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Time Budget Respective Data Operation

SFrp StoreFrame

RPWrp ReduceAndPartition Work
DCrp DetectCollisions

CCrs CalcCollisions

Table 3: Time budgets introduced for the data operations.

5.2.3 Stage 3

In this stage we distribute time budgets between data operations. This involves two sub-steps.

1. Decompose nondeterministic wait statements for time budgets where appropriate.
2. Move decomposed time budgets to the respective data operation.
The decomposition in sub-step (1) is effectively achieved by the following two laws.
Circus Time Law 11 (split-time-budget-1)
wait(..¢ = wait0..t ; wait0..# provided t =1t + &
Circus Time Law 12 (split-time-budget-2)
wait(0..¢t C wait0..¢ ; wait0..t provided t + 1 <t

In our example, we use multiple applications of the second law.

. C “multiple applications of law split-time-budget-2”

(next_frame ? frame — StoreFrame) <4 INP_DL;
Reduce AndPartition Work:;
DetectCollisions;
wait0 .. SFT/g;
wait 0 .. RPW[U, .
wait0.. DCrp; ’
wait0 .. CCTB;
var colls : int ® CalcCollisions;

(output_collisions ! colls — skip) 4 OUT_DL

| wait FRAME_PERIOD

System

Above, the axiomatic constants SFrg, RPWrg, DCrg and CCrp have been introduced to determine the
time budgets for individual data operations. Table 3 summarises the relationship between these constants
and the corresponding data operation of the Circus process.

At this point, it is in fact not necessary to precisely specify the values of the time budgets. However, to
discharge the proviso of the above refinement, we require at least the following property.

SFrg + RPWrg + DCrg + CCrg < FRAME_PERIOD — INP_DL — OUT_DL
We therefore introduce the time budgets axiomatically as follows. This assumes TIME : P (A).

\ SFrp: TIME
‘ RPWTB : TIME
‘ DCTB : TIME
‘ CCTB : TIME
|

SFrp + RPWrp + DCrp + CCrp < FRAME_PERIOD — INP_DL — OUT_DL
In sub-step (2), we move the operation-specific time budgets to the data operations they apply to.This uses
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associativity of sequential composition (A ; As2); Az = A1; (Aa; Ajs), elementary distribution theorems
for sequencing, and the following commutativity law for a time budget and data operation.

Circus Time Law 13 (time-budget-op-comm)
P(Op; waitt .. 1) = P(waitt .. &> ; Op) provided Op is a data operation

This law is in fact non-compositional: it is a law about processes rather than actions. Hence, it only holds
if the underlying action Op ; wait ) ..t is embedded in a process P. The justification for the law comes
from the structure and semantics of processes that prevents one from observing the precise time at which an
(internal) state change takes place. It is proved by induction over the structure of processes.

Using multiple and symmetric applications of the previous law, we proceed to obtain

. C “multiple applications of law time-budget-op-comm and elementary laws”

(nezt_frame ? frame — wait 0 .. SFrp ; StoreFrame) <« INP_DL;
wait0.. RPWrp ; ReduceAndPartition Work;
wait 0 .. DCrp ; DetectCollisions;
var colls : int ® wait (.. CCprp ; CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL
| wait FRAME_PERIOD
System

Once again, we omit the details of the elementary refinement steps (the laws used are in Appendix B.1).
This concludes Stage 3 since all data operations are now equipped with an operation-specific time budget.
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5.2.4 Stage 4

This stage addresses the parallelisation of sequential data operations into parallel handler actions. Generally,
this takes advantage of the following two laws.

Circus Law 2 (seq-to-par-1)

Ay Ay = ((Ar; ¢ —skip) [wrtV(Ay) [ { e | wrtV(A2)] (c — A2) \ {c[t
provided wrtV(A;) NwrtV(A2) = @ and wrtV(A4;) NusedV(A2) = @ and
¢ & usedC (A1) U usedC(Asz)

Circus Law 3 (seq-to-par-2)

A Ay = (A1 clo —skip) [wrtV(Ar) | et | wrtV(Az) ]| (c?2 — A2)) \ {c|
provided wrtV (A1) NwrtV(As) = @ and wrtV (A1) NusedV(42) = {z} and
¢ & usedC(Ay) U usedC(As)

The first law is applicable when no shared data is calculated and passed between the sequential actions, or
in other words, the first action A; does not write data that the second action A, reads. If there is such data,
the second law has to be applied. We note that in seg-to-par-1, the new channel ¢ is typeless and we can
think of it purely in terms of establishing control of execution. In seq-to-par-2, the new channel c is typed
according to the shared data that is passed between the sequential actions. It thus fulfils the dual purpose
of exercising control and providing a means for communicating shared data through the parallelism.

In our example, we apply seq-to-par-2 three times to fully parallelise the sequence of data operations. The
law seg-to-par-1 is not used, although we do require it later on in the refinement for the SH phase. The three
applications of seg-to-par-2 are interleaved with auxiliary refinement steps that distribute input prefixes and
extract the hiding of the new channels. Below, we highlight the focus of the action refinement in this stage.

System =
(next_frame ? frame — (wait 0 .. SFrp ; StoreFrame)) <4 INP_DL;
wait0.. RPWrp ; ReduceAndPartition Work;
wait0.. DCrp ; DetectCollisions;
var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions! colls — skip) €« OUT_DL
||| wait FRAME_PERIOD
System

We proceed by refining the highlighted action as follows.

(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
wait0.. RPWrp ; ReduceAndPartition Work;

wait0.. DCrp ; DetectCollisions;

var colls : int ® wait0.. CCrp; CalcCollisions;

(output_collisions ! colls — skip) <« OUT_DL

b2

= “application of the law seg-to-par-2 introducing a channel reduce of type RawFrame x StateTable

(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
(7’(}(1/11/(36 'currentFrame! state — skip
[{ currentFrame, state} | { reduce [} | {vozel_map, work, collisions}]
reduce ? currentFrame ? state — \ { reduce
wait0.. RPWrp ; ReduceAndPartition Work; o
wait0.. DCrp; DetectCollisions;
var colls : int ® wait0.. CCprp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL
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= “distribution of input prefix reduce ? currentFrame ? state — ... using elementary laws”

(nezt_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
reduce! currentFrame! state — skip

[{ currentFrame, state} | { reduce [} | {voxel_map, work, collisions}]
reduce ? currentFrame ? state —» .

wait0.. RPWrp ; ReduceAndPartitionWork |’

wait0.. DCrp; DetectCollisions;

var colls : int ® wait0.. CCprp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL

\ {l reduce [}

= “application of the law seg-to-par-2 introducing a channel detect of type Partition”

(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
reduce ! currentFrame! state — skip

[{ currentFrame, state} | { reduce [} | {vozel _map, work, collisions}]
reduce 7 currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip
[{vozel_map, work} | { detect |} | {collisions}]

wait0.. DCrp; DetectCollisions;
var colls : int ® wait 0 .. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) <« OUT_DL

= “distribution of input prefix detect ? work — ... using elementary laws”
(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
reduce | currentFrame ! state —» skip
[{ currentFrame, state} | { reduce [} | {voxel_map, work, collisions}]
reduce 7 currentFrame ? state —

wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip

[{vozel_map, work} | { detect [} | {collisions}]

wait0.. DCrp ; DetectCollisions

var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls —» skip) 4 OUT_DL

= “extraction of hiding of the channel detect using elementary laws”

(nezt_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
reduce ! currentFrame ! state — skip

[{ currentFrame, state} | { reduce |} | {voxel_map, work, collisions}]
reduce 7 currentFrame ? state —

wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip

[{vozel_map, work} | {| detect [} | {collisions}]
detect 7 work — .
wait0.. DCrp ; DetectCollisions )’

var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL

= “application of the law seg-to-par-2 introducing a channel output of type int”
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reduce ! currentFrame! state — skip
[{ currentFrame, state} | { reduce [} | {voxel_map, work, collisions}]
reduce 7 currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip
[{vozel_map, work} | {| detect [} | {collisions}]

detect ? work —
wait0.. DCrp; DetectCollisions;
output ! collisions — skip

[{ collisions} | {| output |} | 2] \ { output [}
output ? collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL

((nextfmme ? frame — (wait 0 .. SFpp ; StoreFrame)) < INP_DL;

= “extraction of hiding of the channel output using elementary laws”

(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
<reduce I currentFrame! state — skip
[{ currentFrame, state} | { reduce [} | {voxel_map, work, collisions}]
reduce ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;,
detect ! work — skip
[{voxel_map, work} | {| detect [} | {collisions}]
detect 7 work —
wait0.. DCrp ; DetectCollisions;
output ! collisions — skip
[{ collisions} | {| output [ | @]
output 7 collisions —»
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL

{ reduce, detect, output [}

\ {| reduce, detect [}

After inserting the refined action into the overall System we obtain the following result.

System =
reduce ! currentFrame! state — skip

reduce ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip

[{voxel_map, work} | {| detect [} | {collisions}]
detect 7 work —
wait0.. DCrp; DetectCollisions;
output ! collisions — skip

[{collisions} | { output [} | 2]
output ? collisions —»
var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL

{ reduce, detect, output [}
|| wait FRAME_PERIOD
System
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We further extract the hiding of the new channels to the outer level.

. = “extraction of hiding of { reduce, detect, output |} using elementary laws”

(next_frame ? frame — (wait 0 .. SFrp ; StoreFrame)) <4 INP_DL;
(reduce ! currentFrame! state — skip
[{ currentFrame, state} | { reduce [} | {vozel_map, work, collisions}]
reduce 7 currentFrame 7 state —
wait0.. RPWrg ; ReduceAndPartition Work;
detect ! work — skip
[{vozel_map, work} | { detect [} | {collisions}]
detect 7 work — ; \
wait0.. DCrp; DetectCollisions;
output ! collisions — skip
[{ collisions} | { output [ | ]
output ? collisions —»
var colls : int ® wait0 .. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL
| wait FRAME_PERIOD
System

{ reduce, detect, output [}

This concludes Stage 4 of the refinement for the MH phase. We observe that all sequential data operations
have been transformed into parallel actions. Execution control and the passing of data is achieved by the
new channels reduce, detect and output. Parallelisation is, however, not completed yet. In particular, the
parallelism of detection handlers has not emerged in this stage. The application of laws follows a uniform
pattern and hence automation guided by the developer should be possible in this stage.
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5.2.5 Stage 5

Stage 5 deals with the transformation of parallel data operations (schema conjunctions) into parallel handler
actions. In our example, this is the refinement of DetectCollisions, including its time budget. Below we use
the copy rule to expand the definition of DetectCollisions in the System action.

The focus of the subsequent refinement steps is highlighted.

. = “copy rule expanding DetectCollisions”

System =
(next_frame ? frame — (wait 0 .. SFrp ; StoreFrame)) <4 INP_DL;
<reduce ! currentFrame ! state — skip
[{ currentFrame, state} | { reduce |} | {voxel_map, work, collisions}]
reduce 7 currentFrame ? state —
wait0.. RPWrgp ; ReduceAndPartition Work;
detect ! work — skip
[{voxzel_map, work} | {| detect [} | {collisions}]
detect 7T work — wait 0 .. DCrp;
var colls1, colls2, colls3, colls4 : int ®
(34?7 : Z o CalcPartCollisions[colls1/pcolls!] A
(Fi? : Z o CalcPartCollisions|colls2/pcolls!] A
(34?7 : Z o CalcPartCollisions[colls3/ pcolls!] A 77
(Fi? : Z o CalcPartCollisions|[collsd/pcolls!] A i? =
SetCollisionsFromParts([[ collsl, colls2, colls3, collsd ||
output ! collisions — skip
[{ eollisions} | {| output [} | @]
output ? collisions —»
var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions ! colls — skip) <« OUT_DL
|| wait FRAME_PERIOD
System

A .
e 1\
/\ b)

1)
2)
3)
4)
)

{ reduce, detect, output |}
We start by decomposing the time budget for DetectCollisions as already illustrated in Stage 3.

wait0.. DCrp;
var collsl, colls2, colls3, colls4 : int ®
(3 i7 Ze CalcPartC’olhszons[collsl/pcolls JAi?7=1)
(34?7 : Z o CalcPartCollisions[colls2/pcolls!] A i? = 2)
(34?7 : Z o CalcPartCollisions[colls3/pcolls!] A i? = 3)
(34?7 : Z e CalcPartCollisions|collsd/pcolls!] A i? = 4)
SetCollisionsFromParts([ colls1, colls2, colls3, colls4 ]| )

C “application of the law split-time-budget-2”

wait0.. CPCrp; wait0.. SCrp;
var collsl, colls2, colls3, colls4 : int ®
3 i7 Z e CalcPartCollzswns[collsl/pcolls'] =1)
(3i? : Z o CalcPartCollisions[colls2/pcolls!] A 27 =2)
(3i? : Z o CalcPartCollisions|colls3/pcolls!] A i? = 3)
(Fi? : Z o CalcPartCollisions|collsd/pcolls!] A i? = 4)
SetCollisionsFromParts([ colls1, colls2, colls3, colls4 ]| )

This assume the presence of two further constants CPCrg and SCrp with CPCrg + SCrp < DCrpg.
We next distribute the time budgets in order to attach them to the respective data operations. This, again,
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is similar in principle to what we has already been illustrated in Stage 3. The following supplementary law
facilitates distribution of time budgets into local variable declarations.

Circus Time Law 14 (distr-wait-seq-var)

waitt) .. tp; varz: Te® A = varz: T @ (waitty ..t ; A)
provided z & FV(t;) and z & FV (&)

The resulting transformation is given below.

Y

= “application of the laws distr-wait-seg-var and time-budget-op-comm’

var collsl, colls2, colls3, colls4 : int @ wait(0 .. CPCrp;
(3i? : Z o CalcPartCollisions|colls1/pcolls!] A i7 = 1)
(3i? : Z o CalcPartCollisions|colls2/pcolls!] A i?7 = 2)
(Fi? : Z o CalcPartCollisions|colls3/pcolls!] A i? = 3)
(34?7 : Z o CalcPartCollisions[collsd/pcolls!] A i? = 4)
wait0.. SCrp;
SetCollisionsFromParts([[ colls1, colls2, colls3, colls4]))

A\
A
A\

I

The next law is used to turn the schema conjunction into a parallelism of actions.

Circus Law 4 (conj-to-par)
Op1 A Opy = Opy [wrtV(Opy) | @ | wrtV(Op2) | Op2 provided wrtV (Opy) NwrtV (Ops) = &

It is applicable since all schemas in the above conjunction write to a different variable collsi.

. = “multiple applications of law conj-to-par”

var collsl, colls2, colls3, colls4 : int ® wait(0.. CPCrp;
(34?7 : Z o CalcPartCollisions[colls1/pcolls!] A i?7 = 1)
[{collisl} | @ | {colls2, colls3, collsd}]
(3i? : Z o CalcPartCollisions|colls2/pcolls!] A i?7 = 2)
[{colls2} | @ | {colls3, collsd}] ;
(Fi? : Z o CalcPartCollisions|colls3/pcolls!] A i? = 3)
[{colls3} | @ | {collsd}]
(347 : Z e CalcPartCollisions|collsd/pcolls!] A i? = 4)
wait0 .. SCTB;
SetCollisionsFromParts([ colls1, colls2, colls3, colls4 ] )

Another distribution law enables us to move wait0.. CPCrpg into the parallelism.

Circus Time Law 15 (distr-wait-seqg-par)

Waittl..tg; (Opl[[]]Opg) = (Waittl..tg; Opl)[[]](waittth, Opg)

provided Op; and Op, are data operations

Intuitively, since the two data operations execute in parallel, each of them has a time budget wait ¢ .. 5.
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. = “multiple applications of law distr-wait-seq-par”

var colls1, colls2, colls3, colls4 : int @

(wait0.. CPCrp; (3i?: Z e CalcPartCollisions|[colls1/pcolls!] A i? = 1))
[{colls1} | @ | {colls2, colls3, collsd}]

(wait0.. CPCrp; (3i?: Z e CalcPartCollisions|[colls2/pcolls!] A i? = 2))
[{colls2} | @ | {colls3, collsd}] ;

(wait0.. CPCrp; (37 : Z e CalcPartCollisions|colls3/pcolls!] A i7 = 3))
[{colls3} | @ | {collsd}]

(wait0.. CPCrp; (3i?: Z e CalcPartCollisions|[collsd/pcolls!] A i? = 4))

wait0.. SCrp ; SetCollisionsFromParts([[ collsl, colls2, colls3, colls4]))

Above we still have the sequence with the SetCollisionsFromParts data operation; it also has to be paral-
lelised. To achieve this, we use seqg-to-par-2 from Stage 4 again, this time introducing a channel setColls of
type int X int X int X int to communicate all partial results computed by the four detector handlers.

. = “application of the law seq-to-par-2”

var colls1, colls2, colls3, colls4 : int @
(wait0.. CPCrp; (3i?:Z e CalcPartCollisions[colls1/pcolls!] A i? = 1))
[{colis1} | @ | {colls2, colls3, collsd}]
(wait0.. CPCrp; (317 :Z e CalcPartCollisions|colls2/pcolls!] A i? = 2))
[{collis2} | @ | {colls3, collsd}] ;
(wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls3/pcolls!] A i? = 3))
[{colls3} | @ | {collsd}] \
(wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i? = 4))
setColls ! colls1! colls2! colls3 ! collsd — skip

[{eolls1, colls2, colls3, collsd} | { setColls [} | {collisions}]

setColls ? colls17? colls2? colls3 7 collsd —
wait0.. SCrp ; SetCollisionsFromParts([[ collsl, colls2, colls3, colls4])

{ setColls |}

To eliminate the prefix that was introduced in the left branch of the parallelism, we require a specialised
channel decomposition law that replaces the channel setColls of type int x int X int X int by a channel
recColls of type int. The intention of the refinement is to decompose a single communication on setColls
into an interleaving of four communications on recColls. We note that setColls is assumed to be concealed
in the context where this law is applicable. A detailed investigation of the law is future work for now.
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. = “application of a specialised high-level channel decomposition law”

var colls1, colls2, colls3, colls4 : int @

(wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls1/pcolls!] A i? = 1))
[{eolls1} | @ | {eolls2, colls3, collsd}]

(wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i? = 2))
[{colls2} | @ | {colls3, collsd}]

(wait0.. CPCpp; (3i?7:Z e CalcPartCollisions[colls3/peolls!] A i? = 3))
[{colls3} | @ | {collsd}]

wait0.. CPCrp; (3i?:Z e CalcPartCollisions[collsd/pcolls!] A i? = 4))

(

(recColls ! colls1 — skip) |
(recColls ! colls2 — skip) ||
(recColls ! colls3 — skip) ||| \
(recColls! colls4 — skip)

[{ eolls1, colls2, colls3, collsd} | {| recColls |} | { collisions}]

var colls1, colls2, colls3, colls4 : int ®
(recColls ? x — collsl := xz) ||
(recColls ? x — colls2 = x) ||
(recColls ? x — colls3 = x) |
(recColls ? © — collsd := x)

wait0.. SCrp ; SetCollisionsFromParts([ collsl, colls2, colls3, collsd]])
{ recColls [}

Likewise, another specialised law is subsequently used to distribute the interleaving in the left hand of the
outer parallelism into the inner parallelism that computes that partial collision results.

. = “application of a specialised high-level law for distribution of an interleaving of prefixes”

var collsl, colls2, colls3, colls4 : int ®
wait0.. CPCrp; (37 :Z e CalcPartCollisions[collsl/pcolls!] A i? = 1);
recColls! collsl — skip >
[{eolls1} | @ | {colls2, colls3, collsd}]
wait0.. CPCprp; (347 : Z e CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls! colls2 — skip )
[{colis2} | @ | {colls3, collsd}]
wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls! colls3 — skip >
[{colls3} | @ | {collsd}]
wait0.. CPCpp; (347 : Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);
<’r‘ec00lls ! collsd — skip >

[{colls1, colls2, colls3, collsd} | { recColls |} | { collisions}]

var colls1, colls2, colls3, colls4 : int ®
(recColls 7Tz — collsl := z) |||
(recColls Tz — colls2 := z) |||
(recColls 7z — colls3 :==z) || |’
(recColls ? & — collsd := x)

wait0.. SCrp; SetCollisionsFromParts([[ colls1, colls2, colls3, colls4]] )
{ recColls [}

A final high-level law sequentialises the interleaving in the right-hand branch of the outer parallelism.
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. = “application of a specialised high-level law for sequentialising prefix interleaving”

var colls1, colls2, colls3, colls4 : int @
wait0.. CPCrp; (347 :Z e CalcPartCollisions|colls1/pcolls!] A i? = 1);
recColls! colls1 — skip )
[{colls1} | @ | {colls2, colls3, collsd}]
wait0.. CPCprp; (3i7:Z e CalcPam‘Collzswns[collsQ/pcolls' | A7 =2);
<recColls ! colls2 — skip >
[{colls2} | @ | {colls3, collsd}]
wait0.. CPCrp; (347 : Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls! colls3 — skip )
[{colls3} | @ | {collsd}]
wait0.. CPCrp; (37 : Z e CalcPartCollisions|colls4d/pcolls!] A i? = 4);
<recColls ! colls4 — skip >

[{eolls1, colls2, colls3, collsd} | { recColls |} | { collisions}]

var colls1, colls2, colls3, colls4 : int ®
(recColls ? x — collsl := z);
(recColls ? x — colls2 := x) ;
(recColls ? x — colls3 := ) ;
(recColls ? x — collsd = x)

wait0.. SCrp ; SetCollisionsFromParts([ collsl, colls2, colls3, colls4]])

{ recColls [}

This refinement is valid because the SetCollisionsFromParts operation is parametrised in terms of a bag
and therefore is agnostic to the order in which results are communicated through the recColls channel. The
sequentialising of the interleaving is important in order to decompose and distribute the time budget SCrp
between the elements of the sequence. Hence, in the next step we decompose and distribute the time budget

SCrp into two time budgets, RCrp and SCFPrg where 4 x RCrg + SCFPrg < SCrp.

. = “decomposition and distribution of wait 0 .. SCrp using laws from Stage 3”

var colls1, colls2, colls3, colls4 : int ®
wait0.. CPCrp; (347 : Z e CalcPartCollisions|collsl/pcolls!] A i? = 1);
recColls! colls1 — skip )
[{colis1} | @ | {colls2, colls3, collsd}]
wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls! colls2 — skip >
[{colls2} | @ | {colls3, collsd}]
wait0.. CPCpp; (347 : Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls! colls3 — skip )
[{colls3} | @ | {collsd}]
wait0.. CPCrp; (347 : Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);
<recC’0lls ! colls4d — skip >

[{colls1, colls2, colls3, collsd} | { recColls [} | {collisions}]

var colls1, colls2, colls3, colls4 : int @
(recColls ?x — (wait0.. RCrp ; collsl ==z
(recColls 7z — (wait 0 .. RCrp ; colls2 :=
(recColls 7z — (wait 0 .. RCrp ; colls3 :=
(recColls Tz — (wait 0 .. RCrp ; collsd ==z

\
8

|
8
— — — —

{ recColls [}
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The above refinement is justified by the assumption 4 * RCrg + SCFPrg < SCrp about the new constants,
and also the fact that the communication on recColls is concealed. A detailed formulation of the law including
its proof are future work. For one, it seems that it is not compositional. Comparing, for instance,

(recColls 7 x — collsl := x);
(recColls ? x — colls2 = ) ;
(recColls ? x — colls3 = ) ;
( )

s

and

recColls 7 x — collsd = x

(recColls?x — (wait0.. RCrp ; collsl := )
(recColls ?x — (wait0.. RCrp ; colls2 := 1)
(recColls 7z — (wait0.. RCrp ; colls3 := x)
(recColls ?x — (wait0.. RCrp ; collsd := 1)

Y
Y
Y

I
8

)
)
)
)

we observe that the second action refuses more than the first action in terms of its time-wise behaviour.
Namely, the first action permits multiple recColls events to occur in the same instant whereas in the second
action there can be a delay of up to RCrp time units between them, so this is not a failures refinement.
Therefore, we have to refine the above fragment in context rather than in isolation; this is future work.

We next distribute the local variable declarations into the respective parallel branches that write to the
variable. A few basic laws, namely distr-var-hide, distr-var-par, remove-var and compact-write-sets-par are
useful here; they are given in Appendix B.1. We shall not discuss the refinement in detail.

. = “application of the laws distr-var-hide, distr-var-par, remove-var and compact-write-sets-par”

var collsl : int ®
wait0.. CPCrp; (3i?: Z e CalcPartCollisions[colls1/pcolls!] A i? = 1);
recColls! colls1 — skip

[]2]a]
var colls2 : int ®
wait0.. CPCrp; (3i?:Z e CalcPartCollisions[colls2/pcolls!] A i? = 2);
recColls! colls2 — skip

[]2]a]
var colls3 : int ®
wait0.. CPCpp; (347 :Z e CalcPartCollisions[colls3/pcolls!] A i? = 3);
recColls! colls3 — skip

[2| 2| 2] \ {| recColls |}
var colls4 : int ®
wait0.. CPCrp; (3i?:Z e CalcPartCollisions[collsd/pcolls!] A i? = 4);
recColls! colls4 — skip

[@ | { recColls [} | { collisions}]

var colls1, colls2, colls3, colls4 : int ®
(recColls ? v — (wait0.. RCrp ; collsl .=z
(recColls ?x — (wait0.. RCrp ; colls2 :=z
(recColls ?x — (wait0 .. RCrp ; colls3 :=
(

)5
)i .
)5 |
)
I

51, colls2, colls3, collsd )

8

)

)

)

(recColls ?x — (wait0.. RCrp ; collsd := )
wait0.. SCFPyp ; SetCollisionsFromParts([[ col

With the last refinement we have localised the declaration of the collsi into the parallel detector handlers.
This transformation concludes the refinement of the action fragment of System that corresponds to the
four detector handlers, whose parallelism has fully emerged now. The right-hand action of the top-level
parallelism is a residual control fragment that later on in the SH phase is going to be refined into shared
data access to the collisions variable by suitable atomic operations.
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We now inject the refinement of the parallel detector handlers back into the System action.

System =
(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
(reduce ! currentFrame ! state — skip
[{ currentFrame, state} | { reduce [} | {vozel_map, work, collisions}]
reduce 7 currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip
[{vozel_map, work} | {| detect [} | {collisions}]
detect ? work —
var collsl : int @ wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions|collsl/pcolls!] A i? = 1);
recColls! colls1 — skip
[2] 2]
var colls2 : int @ wait(0.. CPCrp;
(Fi? : Z o CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls ! colls2 — skip
2|2
var colls3 : int ® wait(0.. CPCrp;
(3i? : Z o CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls ! colls3 — skip :
[@]| 2] 9] \ {| recColis [}; \
var colls4 : int ® wait(0.. CPCrp;
(Fi? : Z o CalcPartCollisions[collsd/pcolls!] A i? = 4);
recColls ! colls4 — skip
[@ | { recColls |} | {collisions}]
var colls1, colls2, colls3, colls4 : int ®
(recColls ?x — (wait0.. RCrp ; collsl := 1)) ;
(recColls ? v — (wait0.. RCrp ; colls2 := 1)) ;
(recColls ?x — (wait0.. RCrp ; colls3 :==x));
(recColls ?x — (wait0.. RCrp ; collsd := x))
wait0 .. SCFPTB,
SetCollisionsFromParts([| colls1, colls2, colls3, colls4 ]| )
output ! collisions — skip
[{ collisions} | {| output [ | @]
output ? collisions —»
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL
|| wait FRAME_PERIOD
System

{ reduce, detect, output |}

We observe that the resulting action does not have the desired shape yet: this is a parallelism of handlers plus
possible parallel control actions. The refinement that concludes Stage 5 thus has to carry out elementary
transformations to put the action (back) into this form.

Consolidation of Mission Actions

The consolidation steps here, in particular, involve extracting the hiding of recColls and distributing the
prefixes detect 7 work — ... and output_collisions! collisions — skip into the parallel actions which they
surround. The required laws for distributing the prefixes are presented below.
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Circus Law 9 (distr-prefix-par-1)

c?e— (A1 ns1|es|nse] As) = (c?x— Ay [ns1 | esU{c} | ns2] c?z — As)
provided c¢ ¢ usedC(A4;) and ¢ & usedC(Asz)

Circus Law 10 (distr-prefix-par-2)

(A1 ns1|es|nse] A2); cle — skip =
(A1; ¢?y—>skip)[ns; | esU{c]} | ns2] (A2 ¢!z — skip)
provided c¢ ¢ usedC(A;) and ¢ & usedC(Az) and z & ns;

Their application yields the following action.

. = “application of the laws distr-prefix-par-1 and distr-prefix-par-2 and extraction of hiding”

(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
(reduce ! currentFrame! state — skip
[{ currentFrame, state} | { reduce [} | {vozel_map, work, collisions}]
reduce ? currentFrame 7 state —»
wait0.. RPWrg ; ReduceAndPartition Work;
detect ! work — skip
[{vozel_map, work} | { detect [} | { collisions}]
detect 7 work — var collsl : int ® wait0 .. CPCrp;
(34?7 : Z o CalcPartCollisions[colls1/pcolls!] A i? = 1);
recColls! colls1 — skip ; output ? y — skip
[@ | { detect, output |} | 2]
detect 7 work — var colls2 : int ® wait0 .. CPCrpp;
(347 : Z e CalcPartCollisions[colls2/pcolls!] A i? = 2);
recColls! colls2 — skip ; oulput ? y — skip
[@ | { detect, output |} | 2]
detect 7 work — var colls3 : int ® wait0.. CPCpp;
(3i? : Z e CalcPartCollisions[colls3/pcolls!] A i?7 = 3);
recColls ! colls3 — skip ; output 7 y — skip )
[@ | { detect, output |} | &] "\
detect ? work — var colls4 : int ® wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions[collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; oulput ? y —> skip
[@ | { detect, output, recColls |} | {collisions}]
detect 7 work — var colls1, colls2, colls3, colls4 : int @
(recColls ?x — (wait0.. RCrp ; collsl ==z
(recColls ? v — (wait0.. RCrp ; colls2 :
(recColls ?x — (wait0.. RCrp ; colls3 :=
(recColls 7z — (wait0.. RCrp ; collsd :=z
wait0.. SCFPrg;
SetCollisionsFromParts([[ colls1, colls2, colls3, colls4 ] );
output ! collisions — skip
[{ collisions} | {| output |} | &]
output ? collisions —»
var colls : int @ wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL
|| wait FRAME_PERIOD
System

|
8

I

|
8

)
)
)
)

{ reduce, detect, output, rec Colls [}
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We lastly reorder the parallelism and adjust write sets in order to isolated the handler actions and the control
fragment into separate parallel branches.

. = “reordering parallel actions and adjusting write sets”

(next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
(reduce I currentFrame ! state — skip

[{ currentFrame, state} | { reduce [} | {vozel_map, work}]
reduce ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip

[{voxel_map, work} | {| detect [} | @]
detect ? work — var colls1 : int ® wait0.. CPCrpp;
(3i? : Z e CalcPartCollisions[colls1/pcolls!] A i?7 = 1);
recColls! colls1 — skip ; output ? y — skip

[@ | { detect, output |} | 2]
detect ? work — var colls2 : int ® wait0.. CPCpp;
(3i? : Z e CalcPartCollisions[colls2/pcolls!] A i?7 = 2);
recColls! colls2 — skip ; output ? y —> skip

[ | { detect, output |} | &]
detect ? work — var colls3 : int ® wait0.. CPCrp;
(3i? : Z o CalcPartCollisions[colls3/pcolls!] A i?7 = 3);
recColls! colls3 — skip ; output ? y — skip

[@ | { detect, output |} | 2]
detect ? work —» var colls4 : int ® wait0 .. CPCrp; 7 \
(347 : Z e CalcPartCollisions[collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; output 7y — skip

[@ | { output |} | 2]
output ? collisions —»
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) 4« OUT_DL

[{ currentFrame, state, vozel_map, work} |
{ detect, output, recColls [} | {collisions}]

detect 7 work — var collsl, colls2, colls3, colls4 : int
(recColls 7z — (wait0 .. RCrp ; collsl :==z
(recColls ?x — (wait0.. RCrp ; colls2 :=zx
(recColls 7z — (wait0.. RCrp ; colls3 :=
(recColls Tz — (wait0.. RCrp ; collsd ==z

SetCollisionsFromParts([ colls1, colls2, colls3, colls4 ] );

output ! collisions — skip

|| wait FRAME_PERIOD

System

I

8

));
));
));
)

{ reduce, detect, output, recColls [}

The above refinement of System concludes Stage 5 of the MH phase. The parallelism of handler actions
has fully emerged now. Whereas Stage 4 seems to provide good opportunities for automation, Stage 5,
in comparison, appears to be more challenging in that respect. Automation may be envisage through the
application of high-level refinement patterns that encapsulate particular structures, such as the shape of
DetectCollisions. Subsequent elementary refinements could possibly be tackled by refinement tactics [10].
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5.2.6 Stage 6

In Stage 6 we extract the mission and handler actions. The only remaining transformation required for this
is to distribute the top-level recursion in the System action into the parallel branches that correspond to
handler actions and control fragments. Lock-step progress per cycle is ensured by a new channel sync.

Distribute Recursion into Parallel Actions

The result of distributing the top-level recursion in System is given below.

. = “distribution law for recursion into parallel actions”

uX e (next_frame? frame — (wait0.. SFrp ; StoreFrame)) < INP_DL;
(reduce ! currentFrame ! state — skip ; sync — X
[{ currentFrame, state} | { reduce, sync |} | {voxzel_map, work}]
X ® reduce? currentFrame ? state —»
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X
[{vozel_map, work} | { detect, sync |} | @]
(X ® detect 7T work — var collsl : int ® wait0.. CPCrp;
(3i? : Z o CalcPartCollisions|colls1/pcolls!] A i7 = 1);
recColls! colls1 — skip ; output?y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
(X ® detect 7 work — var colls2 : int ® wait0.. CPCrp;
(Fi? : Z o CalcPartCollisions|colls2/pcolls!] A i?7 = 2);
recColls! colls2 — skip ; output?y — skip ; sync — X
[@ | { detect, output, sync [} | @]
X ® detect ? work — var colls3 : int ® wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions[colls3/pcolls!] A i? = 3);
recColls! colls3 — skip ; output 7y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
X e detect ? work — var colls4 : int @ wait0.. CPCrp;
(Fi? : Z o CalcPartCollisions[collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; output 7y — skip ; sync — X
[@ | { output, sync [} | @]
X ® output ? collisions —
var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions! colls — skip) « OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | {collisions}]

X @ detect ? work — var colls1, colls2, colls3, colls4 : int @

(recColls Tz — (wait0.. RCrp ; collsl := 1)) ;
(recColls ?x — (wait0.. RCrp ; colls2 := =z
(
(

)5 .
(recColls ?x — (wait0.. RCrp ; colls3:=1z)); |’
(recColls 7z — (wait 0 .. RCpp ; collsd := 1))
wait 0 .. SCFPrp;

SetCollisionsFromParts([ colls1, colls2, colls3, colls4 ] );

output ! collisions — skip ; sync — X

8

[{ currentFrame, state, vozel_map, work, collisions} | { sync[} | @]
(11X ® wait FRAME_PERIOD ; sync —s X))

{ reduce, detect, output, recColls, sync [}
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A binary version of the distribution law required above is given in the sequel; it was already presented as
rec-sync in [3]. We note that we use a generalised version of this law that deals with n parallel branches.

Circus Law 11 (lockstep-intro)
(X ® (A1 [nsy | cs|ns2] A2); X) =
(uX ® Ay ; sync — X)
[nsi | esU{ Syncl | nso] | \ { sync
(uX ® Ay; sync — X)
provided sync & usedC'(A1) U usedC(Az) and wrtV (A1) NusedV (A4z) = @ and
wrtV(Az) NusedV (A1) = @

We omit the presentation of the generalised law, but it is straight forward.

Introduce Handler Actions
Local actions are now introduced for the seven handlers that have emerged.

InputFrameHandler =
puX o (next_frame? frame — (wait0.. SFrp ; StoreFrame)) « INP_DL;
reduce ! currentFrame! state — skip ; sync — X

ReducerHandler =
HX @ reduce? currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X

DetectorHandlerl =
nX e detect ? work — var collsl : int ® wait0.. CPCrp;
(3i? : Z o CalcPartCollisions[colls1/pcolls!] A i? = 1);
recColls ! collsl — skip ; output 7y — skip ; sync — X

DetectorHandler2 =
nX e detect ? work — var colls2 : int ® wait0.. CPCrp;
(34?7 : Z e CalcPartCollisions|colls2/pcolls!] A i?7 = 2);
recColls! colls2 — skip ; output 7y — skip ; sync — X

DetectorHandler3 =
pnX e detect ? work — var colls3 : int ® wait0.. CPCrp;
(347 : Z o CalcPartCollisions[colls3/pcolls!] A i?7 = 3);
recColls! colls3 — skip ; output 7y — skip ; sync — X

DetectorHandlerd =
pnX e detect ? work — var collsd : int ® wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions|collsd/peolls!] A i? = 4);
recColls! collsd — skip ; output 7y — skip ; sync — X

OutputCollisionsHandler =
pnX @ output ? collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL; sync — X
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We also introduce a local action for the parallel fragment that controls handler execution.

InteractionHandlers =

1X @ detect ? work — var collsl, colls2, colls3, colls4 : int @
(recColls 7z — (wait0.. RCrp ; collsl :=x));
(recColls ?x — (wait0.. RCrp ; colls2:=1z)); | .
(recColls ?x — (wait 0 .. RCrp ; colls3:=1x)); |’
(recColls ?x — (wait 0 .. RCrp ; collsd := 1))

wait 0 .. SCFPTB7

SetCollisionsFromParts([[ colls1, colls2, colls3, colls4]) );

output ! collisions — skip ; sync — X

Lastly, the cycle time is captured by a further local action.
Cycle = (uX ® wait FRAME_PERIOD ; sync —s X))

With this, the System action is written in the following manner to bring out the mission structure.

System =
InputFrameHandler
[{ currentFrame, state} | { reduce, sync [} | {voxel_map, work}]
ReducerHandler
[{vozel_map, work} | { detect, sync |} | 2]
DetectorHandlerl
[@ | { detect, output, sync |} | 2]
DetectorHandler2
[@ | { detect, output, sync |} | 2]
DetectorHandler3
[ | { detect, output, sync [} | ] \
DetectorHandler4
[@ | { output, sync |} | @]
OutputCollisionsHandler
[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | { collisions}]
InteractionHandlers
[{ currentFrame, state, vozel_map, work, collisions} | {| sync [} | ]
Cycle

{ reduce, detect, output, recColls, sync [}

It exhibits the desired shape of a parallelism of handler actions, including two auxiliary actions: one that
controls handler execution and another one for the cycle time. Auxiliary control actions are expected at this
point, and their elimination is an issue for SH rather than MH. The Cycle action is logically attributed to
InputFrameHandler and will eventually be collapsed with it; for the time being, however, we keep it as a
separate parallel branch in order to facilitate the subsequent refinement in the SH phase.

To conclude the account on the MH models, we present the complete process that results from this phase.
For this, we have to declare several channels that have been introduced during the course of refinement.

channel reduce : RawFrame x StateTable

channel detect : Partition

channel output, recColls : int

channel sync

Whereas reduce, detect, output and sync are specification channels, recColls later becomes a method channel.
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5.2.7 Process

The complete process for the MH phase is presented below. Its state and data operations are in fact the
same as those of CDzE_MH?2B, the result of Stage 2.

system CDzE_MH = begin
state CDxMHState == ECPStateCDx

__Init
CDxMHState'’

currentFrame’ = new RawFrame
state’ = new StateTable
vozel_map’ = new HashMap[Vector2d, List| Motion]]
work’ = new Partition(4)
collisions’ = 0

__StoreFrame
ACDzMHState
frame? : Frame

Jposns, posns’ : Frame; motions, motions’ : Frame |
dom posns = dom motions A dom posns’ = dom motions’ e
posns’ = frame? N\
motions’ =
{a : dom posns’ e a — if a € dom posns then (posns’ a) —y (posns a) else ZeroV} A
posns = F(currentFrame) N\ motions = G(currentFrame, state) A
posns’ = F(currentFrame’) A motions’ = G(currentFrame’, state’)

_ ReduceAndPartition Work
ACDzMHState

currentFrame’ = currentFrame A state’ = state
Iposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A\ motions = G(currentFrame, state) N

Va1, ag : Aireraft | {a1, a2} C dom posns e
(a1, az) € CalcCollisionSet(posns, motions) =
31 : List[Motion] | I € vozel_map’ . values() . elems() o
MkMotion (a1, posns a1 — v motions ay, posns ay) € 1. elems() A
MkMotion(ag, posns ag —y motions ag, posns ag) € 1. elems()

__ CalcPartCollisions
=ZCDxMHState
peolls! : int
i7:1..4

peolls! =
ay : Aireraft; ag @ Aircraft |
31 : List[Motion] | | € work . getDetector Work(i?). elems() o
d v, vy : Vector; wy, ws : Vector e
# MkMotion(ay, v, wr) € 1. elems() A
MkMotion(ag, v2, we) € 1. elems() A
collide((vy, w; —v v1), (v, w2 —y va))

div 2
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__SetCollisionsFromParts

ACDzMHState
collsbag? : bag int
currentFrame’ = currentFrame A state’ = state

vozel_map’ = vozel_map N work’ = work
Is :seqint | s = items collsbag? e collisions’ = ¥ s

__CalcCollisions

=CDxMHState
colls! : N

Iposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) N\ motions = G(currentFrame, state) A

3 collset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# collset) div 2)

InputFrameHandler =
puX o (next_frame? frame — (wait0.. SFrp ; StoreFrame)) € INP_DL;
reduce ! currentFrame! state — skip ; sync — X

ReducerHandler =
nX @ reduce ? currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X
DetectorHandlerl =
pnX e detect ? work — var collsl : int ® wait0.. CPCrp;
(347 : Z o CalcPartCollisions[colls1/pcolls!] A i? = 1);
recColls! colls1 — skip ; output 7y — skip ; sync — X
DetectorHandler2 =
nX e detect ? work — var colls2 : int ® wait0.. CPCrpg;
(3i? : Z o CalcPartCollisions[colls2/pcolls!] A i? = 2);
recColls! colls2 — skip ; output 7y — skip ; sync — X
DetectorHandler3 =
pnX @ detect ? work — var colls3 : int ® wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions|colls3/peolls!] A i? = 3);
recColls! colls3 — skip ; output 7y — skip ; sync — X
DetectorHandlerd =
nX e detect ? work — var colls4 : int ® wait0.. CPCrg;

(3i? : Z o CalcPartCollisions[collsd/peolls!] A i? = 4);
recColls! collsd — skip ; output 7y — skip ; sync — X

OutputCollisionsHandler =
HX @ output ? collisions —
var colls : int ® wait0.. CCpp ; CalcCollisions;
(output_collisions ! colls — skip) <« OUT_DL; sync — X
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InteractionHandlers =

X @ detect ? work — var collsl, colls2, colls3, colls4 : int @
(recColls ? v — (wait0.. RCrp ; collsl := 1)) ;
(recColls ?x — (wait0.. RCrp ; colls2:=1z)); | .
(recColls ?x — (wait0.. RCrp ; colls3:=1z)); |’
(recColls ?x — (wait0 .. RCrp ; collsd := z))

wait 0 .. SCFPTB7

SetCollisionsFromParts([ collsl, colls2, colls3, colls4 ] );

output ! collisions — skip ; sync — X

Cycle = (X ® wait FRAME_PERIOD ; sync —s X))

S~~~ ~

System =
InputFrameHandler
[{ currentFrame, state} | { reduce, sync[} | {vozel_map, work}]
(ReducerHandler
[{voxel_map, work} | {| detect, sync |} | @]
(DetectorHandler1
[@ | { detect, output, sync [} | 9]
(DetectorHandler2
[@ | { detect, output, sync |} | 9]
(DetectorHandler3
[@ | { detect, output, sync |} | 2] \
(DetectorHandler4
[ | { output, sync [} | ]
OutputCollisionsHandler)))))
[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | {collisions}]
InteractionHandlers
[{ currentFrame, state, voxel_map, work, collisions} | { sync[} | @]
Cycle

{ reduce, detect, output, recColls, sync [}
® [nit ; System

end

Parts of the process that could not be parsed due to limitations of the Circus parser in CZT are highlighted.

5.3 Phase SH

The SH phase is subdivided into four stages.
1. Encapsulate shared data of sequential handlers.
2. Encapsulate shared data of concurrent handlers.
3. Introduce data to realise control mechanisms.
4. Collect specification of the memory area data.

This subdivision refines the account in [5]. In this section, we discuss the refinement steps in each stage
separately. For this, we require specialised high-level laws which are presented in Section 5.3.1, where we
call them ‘patterns’. We thus have Pattern 1 and Pattern 2 being used in Stage 1, Pattern 3 being used in
Stage 2, and Pattern 4 being used in Stage 3. The refinement patterns are expected to be useful in other
case studies too, and apply to action shapes emerging in Stage 4 and Stage 5 of the MH phase.
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5.3.1 Patterns

In this section, we present several high-level patterns that are used in the refinements carried out during the
SH phase. We also examine the proof of some of those patterns, or at least sketch out a proof strategy.
Pattern 1

The first pattern targets data passing between sequentially executed handlers. It is used in Stage 1 of the SH
phase. The action structure we refine results from the application of the law seq-to-par-2 which is typically
applied during Stage 4 of the MH phase. We recaptured the shape of this action below.
(WX ® Ay ; ¢laz — skip; sync — X)
[ns1 | ¢s | nsa \{cp
(uX ® c?x — Ag; sync — X)
where { ¢, sync[} C cs A ¢ & usedC'(A1) U usedC(As)

Our target for its refinement is the following action.

(WX ® Ay ; ¢ylz — skip; ¢z — skip; sync — X)

[nsi [ (es\{ el)U{esl | nse] \ el
(uX ® cs —skip; 7z — Ay sync — X)
[nsiUnsy | {er, el | @] \fenel

varv: T @

(q?z—wv:=2x)0)\ .
’uX.((cQ!v—>skip) » X

where ¢, co and c3 are fresh channels

Initially, the channel ¢ fulfils a dual purpose of controlling execution and passing data between the parallel
actions. These concerns are disentangled by the refinement: data sharing is realised by the typed channels
¢1 and cg, and the typeless channel ¢z establishes the (sequential) flow of execution. It is possible to deal
with the control issue separately; for this, we merely aim for the following intermediate refinement.

(uX ® Ay ; c1le —> skip; sync — X))
[nsy [ es\{ clt [ ns:]

(UX ® c37x — Ag; sync — X)

[ns1 Unsy | { c1, c2, sync |} | 2]

varv: T @ \{|01762B

(q?z—wv:=2x)0)\ .
’uX.((cQ!v—>skip) » X

[@1{c el | 2]

(ILLXocl?y—>02?y—>skip; sync—>X)

provided c¢; and ¢y are fresh channels

We then, however, require further refinement steps that introduce the control mechanism via a new channel.
Thus here, the pattern breaks down into two steps. The advantage of this approach is that we can account
for different strategies for designing control. The disadvantage is that it is not clear (yet) to what extent the
refinement of control can be automated, and how much guidance by the user is required for automation.

In Pattern 1, there seems moreover not a notable design space for realising the control aspect; hence, we
opt for the solution that uses a single law that already embeds the control mechanism via the synchronisation
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channel c3. Intuitively, we can think of this channel in terms of (abstractly) modelling a software event.
High-level Law 1 (seg-share-1)
(WX ® Ay ; ¢laz — skip; sync — X)

[ns1 | ¢s | ns2] \{cp
(uX ® c?x — Ag; sync — X)
(WX ® Ay ; ¢!z — skip; ¢ — skip; sync — X)
[nsy [ (es\{cl)U{esl | nse] \ el
(uX ® cg —>skip; 2?2 — Ay sync — X)
[nsyUnsy | { e, el | 9] \ﬂcla@ﬂ‘

varv: T e

(g ?z —wv:=2x)0)\ .
MX.((CQ!U—)Skip) » X

provided { ¢, sync} C cs A ¢ € usedC (A1) UusedC(A2) and ¢y, ¢y and c3 are fresh channels

The right-hand action of the resulting parallelism contributes directly to the MArea action. It is worth to
examine the proof of this law in more detail as it reveals some common and recurring themes.

Proof of Pattern 1

The proof is done by transforming the left-hand action of the law into the right-hand action using (mostly)
elementary refinement laws. We start with the left-hand side of the law.

(uX ® Ay ; clz — skip; sync — X)
[nsi | cs | nso] \{eb
(uX ® c?7z — Ag; sync — X)
where { ¢, sync} C cs A ¢ € usedC (A1) U usedC(As)
The first step replaces the channel ¢ by two channels ¢; and c;. We require a specialised law for this.

Circus Law 12 (replace-sync-chan-seq)

(uX ® Ay ; c¢lz — skip; sync — X)
[ns1 | es | ns2] \{ch
(X ® c?z — Ag; sync — X)
(uX ® Ay ; ¢nlz — skip; sync — X)
[ns1 | es\{cl| nse]
(uX ® c3?7x — Ag 5 sync — X) \{ei, el
[ns1 Unsy | { c1, ca, synclt | 2]
(,uXo a?r— co!lz — skip; sync—)X)
provided { ¢, sync} C cs A ¢ € usedC (A1) U usedC(A2) and ¢; and ¢y are fresh channels
Strictly, synchronisation on sync is not necessary in the right-hand parallel action. However, including it

turns out to simplify subsequent refinement steps. In particular, when the right-hand control fragment is
later on decomposed and collapsed with other actions the presence of sync is useful.
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After applying the law we, obtain the following result.

... = “application of the law replace-sync-chan-seq”
(WX ® Ay ¢lz — skip; sync — X)
[ns1 | es’ | ns2]
(UX ® c3?7x — Ag; sync — X) \{ei,eal}
[ns1 Unsy | { c1, ca, sync | | ]
(,uXo c?r— colz —>skip; sync—)X)
where ¢s’ = ¢s\ {{ ¢} and ¢; and ¢y are fresh channels
We observe that the left-hand action of the outer parallelism already has the correct shape for the intermediate
target. We therefore focus on the right-hand action. Basically, we want to bring it into a form that resembles
the desired shape for the MArea action. The strategy for this is to introduce a parallelism in which one
action becomes the significant part of MArea and the other action a residual part that exercises control.
Before performing this parallelisation, we encapsulate the shared data in a local variable by virtue of

four basic laws var-intro, extract-var-prefix, extract-var-seq and extract-var-rec listed in Appendix B.1. This
permits the following refinement steps, applied to the left-hand action of the parallelism.

UX ®c; 7z — colzx — skip; sync — X

“application of the law var-intro”

uX ®c;?z— (varv: Tev:=z; colv—skip); sync — X

“application of the law extract-var-prefix”

pX eo(varv: Tec?e—v:=x; cglv—skip); sync — X)

“application of the law extract-var-seq”

pX o (varv: Tecy 7z —v:=x; cglv—skip; sync — X)

“application of the law extract-var-rec”
varv: TepuX @ (c?x —v:=2x; cglv—skip; sync — X)

We next refine the body of the recursion introducing the aforementioned parallelism. The slightly more
specific laws required for this are listed below; others are included in Appendix B.1.

The following three laws are variations of distributing a prefix into a parallelism (Law A.24 in [4]).

Circus Law 17 (distr-prefix-par-3)

c—skip; (skip[ns; | cs|nsa] A) = skip[ns1 | ¢s | nse ] (¢ — A)
provided c¢ & cs

Circus Law 18 (distr-prefix-par-4)

cle —skip; (A1 [ nsy | cs|nsa] A2) = (¢l —> skip; Ay) [ nsi | es|ns2 ] (¢?y — Ag)

provided c € ¢s and y is not free in As
Circus Law 19 (distr-prefix-par-5)

clz—vi=x; (A1 [ns1|cs|ns2] 4a) =
(c?e—v:i=a; A))[nssU{v}|cs|ns2] (c?y — A2)

provided ¢ € ¢s and v and y are not free in Ag
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The following law is important for the steps that establish the recursive shape of MArea.
Circus Law 20 (extchoice-par-intro)
((c—A41); Ag)[ns1|cs|nse] (c— As) =
(((c— A1)0(c1 — By)O ... O(ep, — Byp)); Aa)[ns1|es|ns2] (¢ — As)
provided c € ¢s and c is distinct from all ¢; (the B; can be chosen arbitrarily)

With the above laws we can proceed with the proof as follows.

varv: TepuX e (¢y?z—v:=x; colv— skip; sync — X)

“application of the laws seq-skip-left-intro and distr-prefix-seq”

varv: TepuX @ (7 —v:=2x; cglv—skip; sync — skip); X

“application of the laws seq-skip-left-intro and par-skip-intro”

? = : | in ° (I
Varv:TOIuXo(cl"T_H)' z; clv —skip; sync—)sklp,>; X

(skip [o|o]|2] skip)

“application of the law extend-sync-par”

? e . ..
varv: T e uX @ a’r—v:i=z; cplv— skip; sync—)sk1p,>; b

(skip[@ | {c1,c2 [} | @] skip)

“application of the law distr-prefix-par-3”

a?r—v:=x; c!v— skip;
skip
varv: TepuX e ;7 X

[@{c, el | 2] ’

sync — skip

“application of the law distr-prefix-par-4 and eliminating sequence with skip”

alr—wv:=ux;
((:Q!’U Hskip)
varv: Te X e CIEEE ;7 X

co Ty — sync — skip)

“application of the laws extchoice-par-intro and extchoice-comm”

(2] {c et | 2] ;

a?r—v:=ux;
(1?72 —v:=20c!v— skip)
varv: TepuX e
(02?y — sync—)skip)

“application of the law distr-prefix-par-5”

(1 72— v :=1x);

(1?7 — v:=2x0c!v— skip)
e N N O AR PR -
(

c1?y—>co?y — sync — skip)

“application of the laws extchoice-par-intro and extchoice-comm”
(1?2 — v:=20c!v—>skip);
(1?2 — v:=20cy!v—>skip)
varv: T e X e ;7 X
: [{v} [, o | @] ’

cl?y—>02?y—>sync*>skip)
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We now use a specialised law to distribute the recursion into the parallelism. This law is somewhat similar
to rec-sync in [2], however lock-step progress is achieve by a synchronisation at the start of the recursion
rather than the end. We first recapture rec-sync in [2], used later on too, and name it distr-rec-par-1.

Circus Law 25 (distr-rec-par-1)

UX @ (A [nsy|es|nse]d2); c— X =

(WX ®A1; c—X)[ns1|cs|ns2] (uX @ Ay; ¢ — X)
provided ¢ € ¢s and ¢ & usedC'(A1) U usedC(A3) and
wrtV(Ay) NusedV (Az) = @ and wrtV (Az) NusedV (A1)

We next give the alternative version that we require for the transformation in the sequel.

Circus Law 26 (distr-rec-par-2)

uX ®(((c1— A1 0cy—> Aa); As)[[nsy|es|ns2] (cr— A4)); X =

(UX @ (c1 — A1 Oco—> Ag); Az X)[ns1|cs|nse] (X @ ¢ — Ay — X)

provided {ci,ca} C cs and ¢ & usedC(A;) for all ¢ € {1,2,3,4} and

(wrtV (A1) UwrtV (Ag) UwrtV (Asz)) NusedV (A4) = & and

wrtV (Ag) N (usedV (A1) UusedV (Ag) UusedV (A3)) = @
The external choice in the left-hand branch of the parallel action is another elaboration we require to use
the law. It is not a problem as it is a Hobson’s choice in the context of the right-hand parallel action.

We thus obtain the following refinement.

= “application of the law distr-rec-par-2”  Problem: What about the provisos c¢; & usedC(As)?

(1?72 —v:=xz0c!v—>skip); \ .
('uX.((017$—>v:—:1:|2|62!v—>skip) ) X

o} e 2 [ 2]

(;LXocl?y—>02?y—>sync—>X)

varv: T e

The application of extchoice-par-intro now reveals its purpose of putting the left-hand action of the parallelism
into a form puX @ A; A; X. The following law simplifies it eliminating repeated actions A.

Circus Law 27 (elim-repeated-seq-rec)
pXeA; A, ... A, X =puXeAd; X
We thus obtain the action below in the next refinement step.

= “application of the law elim-repeated-seq-rec”
(q?z—wv:i=x)0) .
<MX.<(C2!U—>Skip) > X
[{v} [{er, 2t | 2]

(,uXo cl?y—>027y—>sync—>X)

varv: T @

The only remaining task is to distribute the local variable block into the left-hand action of the parallelism.
This is achieved by the basic laws distr-var-par and var-elim given in Appendix B.1. This produces the two
parallel fragments of the intermediate result presented at the beginning of the section.
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= “application of the laws distr-var-par and var-elim and adjusting write sets of the parallelism”

varv: T e

(q?z—wv:=2x)0)\ .
'MX.((CQ!U—>Skip) » X

[@{e,elt| 2]
(,uXo cl7y—>02?y—>sync—>X)
The left-hand action of the parallelism now has the desired shape for MArea. The right-hand action encap-
sulates control of execution, however, without any concerns for shared data. This part needs to be further
refined by introducing a basic channel to establish the necessary control between the two handlers. There-

fore, we ignore the left-hand action for now and continue refining the right-hand action in combination with
the parallelism of handlers. The proof tactic as is follows.

1. Introduce a fresh hidden channel c3 in the control branch and extend its scope.
2. Decompose the control branch into a parallelism of smaller fragments.
3. Match and collapse these parallel fragments suitably with the handlers.

These steps are fairly straight-forward and do not require specialised laws, apart from step laws to introduce

and collapse parallelism. More importantly, they reveal a general strategy for eliminating control fragments.
Below we recapture the current (intermediate) result of the refinement steps so far.

(WX ® Ay ; ¢!z — skip; sync — X)
[ns1 | es’ | nsa]

(UX ® 372 — Ag; sync — X)

[ns1 Unssy | { c1, ca, syncl | ]
varv: T e \{]01,02[}

(q?z—wv:=2x)0)\ .
’uX.((cQ!v—>skip) » X

[ [{c,el|2]
(uXo cl?y—>62?y—>sync—>X)
where { ¢, sync |} C cs A ¢ € usedC (A1) U usedC(As) and

cs' =cs\{cl} and ¢; and ¢y are fresh channels

The focus for the remaining part of the proof is the fragment below which we extract from this action.
(WX ® Ay ; ¢!z — skip; sync — X)
[ns1 | es’ | ns2]
(UX ® 37z — Ag; sync — X)
[ns1 Unss | { c1, ca, sync [ | ]
(,uXo cl?y—>62?y—>sync—>X)
Thus, we ignore the middle action which already converged into the desirable shape for MArea.

We first introduce the typeless control channel c3.

60



. = “introduction of a hidden communication on a new channel c3 and extracting its hiding”
(uX ® Ay ; ¢ylz — skip; sync — X)
[ns1 | cs’ | nsa]
(uX ® 3?7z — Ag; sync — X) \ el
[ns1 Unss | { c1, c2, sync | 9]
(,uXo cl?y—><33—>02?y—>sync—>X)

The derivation might use the following law to introduce the prefix at the right place.

Circus Law 29 (hidden-sync-intro)
A= (c— A)\{c]} provided c¢ usedC(A)

The remaining steps merely extract the concealment of c¢3 from the prefixes, recursion and parallelism using
the elementary laws extract-hide-prefix, extract-hide-rec and extract-hide-par-right in Appendix B.1.

We once again use (custom) step laws to introduce a parallelism inside the right-hand recursion with the
objective of splitting the recursion into a parallelism of two recursions of which each one is collapsed with
one of the handlers. Below we just give the result after introducing the parallelism.

C “introduction of parallelism using (custom) parallel step laws”
(uX ® Ay ; ¢ylz — skip; sync — X)
[nsy | cs’ | nss2]

(uX ® c3?7x — Ag; sync — X)

[ns1 Unsy | { c1, ca, sync |} | 2] \fesh
(c1 7y —> skip; c3 — skip; sync — X)
HuX e [@[{cl]2]

(c3 —>skip; ¢ 7y — skip; sync — X)
C “application of the law distr-rec-par-1 to distribution the recursion into the parallelism”
(WX ® Ay ; ¢!z — skip; sync — X)
[nsy | es’ | nsa]
(UX ® 37z — Ag; sync — X)
[ns1 Unssy | { c1, ca, sync [ | ] \ el
(uX ®cy 7y — skip; cg —> skip; sync — X)
[@[{csl|2]

(nX ®c3 —>skip; ca?y — skip; sync — X)

C “reordering parallel actions matching them with a control fragment”
(uX ® Ay ; ¢nlz — skip; sync — X)

[ns1 | { e1, syncl | @]
(uX ® ¢; 7y — skip; ¢ — skip; sync — X)

[nsy | es" U{ es || ns2] \ el

(uX @ cx 72— A5 sync — X)

[ns2 | { c2, syncl | ]
(uX ® c3 — skip; 7y — skip; sync — X)
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C “extracting recursions from both parallelisms (symmetric law of distr-rec-par-1)”
(A1 ¢!z — skip; sync — X)
uX e [ns1 | { c1,synclt | @]
(1 7y —> skip; ¢3 — skip; sync — X)
[nsi [ es’ U esl} [ nsa] \esh
(c2?x— Ay 5 sync — X)
uX e [nsa | { co, sync} | 2]

(e3 —skip; 7y — skip; sync — X)
C “collapsing of parallel actions using step laws; this exploits that c;, co and c3 are fresh”
(,uX ® Ay ¢y!lz—skip; ¢ — skip; syncHX)

[nsy | es" U es | ns2] \ el
(uX ® 3 —skip; 72— Ay sync—>X)

Injecting the result back into the context of the refined action.

(X ® Ay ; cilz —>skip; 3 — skip; sync — X))

[nsy | es" U{es || ns2] \ el
(/,LX.Cg—)Skip; clr— Ay sync—)X)
[nstUnsy | { e, el | 2] \ e el

varv: T @

(1?z—v:i=2)0)\ |
MX.((Cg!U—)Skip) » X

where ¢s’ = ¢s\ {{ ¢} and ¢; and ¢y are fresh channels

This is exactly the right-hand side of the law and thus concludes the proof. We next look at a generalisation
of this law that furthermore turns out to be required in our case study.
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Pattern 2

In our case study, we may anticipate to apply Pattern 1 three times, mirroring three applications of seg-to-
par-2 in Stage 4 of the MH phase. It turns out though that seq-share-1 is too specific to be applied in all
three cases where data is passed between sequential handlers. This is due to inhomogeneities introduced in
Stage 5, more specifically during the merge sub-step concluding that stage. We consider the fragment

pnX @ reduce? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X

[{vozel_map, work} | { sync, detect |} | 2]

UX e detect 7 work — var collsl : int @ wait0.. CPCrp;

(347 : Z o CalcPartCollisions|collsl/pcolls!] A i? = 1);

recColls! colls1 — skip ; output 7y — skip; sync — X
[ | { sync, detect, output [ | ]

puX e detect 7 work — var colls2 : int @ wait(0.. CPCrp;

(347 : Z e CalcPartCollisions|colls2/pcolls!] A i?7 = 2);

recColls! colls2 — skip ; output ?y — skip ; sync — X
[ | { sync, detect, output [} | ]

puX e detect 7 work — var colls3 : int @ wait(0.. CPCrp;

(34? : Z e CalcPartCollisions|colls3/pcolls!] A i?7 = 3);

recColls! colls3 — skip ; output ?y — skip; sync — X
[ | { sync, detect, output [} | ]

uX e detect ? work — var colls4 : int @ wait(0.. CPCrp;
(347 : Z e CalcPartCollisions|colls4d/pcolls!] A i?7 = 4);
recColls! collsd — skip ; output ?y — skip; sync — X

from the System action. The data here is transmitted through the detect channel, however, with four
synchronising actions at the receiving end. Also the synchronisations on output within the detection handlers
are an issue. The sender in this case is the control action InteractionHandlers, omitted above.

This highlights the need for further laws to introduce sharing in sequential handler actions. A generalised
version of seq-share-2 accounts for a possible parallelism of handlers concurrently reading the data.

High-level Law 2 (seg-share-2)

(uX ® Ay claz — skip; sync — X)
[ns1 | ¢s1| ns2UnssU...Uns,]
(WX @ c?z — Ay ; sync — X)
[nsa | ¢s2 | ns3Unsg U...Uns,]

\ el

(uX ® c?x — Az ; sync — X)

[nsn—1 | cSn—1 | ns,]

(uWX ® c?x — A,y sync — X)
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(WX ® A1 ; ¢ylz — skip; ¢z — skip; sync — X)
[nsi | (ess\{c})U{csl | ns2UnssU...Unsy,]
(uX ® c3 —skip; 7z — Ay ; sync — X)
[ns2 | (cs2\{cP)U{cs] | nssUnsgU...Uns,]
(uX ® cg —>skip; 2?2 — As; sync — X)

\{]C3|}

\{Icl,CQD’
[nsn—1 | (csnas \{clH) U el | nsnl

(uX @ c3 —skip; 0?7z — A, ; sync — X)
[nstUnsaU...Unsy | {c1, e[t | 2]

varv: T @

MX.((Cl?I*)’U:I) D>; X

(c2 v —> skip)

provided { ¢, sync} C cs; A ¢ € usedC(A;) fori € 1..n and ¢, co and c3 are fresh channels

A detailed proof of this law is omitted but is expected to be very similar to the one for seg-share-1, up to
the point where we match and collapse the control fragment with the handlers actions.

Below, we recapture the control fragment that is collapsed in the proof of the law seq-share-1.

(uX ® ¢; 7y —>skip; ¢ — skip; sync — X)

[@[{csl|2]

(uX ® ¢z —skip; 2?7y — skip; sync — X)

In the proof of seg-share-2, we require an additional step that duplicates the right-hand action using idem-
potency of parallel composition. The respective law is.

Circus Law 34 (idem-par)
A= (A]o | usedC(A) | @] A) provided wrtV(A) =@ and A is deterministic
Using the law, we refine the control fragment before matching and collapsing it with the handlers.

. = “multiple applications of the law idem-par”

(uX ® c; 7y —> skip; cg — skip; sync — X)
{2l

(WX ® c3 —> skip; 2?7y — skip; sync — X)
[@|{ ¢, c3, syncl | 2]

(uX ® cg — skip; c2?y —>skip; sync — X)

[@ | { ¢, c3, sync|t | 2]
(uX ® c3 —> skip; o7y — skip; sync — X)

Hereafter we proceed in essence in the same way as in the proof of seg-share-1, reordering the parallelisms
to match each control action with a handler action and use step laws to collapse those parallel actions.
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Pattern 3

The third pattern targets the refinement of the control action InteractionHandlers. This will become an
issue for Stage 2 of the SH phase where we encapsulate shared data that is concurrently accessed.

InteractionHandlers =

X @ detect ? work — var collsl, colls2, colls3, collsd : int @
(recColls ?x — (wait0.. RCrp ; collsl := 1)) ;
(recColls ?x — (wait0.. RCrp ; colls2 := x)
(recColls ?x — (wait0.. RCrp ; colls3 := x)
(recColls ?x — (wait0.. RCrp ; collsd := x)

wait0 .. SCFPTB,

SetCollisionsFromParts([[ colls, colls2, colls3, colls4 ] );

output ! collisions —» skip ; sync — X

?

)i .
) |
)

This action emerges as a residual control fragment during the refinement in Stage 5 of the MH phase. Rather
than defining a law that applies to actions of the above shape, we formulate a more general law that is more
likely to be reusable. It besides abstracts from the actual number of parallel handlers.

High-level Law 3 (par-share)

varv: T @
HX e start — wait0.. Inityg ; InitOp;
varzTy, T, ..., Ty 1 ®

(record ?x — (wait0.. RCrp ; o := 1));
(record ?x — (wait0.. RCrp ; 13 :=x));
(record ?x — (wait0.. RCrp ; x, :=1));
wait 0 .. Mergerp ; MergeOp([ 1, 22, ..., 20 ] );
output ! v — skip ; sync — X

-
varv: T e
init — (wait 0 .. Initpp ; InitOp) O
puX e | record?x — (wait0.. RCpp ; MergeOp([z]])) O] ; X
output ! v — skip
[ | { init, record, output [} | 2] \

(record 7y — skip) |

(record 7 y — skip) |

pnX e init — start — ; output 7y — skip ; sync — X

(record 7 y — skip)
{ init [}
provided InitOp and MergeOp are data operations and
wrtV (InitOp) = {v} = wrtV(MergeOp) and MergeOp(by W by) = MergeOp(by) ; MergeOp(bs)
We observe that the time budget wait 0 .. Mergerp is removed by the law, assuming that the time budget

wait 0 .. RCrp already subsumes the time require for the merge operation. This models a program design
in which the merge is done incrementally with each call of a method that records a partial result.

65



The law assumes that the merge operation (SetCollisionsFromParts in the CD,) is can be expressed in terms
of a sequence InitOp ; MergeOp. For the CD, refinement, the respective decomposition is as follows.

__InitOp
ACDzMHState

currentFrame’ = currentFrame A state’ = state N\ vozel_map’ = voxel_map N work’ = work
collisions’ = 0

__ MergeOp
ACDxMHState
collsbag? : bag int
currentFrame’ = currentFrame A state’ = state N\ voxel_map’ = voxel_map N work’ = work
s :seqint | s = items collsbag? e collisions’ = collisions + X s

The necessary proof is to show that SetCollisionsFromParts(cb) = InitOp; MergeOp(cb). This is not difficult
by eliminating the schema sequence using the one-point rule. The reason we require manual decomposition
prior to applying the law is that it seems not possible to derive the initialisation and step-wise merge operation
automatically, for instance, from SetCollisionsFromParts. Thus, this transformation has to be done by the
user but in practical terms this should in most cases not be difficult.

The left-hand action of the result of the law contributes to MArea. Channels may be renamed and further
decomposed during the AR phase into Call and Ret pairs to correspond to methods in the program. The
right-hand action is a control fragment that needs to be decomposed and distributed into the parallelism
of handlers. Again, there is an issue of control versus sharing. The law in this case does not attempt to
commit to a particular control mechanism but merely designs access to the shared data. The strategy for
eliminating the control action is exactly as illustrated in the proof of the law seqg-share-1.

The proof of par-share shall not be discussed in detail here. This is future work for the time being but
one may expect similar themes to emerge as in the proofs of the previous laws for refinement patterns.

Discussion

The difference between seg-share-1 / seg-share-2 and par-share is that the control action is implicitly eliminated
in the former laws whereas in the latter law it persists. We could potentially define a more high-level version
of par-share that takes the context of the refined action into account and aggregates the elimination of the
residual parallelism. But on the other hand, this might restrict applicability of the law in the general case.

The important conclusion we draw is that for modularity, we require a general tactic, preferably auto-
mated, to eliminate control actions. There seem three obvious approaches for this.

1. Define sufficiently high-level laws that do not give rise to such actions in the first place.
2. Have specialised high-level laws that eliminate them in the context of parallel handler actions.
3. Have a generic strategy that eliminates them, possibly modulo guidance by the user.

In terms of automation, approach (1) and (2) seem most promising. We also see that (2) improves modularity
in comparison to (1). In terms of genericity, (3) seems more powerful than the other approaches. I cannot
see a clear strategy for approach (3) yet though and there are various open issues, for instance, with regards
to the information that the user has to provide during refinement. This is a challenge for future work.
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Below we present a corresponding law for approach (2) to eliminate the control action that emerges from
application of the law par-share. It applies in the context of n + 1 parallel handlers.

High-level Law 4 (par-share-control)

(uX ® A; start — skip; sync — X)
[ns | { start, sync[} | 9]

(/LX ® start —>varv: T ® Ay ; record! v — skip; output?y — skip; sync — X)
[2 | { start, output, sync [} | @]

(MX ® start —> varv: T ® Ay record! v — skip ; output 7y — skip ; sync — X)

[@ | { start, output, sync |} | @]

(/LX ® start —>varv: T ® A, ; record! v — skip ; output?y — skip; sync — X)
[ns | { start, record, output, sync |} | 2]

(record 7y — skip) ||

(record 7y — skip) |

pnX e init — start — ; output 7y — skip ; sync — X

(record 7 y — skip)
-
(X ® A init — skip; start —s skip ; sync — X))
[ns | { start, sync |} | 2]
(,uX ® start —>varv : T ® Ay ; record! v — skip ; output 7y — skip; sync — X)
[ns | { start, output, sync |} | @]

(,uX ® start —> varv : T ® Ay ; record! v — skip ; output 7y — skip ; sync — X)

[ns | { start, output, sync |} | 2]

(,uX ® start —>varv: T ® A, ; record! v — skip; output?y — skip; sync — X)
provided {start, sync} NusedC(A) = & and
{start, record, output, sync} NusedC(A;) =@ foralli:1..n
We observe that the parallel fragment is almost entirely absorbed, apart from a prefix init — skip that we
highlighted above. The proof of the law decomposes the control action as illustrated below.
(uX ® init — start — skip ; sync — X)
[@ | { start, sync [} | ]
(uX ® start — record 7y — output ? y — skip ; sync — X)
[@ | { start, output, sync |} | 9]
(uX @ start — record ? y — output 7y — skip ; sync — X)

[2 | { start, output, sync |} | 9]

(uX ® start — record 7y — output ? y — skip ; sync — X)

The smaller control fragments that emerge are collapsed, as before, with the handler actions. All of this is
justified using step laws. The prefixes sync — skip reveal their use in facilitating distribution of recursions.
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Pattern 4

This pattern is needed for the refinement in Stage 3 for our case study. Unlike the previous three patterns,
which are geared towards the encapsulation of shared data that is already somewhat explicit in the model,
Pattern 4 addresses the refinement of a control mechanism. The pattern effectively refines a synchronisation
barrier by a mechanism that makes use of shared data. It is capture by two laws: the first law sync-barrier-elim
eliminates the synchronisation barrier by virtue of a control action, and the second law sync-barrier-control
replaces the control action by an action that introduces new shared data and becomes part of the MArea
action. This factorisation fosters modularisation of the refinement strategy; whereas sync-barrier-elim is
universally applied, we may envisage different designs that eliminate the control fragment.

Below we present the first law to remove the barrier by virtue of a control action.

High-level Law 5 (sync-barrier-elim)

(uX ® start — Ay ; done — skip; sync — X)
[ns1 | ¢s1| ns2U...Umns,]

(uX ® start — Ag ; done — skip ; sync — X)

[ns2 | es2 | ns3U...Uns,]|

[nsn—1]| csSn—1 | nsx]

(uX ® start — A, ; done — skip ; sync — X)

(uX ® start — Ay ; notify!1 — skip ; sync — X)
[ns1 | cs1\ {donel}t | nsaU...Unsy]

(uX ® start — Ao ; notify!2 — skip; sync — X)
[nsa | csa \ { donel} | nssU...Uns,]|

[nsn—1| ¢sn_1\ { done} | ns,] \ { notify |}
(uX ® start — A, ; notify!n — skip ; sync — X)
[ns1U...Uns, | { start, notify, sync |} | @]

(notify ! 1 — skip) ||
(notify ! 2 — skip) ||

pnX e start — ; done —> skip; sync — X

(notify ! n — skip)
provided { start, done, sync} C cs; A {start, done, sync} NusedC(A;) =@ foralli:1..n
and notify is a fresh channel of type N

Proof of the Law

The proof of this law can be simplified by proceeding backwards (from the right-hand action) rather then
forwards (from the left-hand action). The essential idea is once again to decompose the control action and
collapse it with the handlers. The decomposition of the control fragment is sketched below.

(notify ' 1 — skip) |||

(notify ! 2 — skip) |||

pnXxX e start — ; done — skip ; sync — X

(notify ! n — skip)
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= “distribution of recursion and application of suitable parallel step laws”
(uX ® start — notify! 1 — done ; sync — X)
[ | { start, done, sync |} | 2]

(uX @ start — notify!2 — done ; sync — X)

[@ | { start, done, sync |} | 2]

(uX ® start — notify! n — done ; sync — X)

We omit a detailed account of the derivation. After the decomposed fragments are collapsed with the handler
actions, the channel notify is subsequently removed since none of the parallel actions synchronise on it.

The second law is used to transform the control action that arises from sync-barrier-elim into a program
design that uses new shared data.

High-level Law 6 (sync-barrier-control)

(notify ! 1 — skip) |||

(notify ! 2 — skip) |||

nX e start — ; done — skip; sync — X

.(;”L'otify I'n — skip)
(/LX ® reset — start — X ; sync — X)
[@ | { start, sync |} | 2]
(,uX ® start — notify! 1 — skip ; sync — X)
[@ | { start, sync |} | 9]
(/LX ® start — notify!2 — skip ; sync — X)
[2 | { start, sync[} | 2]

[@ | { start, sync[} | 2] \ { reset
(/JX ® start — notify ! n — skip ; sync — X)
[@ | { reset, notify, sync |} | @]

var active : P(1..n) ®
(reset — active :=1..n)
O
active := active \ {z};
if active = @ — done — skip
[| - active = @ — skip )
fi

nXx e C X

(notify 7z —

We note that apart from the right hand parallel branch encapsulating the shared data, we also have a left
hand parallel branch that contains a parallelism of smaller control fragments. These fragments will have to
be decomposed in the refinement strategy and give rise to another synchronisation on the start channel that
initialises the active variable prior to starting execution of the parallel handlers. The fragments are very
simple though and it should be possible to distribute them (mostly) automatically.
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Finally, we consider a third law that combines the previous two laws. In this law, we implicitly already
collapsed four of the five smaller control fragments emerging from the application of sync-barrier-control.

High-level Law 7 (sync-barrier-design)

(uX ® start — Ay ; done — skip ; sync — X)
[ns1] es1 | nseU...Uns,]|
(uX ® start — A ; done — skip ; sync — X)

[ns2 | ¢s2 | ns3U...Uns,]

[nsn—1| cSn—1 | ns,]
(uX ® start — A,, ; done — skip ; sync — X)
C

(/I,X ® reset — start — skip ; sync — X)
[@ | { reset, start, sync |} | 2]
(uX ® start — Ay ; notify!1 — skip; sync — X)
[ns1 | ecs1\ {{donel} | nsaU...Unsy]
(uX ® start — Ay ; notify!2 — skip ; sync — X)
[nsy | cso \ { donel} | nssU...Uns,]

[nsn—1| csn—1\ { donel} | ns,] \ { reset, notify
(uX ® start — A, ; notify! n — skip ; sync — X)
[ns1 U...Unsy, | { start, notify, sync |} | 2]

var active : P(1..n) ®
(reset — active :=1..n)

O
/X active := active \{z}; . . X
(notify? x —» if active = @ — done — skip )
) [| - active = @ — skip
fi

provided { reset, start, done, sync |} C cs; A {reset, start, done, sync} NusedC(A;) =S foralli:1..n
and notify is a fresh channel of type N

This law is less modular but more useful in terms of automation. The residual refinement effort consists
of distributing the simple control fragment highlighted above. Intuitively, this corresponds to calling an
initialisation method on the shared state. We note that one may envisage designs that do not require
an initialisation (notify could cater for this too). For such designs the law sync-barrier-elim would still be
useful, though sync-barrier-design is too specific to be applicable. This highlights a general trade-off between
modularity and reuse and automation. It is an important insight and lesson learned in this case study.

We note that even in the design law sync-barrier-design, additional refinement is still required during the
AR phase to data refine the active component into a class object and to turn the channels start and notify
into method call channel pairs. Otherwise, we have now all ingredients to tackle the refinement stages for
the SH phase in our example. We examine them in detail in the remainder of the section.
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5.3.2 Stage 1

Our main objective in Stage 1 to Stage 3 is to encapsulate shared data and provide means for accessing it.
In doing so, we tease out the MArea action, and Step 4 transforms it into the precise shape to match the
program design. The essence of the refinement steps is mostly the application of the high-level patterns that
have been presented in Section 5.3.1. Our starting point is the System action resulting from MH.

System =
puX o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <« INP_DL;
reduce | currentFrame ! state — skip ; sync — X
[{ currentFrame, state} | { reduce, sync [} | {voxel_map, work}]
pnX @ reduce? currentFrame ? state —
wait0.. RPWrpp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X
[{vozel_map, work} | {| detect, sync |} | @]
pnX o detect ? work — var collsl : int ® wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions[colls1/pcolls!] A i? = 1);
recColls! colls1 — skip ; output?y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
pnX o detect ? work — var colls2 : int ® wait0.. CPCrp;
(34?7 : Z o CalcPartCollisions[colls2/pcolls!] A i? = 2);
recColls! colls2 — skip ; output?y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
pnX o detect ? work — var colls3 : int ® wait0.. CPCrp;
(3i? : Z o CalcPartCollisions[colls3/pcolls!] A i?7 = 3);
recColls! colls3 — skip ; output?y — skip ; sync — X
[ | { detect, output, sync [} | ]
pnX o detect ? work — var colls4 : int ® wait0.. CPCrp;
(347 : Z e CalcPartCollisions[colls4d/pcolls!] A i? = 4);
recColls! collsd — skip ; output?y — skip; sync — X
[ | { output, sync [} | @]
(,uX ® output ? collisions —

var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions! colls — skip) €« OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | {collisions}]

InteractionHandlers

[{ currentFrame, state, voxel_map, work, collisions} | { sync[} | ]

Cycle

{ reduce, detect, output, recColls, sync [}

We have flattened the calls to local actions for handlers using the copy rule, though for brevity we keep the
calls to InteractionHandlers and Cycle until we require to expand their definitions in Stage 2.

The refinement in this stage applies the laws seq-share-1 and seg-share-2 to the synchronisations on reduce
and detect, respectively. Above, we have highlighted the target for the first application of seq-share-1. This
requires some reordering of parallel actions. After applying the law, we also extract channel hiding and
isolate the action that contributes to MArea into a separate branch of the top-level parallelism. These
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supplementary steps can be tedious on the paper but do not pose a challenge to automation.

= “reordering parallel actions and distributing the hiding of the reduce channel”

puX o (next_frame? frame — (wait0 .. SFpp ; StoreFrame)) <4 INP_DL;
reduce | currentFrame ! state — skip ; sync — X

[{ currentFrame, state} | { reduce, sync [} | {vozel_map, work}]
pnX @ reduce? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X

\ { reduce }

[{ currentFrame, state, vozel_map, work} | { detect, sync |} | 9] \

HnX e detect ? work — var collsl : int ® wait0.. CPCrp;
(3i? : Z o CalcPartCollisions[colls1/pcolls!] A i?7 = 1);
recColls! colls1 — skip ; output?y —> skip ; sync — X

[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | {collisions}]

InteractionHandlers

[{ currentFrame, state, voxel_map, work, collisions} | { sync|} | @] Cycle
{ detect, output, recColls, sync [}
= “application of the law seg-share-1 introducing a new typeless channel reduce”

X o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame ! state — skip ; reduce —» skip ; sync — X

[{ currentFrame, state} | { reduce, sync |} | {voxel_map, work}]

pUX ® reduce — skip ; getFrameState ? currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X
\ { reduce [}
[{ currentFrame, state, voxel_map, work} | {| setFrameState, getFrameState [} | ]

var currentFrame : RawFrame ®

var state : StateTable ® \
(X o (setFrameState ? vy 7 vo — currentFrame, state :== vy, v2) O | X
(getFrameState ! currentFrame ! state — skip) ’

\ { setFrameState, getFrameState |}

[{ currentFrame, state, voxel_map, work} | { detect, sync [} | 2]

[{ currentFrame, state, vozel_map, work} |
{ detect, output, recColls, sync [} | {collisions}]

InteractionHandlers

[{ currentFrame, state, voxel_map, work, collisions} | {| sync[t | @] Cycle

{ detect, output, recColls, sync [}

We note that the fresh channel reduce, highlighted in blue, is different from the former existing channel reduce,
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highlighted in red: whereas reduce is typeless, reduce is of type RawFrame x StateTable. To emphasise the
part of the action that contributes to MArea as well as the underlying channels for shared data access, we
use a green highlight. Next, we reorder the parallelism once again to isolate the sharing action.

= “reordering of parallelism and extraction of hiding using suitable laws”
X o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame ! state — skip ; reduce — skip ; sync — X

[{ currentFrame, state} | { reduce, sync |} | {voxel_map, work}]

pUX ® reduce — skip ; getFrameState 7 currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
detect ! work — skip ; sync — X

[{voxzel_map, work} | {| detect, sync |} | @]

pUX ® detect ? work — var collsl : int ® wait0.. CPCrp;

(3i? : Z o CalcPartCollisions[colls1/pcolls!] A i?7 = 1);

recColls ! colls1 — skip ; output? y — skip; sync — X
[@ | { detect, output, sync |} | &]

pUX ® detect ? work — var colls2 : int ® wait0.. CPCrp;

(34?7 : Z o CalcPartCollisions[colls2/pcolls!] A i? = 2);

recColls ! colls2 — skip ; output? y — skip; sync — X
[@ | { detect, output, sync |} | 2]

pUX ® detect ? work — var colls3 : int ® wait0.. CPCrp;
(3i? : Z o CalcPartCollisions[colls3/pcolls!] A i? = 3);
recColls! colls3 — skip ; output?y — skip ; sync — X
[@ | { detect, output, sync |} | 2]

pnX o detect ? work — var colls4 : int ® wait0.. CPCrp;

(34?7 : Z o CalcPartCollisions[collsd/pcolls!] A i? = 4);

recColls ! colls4d — skip ; output? y — skip; sync — X
[@ | { output, sync|} | @]

pnX e output ? collisions —
var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions! colls — skip) €« OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | {collisions}]

InteractionHandlers

[{ currentFrame, state, voxel_map, work, collisions} | { sync[ | @] Cycle
currentframe, state, voxrel_map, work, collisions setFrameState, getF'rameState %]
F l k, collisi F S, F S

var currentFrame : RawFrame @
var state : StateTable ®
(X ® <(561€FrumeSz‘,az‘,e ? vy 7 vg —> currentFrame, state := vy, v3) D> X
’ (getFrameState ! currentFrame ! state — skip) k

{ reduce, detect, output, recColls, setFrameState, getFrameState, sync [}

This concludes the application of Pattern 1. We proceed exactly in the same way in order to encapsulate
the data passed through the detect channel. The only difference is that we have to apply seq-share-2 rather
than seg-share-1, that is the law for Pattern 2. We omit the low-level steps and just give the result here.
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= “application of the law seg-share-2 including pre- and post-processing transformations”
puX o (next_frame? frame — (wait 0 .. SFrp ; StoreFrame)) <4 INP_DL;
setk ramcbmz‘e ! currentFrame ! state — skip ; reduce — skip ; sync — X

[{ currentFrame, state} | { reduce, sync [} | {voxel_map, work}]

pnX o reduce — skip ; getFrameState 7 currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
setWork ! work — skip ; detect — skip ; sync — X

[{vozel_map, work} | { detect, sync |} | 2]
pnX o detect — skip ; get Work ? work — var collsl : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls1/pcolls!] A i? = 1);
recColls! colls1 — skip ; output?y — skip ; sync — X

[ | { detect, output, sync [} | 9]
puX o detect — skip ; getWork ? work — var colls2 : int ®

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls! colls2 — skip ; output?y — skip; sync — X

[@ | { detect, output, sync [} | ]
(,uX ® detect — skip ; getWork 7 work — var colls3 : int e

wait0.. CPCrp; (3i?:Z e CalcPartCollisions[colls3/pcolls!] A i? = 3);
recColls! colls3 — skip ; output?y — skip ; sync — X

[@ | { detect, output, sync [} | @]
pUX o detect — skip ; getWork ? work — var colls4 : int ®

wait0.. CPCrp; (3i?: Z e CalcPartCollisions|collsd/pcolls!] A i7 = 4);
recColls! collsd — skip ; output?y — skip ; sync — X

[2 | { output, sync [} | ]

nX e output ? collisions —
var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions! colls — skip) « OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} |
{ detect, output, recColls, sync [} | { collisions}]

InteractionHandlers

[{ currentFrame, state, voxel_map, work, collisions} | {| sync [ | @] Cycle

[{ currentFrame, state, vozel_map, work, collisions} |
{ setFrameState, getFrameState, set Work, get Work |} | 1]

var currentFrame : RawFrame ®
var state : StateTable ® I
/X ® ((setFr(mwSz‘,az‘,e ? v T vy — currentFrame, state := vy, vg) D) ¥
(getFrameState | currentFrame ! state — skip) !

var work : Partition @

(setWork ? v — work := v) O |
pxe <(gct Work ! work — skip) » X

{ reduce, detect, output, recColls, setFrameState, getFrameState, get Work, set Work, sync [}

We note that applying the law for Pattern 2, we have to take into account that InteractionHandlers also
synchronises on the detect channel although it is not interested in the value communicated. Hence, for
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InteractionHandler we obtain the following action as a result of the previous refinement pattern.

InteractionHandlers =

pnX e detect — getWork ?y —

var colls1, colls2, colls3, colls4 : int ®
(recColls ?x — (wait0.. RCrp ; collsl := z))
(recColls ?x — (wait0.. RCrp ; colls2:=1z)); | .
(recColls ?x — (wait0.. RCrp ; colls3:=1z)); |’
(recColls ?x — (wait0.. RCrp ; collsd := z))

SetCollisionsFromParts([| colls1, colls2, colls3, colls4] );

output ! collisions —» skip ; sync — X

I

Clearly, the value y is not used in the action after the prefix getWork 7y — A above. Since the channel
getWork is concealed and InteractionHandlers only synchronises with the MArea fragment on this channel,
we can use a noncompositional rule to remove this communication altogether. Intuitively, this is justified by
getWork never being blocked and not having an affect on the action’s behaviour.

. = “Specialised noncompositional rule to remove channel communication”

nX e detect —

var collsl1, colls2, colls3, colls4 : int ®
(recColls ?x — (wait0.. RCrp ; collsl :=z));
(recColls 7z — (wait0.. RCrp ; colls2 :=z));
(recColls 7z — (wait 0 .. RCrg ; colls3 :=z));
(recColls ?x — (wait0.. RCrp ; collsd := x))

wait 0 .. SCFPTB;

SetCollisionsFromParts([[ collsl, colls2, colls3, collsd ] );

output ! collisions —» skip ; sync — X

’

Here, we shall not examine this rule further but merely identify the need for it. Alternatively, we could
provide a more specialised version of the seq-share-2 law; such, however, may not be as reusable as the
present version of the law. To compare and evaluate both options further investigation is necessary.

At this point, one may be tempted to apply Pattern 2 yet another time in order to replace the typed
output channel. This indeed is possible, module a minor alteration of the law, but it does not produce
the desired program design. More specifically, end up with a shared variable collisions that is accessed
via get and set operations, modelled by the channels getColls and setColls, for instance. This results in a
different design where InteractionHandlers collects the partial results but carries out the update to collisions
in a single atomic operation. We, however, want to carry out this update incrementally and concurrently
during the detection phase. For this reason, Stage 1 is completed here and we look at the refinement of
InteractionHandlers in Stage 2 using a different Pattern 3.
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5.3.3 Stage 2

In Stage 2 of the SH phase, we apply Pattern 3. This consists of applying the law par-share presented
earlier on in Section 5.3.1. The law cannot be applied immediately; we first have to bring the action
InteractionHandlers, which is the target for the law application, into a form that matches the left-hand
action of the law. After application of the law, more work has to be done to eliminate residual parallel actions
by distributing them into the handlers. This gives rise to localising the synchronisation that initialises the
shared collsisions variable prior to the parallel detection phase. We discuss each sub-step in detail.

Transformation of Application Target
We first recall the current definition of InteractionHandlers to which we aim to apply the par-share law.

InteractionHandlers =

pnX e detect —

var colls1, colls2, colls3, colls4 : int ®
(recColls ? x — (wait0.. RCrp ; collsl .=z
(recColls ?x — (wait0.. RCrp ; colls2 :=
(recColls ?x — (wait0.. RCrp ; colls3 :=
(recColls ? v — (wait0.. RCrp ; collsd :=

SetCollisionsFromParts([| colls1, colls2, colls3, colls4 ] );

output ! collisions — skip ; sync — X

S

Y
I

&

I

8

)
)
)
)

The left-hand side of the par-share law is recaptured below.

varv: T @
pnX e start — wait0.. Initrp ; InitOp;
var xy, o, ..., Tn: 1 ®

(record ?x — (wait0.. RCrp ; o := 1));
(record ?x — (wait0.. RCrp ; 13 := 1));
(record ?x — (wait0.. RCrp ; =, :=x));
wait0.. Mergerp ; MergeOp([z1, 22, ...,2n]);
output ! v — skip ; sync — X

Most notable, SetCollisionsFromParts has to be decomposed. In Section 5.3.1 (Pattern 3), we have already
illustrated the decomposition of SetCollisionsFromParts by way of the following two schema operations.

__InitColls
ACDzMHState

currentFrame’ = currentFrame A state’ = state N\ voxel_map’ = voxel_map N work’ = work
collisions’ =0

__ RecColls
A CDxzMHState
collsbag? : bag int

currentFrame’ = currentFrame A state’ = state A\ voxel_map’ = voxel_map N work’ = work
s :seqint | s = items collsbag? e collisions’ = collisions + X s

We have changed their names here into InitColls and RecColls. We have that SetCollisionsFromParts(cb) =
InitColls ; RecColls(cb). We also have the following algorithmic refinements used later on.

InitColls T collisions := 0 and RecColls([[ colls]) T collision := collisions + colls
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The refinement of InteractionHandlers thus yields.

. = “decomposition of SetCollisionsFromParts into an initialisation and merge operation”

InteractionHandlers =

HnX e detect —

var colls1, colls2, colls3, colls4 : int ®
(recColls ?x — (wait0.. RCrp ; collsl :=x));
(recColls ?x — (wait0.. RCrp ; colls2 := 1)) ;
(recColls ?x — (wait0 .. RCrp ; colls3 := 1)) ;
(recColls ?x — (wait 0 .. RCrp ; collsd := 1))

wait 0 .. SOFPTB7

InitColls ; RecColls([| colls1, colls2, colls3, collsd ] );

output ! collisions — skip ; sync — X

. = “multiple applications of the law seq-op-comm to move InitColls through the sequence

InteractionHandlers =

pnX e detect —

var colls1, colls2, colls3, colls4 : int ® InitColls;
(recColls ?x — (wait0.. RCrp ; collsl :=x));
(recColls ?x — (wait0.. RCrp ; colls2 := 1)) ;
(recColls ?x — (wait0.. RCrp ; colls3 := 1)) ;
(recColls ?x — (wait0.. RCrp ; collsd := z))

wait 0 .. SCFPTB;

RecColls([ colls1, colls2, colls3, collsd ] );

output ! collisions — skip ; sync — X

I

. = “introduction of spurious wait statement using the law zero-wait-intro”

InteractionHandlers =

pnX e detect —»

var colls1, colls2, colls3, colls4 : int ® wait 0 ; InitColls;
(recColls ?x — (wait0.. RCrp ; collsl :=x));
(recColls ?x — (wait0.. RCrp ; colls2 :=
(recColls ? v — (wait0.. RCrp ; colls3 :=
(recColls ?x — (wait0.. RCrp ; collsd :=

RecColls([[ collsl, colls2, colls3, collsd ] );

output ! collisions —» skip ; sync — X

&

I

DHE
R
)

8 8

Above we use a special commutativity law for data operations in the second sub-step.

Circus Law 35 (seqg-op-comm)

A; Op=0Op; A
provided usedV (Op) U wrtV(A) = @ and usedV(A)U wrtV(Op) =

We also require a law to introduce a spurious wait 0 statement in order to align the shape of the action to
match the left-hand side of the law. The respective law is zero-wait-intro, included in Appendix B.1.

We observe that the action InteractionHandlers now has the correct shape to apply the par-share law. Al-
together the most challenging task in the above sub-steps is the decomposition of the SetCollisionsFromParts
operation. In practical terms, it may be possible to define tactics that target particular schema operation
shapes. The above sub-steps rely on the fact that InitColls is instantaneous (does not consume time).

Dealing with cases where this assumption is not given is part of our future work.
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Application of Pattern 3
The application of Pattern 3 is entailed by the following refinement.

InteractionHandlers =

pnX e detect —

var colls1, colls2, colls3, colls4 : int @ wait 0 ; InitColls;
(recColls ?x — (wait 0 .. RCrp ; collsl := 1))
(recColls ?x — (wait0.. RCrp ; colls2 := z))
(recColls ?x — (wait0.. RCrp ; colls3 := z))
(recColls ?x — (wait 0 .. RCrp ; collsd := z))

wait 0 .. SCFPTB7

RecColls([[ collsl, colls2, colls3, collsd ] );

output ! collisions — skip ; sync — X

I

. = “application of the law par-share”

recColls 7y — skip) |||

recColls 7y — skip) ||| | . .

recColls 7y — skip) ||| |’ output 7y — skip ; sync — X
)

(
pnX @ initColls — detect — E
(recColls 7y — skip

[@ | { initColls, recColls, output [} | ]
(initColls — (wait 0 ; InitColls)) O
uX e | (recColls?x — (wait0.. RCrp; RecColls([z]))) D |; X
(output ! collisions — skip)
\ {initColls [}

This introduces a new channel initColls which corresponds to the method call that initialises collisions.
Although this might be an issue for the AR phase, we carry out further refinement that transforms
InitColls as well as the call RecColls([#]) into simple assignments, as previously suggested.

. = “algorithmic refinement of InitColls and RecColls([z]) and elimination of spurious wait”

(recColls 7y — skip) |||

recColls 7y — skip) ||| | . .

recColls 7y — skip) ||| |’ output 7y —> skip ; sync — X
)

puX e initColls — detect — E
(recColls 7y — skip
[@ | { initColls, recColls, output [} | ]

(initColls — collisions := 0) O

X e | (recColls ?x — (wait0.. RCrp ; collisions := collisions +x)) O | ; X
(output ! collisions — skip)

\ {initColls [}

The underlying MArea fragment, highlighted as before in green, now has the desired shape in the program.
The only remaining issue is the decomposition and distribution of the left-hand control action.
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Elimination of Parallel Control Action

In order to eliminate the control action that emerged from the application of the law par-share, we may
envisage two possible approaches. First, we may carry out manual elementary refinement steps that achieve
the decomposition and distribution of the resulting smaller parallel fragments. Or otherwise, we may use a
law that already entails the collapsing of (most of) the parallelism in the context of the handlers that record
the results. The first approach is sketched by the refinement below that decomposes the control fragment.

(recColls 7 y — skip) |||
(recColls 7 y — skip) |||
(recColls 7y — skip) |||
(recColls 7 y — skip)

nX @ initColls — detect — ; output 7y — skip ; sync — X

. = “application of the law distr-rec-par-1 and elementary parallel step laws for decomposition”

(11X ® initColls — detect ; sync — X))
[@ | { detect [} | @]

(,uX ® detect — recColls 7y — output 7y — skip ; sync — X)
[@ | { detect, output |} | 2]

(,LLX ® detect — recColls 7y — output 7y — skip ; sync — X)
[@ | { detect, output |} | &]

(uX ® detect — recColls 7y — output 7y — skip ; sync — X)
[ | { detect, output |} | 2]

(,uX ® detect — recColls 7y — output 7y — skip ; sync — X)

The five smaller fragments are now collapsed with suitable handlers. Whereas the first action is collapsed
with the reducer handler, the remaining four actions are collapsed with the four detection handlers. Only the
first action leaves a trace, namely a prefix initColls — skip; the other actions are simply absorbed. Thus,
we could encompass the collapsing of the other four fragments directly into a law that refines the control
fragment that arises from the application of the par-share law in the context of the detection handlers. This
is exactly along the lines of the modularisation in Pattern 4 via a sharing, control and design law.
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Below we present the result after injecting the refinement of InteractionHandlers and subsequently distribut-
ing the residual parallel control action (we omit the detailed steps for decomposition and collapsing).

X o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame ! state — skip ; reduce —» skip ; sync — X

[{ currentFrame, state} | {| reduce, sync |} | {voxzel_map, work}]

HX ® reduce — skip ; getFrameState 7 currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
setWork ! work — skip ; initColls — skip ; detect — skip ; sync — X

[{vozel_map, work} | { detect, sync |} | @]
HX o detect — skip ; getWork ? work — var collsl : int @
wait0.. CPCrp; (3i?:7Z e CalcPartCollisions|collsl/pcolls!] A i? = 1);
recColls! colls1 — skip ; output 7y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
HnX e detect — skip ; getWork ? work — var colls2 : int @
wait0.. CPCrg; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i?7 = 2);
recColls! colls2 — skip ; output 7y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
H1X ® detect — skip ; getWork ? work — var colls3 : int @
wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls! colls3 — skip ; output 7y — skip ; sync — X
[@ | { detect, output, sync |} | 2]
(,uX ® detect — skip ; getWork ? work — var colls4 : int ®
[

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; output 7y — skip ; sync — X

[@ | { output, sync[} | @]

HnX @ output ? collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions! colls — skip) « OUT_DL; sync — X

{currentFrame, state, vozel_map, work} | { sync|} | @] Cycle

[{ currentFrame, state, vozel_map, work} | {| setFrameState, getFrameState,
setWork, getWork, initColls, recColls, output [} | { collisions}]
var currentFrame : RawFrame @
var state : StateTable ® I
LX e (setFrameState ? vy 7 vo — currentFrame, state := vy, vo) O . X
H (getFrameState ! currentFrame ! state — skip) ’
var work : Partition ®
(setWork ? v — work := v) O Il
[ ] X
pX ((gel/I/Vork Y'work — skip) » X
(initColls — collisions := 0) O
uX o | (recColls ?z — (wait0.. RCrp ; collisions := collisions +z)) O | ; X
(output ! collisions — skip)

{ reduce, detect, output, setFrameState, getFrameState, get Work, set Work, initColls, recColls, sync |}

The highlighted communication has been inserted into the reducer handler during the collapsing of one of
the control fragments. We also observe that right-hand action now encapsulates the shared data for the
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collisions variable. The variable declaration, however, has not been localised yet by the law.

. = “application of elementary distribution laws to localised variable declarations”

pwX o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame | state —» skip ; reduce — skip ; sync — X

[{ currentFrame, state} | { reduce, sync [} | {voxel_map, work}]

HX ® reduce — skip ; getFrameState 7 currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
setWork ! work — skip ; initColls — skip ; detect — skip ; sync — X

[{vozel_map, work} | { detect, sync |} | @]
HX ® detect — skip ; getWork ? work — var collsl : int @

wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls1/pcolls!] A i? = 1);
recColls ! collsl — skip ; output ? y — skip ; sync — X

[@ | { detect, output, sync |} | 2]
HX o detect — skip ; getWork ? work — var colls2 : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i?7 = 2);
recColls ! colls2 — skip ; output ? y — skip ; sync — X

[@ | { detect, output, sync |} | 2]
(,uX ® detect — skip ; getWork ? work — var colls3 : int ®

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls3/pcolls!] A i?7 = 3);
recColls! colls3 — skip ; output 7y —> skip ; sync — X

[@ | { detect, output, sync |} | 2]
HX ® detect — skip ; getWork ? work — var collsd : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; output 7y —> skip ; sync — X

[@ | { output, sync[} | @]

HX ® output ? collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls —» skip) « OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} | { sync |} | @] Cycle

[{ currentFrame, state, vozel_map, work} |
{ setFrameState, getFrameState, set Work, get Work, initColls, recColls, output [} | @]

var currentFrame : RawFrame ®
var state : StateTable ® I
X e (setFrameState ? vy 7 vo — currentFrame, state := vy, vo) O | X
H (getFrameState ! currentFrame ! state — skip) ’
var work : Partition @
(setWork ? v — work := v) O Il
1X @ . ;X
/ <(get Work ! work — skip) "
var collisions : int ®
(initColls — collisions := 0) O
puX o | (recColls?x — (wait0.. RCrp ; collisions := collisions +x)) O | ; X
(output ! collisions — skip)

{ reduce, detect, output, setFrameState, getFrameState, get Work, set Work, initColls, recColls, sync |}
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This concludes Stage 2 of the SH phase. The refinement strategy is more involved here, requiring several
auxiliary steps before and after application of the respective high-level law. Whereas the application of
Pattern 1 and Pattern 2 generally lend themselves fairly well for automation, some of the steps during the
application of Pattern 3 are expected to require more guidance by and refinement effort by the developer.

The next stage targets the synchronisations on the channel output. This on one hand releases the output
handler but also acts as a barrier for the detection handlers.
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5.3.4 Stage 3

Stage 3 of SH introduces shared data to refine control mechanisms that still may exist in the model. In the
example, this is the the barrier-like synchronisation on output 7 y — skip within the detection handlers. As
in the previous stage, it turns out that we cannot apply the respective law barrier-sync-design immediately
but have to peform some pre-processing to transform the System action into the right shape. Below we
recapture the current parallelism of handlers.

puX o (next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame | state — skip ; reduce — skip ; sync — X

[{ currentFrame, state} | {| reduce, sync |} | {vozel_map, work}]

p1X ® reduce —» skip ; getFrameState ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;,
setWork ! work — skip ; initColls — skip ; detect — skip ; sync — X

[{vozel_map, work} | { detect, sync |} | @]

H1X e detect — skip ; getWork ? work — var collsl : int @

wait0.. CPCrp; (347 :Z e CalcPartCollisions|collsl/pcolls!] A i? = 1);
recColls! colls1 — skip ; output 7y — skip ; sync — X

[@ | { detect, output, sync |} | 2]

p1X e detect — skip ; getWork ? work — var colls2 : int @

wait0.. CPCrp; (347 :Z e CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls! colls2 — skip ; output 7y — skip ; sync — X

[ | { detect, output, sync [} | @]

p1X e detect — skip ; getWork ? work — var colls3 : int @

wait0.. CPCrp; (347 :Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls! colls3 — skip ; output 7y — skip ; sync — X

[@ | { detect, output, sync [} | @]

H1X e detect — skip ; getWork ? work — var colls4 : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);
recColls ! collsd — skip ; oulput 7y — skip ; sync — X

[ | { output, sync |} | ]

(,uX ® output ? collisions —

var colls : int ® wait0.. CCrp; CalcCollisions;
(output_collisions! colls — skip) « OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} | { sync[} | @] Cycle

[{ currentFrame, state, vozel_map, work} |
{ setFrameState, getFrameState, set Work, get Work, initColls, recColls, output [} | @]

var collisions : int ®
(initColls — collisions := 0) O
uX o | (recColls ?z — (wait0.. RCrp ; collisions := collisions +x)) O | ; X
(output ! collisions — skip)

{ reduce, detect, output, setFrameState, getFrameState, get Work, set Work, initColls, recColls, sync [}

All synchronisations on the output channel are highlighted in red. This channel, like reduce and detect in
Stage 1, fulfils a dual purpose of communicating the number of detected collisions to the output handler
as well as acting as a synchronisation barrier for the detector handlers and output handler to ensure that
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the collisions are only communicated once all four detector handlers have committed their results. Hence,
output controls when the output handler is release.

Thought the scenario is somewhat similar to the one for Pattern 1, here we cannot simply apply the
seg-share-1 law in order to introduce the control channel for the software event that releases the output
handler. For one this is because the data communicated through output has already been encapsulated in
Stage 2. We therefore use a different strategy outlined below.

1. Introduce a new typeless channel output to replace the originial channel output of type int in all places
where we are merely interested in the control aspect and rename oulpul into getColls. The new channel
isolates the control aspect where getColls provides the means for accessing the data.

2. Eliminate the residual parallel fragment results from the above introduction.
3. Use the synch-barrier-design law to refine the barrier synchronisation mechanism.

To proceed with (1) we require a specialised channel replacement law. Possibly, this law can be specified
in a more general manner, for instance, by some inductively-defined substitution procedure. Essentially, it
replaces occurrences of prefixes of the form output ? x —> A by simple prefixes outout — A where z is not
used in A and otherwise by getColls 7 x — A. This replacement is justified by two facts.

1. The original channel output is concealed in the system action.

2. Inclusion of an additional parallel control fragment:

(,uX ® output — getColls 7y — skip ; sync — X)

The control fragment is expected to be eliminated in the usual way. Here, this is collapsing it with the
handler that outputs the collisions. The local refinement for this transformation is given below.

pnX @ getColls 7 collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL; sync — X

[@ ] { getColls [} | @]
(/LX ® output — getColls 7y — skip ; sync — X)
C “distributing recursion in the parallel actions and collapsing the parallelism using step laws”

nX @ output — getColls ? collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) « OUT_DL; sync — X

)

The collapsing of parallelism introduces the prefix output — ... ’ into the output handler and thereby
establishes the desired design in which output acts as a software event that releases this handler.

The above refinement, as noted, rests on a channel replacement law that, however, will not be discussed
in more detail here; instead, we just present the System action that we expect to result from its application.
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C “specialised channel replacement law and distributing residual parallel control action”
puX o (next_frame ? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame | state —» skip ; reduce — skip ; sync — X

[{ currentFrame, state} | { reduce, sync [} | {voxel_map, work}]

pnX @ reduce — skip ; getFrameState ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartition Work;
setWork ! work — skip ; initColls —» skip ; detect — skip ; sync — X

[{vozel_map, work} | { detect, sync |} | &]

pnX e detect — skip ; getWork ? work — var collsl : int @
wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls1/pcolls!] A i? = 1);
recColls! colls1 — skip ; output — skip ; sync — X

[@ | { detect, output, sync [} | @]

pnX e detect — skip ; getWork 7 work — var colls2 : int ®
wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls ! colls2 — skip ; output — skip ; sync — X

[@ | { detect, output, sync [} | 9]

HX ® detect — skip ; getWork 7 work — var colls3 : int @
wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls ! colls3 — skip ; output — skip ; sync — X

[@ | { detect, output, sync [} | @]
[

HX ® detect — skip ; getWork 7 work — var collsd : int ®
wait0.. CPCrp; (3i?: Z e CalcPartCollisions|collsd/pcolls!] A i7 = 4);
recColls ! collsd — skip ; output — skip ; sync — X
[2 | { output, sync |} | ]
uX ® output — getColls ? collisions —

var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions! colls — skip) « OUT_DL; sync — X

{currentFrame, state, vozel_map, work} | { sync|} | @] Cycle
[{ currentFrame, state, vozel_map, work} |
{ [set/ get| FrameState, [set ] get] Work, initColls, recColls, getColls, output |} | ]
var currentFrame : RawFrame ®
var state : StateTable ® I
X e (setFrameState ? vy 7 vg — currentFrame, state := vy, vo) O | X
/ (getFrameState ! currentFrame ! state — skip) ’
var work : Partition @
(setWork ? v — work := v) O Il
[ ] X
pXx <(getW07’k l'work — skip) » X
var collisions : int ®
(initColls — collisions := 0) O
puX o | (recColls?x — (wait0.. RCpp ; collisions := collisions +x)) O | ; X
(getColls! collisions — skip)

{ reduce, detect, output, [set/get]| FrameState, [set / get] Work, initColls, recColls, getColls, sync [}

We obersve the new channels output and getColls. Moreover, all channels used int the right-hand parallel
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action that encapsulates shared data are now channels that model either method calls or direct access to
shared variables. We now proceed applying the law sync-barrier-design.

puX o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame ! state —» skip ; reduce — skip ; sync — X

[{ currentFrame, state} | { reduce, sync |} | {voxel_map, work}]

pnX ® reduce — skip ; getFrameState ? currentFrame 7 state —
wait0.. RPWrp ; ReduceAndPartition Work;
set Work ! work — skip ; nitColls —» skip ; detect — skip ; sync — X

[{voxel_map, work} | {| detect, sync |} | @]
pUX ® detect — skip ; getWork ? work — var collsl : int ®

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsl/pcolls!] A i? = 1);
recColls ! collsl —» skip ; notify!1 — skip ; sync — X

[@ | { detect, output, sync |} | &

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i? = 2);
recColls ! colls2 —» skip ; notify!2 — skip ; sync — X
[@ | { detect, output, sync |} | &
pUX ® detect — skip ; getWork ? work — var colls3 : int @
wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls3/pcolls!] A i? = 3);
recColls ! colls3 —» skip ; notify!3 — skip; sync — X
[@ | { detect, output, sync |} | 2]
(,LLX ® detect — skip ; getWork ? work — var colls4 : int
[

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);

pUX ® detect — skip ; get Work ? work — var colls2 : int ® )
recColls ! collsd —» skip ; notify !4 — skip ; sync — X )
[@ | { output, sync|} | @]

pnX ® output — getColls ? collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions! colls — skip) €« OUT_DL; sync — X

{currentFrame, state, vozel_map, work} | { sync|t | @] Cycle

[{ currentFrame, state, voxel_map, work} | { detect, start, sync[} | 9]

(/LX ® start — detect —» skip ; sync — X)
[{ currentFrame, state, vozel_map, work} |
{ [set/get] FrameState, [set / get] Work, initColls, recColls, getColls [} | @]

var active : P(1..n) ®
(start — active :==1..n)
O
active := active \ {z};

1X ® . . . ;X
/ o if active = @ — output — skip
(notify ? x — » . )
| = active = @ — skip
fi

{ reduce, detect, output, start, notify, [set/get]| FrameState, [set / get]| Work, initColls, recColls, getColls, sync [}

Once again a control fragment arises as a consequence of applying the law. We distribute it into the reducer
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handler. This gives rise to the following System action.

C “distribution of control fragment using parallel step laws”

pwX o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <4 INP_DL;
setFrameState ! currentFrame ! state — skip ; reduce — skip ; sync — X

[{ currentFrame, state} | { reduce, sync [} | {voxel_map, work}]

pUX ® reduce — skip ; getFrameState ? currentFrame ? state —
wait0.. RPWrp; ReduceAndPartitionWork ; setWork ! work — skip;
initColls — skip ; start — skip ; detect — skip ; sync — X

[{vozel_map, work} | { detect, sync |} | @]
UX ® detect — skip ; getWork ? work — var collsl : int ®

wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls1/pcolls!] A i? = 1);
recColls! collsl — skip ; notify ! 1 — skip ; sync — X

[@ | { detect, output, sync |} | 2]
HX o detect — skip ; getWork ? work — var colls2 : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i?7 = 2);
recColls ! colls2 — skip ; notify!2 — skip ; sync — X

[@ | { detect, output, sync |} | 2]
(,UX ® detect — skip ; getWork ? work — var colls3 : int ®

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls3/pcolls!] A i?7 = 3);
recColls! colls3 — skip ; notify!3 — skip ; sync — X

[@ | { detect, output, sync |} | 2]
HX ® detect — skip ; getWork ? work — var collsd : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; notify!4 — skip ; sync — X

[@ | { output, sync[} | @]

HX ® output — getColls 7 collisions —
var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls —» skip) « OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} | {{ sync[}t | @] Cycle
[{ currentFrame, state, vozel_map, work} |
{ [set/get] FrameState, [set/ get] Work, initColls, recColls, getColls, output [} | ]

var active : P(1..n) ®
(start — active :==1..n)
O
active := active \ {x};

[ ] X
pX o if active = @ — output — skip X
(notify ? x — . . )
| - active = o — skip
fi

{ reduce, detect, output, start, notify, [set/get]| FrameState, [set / get]| Work, initColls, recColls, getColls, sync [}

This concludes Stage 3. All remaining control behaviour has been removed and as a result, additional shared
data was introduced. In the next and last stage of the SH phase we factor out the MArea action and collapse
parallelism between actions that encapsulate shared data in the same object in the program.
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5.3.5 Stage 4
The encapsulated data that has emerged is now extracted in a separate local action MArea.

MArea =
var currentFrame : RawFrame @
var state : StateTable ® I
(setFrameState ? vy 7 va — currentFrame, state := vy, v2) O |
uXx e . ; X
(getFrameState ! currentFrame ! state — skip)

var work : Partition ®
(setWork ? v — work :=v) O . Il
px e ((getWork’ l'work — skip) » X

var collisions : int ®
(initColls — collisions = 0) O
uX o | (recColls?x — (wait0.. RCrp ; collisions := collisions + 1)) O | ; X L
(getColls ! collisions —» skip)

var active : P(1..n) ®
(start — active :=1..n)
O
active := active \ {z};

px e (notify? z — if active = @ — output — skip ) ) X
v | - active = @ — skip
fi

Because the shared variables currentFrame, state, work and collisions are fields of the same object in the
program (class CDxMission), we collapse the parallelism of recursions into a single recursion to reflect that
the underlying methods synchronise on a common lock.

C “specialised laws to collapse parallelisms of recursions in MArea”

MArea =

var currentFrame : RawFrame @

var state : StateTable ®

var work : Partition ®

var collisions : int ®
(setFrameState ? vy 7 vg — currentFrame, state := vy, v3) O
(getFrameState ! currentFrame ! state — skip) O Il
(setWork ? v — work := v) O

uX o | (getWork ! work — skip) O ; X

(initColls —» collisions := 0) O
(recColls ?x — (wait0.. RCrp ; collisions := collisions + z)) O
(getColls! collisions —» skip)

var active : P(1..n) ®
(start — active :==1..n)
O
active := active \ {z};

px e (notify?  — if active = @ — output — skip ) » X
v | - active = @ — skip
fi

The precise laws needed for the above refinement are future work and furthermore they are in general likely to
be non-compositional. Namely, because collapsing parallelism above results in an action that is less willing
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to communicate in that nondeterministic waits may be introduced. Above, that is wait0 .. RCrg. The
refinement may be justified by reducing time budgets in other places but this is future work.

For the System action we obtain the following definition.

System =
wX o (next_frame? frame — (wait0 .. SFrp ; StoreFrame)) <« INP_DL;
setFrameState | currentFrame | state — skip ; reduce — skip ; sync — X
[{ currentFrame, state} | { reduce, sync |} | {voxel_map, work}]

nX o reduce — skip ; getFrameState ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartitionWork ; setWork ! work — skip;
initColls — skip ; start — skip ; detect — skip ; sync — X

[{voxel_map, work} | {| detect, sync |} | ]
pnX o detect — skip ; getWork ? work — var collsl : int ®

wait0.. CPCrp; (3i?: Z e CalcPartCollisions|colls1/pcolls!] A i? = 1);
recColls ! collsl — skip ; notify!1 — skip ; sync — X

[@ | { detect, output, sync |} | 2]
pnX o detect — skip ; getWork ? work — var colls2 : int ®
wait0.. CPCrp; (3i?:Z e CalcPartCollisions|colls2/pcolls!] A i?7 = 2);

(recColls l'colls2 — skip ; notify!2 — skip ; sync — X )
[@ | { detect, output, sync |} | 9]
(,uX ® detect — skip ; getWork ? work — var colls3 : int @ ) \

wait0.. CPCrp; (3i?: Z e CalcPartCollisions[colls3/pcolls!] A i? = 3);
recColls ! colls3 — skip ; notify!3 — skip ; sync — X

[@ | { detect, output, sync |} | 2]
puX e detect — skip ; getWork 7 work — var colls4 : int @

wait0.. CPCrp; (3i?:Z e CalcPartCollisions|collsd/pcolls!] A i?7 = 4);
recColls! collsd — skip ; notify!4 — skip ; sync — X

[@ | { output, sync |} | @]
pnX ® output — getColls ? collisions —

var colls : int ® wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls —» skip) « OUT_DL; sync — X

[{ currentFrame, state, voxel_map, work} | { sync [} | @] Cycle
[{ currentFrame, state, voxel_map, work} |
{ [set/ get] FrameState, [set/ get) Work, initColls, recColls, getColls, output [} | 2]
MArea

{ reduce, detect, output, start, notify, [set/get] FrameState, [set / get]| Work, initColls, recColls,
getColls, sync [}

This concludes Stage 4 and thereby the SH phase. We finally present the entire process for SH.
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5.3.6 Process

The complete process for the SH phase is presented below. Its state and data operations are in fact the same
as those of CDxE_MH , apart from SetCollisionsFromParts having been removed.

system CDzE_SH = begin
state CDxSHState == CDzMHState

__Init
CDxzSHState’

currentFrame’ = new RawFrame
state’ = new StateTable
vozel_map’ = new HashMap[Vector2d, List| Motion]]
work’ = new Partition(4)
collisions’ = 0

__StoreFrame
ACDzSHState
frame? : Frame

Jposns, posns’ : Frame; motions, motions’ : Frame |
dom posns = dom motions A dom posns’ = dom motions’ e
posns’ = frame? N\
motions’ =
{a : dom posns’ e a — if a € dom posns then (posns’ a) —y (posns a) else ZeroV} A
posns = F(currentFrame) N\ motions = G(currentFrame, state) A
posns’ = F(currentFrame’) A motions’ = G(currentFrame’, state’)

_ ReduceAndPartition Work
ACDzSHState

currentFrame’ = currentFrame A state’ = state
Iposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A\ motions = G(currentFrame, state) N

Va1, ag : Aireraft | {a1, a2} C dom posns e
(a1, az) € CalcCollisionSet(posns, motions) =
31 : List[Motion] | I € vozel_map’ . values() . elems() o
MkMotion (a1, posns a1 — v motions ay, posns ay) € 1. elems() A
MkMotion(ag, posns ag —y motions ag, posns ag) € 1. elems()

__ CalcPartCollisions
=ZCDxSHState
peolls! : int
i7:1..4

peolls! =
ay : Aireraft; ag @ Aircraft |
31 : List[Motion] | | € work . getDetector Work(i?). elems() o
d v, vy : Vector; wy, ws : Vector e
# MkMotion(ay, v, wr) € 1. elems() A
MkMotion(ag, v2, we) € 1. elems() A
collide((vy, w; —v v1), (v, w2 —y va))

div 2
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__CalcCollisions

2CDzSHState

colls! : N

dposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) A motions = G(currentFrame, state) A

|
T eollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# collset) div 2)

InputFrameHandler =
puX o (next_frame? frame — (wait0.. SFrp ; StoreFrame)) « INP_DL;
setFrameState | currentFrame ! state — skip ; reduce — skip ; sync — X

ReducerHandler =
pnX @ reduce — skip ; getFrameState ? currentFrame ? state —
wait0.. RPWrp ; ReduceAndPartitionWork ; setWork ! work — skip;
initColls — skip ; start — skip ; detect — skip ; sync — X

DetectorHandlerl =
nX o detect — skip ; getWork ? work — var collsl : int @
wait0.. CPCrp; (3i?: Z e CalcPartCollisions[colls1/pcolls!] A i? = 1);
recColls ! collsl — skip ; notify!1 — skip; sync — X
DetectorHandler2 =

pnX @ detect — skip ; getWork ? work — var colls2 : int @
wait0.. CPCpp; (347 : Z e CalcPartCollisions[colls2/pcolls!] A i? = 2);
recColls! colls2 — skip ; notify!2 — skip ; sync — X

DetectorHandler3 =
nX o detect — skip ; getWork 7 work — var colls3 : int @
wait0.. CPCrp; (3i?: Z e CalcPartCollisions[colls3/pcolls!] A i? = 3);
recColls | colls3 — skip ; notify!3 — skip; sync — X
DetectorHandlerd =

pnX e detect — skip ; getWork ? work — var colls4 : int ®
wait0.. CPCpp; (347 :Z e CalcPartCollisions[collsd/pcolls!] A i? = 4);
recColls! collsd — skip ; notify!4 — skip ; sync — X

OutputCollisionsHandler =
nX @ output — getColls 7 collisions —
var colls : int @ wait0.. CCrp ; CalcCollisions;
(output_collisions ! colls — skip) 4 OUT_DL; sync — X

Cycle = (uX ® wait FRAME_PERIOD ; sync —s X))
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System =

InputFrameHandler
[{ currentFrame, state} | { reduce, sync [} | {voxzel_map, work}]
(ReducerHandler
[{vozel_map, work} | { detect, sync |} | 2]
(DetectorHandler1
[@ | { detect, sync |} | 2]
(DetectorHandler2
[@ | { detect, sync |} | 2] \
(DetectorHandler3
[@ | { detect, sync |} | 9]
(DetectorHandler4
[@ | {syncl | 2]
OutputCollisionsHandler)))))

[{ currentFrame, state, voxel_map, work} | { sync[} | @] Cycle
{ reduce, detect, output, start, notify, sync,
setFrameState, getFrameState, set Work, get Work, initColls, recColls, getColls [}

MArea =

var currentFrame : RawFrame ®

var state : StateTable ®

var work : Partition @

var collisions : int ®
(setFrameState ? v1 7 v2 — (currentFrame := vl ; state := v2)) O
(getFrameState ! currentFrame ! state — skip) O If
(setWork ? v — work := v) O

uX o | (getWork ! work — skip) O 7 X

(initColls —> collisions := 0) O
(recColls ?x — (wait0.. RCrp ; collisions := collisions + z)) O
(getColis ! collisions —» skip)

var active : P(1..4) ®
(start — active := {1,2,3,4})

O
active := active \ {z}; .
pxe (notify? & — if active = @ — output — skip ) » X
nowy s | = active = @ — skip
fi
System

[{ currentFrame, state, voxel_map, work} |
® Init; { setFrameState, getFrameState, set Work, get Work,
initColls, recColls, getColls, start, notify, sync [} | @]
MArea

end

Parts of the process that could not be parsed due to limitations of the Circus parser in CZT are highlighted.
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5.4 Phase AR

In the AR phase we carry out algorithmic refinement. This also replaces (class) values by references to
objects. We will not discussed this phase in as much detail as the previous phases for our example. There
are, however, some refinements which are noteworthy and we shall briefly examine.

Refinement of CalcCollisions

The CalcCollisions data operation is used by OQutputCollisionsHandler to calculate the number of collisions
from the other shared variables. We refine it by simple returning the value of collisions. For this, we have
to prove the following operation refinement to discharge.

_ ClalcCollisions
=CDzSHState
colls! : N

Iposns : Frame; motions : Frame | dom posns = dom motions e
posns = F(currentFrame) N\ motions = G(currentFrame, state) A

(
Feollset : F (Aircraft x Aircraft) | collset = CalcCollisionSet(posns, motions) e
(# collset = 0 A colls! = 0) V (# collset > 0 A colls! > (# coliset) div 2)

C

colls := collisions

This refinement is used to simplify the OutputCollisionsHandler action as follows.
OutputCollisionsHandler

C “refinement of CalcCollisions and copy rule”

X e output — getColls ? collisions —»
var colls : int ® wait0.. CCrp ; colls := collisions;
(output_collisions ! colls — skip) « OUT_DL; sync — X

M

“elimination of local variable colls using a symmetric version of the law var-intro”

nX @ output — getColls ? collisions — wait0 .. CCrp;
(output_collisions ! collisions —» skip) <« OUT_DL; sync — X

M1

“elimination of time budget using the law narrow-time-budget-1”

HnX @ output — getColls ? collisions —
(output_collisions ! collisions — skip) <« OUT_DL; sync — X

We thus obtain the simplified operation below for the handler outputting the collisions.

OutputCollisionsHandler =
HnX @ output — getColls 7 collisions —
(output_collisions! collisions —» skip) <« OUT_DL; sync — X

Its behaviour is now simply to read the value of the shared collisions variable and output it on the channel
output_collisions.
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Refinement of MArea

A second algorithmic refinement worth mentioning a (data) refinement of part of the MArea action.

MArea =

var currentFrame : RawFrame ®

var state : StateTable ®

var work : Partition ®

var collisions : int ®

(setFrameState ? v1? v2 — (currentFrame := vl ; state := v2)) O
getFrameState ! currentFrame ! state — skip) O Il
setWork ?v — work := v) O

getWork ! work — skip) O ; X

(
(
pX e | (
(initColls — collisions := 0) O
(
(

recColls 7z — (wait 0 .. RCrp ; collisions := collisions + z)) O
getColls ! collisions — skip)

var active : P(1..4) @
(start — active := {1,2,3,4})
O
active := active \ {z};
if active = @ — output — skip
| = active = @ — skip )
fi

nX e
(notify 7 x —

The highlighted action above uses and abstract variable active to retain information about handlers that are
still active in caclulating their collisions result. In Appendix A.6, we include a model for the DetectorControl
class used to record this data in the program. With it, we refine MArea as follows.

MArea =
var currentFrame : RawFrame ®
var state : StateTable ®
var work : Partition @
var collisions : int ®
(setFrameState ? vl ? v2 — (currentFrame := vl ; state := v2)) O
(getFrameState ! currentFrame ! state — skip) O Il
(setWork ? v — work := v) O
uX o | (getWork ! work — skip) O 7 X
(initColls — collisions := 0) O
(recColls ?x — (wait 0 .. RCrp ; collisions := collisions + x)) O
(getColls ! collisions —» skip)

var control : DetectorControl ® control := newM DetectorControl;
(start — control . start())
O

notify 7 i —
uXx e control . notify(i); 7 X
if control . done() = jtrue — output —» skip
| = control . done() = jtrue — skip
fi

The control object of type DetectorControl retains the number of active handlers by way of a boolean array.
Synchronisations on start and notify result in calling the corresponding methods on the data object. The
right-hand branch of the parallelism in fact models an active object now: that is a data object that interacts
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through synchronisations with other processes. The actual model for the class is thus a mixture of the
OhCircus class specification of the data object as well as the active part in the MArea action.
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6 Anchor S

In this section, we sketch the S Anchor model for our case study. Since the CD, is more complex than
our previous example in [6], we shall not attempt to specify the model in full detail here. Its exact shape
moreover depends on the precise definition of SCJCircus, which is still work in progress. Each type of
SCJCircus paragraph is discussed in a separate subsection in the remainder of this section.

6.1 CD, Safelet
In the original CD, program, the setUp() method is defined as follows.

public void setup() {
Constants.PRESIMULATE = true;
new ImmortalEntry().run();
new Simulator().generate();

}

The first and third statements configure and instantiate a simulator and thus can be ignored. The run()
method of the ImmortalEntry class, called in the second line, merely initialises a static field frameBuffer
of this class. This is also part of the simulation, hence the actual content of setup() is void terms of our
model. The implementation of tearDown() in the original program calls a static method dumpResults()
but this merely reports results of the benchmark and thus is not relevant for the model either.

Because of the above the safelet SCJCircus paragraph takes the same trivial shape as in [6].

safelet CDxSafelet = begin
setUp = skip
tearDown = skip

end

6.2 Mission Sequencer

We first have to introduce a mission identifier for the single mission of the parallel CD,.
‘ CDzMissionld : Missionld

The model of the mission sequencer is likewise identical to the one for the serial line.

sequencer CDzMissionSequencer = begin
state CDxzMissionSequencerState == [ mission_done : boolean |
initial = mission_done := jfalse

getNextMission = res ret : MissionId ®
if mission_done = jfalse —>
mission_done := jtrue;
(ret := CDxMissionld
| = mission_done = jfalse — ret := nullMId
fi

end

The only difference in comparison to [6] is the use of the name CDzMissionId rather than ProtocolMission.
Strictly, we could even make our job easier here since getNextMission() is only called once in our program,
as the mission does not terminate. Because of this we have no obligation to return null with the second call.
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6.3 CD, Mission

The SCJCircus paragraph for the CDxMission class is more interesting as it takes care of the construction
the various handlers and software events as well as encapsulates shared data via its MArea action.

mission CDzMission = begin

state C'DzMissionState
currentFrame : ref RawFrame
state : ref StateTable

work : ref Partition

collisions : int

control : ref DetectorControl

"7

Init =
currentFrame := newM RawFrame;
state := newM StateTable;
work := newM Partition(4);
collisions := 0
initialize =
var reduce : AperiodicEvent ® reduce := newEvent AperiodicEvent();
var detect : AperiodicEvent ® detect := newEvent AperiodicEvent();
var output : AperiodicEvent ® output := newEvent AperiodicEvent();
control := newM DetectorControl(output,4) ; DetectorControllnit ! control — skip
var hy : InputFrameHandler ® hy := newHandler InputFrameHandler(self, reduce);
var hy : ReducerHandler ® hy := newHandler (reduce) ReducerHandler(self, detect, control);
var hg : DetectorHandler ® hsy := newHandler(detect) DetectorHandler(self, control, 1));
var hy : DetectorHandler ® hy := newHandler(detect) DetectorHandler(self, control, 2));
var hs : DetectorHandler ® hs :== newHandler(detect) DetectorHandler(self, control, 3));
var hg : DetectorHandler ® hg := newHandler(detect) DetectorHandler (self, control,4));
var hy : OutputCollisionsHandler ® h; := newHandler (output) OutputCollisionsHandler(self);
register h; ; register hy ; register hg ; register hy ; register hs ; register hg ; register iy

cleanup = skip

MArea =
var currentFrame : ref RawFrame ®
var state : ref StateTable ®
var work : ref Partition ®
var collisions : int ®

(setFrame ? value — currentFrame := value) O
getFrame ! currentFrame — skip) O
setState ? value — state := value) O
getState ! state — skip) O
setWork ? value — work := value) O .
getWork ! work — skip) O ’
initCollsC — collisions := 0 ; initCollsR — skip) O
recCollsC ? 1 —s wait0.. RCrp ;- collisions := collisions + x); > O
recCollsR — skip
getColls ! collisions — skip)

(
(
(
,uXoE
(
(
(

end

Due to limitations of the tools for Circus it is at present not possible to parse the initialize action, indicated
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by the highlight above. The model corresponds directly to the SCJ code of this class recaptured below.

public class CDxMission extends Mission {
/* Shared objects in mission memory. */

public RawFrame currentFrame;
public StateTable state;

public Partition work;

public int collisions;

public DetectorControl control;

/* Constructor of the class. */

public CDxMission() {
currentFrame = new RawFrame();
state = new StateTable();
work = new Partition(4);
collisions = 0;

}
/* Initialisation method call by the SCJ infrastructure. */

public void initialize() {
AperiodicEvent reduce = new AperiodicEvent();
AperiodicEvent detect = new AperiodicEvent();
AperiodicEvent output = new AperiodicEvent();
control = new DetectorControl(output, 4);
InputFrameHandler hl = new InputFrameHandler (this, reduce);
ReducerHandler h2 = new ReducerHandler(this, detect, control, reduce);
DetectorHandler h3 = new DetectorHandler(this, control, 1, detect);
DetectorHandler h4 = new DetectorHandler(this, control, 2, detect);
DetectorHandler h5 = new DetectorHandler(this, control, 3, detect);
DetectorHandler h6 = new DetectorHandler(this, control, 4, detect);
OutputCollisionsHandler h7 = new OutputCollisionsHandler(this, output);
hl.register()
h2.register();
h3.register();
h4.register();
h5.register();
h6.register();
h7.register();

}

/* Clean-up method call by the SCJ infrastructure. */

public void cleanup() { }

/* Specifies the memory requirements of the mission (not modelled). */
public long missionMemorySize() {

return Constants.MISSION_MEMORY_SIZE;
}
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/* Methods to access shared data, modelled by the MArea action. */

public RawFrame getFrame() {
return currentFrame;

}

public void setFrame(RawFrame frame) {
currentFrame = frame;

}

public StateTable getState() {
return state;

3

public void setState(StateTable state) {
this.state = state;

3

public Partition getWork() {
return work;

}

public void setWork(Partition work) {
this.work = work;

}

public synchronized void initColls() {
collisions = O;

3

public synchronized void recColls(int n) {
collisions += n;

3

public synchronized int getColls() {
return collisions;
}
}

The only deviation is the additional method missionMemorySize () which we do not model as we are not
concerned with resource issues. The synchronized identifiers are implicit in the specification of MArea.
We note that the above code is from the ‘clean’ version of the program which, unlike the runnable version,
exclude any simulation code and is compliant with Version 0.78 of the SCJ Technology Specification.
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6.4 CD, Handlers
The SCJ program of the parallel CD,, consists of seven handlers.

e 1 x InputFrameHandler (periodic, running at maximal priority)

e 1 x ReducerHandler (aperiodic, running at normal priority)

e 4 x DetectorHandler (aperiodic, running at normal priority)

e 1 x OutputCollisionsHandler (aperiodic, running at maximal priority)

In terms of control, InputFrameHandler is released periodically by a timer and releases ReducerHandler
by virtue of a software event. ReducerHandler releases all DetectorHandler instances, and the last active
DetectorHandler releases OutputCollisionsHandler indirectly by calling notify(int) when finishing its
work. We now discuss the SCJCircus models for the four types of handlers in more detail.

6.4.1 InputFrameHandler

This is the only periodic handler of the application. It reads the next frame and deposits it in the global
variable currentFrame. Before doing so it copies the content of the current frame into the state data structure.
In fundamental terms InputFrameHandler is similar to Handlerl of the serial line example in [5].

periodic(FRAME_PERIOD) handler InputFrameHandler = begin
— state InputFrameHandlerState
‘ maission : Missionld

‘ reduce : AperiodicEvent

~

initial InputFrameHandlerInit(m : Missionld, evt : AperiodicEvent)
mission := m ; reduce := evt
handleAsyncEvent =

(next_frame ? frame — (wait 0 .. STrp ; StoreFrame(frame))) <« INP_DL;
fire reduce

StoreFrame(frame : RawFrame) =
var currentFrame : ref RawFrame ®
getFrame? f — currentFrame = f;
var state : ref StateTable ®
getState 7 s — state :=s;

{* Update currentFrame and state according to frame. *}
dispatch handleAsyncEvent

end

Since the handler is release periodically by a timer, the dispatch actions takes a simple form of just calling
handleAsyncEvent. The behaviour of the handler action is to wait for communication on next_frame and
then invoke StoreFrame while passing the frame object read from the hardware. The communication must
occur within INP_DL time units from the start of each cycle. The fire construct is an extension of SCJCircus
used to fire a software event. It corresponds to a respective call to the fire() method of AperiodicEvent.
The computation carried out by StoreFrame is mostly omitted; it emerges during the AR phase.
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6.4.2 ReducerHandler
We now sketch the S model for ReducerHandler.

aperiodic handler ReducerHandler = begin

— state ReducerHandlerState
‘ massion : Missionld
‘ detect : AperiodicEvent

control : ref DetectorControl

~

initial ReducerHandlerInit(m : Misisonld, evt : AperiodicEvent, ¢ : ref DetectorControl)
mission := m ; detect := evt ; control := ¢
handleAsyncEvent =
var currentFrame : ref RawFrame ® getFrame ? f — currentFrame := f;
var state : ref StateTable ® getState 7 s — state := s;
var work : ref Partition ® getWork 7 w — work := w;
var vozel_map : HashMap| Vector2d, List|Motion)] ®
wait 0 .. RPWTB,
vozel_map := newP HashMap();
{* Execute algorithm for voxel hashing and populate wvozel_map. *}
vozel_map . put(...);
work . clear();
for i = 0 to vozel_map . values() .size() — 1 @ .
(work . record VozelMotions(vozel_map . values() . get(i))) ’
initCollsC — skip ; initCollsR — skip;
startC — skip ; startR — skip;
fire detect

dispatch release_handler . ReducerHandlerld — handle AsyncEvent

end

The difference to, for instance, Handler2 of the serial line example in [6] is that this handler is released by
a software event rather than an external event. The synchronisation on release_handler . ReducerHandlerld
highlights this. In the P model of software events, the release_handler channel is used to cause the periodic
release of a handler. The channel is parametrised by the id of the handler to be released. Details of the
voxel hashing algorithm are again omitted; they are a concern for AR.
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6.4.3 DetectorHandler

The aperiodic detection handler is specified below. Since we have four instances of this handler in the
program, the process is parametrised by an identifier of type int.
aperiodic handler DetectorHandler = hdl : Handlerld ® begin

— state DetectorHandlerState
‘ massion : Missionld
‘ control : ref DetectorControl

id : int

o~

initial DetectorHandlerInit(m : Missionld, c : ref DetectorControl, n : int)
mission ;= m; control == c; id:=mn
CalcPartCollisions = res pcolls : int ®
pcolls = 0;
var work : Partition ® getWork 7 w — work = w;
for i = 0 to work . getDetector Work(id) . size() — 1 ®
var motions : List[Motion] @
motions := work . getDetector Work (i) . get(i);
peolls := peolls + self . determineCollisions(motions);

determineCollisions = val motions : List[Motion]; res ret : int ®
{* Algorithm for counting collisions. *}
ret := ...

handleAsyncEvent =
var colls : int ®

wait0.. CPCrp; CalcPartCollisions(colls);
recCollsC'! colls — recCollsR — skip;
notifyC'! id — notifyR — skip

dispatch release . DetectorHandlerld — handle AsyncEvent()

end

Details have been omitted concerning the algorithm that counts collisions in a voxel motion list (this is done
inside the method determineCollisions). We have four instances of this process in the S anchor:

DetectorHandler(1) || DetectorHandler(2) || DetectorHandler(3) || DetectorHandler(4)

6.4.4 OutputCollisionsHandler
This is a simple aperiodic handler that outputs the collisions.

aperiodic handler OutputCollisionsHandler = begin

— state OutputCollisionsHandlerState
\ mission : Missionld

initial OutputCollisionsHandlerInit(m : Missionld) = mission := m

handleAsyncEvent = var colls : int ®
getColls 7 ¢ — colls := c;
(output_collisions ! colls — skip « OUT_DL)

dispatch release_handler . OutputCollisionsHandlerld — handleAsyncEvent

end
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The handler method first obtains the detected collisions using the getColls method provided by the mission
class to access the shared collisions variable. It then outputs the collisions on the output_collisions channel,
imposing a deadline on the communication to ensure that the hardware accepts the output within the
required time interval.

6.4.5 Active Objects

We note that the OhCircus class model of DetectorControl does not contain a fire statement. This, however,
is needed to give a faithful model of this class. Below we capture the active behaviour of the DetectorControl
instance used by the program by way of a an SCJCircus paragraph active. It is also part of the S anchor.

active DetectorControl = begin

. state DetectorHandlerState
‘ control : ref DetectorControl

Init = DetectorControllnit ? ¢ — control = ¢

MArea =
(startC' — control . start() ; startR — skip)
O
notifyC 71—
control . notify(i);
(control . done() & fire control . event — skip)
U ;
(= control . done() & skip)
notifyR — skip

nX e

end

The state includes a reference to the detector control class object whose active behaviour is wrapped by the
process. The Init action connects the process to this object via an input prefix on the DetectorControllnit
channel. The communication is raised inside the CDzMission paragraph when the control object is created.
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A Class Definitions

In this section we present the specification of OhCircus classes of the program relevant to the models.

A.1 RawFrame class

class RawFrame = begin

__ statics RawFrameStatics

private MAX_PLANES : int;
private MAX_SIGNS : int

__ sinit RawFrameSInit

RawFrameStatics’

MAX_PLANES' = 1000
MAX_SIGNS' =10« MAX_PLANES’

__ state RawFrameState

public lengths : intArray
public callsigns : byteArray
public positions : floatArray
public planeCnt : int

lengths # null A callsigns # null A positions # null
lengths . length() = MAX_PLANES

callsigns . length() = MAX_SIGNS

positions . length() = 3« MAX_PLANES

0 < planeCnt < MAX_PLANES

__ initial RawFramelnit

RawFrameState’

lengths’ = newM intArray(MAX _PLANES)
callsigns’ = newM byteArray(MAX_SIGNS)
positions’ = newM floatArray(3 « MAX_PLANES)
planeCnt’ =0

__logical function getCallSignOffset

=RawFrameState
plane? : int
result! : int

0 < plane? < planeCnt
result! =3 {i:0.. plane? — 1 @ i — lengths . getA(i)}

__logical function getCallSign

ERawFrameState
plane? : int
result! : seq byte

0 < plane? < planeCnt
# result! = lengths . getA(plane?)
Vi:1..lengths.getA(plane?) o
result!(i) = callsigns . getA(self . getCallSignOffset(plane?) + i — 1)
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__ logical function find
ZERawFrameState
a? : Aircraft
result! : Z

if (3,7:0.. (planeCnt — 1) o self . getCallSign (i) =
result! = [ then (pi:0.. (planeCnt — 1) | self . getCallSign (i)
else—1

a?)
=a

7)

public copy(lengths : intArray, signs : byteArray, positions : floatArray) =
var posl, pos2, pos3, pos4d : int @
posl :=0; pos2:=0; pos3 :=0; posd :=0;
for i = 0to lengths . length() — 1 ®
self . lengths . setA(posl, lengths . getA(i));
posl := posl + 1,
self . positions . setA(pos2, positions . getA(3 * 1));
pos2 := pos2 + 1,
self . positions . setA(pos2, positions . getA(3 * i + 1));
pos2 1= pos2 + 1,
self . positions . setA(pos2, positions . getA(3 * i + 2));
pos2 := pos2 + 1,
forj = 0to lengths . getA(i) — 1 ®
self . callsigns . setA(pos3, signs . getA(posd + j);
pos3 := pos3 + 1
posd := posd + lengths.getA(i)
planeCnt := lengths.length()

?

end

This class has only one non-logical method which is used to initialise the instance variables from a given
set of arrays. It also introduces two static variables which, however, are merely used as constants. The

remainder of the SCJ program accesses the fields of the class directly to obtain the position data of the
aircrafts (all instance variables of the class are public).
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A.2 StateTable class
Abstract version
The abstract StateTable class is not concerned with memory allocation issues.

class StateTableA = begin

_ StateTableState
private posnMap : HashMap[CallSign, Vector3d|

posnMap # null

initial Init = posnMap := newM HashMap
The abstract StateTable class is not concerned with memory allocation issues.

public put(callsign : CallSign, z : float,y : float, z : float) =

posnMap . put(callsign, new Vector3d(z,y, z))

public get(callsign : CallSign) = ret := posnMap . get(callsign)

end
The posnMap member variable of type HashMap is used to store Vector3d objects under keys being CallSign
objects. The model for the HashMap class is included in Appendix 77.

Concrete version

The concrete StateTable class in comparison considers memory areas.

class StateTableC = begin

__ statics StateTableStatics
MAX_AIRPLANES : int

__ sinit StateTableSInit
StateTableStatics'’

MAX_AIRPLANES' = 10000

__StateTableState
private posnMap : HashMap[CallSign, Vector3d|
private allocated Vectors : Vector3dArray
private used Vectors : int
private r : StateTable_R

posnMap # null A allocated Vectors # null
0 < usedVectors < allocated Vectors . length()

initial Init =
r := newM State Table_R(self);
allocatedVectors :== newM Vector3dArray(MAX _AIRPLANES);
for index = 0 to allocated Vectors . length() — 1 @ .
allocatedVectors . setA(index, newM Vector3d())) )’
used Vectors := 0
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public put(callsign : CallSign, z : float,y : float, z : float) =
r. callsign := callsign;

r.x =1
Ty =y
.z =2

MemoryArea . getMemoryArea(self) . executeInArea(r)
public get(callsign : CallSign) = ret := posnMap . get(callsign)
end
This class introduces mechanisms to solve memory allocation issues ensued by the dynamic allocation of

data in mission memory. This is, in particular, the allocation of Vector3d objects. It utilises an inner class
StateTable_R to execute code in mission memory that updates the HashMap.

Inner class R of StateTable

The inner class below is used to ensure that put operations carried out on the HashMap are executed in
mission memory. This should, in principle, not be necessary, however, I suspect that adding elements to the
HashMap causes dynamic allocation of data, too, in the original program of the CD,. This is fundamentally
an issue with the memory behaviour of libraries and subject to future research.

class StateTable_R = begin

_ StateTable_RState
private outer : StateTable
public callsign : CallSign
publicz, y, z : float

outer # null

initial Init(o : StateTable) = outer := o

public run =
var v : Vector3d e v := outer . posnMap . get(callsign);
if v = null —
v := outer . allocated Vectors . get(used Vectors);
used Vectors := usedVectors + 1;
outer . posnMap . put(callsign, v);

| = v = null — skip
fi;

V.T =T

V.Y =Y

v.z=2

end

Other than the potential problem of HashMap internally allocating data, I do not see why the content of the
run() method cannot be executed in per-release memory. Are there downward references? Another issue is
how we make explicit in SCJCircus that a piece of code should run in a particular memory area. We might
not want to do this via a class and data object as above. These are still open issues for the language.

107



A.3 C(allSign class
The class CallSign is used to represent call sign objects in the program.

class CallSign = begin

__state CallSignState
private val : byteArray

val # null

initial Init = valwv : byteArray ® val :== v

public hashCode = ret : boolean ®

varh e h :=0;
(fori = 0to val . length() — 1 ® h:= h + val . getA(i));
ret :=h

public equals = val obj : Object; res ret : boolean ®
ret := if (self = obj) then jtrue else jfalse

public compareTo = val obj : Object ® . ..

end

The definition of the compareTo(obj : Object) method has been omitted; it is not central to the models
presented in the report. Objects of CallSign are used as map keys in StateTable. This class is immutable.

A.4  Vector2d class
The class Vector2d is used to index the map that results from voxel hashing.

class Vector2d = begin
— state Vector2dState
‘ xR
! y: R

initial Init = valv_z : R; valv_y:Rez:=wv_xz; y:= v_y
end

The class Vector2d is immutable too.
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A.5 Partition class

class Partition = begin

__ state PartitionState
private parts : ListArray|List[Motion]|;
private counter : int

parts # null A 0 < counter < parts.length()

initial Init = valn : int ®
parts ;== newM ListArray(n);
for index = 0 to parts . length() — 1 ® .
parts . setA(index, newM LinkedList()) )’
counter := 0

public sync clear =
(for index = 0 to parts . length() — 1 ® parts . clear());
counter := 0

~

public sync record VozelMotions(motions : List[Motions))
parts . getA(counter) . add(motions);
counter := (counter + 1) mod parts . length()

public sync getDetectorWork = valid : int;
res ret : List[List[Motion]] ® ret := parts. getA(id — 1)

end

A.6 DetectorControl class

class DetectorControl = begin

__state DetectorControlState
private idle : booleanArray

idle # null

initial DetectorControllnit = valn : int ® idle := newM booleanArray(n)

public sync start =
for index = 0 to idle . length() — 1 ® idle . setA(index, jfalse)

public sync notify = valid : int @ idle. setA(id — 1, jtrue);
function sync done =

ret := jtrue;

for index = 0 to idle . length() — 1 ®

if idle . getA(index) = jfalse — ret := jfalse

[| - idle . getA(index) = jfalse — skip

fi

end

We note that the specification of the done() method is not complete, only capturing changes made to data.
As explained in [6], we require a process / action model to give a full account of the active behaviour.
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B Refinement Laws

This appendix summarises all significant refinement laws that are used throughout the refinement strategy.

B.1 Circus Laws

Circus Law 1 (distr-prefix-seq)
c— (Al, AQ) = (C*)Al), As
Circus Law 2 (seqg-to-par-1)

Ay Ay = ((Ar; ¢ —skip) [wrtV(Ay) [{ e | wrtV(A2)] (¢ — A2)) \ {c]}
provided wrtV(A;) NwrtV(A2) = @ and wrtV (A1) NusedV(A2) = @ and
c & usedC'(A1) U usedC(Asz)

Circus Law 3 (seq-to-par-2)

Ay Ay = ((Ar; ela —skip) [wrt V(A | el | wrtV(A2) ] (c?z — A2)) \ {c]}
provided wrtV(A4;) NwrtV(A4s) = & and wrtV (A1) NusedV (A2) = {z} and
¢ & usedC (A1) U usedC(Az)

Circus Law 4 (conj-to-par)
Op1 A Opy = Opy [wrtV(Opy) | @ | wrtV(Ops) ]| Ope provided wrtV (Opr) NwrtV (Ops) = &
Circus Law 5 (distr-var-hide)
varz: T ® (A\ cs) = (varz: T ® A)\ cs
Circus Law 6 (distr-var-par)
varz: T ® (A1 [...] As) = (varz: T e Ay)[...] (varz : T @ Aj)
Circus Law 7 (remove-var)
varz: T ® A = A provided z ¢ FV(A)
Circus Law 8 (compact-write-sets-par)

Ay nsy|cs|nso] Ao = Ay [ ns) | cs| nsy] Az

provided (ns; \ ns{) NwrtV(A;) = @ and (nsy \ nsy) NwrtV(4s) = @
Circus Law 9 (distr-prefix-par-1)

c?c— (A1 [ns1|es|nse] ds) = (c?x— Ay [ns1 | esU{c} | ns2] c?z — Ag)
provided c¢ ¢ usedC(A4;) and ¢ & usedC(Asz)

Circus Law 10 (distr-prefix-par-2)

(A1 [nsy | cs|nse] A2); clz — skip =
(A1; c?y—>skip)[ns; | esU{c]}| ns2] (A2; ¢!z — skip)
provided c¢ € usedC(A;) and ¢ & usedC(A3) and z & ns;
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Circus Law 11 (lockstep-intro)

(X ® (A1 [nsy | cs|ns2] A2); X) =

(uX ® Ay ; sync — X)

[nsi | esU{ Syncl} | nso] | \ { sync
(uX ® Ay ; sync — X)

provided sync & usedC(A1) U usedC(Az) and wrtV (A1) NusedV (Az) = @ and
wrtV(Az) NusedV (A1) = @

Circus Law 12 (replace-sync-chan-seq)

(uX ® Ay; claz — skip; sync — X)

[ns1 | es | nsa \{Jc[}
(WX @ c?z — Ay ; sync — X)

(uX ® Ay ; ¢y!lz — skip; sync — X)
[ns1 ] es\q{cl]| ns]
(uX @ cx 72 — Ay 5 sync — X) \ e, e}
[ns1 Unsy | { c1, ca, syncl | 9]
(,LLXO 1 7x — cplz —> skip; sync—>X)
provided { ¢, sync} C ¢cs A ¢ € usedC (A1) U usedC(A2) and ¢y and ¢z are fresh channels

Circus Law 13 (var-intro)

A(z) = varv: Teov:=1x; A(v)

provided v is not free in A
Circus Law 14 (extract-var-prefix)

clz— (varv: Te®A) =varv: Teclz— A

provided z and v are distinct variables
Circus Law 15 (extract-var-seq)

(varv: Te® Ay); Ay = (varv: T @ Ay ; Ay)

provided v is not free in Aq
Circus Law 16 (extract-var-rec)

puX e (varv: TeA) =varv: Te(uX e A)

provided v is initialised before use in A
Circus Law 17 (distr-prefix-par-3)

c—skip; (skip[ns | cs | nsy]] A) = skip [ ns; | ¢s | ns2 ] (¢ — A)

provided c ¢ cs
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Circus Law 18 (distr-prefix-par-4)

cle —skip; (A1 [ ns; | cs|nso] A2) = (¢lz —>skip; Ay) [ nsi | ¢s|ns2 ] (¢?y — Ag)

provided ¢ € ¢s and y is not free in Ao
Circus Law 19 (distr-prefix-par-5)

cle—wv:i=xa; (A1 [ns1|cs|ns2a] A2) =
(c?e—v:i=a; A1) [nssU{v}|cs|ns2] (c?y — A2)

provided ¢ € ¢s and v and y are not free in A,
Circus Law 20 (extchoice-par-intro)

((c— A1); Aa)[nsi|es|ns](c— As) =
(((c— A1)0(c1 — By)O ... O(cp, — Bp)); Aa)[ns1|es|nse] (¢ — As)

provided c € ¢s and c is distinct from all ¢; (the B; can be chosen arbitrarily)
Circus Law 21 (seqg-skip-left-intro)

A =skip; A
Circus Law 22 (par-skip-intro)

skip = (skip [2 | @ | @ ] skip)
Circus Law 23 (extend-sync-par)

Ay [nsi|cs|nsa] Ag = Ay [nsy| esUces' | nsy ] A
provided cs' N (usedC (A1) U usedC(A2)) = @

Circus Law 24 (extchoice-comm)
A1 a A2 = A2 O A1
Circus Law 25 (distr-rec-par-1)

uX ® (A1 [nsy | cs|nse] Ag); c— X =

(WX @Ay ; c— X)[nsy|es|ns] (uX ® Ay; ¢ — X)
provided ¢ € ¢s and ¢ ¢ usedC (A1) U usedC(As) and
wrtV (A1) NusedV (Ag) = @ and wrtV (As) NusedV (Aq)

Circus Law 26 (distr-rec-par-2)

UX ®(((c1 — A1 0cy—> Ag); As)[[nsy|es|ns2] (cr — Aq)); X =

(WX ®(cp — A1 Oca—Az); As; X)[ns1|es|nse] (uX @ ¢ — Ay — X)
provided {ci,ca} C cs and ¢ & usedC(A;) for all ¢+ € {1,2,3,4} and

(wrtV (A1) UwrtV (Ag) UwrtV (Asz)) NusedV(A4) = & and

wrtV (A4) N (usedV (A1) UusedV (Ag) UusedV (A3)) = &

Circus Law 27 (elim-repeated-seq-rec)

puxXeA; A; ..., A X =puXeA; X
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Circus Law 28 (var-elim)

(varv: Te® A) = A

provided v is not free in A
Circus Law 29 (hidden-sync-intro)

A= (c— A)\ {c| provided c ¢ usedC(A)
Circus Law 30 (extract-hide-prefix)

c—(A\¢es) = (c— A)\ ¢s
provided c¢ ¢ cs

Circus Law 31 (extract-hide-rec)
pX @ (A\ es) = (UX @A)\ ¢s
Circus Law 32 (extract-hide-par-left)

(4, \ cs)[nsy | cs' | nsa] Ao = (Ay [ nsy | cs’ | nsa] Aa) \ cs
provided csNecs’ =@ and csNusedC(Ay) = @

Circus Law 33 (extract-hide-par-right)

Ai[nsi | es' | nsa] (A2 \ es) = (A1 [ nsi | cs’ | ns2] Ag) \ s
provided csNes’ =@ and cs NusedC (A1) = &

Circus Law 34 (idem-par)
A= (A]2 | usedC(A) | @] A) provided wrtV(A) =2 and A is deterministic
Circus Law 35 (seqg-op-comm)

A; Op=0Op; A
provided usedV (Op) U wrtV(A) = @ and usedV(A) U wrtV(Op) = @
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B.2 Circus Time Laws

Circus Time Law 1 (narrow-time-budget-1)

wait ) ..o C wait ] .., provided # < and t) <t
Circus Time Law 2 (narrow-time-budget-2)

waitw:t ..7o® A C waitw:{]..t, ® A provided ¢; <t and t) <t
Circus Time Law 3 (time-prefix-elim)

(c@t — waitt; — t) €« d = ((¢c — skip) « d) || wait #; provided d < t
Circus Time Law 4 (extract-inter-wait-seq)

Op; (A|waitt) = (Op; A) ||| wait ¢
provided Op is a data operation and wrtV(Op) N FV(t) = @

Circus Time Law 5 (extract-inter-wait-var)

varz : T ® (A||waitt) = (varxz: T @ A) ||| wait ¢
provided z & FV (t)

Circus Time Law 6 (extract-inter-wait-waitblock)

waitw : t; .. 15 ® (A(w) || waitt — w) = (waitw : t; .. & ® A(w)) ||| wait

provided t, <t
Circus Time Law 7 (extract-inter-wait-prefix)

(c@t — (A(t) ||| wait (t; — t))) 4 d = ((c@t — A(t)) « d) ||| wait t;
provided d < t

Circus Time Law 8 (remove-unused-time-prefix)
c@t— A = ¢c— A provided t ¢ FV(4)
Circus Time Law 9 (remove-unused-wait-block)
waitw: T ® A = wait T; A provided w ¢ FV(A)
Circus Time Law 10 (distr-sync-deadline-seq)
(c— (41; A2)) €« d = ((c— A1) 4 d); Ag
Circus Time Law 11 (split-time-budget-1)
wait(0..¢t = wait0.. ¢ ; wait0..t provided t =1t + &
Circus Time Law 12 (split-time-budget-2)

wait0..¢t C wait0..¢ ; wait0..& provided 4 +t <t
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Circus Time Law 13 (time-budget-op-comm)
P(Op; waitty .. 1) = P(waitt ..o ; Op) provided Op is a data operation

This law is in fact non-compositional: it is a law about processes rather than actions. Hence, it only holds
if the underlying action Op ; wait ¢; .. t> is embedded in a process P. The justification for the law comes
from the structure and semantics of processes that prevents one from observing the precise time at which an
(internal) state change takes place. It is proved by induction over the structure of processes.

Circus Time Law 14 (distr-wait-seq-var)

wait il .. tp; varz: T® A = varz: T @ (waitt; ..t ; A)
provided z ¢ FV(t;) and z & FV (&)

Circus Time Law 15 (distr-wait-seq-par)

wait ¢, .. 2 ; (Opl [[]] OPQ) = (waitt1 Lt Opl) [[]] (waitt1 ot Opg)
provided Op; and Op, are data operations

Circus Time Law 16 (zero-wait-intro)

A = wait0; A
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B.3 High-level Patterns
High-level Law 1 (seq-share-1)

(uX ® Ay ; c¢lz — skip; sync — X)

[ns1 | es | ns2] \ﬂc|}

(uX ® c?z — Ag; sync — X)

(WX ® Ay ; ¢ylx — skip; ¢z — skip; sync — X)

[nsy [ (es\{cl)U{ el | nse] \ el
(uX ® cg —skip; ca?x — Ay sync — X)
[nstUnsa | { e, et | 2] \ e el

varv: T e

(1?z—v:i=2)0)\ |
MX.((Cg!U—)Skip) » X

provided { ¢, sync} C cs A ¢ € usedC (A1) UusedC(A2) and ¢, ¢y and c3 are fresh channels
High-level Law 2 (seg-share-2)

(uX ® Ay ; clz — skip; sync — X)
[ns1] es1| nseUnsgU...Uns,]
(WX @ c?z — Ay ; sync — X)
[ns2 | ¢s2 | nssUnsgU...Uns,]

\ el

(uX ® c?x — Az ; sync — X)

[nsn—1| cSn—1 | ns,]

(WX @ c?z— A, ; sync — X)

(WX ® Ay ; ¢ylx — skip; ¢z — skip; sync — X)
[nsi | (ess \{cP)U{cs]|ns2UnssU...Uns,]
(uX ® cg —>skip; ca?x — Ay sync — X)
[ns2 | (es2\{c})U{csl | nssUnsaU...Uns,]
(uX ® cs —skip; 7z — As; sync — X)

\fesl

\ﬂcl,CZ[}
[nsn—1 | (esn1 \{lclH) U el | nsn]

(uX ® cg —skip; co?z— A, 5 sync — X)
[ns1 UnsoU...Uns, | {ec1, 2} | 9]

varv: T e

(1?z—v:=2)0)\ .
MX.((Cg!U—)Skip) » X

provided { ¢, sync} C cs; A ¢ ¢ usedC(A;) fori € 1..n and ¢, ¢ and c3 are fresh channels
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High-level Law 3 (par-share)

varv: T @
nX o start — wait 0 .. Initpg ; InitOp;
varzTy, T, ..., T, 1 @

(record ?x — (wait0.. RCrp ; o := 1));
(record ?x — (wait0.. RCrp ; 3 := 1));
(record ? x — (wait0.. RCrp ; ©, :=1));
wait 0 .. Mergerp ; MergeOp([z1, 22, ..., 20 ] );
output ! v — skip ; sync — X

C

varv: T e
init — (wait 0 .. Initrp ; InitOp) O
puX e | record?x — (wait0.. RCpp ; MergeOp([z]])) O] ; X
output ! v — skip

[ | { init, record, output [} | ]

(record 7y — skip) ||

(record 7y — skip) |

nX e init — start — ; output 7y — skip ; sync — X

(rec'o.r'd ?y — skip)
{ init [}
provided InitOp and MergeOp are data operations and
wrtV (InitOp) = {v} = wrtV (MergeOp) and MergeOp(by W ba) = MergeOp(by) ; MergeOp(bz)
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High-level Law 4 (par-share-control)

(/,LX ® A; start — skip; sync — X)
[ns | { start, sync[} | 2]

(/LX ® start —>varv: T ® Ay ; record! v — skip; output?y — skip; sync — X)
[@ | { start, output, sync |} | 9]

(uX ® start —>varv : T ® Ay record! v — skip ; output 7y — skip ; sync — X)

[2 | { start, output, sync [} | ]
(MX ® start —>varv: T ® A, ; record!v — skip; output?y — skip; sync — X)

[ns | { start, record, output, sync |} | 2]

(record 7y — skip) ||

? ki .
pnX e init — start — (record? y — skip) | ; output 7y — skip; sync — X

(rec.o.r'd 7y — skip)
C
(,uX ® A; init — skip ; start — skip; sync — X)
[ns | { start, sync[} | 2]
(,uX ® start —>varv : T ® Ay ; record! v — skip ; output 7y — skip; sync — X)
[ns | { start, output, sync |} | 2]
(,LLX ® start —> varv : T ® Ay ; record! v —» skip ; output 7y — skip ; sync — X)

[ns | { start, output, sync |} | ]
(,uX ® start —>varv : T ® A, ; record! v — skip; oulput?y — skip; sync — X)
provided {start, sync} NusedC(A) = & and
{start, record, output, sync} N usedC(A;) =@ foralli:1..n
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High-level Law 5 (sync-barrier-elim)

(uX ® start — Ay ; done — skip ; sync — X)
[ns1 | cs1| ns2U...Umnsy,]
(WX ® start — Ay ; done — skip ; sync — X)

[ns2 | ¢s2 | ns3U...Uns,]

[nsn—1 | cSn—1 | ns,]

(uX ® start — A, ; done — skip ; sync — X)
(uX ® start — Ay ; notify!1 — skip; sync — X)
[nsi | esi\ {donel} | nsaU...Uns,]
(uX ® start — Ao 5 notify!2 — skip; sync — X)
[ns2 | cs2 \ {{done ]} | nssU...Unsy]

[nsn_1] csn_1\{ donel} | ns,] \ {| notify [}
(uX ® start — A, ; notify! n — skip ; sync — X)
[ns1 U...Umns, | { start, notify, sync [} | 9]

(notify ! 1 — skip) ||
(notify ! 2 — skip) ||

pnX e start — ; done — skip ; sync — X

(notify ! n — skip)
provided { start, done, sync[} C cs; A {start, done, sync} NusedC(A;) =@ foralli:1..n
and notify is a fresh channel of type N

119



High-level Law 6 (sync-barrier-control)

(notify ' 1 — skip) |||

(notify ! 2 — skip) |||

pnXxX e start — ; done — skip ; sync — X

-(.n.otz'fy I'n — skip)
(/LX ® reset — start — X sync — X)
[ | { start, sync |} | 2]
(/LX ® start — notify! 1 — skip ; sync — X)
[@ | { start, sync |} | 9]
(,uX ® start — notify!2 — skip ; sync — X)
[@ | { start, sync |} | 9]

[@ | { start, sync |} | 2] \ {| reset |}
(;LX ® start —» notify ! n — skip ; sync — X)
[ | { reset, notify, sync |} | 2]

var active : P(1..n) ®
(reset — active :=1..n)
O
active := active \ {z};
if active = @ — done — skip
| - active = & — skip )
fi

nX e C X

(notify 7z —
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High-level Law 7 (sync-barrier-design)

(uX ® start — Ay ; done — skip ; sync — X)
[ns1 | cs1| ns2U...Umnsy,]
(WX ® start — Ay ; done — skip ; sync — X)

[ns2 | ¢s2 | ns3U...Uns,]

[nsn—1 | cSn—1 | ns,]

® start — A,, ; done — skip; sync —
nX Ap s d kip ; X
C
(X ® reset —s start —» skip ; sync — X))
[@ | { reset, start, sync |} | 2]
® start — Ay ; notify!1l — skip; sync —
uX t Ay notify!l kip ; X
[ns1 | es1\ {{donel} | nsaU...Unsy]
X o start —> Ao ; notify!2 — skip ; sync — X
K ) ;
[ns2 | csa \ {{donel} | nssU...Uns,]|

[nsn—1 | csn—1\ { donel} | ns,] \ { reset, notify
(uX ® start — A, ; notify! n — skip ; sync — X)
[ns1 U...Unsy, | { start, notify, sync |} | &]

var active : P(1..n) ®
(reset — active :=1..n)
O
active := active \ {z}; .
if active = @ — done — skip !
[| - active = @ — skip )
fi

provided { reset, start, done, sync |} C cs; A {reset, start, done, sync} NusedC(A;) =S foralli:1..n

nX e
(notify 7 x —

and notify is a fresh channel of type N
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C DMock Objects

Dummy definitions that enable the parsing and type-checking of the models.
C.1 Unit Type
[unit]

Empty Tuple

%hZword \emptytuple emptytuple

‘ emptytuple : unit

C.2 Array Types

Array[X]
getA :int — X
setA :int x X — X

-
‘ length : unit — int

intArray == Array[int]
byteArray == Array[byte]
floatArray == Array|float]

booleanArray == Array[boolean)]
C.3 Classes Types
[Object]

— List[X]

elems : unit > P X

— HashMap[X, Y]

get : X - Y
values : unit — List[Y]

— CallSign

— Vector2d

‘ z:R
! y:R
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_ Vector3d

z:R
y: R
z: R

__ RawFrame

planeCnt : int

positions : Array[R]
getCallSign : int — Aircraft
getCallSignOffset : int — int
find : Aircraft — int

— FrameBuffer

StateTable

T position_map : HashMap[CallSign, Vector3d)

— Motion

Partition

T getDetectorWork : int — List[List] Motion]]

— DetectorControl

C.4 Infrastructure Classes

— AperiodicEvent

— InputHandler

— OutputHandler

— ReducerHandler

— DetectorHandler

— DetectorHandler Array

C.5 Auxiliary Functions

‘ MkCallSign : Aircraft — CallSign

- MkMotion : (Aircraft x Vector x Vector) — Motion
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