
Formal Derivation of State-Rich

Reactive Programs using Circus

Marcel Vińıcius Medeiros Oliveira

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

2005

To Lauana and my parents

Abstract

The lack of formalism in most software developments can lead to a loss of precision and
correctness in the resulting software. Formal techniques of program development have
been developed in the past decades and can tackle this problem. Two different approaches
have been taken: one focuses on data aspects, and the other focuses on behavioural aspects
of the systems. Some combined languages have already been proposed to integrate these
two approaches; however, as far as we know, none of them, apart from Circus, includes a
refinement calculus.

This work presents a method that can be applied in order to achieve a formal deriva-
tion of state-rich reactive programs, using Circus, in a calculational style. It extends the
existing Circus refinement strategy to reach Java implementation and formalises its refine-
ment calculus. For that we proposed and mechanised a denotational semantics for Circus,
which was used to prove over one-hundred and forty refinement laws, many of which were
suggested by an industrial case study on which we worked. As far as we know, this is
the only mechanised semantics for languages like Circus; the mechanisation of the Circus
semantics and its theoretical basis, the Unifying Theories of Programming, are the basis
for a theorem prover for Circus. A translation strategy from Circus to Java is also an
important part of this work.

Our method is illustrated by the case study: a safety-critical fire control system. So
far, this is the largest case study on the Circus refinement calculus. We present the
refinement of its abstract centralised specification to a concrete distributed one, and then
its translation to Java, using our translation strategy. We believe that this industrial
case study provides empirical evidence that the formal development of state-rich reactive
processes using Circus is possible in both theory and practice.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 A Simple Development . 6
1.4 Outline . 18

2 Background 21
2.1 Circus . 21

2.1.1 Circus Programs . 21
2.1.2 Channel Declarations . 22
2.1.3 Channel Set Declarations . 22
2.1.4 Process Declarations . 22
2.1.5 Compound Processes . 24
2.1.6 Actions . 25

2.2 The Unifying Theories of Programming 27
2.3 Final Considerations . 29

3 Circus Denotational Semantics 31
3.1 Circus Denotational Semantics . 31

3.1.1 CSP Actions . 33
3.1.2 Action Invocations, Parametrised Actions and Renaming 41
3.1.3 Commands . 41
3.1.4 Schema Expressions . 42
3.1.5 Circus Processes . 43
3.1.6 Circus Healthiness Conditions . 45

3.2 Towards a Theorem Prover for Circus . 45
3.2.1 ProofPower-Z . 46
3.2.2 Design Issues . 46
3.2.3 Relations . 47
3.2.4 Proving Theorems . 53
3.2.5 Okay and Designs . 54
3.2.6 WTR and Reactive Processes . 56
3.2.7 CSP . 58

iv

3.2.8 Circus . 59
3.3 Final Considerations . 67

4 Refinement: Notions and Laws 71
4.1 Refinement Notions and Strategy . 71
4.2 Laws of Simulation . 73
4.3 Action Refinement . 76

4.3.1 Laws of Assumptions . 77
4.3.2 Laws of Guards . 79
4.3.3 Laws of Schemas . 79
4.3.4 Laws of Parallel Composition . 80
4.3.5 Laws of Prefix . 84
4.3.6 Laws of External Choice . 84
4.3.7 Laws of Hiding . 85
4.3.8 Laws of Commands . 86

4.4 Process Refinement . 88
4.5 Soundness of the Refinement Laws . 90
4.6 Final Considerations . 96

5 Case Study 99
5.1 System Description . 99
5.2 Abstract Fire Control System . 102
5.3 Refinement . 106

5.3.1 Concrete Fire Control System . 106
5.3.2 First Iteration: splitting the AbstractFireControl into the internal

controller and the areas processes 110
5.3.3 Second Iteration: splitting InternalSystem into two controllers . . . 123
5.3.4 Third Iteration: splitting the Areas into individual Areas 124

5.4 Final Considerations . 127

6 Translation to Java with Processes 129
6.1 JCSP . 129
6.2 From Circus to JCSP . 130

6.2.1 Processes Declarations . 133
6.2.2 Basic Processes . 135
6.2.3 CSP Actions . 136
6.2.4 Commands . 141
6.2.5 Compound Processes . 142
6.2.6 Running the program . 145
6.2.7 Synchronisations . 146
6.2.8 Indexing Operator . 150
6.2.9 Generic Channels . 151
6.2.10 Multi-synchronisation . 157

6.3 Implementing the Fire Control System . 163

v

6.4 Final Considerations . 165

7 Conclusion 169
7.1 Contributions . 169
7.2 Related Work . 172
7.3 Future Work . 176

A Syntax of Circus. 179

B Semantics of Circus 181
B.1 Circus Actions . 181

B.1.1 CSP Actions . 181
B.1.2 Action Invocations, Parametrised Actions and Renaming 185
B.1.3 Commands . 185
B.1.4 Schema Expressions . 186

B.2 Circus Processes . 186

C Refinement Laws 189

D Refinement of Mutually Recursive Actions 215

vi

List of Figures

1.1 Abstract Chronometer . 7
1.2 Concrete Chronometer . 8
1.3 Summary of the Chronometer Example 19

2.1 A Simple Register . 23
2.2 Theories in the UTP . 30

3.1 Theories in the UTP . 48
3.2 Proof script for the weakest fixed-point theorem 54

4.1 Forwards Simulation . 72
4.2 An iteration of the refinement strategy . 74
4.3 Process GAreas . 89
4.4 Process GAreas Refined . 90

5.1 Zones and Areas in the Fire Control System 99
5.2 Fire Control System State Machine . 100
5.3 System External Channels . 101
5.4 System Types . 102
5.5 Refinement Strategy for the Fire Control System 105
5.6 Concrete Fire Control . 106

6.1 Translation Strategy Overview . 131
6.2 Example of External Choice Translation - Action RegCycle(Page 23) . . . 138
6.3 Example of Parallel Operator Translation 140
6.4 Example of Recursion Translation . 141
6.5 Translation of Process Register (Figure 2.1, Page 23) 143
6.6 Instantiation of channel lamp . 155
6.7 Architecture for the Multi-synchronisation components 158
6.8 Fire Control System Class Diagram (processes only) 164
6.9 Fire Control System Graphic Interface . 165

viii

List of Tables

2.1 Circus Alphabet . 29

3.1 Healthiness Conditions — Reactive Processes 32
3.2 Healthiness Conditions — CSP Processes 34
3.3 Healthiness Conditions — Circus Processes 45

4.1 Alternation and Guards Different Behaviours 87

5.1 The System States and Corresponding Actions 104

6.1 Environments used in the Translation Strategy 134

x

List of Accompanying Material

This document is accompanied by a CD, which contains the electronic version of this
document and the following additional material.

+ Formal Derivation of State-Rich Reactive Programs using Circus - Ex-
tended Version: extended version of this document containing the full specifica-
tion and derivation of our case study presented in Chapter 5; the full definition of
our translation strategy to Java; the translation of the process Summation used to
illustrate the strategy in Chapter 6; and the proofs of the refinement laws.

+ ProofPower-Z Theories Documentation: documentation of the theories created
in the mechanisation of the UTP theories and Circus in ProofPower-Z, presented in
Chapter 3.

+ ProofPower-Z Theories Source Code: executable source of the theories docu-
mented in the item above.

+ Fire Control System Source Code: Java source code of our case study presented
in Chapter 5.

+ Summation Source Code: Java source code of the Summation example used in
Chapter 6.

+ Chronometer Source Code: Java source code of the Chronometer example used
in Chapter 1.

Alternatively, this material can be downloaded from the following URL:

ò http://www.cs.york.ac.uk/circus/refinement-calculus/oliveira-phd/

http://www.cs.york.ac.uk/circus/refinement-calculus/oliveira-phd/�

xii

Acknowledgments

} If I have been able to see further, it was only because I stood on
the shoulders of giants. ~ - Sir Isaac Newton

This thesis is the result of a long term collaboration with my supervisor, Ana Cavalcanti,
who in so many occasions comforted, inspired and encouraged me to take the route that
lead me to this point. Jim Woodcock was also another great source of enlightening.
Their integrity, dedication, and friendship inspired me throughout my doctorate. The
final result of this thesis was immensely benefited by their insights.

The work with ProofPower had a large support from Roger Bishop Jones, Rob Arthan,
Mark Adams and Philip Clayton. The technical nuances that were raised during this part
of the thesis were solved with their patience and help; furthermore, the proving techniques
used were inspired by them. Will Harwood also provided valuable advice for this work: the
definition of the language constructors as functions is due to him. During the development
of the translation strategy from Circus to JCSP, discussions and opinions were exchanged
with Alistair McEwan and Peter Welch. Besides, the validation and mechanisation of the
translation strategy done by Angela Freitas suggested some corrections that improved its
final version presented in this thesis. The reviews of Rogério de Lemos, Eerke Boiten,
and anonymous committee members, have also contributed to this final version of the
thesis. The countless exchange of ideas and opinions with Adnan Sherif, Adolfo Duran,
Alexandre Mota, Augusto Sampaio, Diyaa-Addein Atiya, Jeremy Jacob, Leonardo Freitas,
Lindsay Groves, Rodolfo Gomez, Steve King, and Xinbei Tang was yet another source of
inspiration for this thesis. I am also very grateful for the financial support from QinetiQ
and the Royal Society.

To my friends in Brazil, thanks very much for their words of support in a large number
of occasions. To the new friends I made in England, especially Adolfo, Nı́cia, Renato,
Viviane, Osmar and Simone, with whom I shared some of my best moments.

The unconditional support given by my parents, brother, and sisters, not only during
my time in England but throughout my very existence, and their unstoppable encourage-
ment, made it possible for me to get to this point.

Days and sleepless nights, happy and sad moments, difficulties, worries, they were all
shared with the most lovely and caring wife one can have: Lauana. She was always there
for me and made me look on the bright side of things, strengthening my faith in the plans
that God has for my life. To her, my eternal gratitude and love.

Hosanna to the Lord, for putting all these wonderful people in my way to comfort,
inspire, encourage, enlighten, support, love and care for me. Praised be His name.

xiv

xv

Canção do Ex́ılio
- Gonçalves Dias

Minha terra tem palmeiras,
Onde canta o Sabiá;

As aves, que aqui gorjeiam,
Não gorjeiam como lá.

Nosso céu tem mais estrelas,
Nossas várzeas têm mais flores,
Nossos bosques têm mais vida,

Nossa vida mais amores.

Em cismar, sozinho, à noite,
Mais prazer encontro eu lá;
Minha terra tem palmeiras,

Onde canta o Sabiá.

Minha terra tem primores,
Que tais não encontro eu cá;
Em cismar sozinho, à noite
Mais prazer encontro eu lá;
Minha terra tem palmeiras,

Onde canta o Sabiá.

Não permita Deus que eu morra,
Sem que eu volte para lá;

Sem que desfrute os primores
Que não encontro por cá;

Sem quinda aviste as palmeiras,
Onde canta o Sabiá.

xvi

Declaration

I hereby declare that the contents of this thesis are the result of my own original contri-
bution, except where otherwise stated. I have acknowledged other sources of joint work
through explicit referencing. The following material, presented in this thesis, has been
previously published:

[1] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying The-
ories in ProofPower-Z. In First International Symposium on Unifying Theories of
Programming, LNCS. Springer-Verlag, 2006. To Appear.

[2] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Formal development
of industrial-scale systems. Innovations in Systems and Software Engineering—A
NASA Journal, 1(2):125–146, 2005.

[3] M. V. M. Oliveira and A. L. C. Cavalcanti. From Circus to JCSP. In J. Davies
et al., editor, Sixth International Conference on Formal Engineering Methods, vol-
ume 3308 of LNCS, pages 320–340. Springer-Verlag, November 2004.

[4] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining industrial-
scale systems in Circus. In Ian East, Jeremy Martin, Peter Welch, David Duce, and
Mark Green, editors, Communicating Process Architectures, volume 62 of Concur-
rent Systems Engineering Series, pages 281–309. IOS Press, 2004.

[5] M. V. M. Oliveira. A Refinement Calculus for Circus - Mini-thesis. Technical
Report 8-04, University of Kent, April 2004.

Marcel Vińıcius Medeiros Oliveira
) marcel@cs.york.ac.uk

% +44 (0)1904 433244
ò http://www.cs.york.ac.uk/~marcel/

http://www.cs.york.ac.uk/~marcel/�

xviii

Chapter 1

Introduction

In this chapter, we present the motivations for the development of our work. Furthermore,
we discuss the objectives of our work, and illustrate the use of the Circus refinement
calculus with a simple example. Finally, an overview of this document is presented.

1.1 Motivation

The current lack of formalism in most software developments raises difficulties in devel-
oping relatively low cost trustworthy software within a well-defined and controllable time
frame. Previous experience with the informal techniques, which resulted in the software
crisis, was the main motivation for the start of the use of formal methods in the devel-
opment processes of safety-critical systems. By stressing the importance of a rigorous
semantics for the notation used, the use of formal methods allows us to achieve a depth
in the analysis of computing systems that would otherwise be impossible.

In fact, software industry leaders, like Microsoft, have already noticed this need for
formal methods, and currently invest a considerable amount of their resources in the de-
velopment of formal verification technologies [12]. By following a formal software process
consistently, these companies may achieve better quality products, more efficient teams
and individuals, reduced costs, and better morale.

One can summarise the formal development of systems in terms of two approaches; both
of them start at a formal (abstract) specification. In the first approach, we propose a for-
malisation for a subsequent design and then verify it against the abstract [42]. In the
correct-by-construction approach [36, 100], the design is gradually calculated as the re-
sult of incremental manipulation of the specification using refinement laws; these may
reduce nondeterminism, as well as introduce executable constructs. Both approaches are
complementary and useful in practice; we focus our attention on the second one.

The availability of a refinement calculus provides us with the possibility of correctly
constructing programs in a stepwise fashion. Each step is justified by the application
of a refinement law (possibly with the discharge of proof obligations). Together, the
refinement laws provide us with a framework for the construction process. This derives
from the fact that only valid laws can be applied at a certain time.

2 1 Introduction

Throughout the past decades two schools have been developing formal techniques for
precise, correct, and concise software development. However, they have taken different
approaches: one of them has focused on data aspects of the system, while the other one
has focused on the behavioural aspects of the system.

Languages like Z [107], VDM (Vienna Development Method) [57], ASM (Abstract
State Machines) [17], and B [3], use a model-based approach, where mathematical objects
from set theory form the basis of the specification. Although possible in a rather difficult
and implicit fashion, specification constructs to model behavioural aspects such as choice,
sequence, parallel composition, and others, are not explicitly provided by any of these
languages.

In [29], a refinement calculus for Z (ZRC) is presented. This work is based on Morgan’s
work [63], and incorporates the Z notation, following his style and conventions. In VDM,
rules for data and operation refinement allow one to establish links between abstract
requirements specifications and detailed design specifications down to the level of code. A
refinement calculus for ASM is presented in [78] and gives support for the development of
ASM specifications. Finally, the B-Method provides verification methods for refinement,
which are supported by the B-Toolkit [7].

On the other hand, CSP (Communicating Sequential Processes) [52, 80] and CCS (Cal-
culus of Communicating Systems) [62], among others, provide constructs that can be used
to describe the behaviour of the system. However, they do not support a concise and el-
egant way to describe the data aspects of the system. In [80], three different notions
of refinement are presented: traces refinement, stable-failures refinement, and failures-
divergences refinement, which are supported by tools like FDR [43].

The combination of different formalisms allows the reuse of notations in an integrated
framework that is able to describe different aspects of the systems. Some of these com-
binations have taken a syntactic approach [40], in which one formalism is embedded into
another, and the choices of which formalism to combine were based on the availability
of tool support and the possibility of reusing these tools. However, restrictions on the
architecture of the systems have to be made in order to achieve this. On the other hand,
the semantic approach, in which different formalism are combined in a common semantic
model, needs direct tool support for the semantic basis and, as a consequence, for the
combined notation. As a matter of fact, there is a wide spectrum of choices for combina-
tions and a trade-off has to be made between availability of tools and the convenience of
the combinations.

Two other aspects that ought to be considered are modularity of specifications and,
more importantly, compositionality of refinement. In a syntactic combination, refinement
of the different aspects of the system is done separately: the refinement of one of the parts
is the refinement of the whole system; this also requires restrictions on the architecture
of the system. On the other hand, any integrated semantics, as the one I present in this
thesis, allows us to formalise an integrated refinement calculus, in which refinement of
concurrent and data aspects of the system can be done in the same context: sequential
refinement can be done in the context of concurrency with no restrictions whatsoever on
the system’s architecture and vice-versa. Furthermore, a full integration (freely mixed)
of concurrency and data aspects allows us to reach more efficient and less complicated

1.1 Motivation 3

implementable code.
Many formalisms combine data and behavioural aspects of the system. Z has been used

as the basis of a calculus for communicating state machines [92]. Combinations of Z with
CCS [46, 47, 93], Z with CSP [40, 82, 66], Object-Z [21] with CSP [39, 87, 60], and Object-
Z with timed CSP [60] are some of these attempts to combine both schools. Furthermore,
combinations of B and action systems [4], B and CSP [95], and notations that describe
both aspects, like RAISE [50], the Rigorous Approach to Industrial Software Engineering,
have been used. However, as far as we know, none of them has a related refinement
calculus. Furthermore, apart from Fischer’s CSP-OZ (Java) and RAISE (C++ and Ada),
none of these works provide a strategy of translation into implementable code. Lai and
Sanders propose a refinement calculus for communicating processes with states [59]. They
extend an occam-like language with a specification statement in the style of Morgan [63].
Unfortunately, the operators allowed in this language are limited and no data refinement
method is proposed.

The lack of support for refinement of state-rich reactive systems in a calculational style
as that presented in [63] has motivated the creation of Circus (Concurrent Integrated Re-
finement CalculUS) [102, 103]. In this concurrent language, systems are characterised as
processes, which group constructs that describe data and control behaviour; the Z nota-
tion [91] is used to define most of the data aspects, and CSP is used to define behaviour.
Besides, the language provides support for formal stepwise development of concurrent
programs [84, 26, 27].

Predicate transformers [37] are commonly used as the basis of semantic models for
imperative refinement calculi [8, 65, 63]. However, a different model is used as the basis of
theories of refinement for CSP, the failures-divergence model [52, 80]. Other works, such
as those presented in [87, 39], provide a failures-divergences model for Object-Z classes,
in order to present the semantics for combinations of Object-Z and CSP. Although data
refinement was investigated for these combinations, no refinement laws were proposed.
In [108], the failures model has been used to give behavioural semantics to abstract data
types. In order to be able to give a semantics to Circus, we need to use a semantic model
that is able to combine the notions of refinement for CSP and for imperative programs.
The Unifying Theories of Programming (UTP) [54] is a framework that makes this com-
bination possible by unifying programming science across many different computational
paradigms.

In [105], Cavalcanti and Woodcock present a semantic model for Circus based on the
UTP. Although usable for reasoning about systems specified in Circus, it is not appropriate
to prove properties of Circus itself (e.g. our refinement laws). This happens because
a shallow embedding, in which the mapping from Circus constructs to their semantic
representation as a Z specification, with yet another language being used as a meta-
language, would not allow us to express these laws. For this reason, a new semantics,
which allows us to reason about the refinement laws, must be given to Circus.

In [27], a refinement strategy for Circus, as well as some refinement laws, was pre-
sented. However, the verification of these laws, the proposition of a comprehensive set of
refinement laws, and further case studies were left as future work. The existence of tool
support for refinement is an important piece of work that makes the development of sys-

4 1 Introduction

tems using Circus a reality in practice. For this reason, a mechanisation of the semantics
and of the Circus refinement calculus is needed.

Finally, the result of refining a Circus specification is a program written in a combina-
tion of CSP and guarded commands. In order to implement this program, we still need
a link between Circus and a practical programming language.

1.2 Objectives

This work provides and formalises a cost-effective method of formal derivation for state-
rich reactive programs using Circus. In [27], Cavalcanti et al. present a case study on the
Circus refinement strategy: a reactive buffer. The authors present the refinement from an
abstract specification to a concrete one. I intend to go further in my strategy and case
study: support and illustrate refinement from an abstract specification to Java code.

The Circus semantics presented in [103] does not allow us to prove the refinement laws.
For this reason, we need to redefine the Circus semantics as a deep embedding of Circus in
Z. In this approach, the syntax and the semantics of Circus is formalised in Z. Based on
the semantics presented here, we prove over ninety percent of the one-hundred and forty-
six proposed refinement laws. These proofs range over all the structure of the language
and include all the data simulation laws. This involves the proof of one-hundred and ten
theorems, two-hundred and eighteen auxiliary lemmas, and one-hundred and thirty-three
refinement laws. We present some of these proofs in this document; the extended version
of this thesis [71] contains all the remaining proofs.

Since the semantic model used for the Circus semantics is based on the UTP, before
mechanising Circus itself, we have to mechanise the UTP theories that give basis to it. This
work consists in the construction of the theories of relations, designs, reactive processes,
and CSP processes. Besides, we include over four-hundred and seventy theorems related
to these theories. The mechanisation of these theories enables a further exploration of the
results presented in [31], where the authors summarise the alphabetised relational calculus,
and the theory of pre-postcondition specifications, called designs, present a detailed theory
for reactive processes, and then combine it with the theory of designs to provide the model
for CSP. Our work provides the basis of a theorem prover for Circus by mechanising its
semantics. The mechanisation of a state-rich reactive language like Circus is yet another
novel contribution to the field.

In order to make these results as general as possible, we have created a theory hierarchy
that allows users to inherit from theories that they really intend to use. Our mechanisation
of the UTP provides mechanical support not only for the Circus semantics, but also for
all the languages based on the UTP.

Some issues were raised during the mechanisation of the UTP and Circus theories.
An important choice was to represent syntax as functions, which allows us to extend
the language without the need to prove any previously proved theorem again. Some
other issues arose from the existence of an alphabet in the UTP. The difference between
variables values and names is not explicit in [54], but important for the mechanisation.
This was the reason for creating a set-based model for predicates, instead of using the

1.2 Objectives 5

standard predicate calculus already existent in the theorem prover, even though it meant
that we had to prove the laws of the predicate calculus in this new model.

The choice of the theorem prover for the mechanisation of Circus and its refinement
calculus was not an issue. The large number of formally verified theories, including
elementary number theory, algebra, set theory, linear arithmetics, and many Z related
theories, was one of the reasons of the choice for ProofPower-Z [1] as the theorem prover
used in the mechanisation of the Circus refinement calculus. Furthermore, Circus is largely
funded by Qinetiq, who routinely use ProofPower-Z, and intend to use Circus in their
development process. This theorem prover was indeed a natural choice as a basis for the
mechanisation of Circus and its refinement calculus.

In order to verify the usefulness of the set of laws proposed in [27], a more significant
case study on the refinement of Circus programs must be taken into account [75, 76].
In this thesis, we present an industrial case study on the Circus refinement calculus: a
safety-critical fire control system. As far as we know, it is the largest case study on the
Circus refinement calculus. The transformation of an abstract centralised specification of
this system to the Java implementation of a distributed one is in the scope of this work.

Throughout the development of our case study there were some problems; we present
their solutions in this thesis. First, the set of laws presented in [27] was not sufficient; we
propose new refinement laws (marked in Appendix C with a ∗). For instance, we require
some laws for inserting and distributing assumptions, and a new process refinement law.
In total, almost one-hundred new laws have been identified during the development of
our case study.

In [27], the refinement of mutually-recursive actions is not considered; our case study,
however, includes mutually recursive definitions. We present here a notation used to prove
refinement of such systems; this results in more concise and modular proofs. The proofs
of the necessary theorems that justify the notation are also part of our work.

The case study illustrates an application of the refinement strategy in an existing
industrial application. We believe that, with the results in Chapter 5, we provide empirical
evidence of the power of expression of Circus and, principally, that the strategy presented
in [27] is applicable to large industrial systems.

The final contribution of this thesis is a link between Circus and a practical program-
ming language, Java. This translation strategy is based on a number of translation rules,
which, if applied exhaustively, transform a Circus program into a Java program that uses
the JCSP library [99]. These rules capture and generalise the approach that we took in
the implementation of our case study.

The strategy is applicable to programs written in an executable subset of Circus. We
assume that, before applying the translation strategy, the specification of the system
we want to implement has been already refined to a Circus specification that uses only
constructors of this subset, using the Circus refinement strategy presented in Chapter 4.

The existence of tool support for refinement and automated translation to Java makes
formal development based on Circus relevant in practice. Such a systematic strategy
can be used as a guideline for implementing Circus programs, and we do implement our
case study in Java. Furthermore, the translation strategy was used as a guideline for
mechanising the translation of Circus programs to Java [44]. However, the rules presented

6 1 Introduction

here still needed to be proved. Currently, we rely on the validation of the strategy during
the implementation of our case study, and many other examples, and on the rather direct
correspondence between Circus and JCSP; a step towards the formal validation of these
rules is presented in [44].

In summary, by the end of this document, we intend to have provided enough support
for the following proposition:

Thesis Proposition

Circus can be given a refinement calculus, which is sound and applica-
ble to industrial safety-critical state-rich reactive systems. Further-
more, the derivation of these systems from an abstract specification
into implementable code can be formalised.

In what follows, we start by illustrating our method with the development of a simple
example: a chronometer.

1.3 A Simple Development

The starting point for any Circus program development is an abstract (usually centralised)
specification of the system. Using the refinement strategy presented in Chapter 4, we can
transform this abstract specification into a concrete (usually distributed) specification of
the system. This refinement strategy is based on refinement iterations that may include
three steps: simulation, action refinement, and process refinement. The first two steps
reorganise the internal structure of the process, by introducing the elements of the concrete
system state, and refining the actions into two partitions in a way such that each partition
operates on different components of the modified state. After this, the process is actually
partitioned: each partition clearly has a independent state and behaviour. The third
step upgrades each of these partitions to individual processes: we combine the resulting
processes in the same way as their main actions were in the original process. We apply
as many iterations as needed until we have an implementable Circus specification. At this
point we apply the translation strategy from Circus to Java presented in Chapter 6; this
results in Java code that implements the system that was initially specified.

Our example chronometer interacts with the environment via three channels. It re-
ceives a tick signal every second, and if asked about its current time via channel time,
it outputs in channel out a pair of numbers (minutes, seconds) ranging within the type
RANGE == 0..59. Channels are declared using the keyword channel; we declare the
name of the channel and the type of the values it can communicate.

channel tick , time
channel out : RANGE × RANGE

The abstract process AChronometer , whose definition is given below between the key-
words begin end, has both the seconds and the minutes of its current counting as its state
components. The state is declared using a Z schema, as presented below. For conciseness,

1.3 A Simple Development 7

Figure 1.1: Abstract Chronometer

some schemas may be presented in their horizontal form name =̂ [decl | pred].

process AChronometer =̂
begin state AState =̂ [sec,min : RANGE]

The state is initialised by the Z operation AInit , which sets both components to zero.

AInit =̂ [AState ′ | sec′ = min ′ = 0]

Undashed variables represent the values of the variables before the execution of an op-
eration; on the other hand, dashed variables represent the values of the variables after
the execution of an operation. The decoration of a schema, for instance Schema ′, where
Schema =̂ [x1 : T1 . . . xn : Tn | p] is a new schema whose components are obtained by
applying the decoration to all the components of the original schema; and the modification
of the predicate part of the new schema reflects the new names of the components. For
instance, we have that Schema ′=̂ [x ′1 : T1 . . . x ′n : Tn | p [x ′1/x1, . . . , x ′n/xn]]. Finally, the
inclusion of the schema AState ′ in the declaration part of AInit merges the declarations
of both schemas, and conjoins their predicates.

Seconds are incremented by one in the IncSec operation; however, every sixty seconds
the seconds are set to zero, since the chronometer will start counting another minute.

IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]

For any schema Schema, ∆Schema is a schema that includes both Schema and Schema ′.
The Z operation IncMin increments the minutes. For conciseness, we consider that

our chronometer counts only seconds and minutes. As for the seconds, the chronometer’s
minutes value resets every sixty minutes.

IncMin =̂ [∆AState | min ′ = (min + 1) mod 60]

The CSP action Run represents the execution of a cycle of the abstract chronometer. If
it receives the indication that a second has passed, it increments the seconds and, if the
seconds were set back to zero, it increments the minutes. However, if the AChronometer
is asked to output its current time, it does so via channel out .

Run =̂ tick → IncSec; (sec = 0) & IncMin
2 (sec 6= 0) & Skip

2 time → out !(min, sec) → Skip

The behaviour of process AChronometer is represented by its main action: it initiates the

8 1 Introduction

Figure 1.2: Concrete Chronometer

state components and then recursively executes its cycle. This concludes the specification
of the abstract chronometer.

• AInit ;(µX • Run; X) end

Figure 1.1 presents the external channels of the abstract chronometer.
In the development of the chronometer, we distribute the minutes and seconds in

two different processes: Seconds and Minutes. The first one is responsible for the com-
munication with the environment and for the seconds; the second one is responsible for
the minutes. Their interactions happen via three internal channels: Seconds indicates to
Minutes that it must increment its number of minutes using channel inc. It may also re-
quest the current number of minutes via channel misReq ; the answer is given via channel
ans. The set of channels Sync groups these internal channels.

channel inc,minsReq
channel ans : RANGE

chanset Sync =̂ {inc,minsReq , ans}

The internal and external communications of the concrete chronometer are presented
in Figure 1.2. The communication minsReq seems redundant; however, it removes a
guarded output in the process Minutes, as we present later in this section. This is one of
the restrictions of our translation to Java, as we discuss in Chapter 6; the concrete Circus
specification cannot include output guards.

The refinement of the chronometer from the abstract to the concrete specification can
be accomplished in only one refinement interaction. Since we do not intend to change
the representation of minutes and seconds, this interaction involves no data refinement.
In the action refinement, we change the AChronometer so that its state is composed of
two partitions: one that contains the seconds (Seconds) and the other one that contains
the minutes (Minutes). The intention is to split the actions of process AChronometer
into two partitions: one is responsible for the interactions with the environment and the

1.3 A Simple Development 9

seconds, and the other one is responsible for the minutes. We name this refined process
Chronometer .

process Chronometer =̂ begin

The Seconds state and the Minutes state are composed only of sec and min, respectively.
The state of Chronometer is declared as the conjunction of these two schemes.

SecSt =̂ [sec : RANGE]
MinSt =̂ [min : RANGE]
state State =̂ SecSt ∧ MinSt

The first group of paragraphs access only sec, which is initialised to zero.

SecInit =̂ [SecSt ′ | sec′ = 0]

Another Z convention is used in the definitions that follow: for any Schema, ΞSchema
represents the schema that includes both Schema and Schema ′ and leaves the components
values unchanged. The notation θSchema denotes a binding (record) that group the values
of the components of Schema.

ΞSchema =̂ [∆Schema | θSchema = θSchema ′]

Seconds are incremented by the operation IncSec.

IncSec =̂ [∆SecSt ; ΞMinSt | sec′ = (sec + 1) mod 60]

The CSP action RunSec represents a cycle in the Seconds partition. If it receives the
indication that a second has passed, it increments the seconds and, if the seconds were
set back to zero, it sends a signal to the Minutes partition using channel inc. However,
if it is asked to output the time, it asks the Minutes partition the number of minutes,
receives the answer, and outputs the time via channel out .

RunSec =̂ tick → IncSec; (sec = 0) & inc → Skip
2 (sec 6= 0) & Skip

2 time → minsReq → ans?mins → out !(mins, sec) → Skip

The second group of paragraphs accesses only min, which is also initialised to zero.

MinInit =̂ [MinSt ′ | min ′ = 0]

Minutes are incremented by the Z operation IncMin.

IncMin =̂ [∆MinSt ; ΞSecSt | min ′ = (min + 1) mod 60]

The CSP action RunMin represents a cycle in the Minutes partition. If it receives a
request to increment the minutes, it does so. However, if the number of minutes is
requested via channel minsReq , it outputs the value of min in channel ans.

RunMin =̂ inc → IncMin
2 minsReq → ans!min → Skip

The main action of process Chronometer is the parallel composition of the behaviour of

10 1 Introduction

each partition: both initialise their state components and execute their cycles recursively.
They synchronise on the channel set Sync, which is hidden from the external environment.

•

(
SecInit ;

(µX • RunSec; X)

)

|[{sec} | Sync | {min}]|(
MinInit ;

(µX • RunMin; X)

)

\ Sync

end

The writing permissions are explicitly expressed in a Circus parallel composition of actions,
as the one presented above. In this example, the Seconds partition may only modify the
sec component and the Minutes partition may only modify min.

Proving the Refinement In order to prove that the concrete Chronometer is a refine-
ment of the abstract one, we have to prove that its main action is indeed a refinement of
the main action of process AChronometer .

AInit ;(µX • Run; X)
vA
((SecInit ;(µX • RunSec; X)) ‖ (MinInit ;(µX • RunMin; X))) \ Sync

For conciseness, in the remaining of this section, we abbreviate |[{sec} | Sync | {min}]| to
‖, as we did above.

In Circus, action A2 refines A1 (A1 vA A2), if, and only if, its behaviour never violates
the behaviour of A1. The action refinement laws reflects this relation; it is formally
characterised using the UTP semantics of Circus. The process of refining actions consists
of repeatedly applying these laws until we reach the desired concrete action.

As an example, we have the law that splits an initialisation operation into a sequence.
The side conditions of some of the refinement laws involve meta-functions such as α, FV ,
DFV , and UDFV . The function α determines the set of components of a given schema;
FV is a function that defines the free variables of a predicate or expression; finally, for
a given predicate p, the functions DFV and UDFV yield the dashed and the undashed
free variables of p, respectively.

Law C.72 (Initialisation schema/Sequence—introduction∗).

[S ′1; S ′2 | CS1 ∧ CS2] = [S ′1 | CS1];[S ′2 | CS2]

provided

í α(S1) ∩ α(S2) = ∅
í DFV (CS1) ⊆ α(S ′1)

í DFV (CS2) ⊆ α(S ′2) q

This laws applies to a schema S which operates over a state composed of two disjoint

1.3 A Simple Development 11

partitions S ′1 and S ′2. The updates of S on the state are expressed as a conjunction of two
predicates CS1 and CS2, whose free-variables are in the disjoint sets of components of S ′1
and S ′2, respectively. It transforms the given schema into a sequence of two schemas; each
of them corresponds to the original operation on one of the state partitions.

We start our proof from the main action of the abstract process.

AInit ;(µX • Run; X)

The abstract initialisation of the state meets all the provisos of the Law C.72. For this
reason we may split it into a sequence of two different initialisations: the initialisation of
the seconds and the initialisation of the minutes.

= [C .72]
MinInit ; SecInit ;(µX • Run; X)

Throughout this work, we use the notation A1 vA [law1, . . . , lawn]{po1} . . . {pon} A2 to
denote that A1 may be refined to A2 using laws law1, . . . , lawn , if the proof obligations
po1, . . . , pon hold. For conciseness, in this introduction we omit the proof obligations and
informally justify the validity of the law applications.

In the next step, we use the least fixed-point law to split the single recursion into
the parallel composition of two recursions: one is concerned with the behaviour of the
Seconds and the other is concerned with the behaviour of the Minutes. This is justified
by Lemma 1.1 proved latter in this section.

vA [C .129]
MinInit ; SecInit ;((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

Next, since schema expressions use no channels, we may expand the hiding.

= [C .120,C .125]
(MinInit ; SecInit ;(µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

Finally, the schemas change only variables declared in one of the partitions of the parallel
composition, and the variables they write to are not used by the other side of the parallel
composition. For this reason, we may move each of them to one of the sides of the
composition.

= [C .73]
((SecInit ;(µX • RunSec; X)) ‖ (MinInit ; (µX • RunMin; X))) \ Sync

This concludes the proof of the action refinement. However, we are still left with the
proof of the following lemma.

Lemma 1.1

((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync
= Run; ((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

Starting from the left-hand side of the lemma, we unfold the first recursion. Afterwards,

12 1 Introduction

we distribute the recursion through each of the external choices that are in the recursion
body. Then, we combine the second recursive program in parallel with each of the branches
of the first recursion. The strategy is then to show that each of these branches can be
transformed into a branch of Run followed by the left-hand side itself. This results in
a program which coincides with the body of the recursion on the right-hand side of the
lemma, except that in place of the recursive call we have the left-hand side itself. The
distribution laws and the definition of action Run concludes this proof. In what follows,
we present the details of this proof.

As previously explained, we start our proof by unfolding the recursion in the left-hand
side of the parallel composition; furthermore, we apply the definition of RunSec.

((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync
= [C .128, Definition of RunSec]

tick → IncSec; (sec = 0) & inc → Skip
2 (sec 6= 0) & Skip

2 time → minsReq → ans?mins →
out !(mins, sec) → Skip

 ; (µX • RunSec; X)

‖
(µX • RunMin; X)

\ Sync

Afterwards, we distribute the recursion through each of the external choices. For this
purpose, we use the following law:

Law C.112 (External choice/Sequence—distribution).

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B

It distributes an action through an external choice of guarded actions. In our example,
by applying this law, we get the following result.

= [C .112]

tick → IncSec;(
(sec = 0) & inc → Skip
2 (sec 6= 0) & Skip

)
; (µX • RunSec; X)

2 time → minsReq → ans?mins →
out !(mins, sec) → Skip; (µX • RunSec; X)

‖
(µX • RunMin; X)

\ Sync

The next distribution law states that the distribution is also valid if the guards are mu-
tually exclusive. In this case, we do not need to assure that there are any communications
happening: A1 and A2 may be any Circus action, not necessarily a communication.

1.3 A Simple Development 13

Law C.113 (External choice/Sequence—distribution 2∗).

((g1 & A1) 2 (g2 & A2)); B = ((g1 & A1); B) 2 ((g2 & A2); B)

provided g1 ⇒ ¬ g2 q

In our example, the distribution through the choices of the tick branch is valid since
the guards are indeed mutually exclusive.

= [C .113]

tick → IncSec; (sec = 0) & inc → Skip; (µX • RunSec; X)
2 (sec 6= 0) & Skip; (µX • RunSec; X)

2 time → minsReq → ans?mins →
out !(mins, sec) → Skip; (µX • RunSec; X)

‖
(µX • RunMin; X)

\ Sync

From the definition of RunMin, it is trivial that this action is firstly willing to synchronise.
For this reason, we may distribute the parallel composition over the external choice of
the left-hand side of the parallel composition as follows.

= [C .87]

tick → IncSec; (sec = 0) & inc → Skip; (µX • RunSec; X)
2 (sec 6= 0) & Skip; (µX • RunSec; X)

‖
(µX • RunMin; X)

2

time → minsReq → ans?mins →
out !(mins, sec) → Skip; (µX • RunSec; X)

‖
(µX • RunMin; X)

\ Sync

In order to apply the step law below, besides guaranteeing that RunMin is firstly willing
to synchronise, which we have already done, we also have to guarantee that the events
tick and time may happen independently. This condition is also met because neither of
these events are in the synchronisation channel set.

= [C .100,C .84]

tick → IncSec;

(
(sec = 0) & inc → Skip; (µX • RunSec; X)
2 (sec 6= 0) & Skip; (µX • RunSec; X)

)

‖
(µX • RunMin; X)

2 time → Skip;

minsReq → ans?mins →
out !(mins, sec) → Skip; (µX • RunSec; X)

‖
(µX • RunMin; X)

\ Sync

Next, the distribution of the hiding over the external choice is valid because the initial

14 1 Introduction

events in the choice are not being hidden.

= [C .122,C .120,C .125]
tick → IncSec;

(
(sec = 0) & inc → Skip; (µX • RunSec; X)
2 (sec 6= 0) & Skip; (µX • RunSec; X)

)

‖
(µX • RunMin; X)

 \ Sync

(1)

2 time → Skip;

minsReq → ans?mins → out !(mins, sec) → Skip;
(µX • RunSec; X)

‖
(µX • RunMin; X)

 \ Sync

(2)

(3)

The strategy now is to show that each of these choices can be transformed into the choice
in the right-hand side of this lemma, followed by the left-hand side itself. We start with
the first branch: once again, since the action RunMin is firstly willing to synchronise, we
may distribute the parallel composition over the choice in the first branch.

(1)
= [C .87]

tick → IncSec;

(sec = 0) & inc → Skip; (µX • RunSec; X)
‖
(µX • RunMin; X)

2

(sec 6= 0) & Skip; (µX • RunSec; X)
‖
(µX • RunMin; X)

\ Sync

The associativity of guard and sequence justifies the next step of our refinement, as follows.

= [C .132,C .59]

tick → IncSec;

((sec = 0) & Skip); inc → Skip;
(µX • RunSec; X)

‖
(µX • RunMin; X)

2

((sec 6= 0) & Skip); (µX • RunSec; X)
‖
(µX • RunMin; X)

\ Sync

Once again, we may apply the step law in order to move the guards out of the parallel
composition. This is valid since the action RunMin is firstly willing to synchronise and

1.3 A Simple Development 15

the actions (sec = 0) & Skip and (sec 6= 0) & Skip have no communications.

= [C .84,C .59,C .132]

tick → IncSec;

(sec = 0) &

(inc → Skip; (µX • RunSec; X))
‖
(µX • RunMin; X)

2 (sec 6= 0) & Skip;

(µX • RunSec; X)
‖
(µX • RunMin; X)

\ Sync

Since the guards are mutually exclusive, we may distribute the hiding over the external
choice. Furthermore, they can also be distributed over the guards.

= [C .123]

tick → IncSec;

(sec = 0) &

(inc → Skip; (µX • RunSec; X))
‖
(µX • RunMin; X)

 \ Sync

(4)

2 (sec 6= 0) &

Skip;

(µX • RunSec; X)
‖
(µX • RunMin; X)

 \ Sync

(5)

The second branch (5) is already in the desired format. We turn our attention to the first
branch. First, we unfold the recursion in the right-hand side of the parallel composition
and apply the definition of RunMin.

(4)
= [C .128, Definition of RunMin]

(inc → Skip; (µX • RunSec; X))
‖(

inc → IncMin
2 minsReq → ans!min → Skip

)
; (µX • RunMin; X)

 \ Sync

Since minsReq is in the synchronisation channel, the second choice never actually happens;
it may, therefore, be removed.

= [C .86]
((inc → Skip; (µX • RunSec; X)) ‖ (inc → IncMin; (µX • RunMin; X))) \ Sync

Next, since the communication inc is being hidden, it may also be removed.

= [C .83]
((Skip; (µX • RunSec; X)) ‖ (IncMin; (µX • RunMin; X))) \ Sync

Finally, the schema IncMin changes only variables declared in the Minutes partition, and

16 1 Introduction

they are not used by the Seconds partition. For this reason, we may move IncMin away
from the parallel composition.

= [C .73]
IncMin; ((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

This concludes the refinement of the first branch (1). We turn our attention back to the
second branch. We also start this refinement by unfolding the recursion in the right-hand
side of the parallel composition and by applying the definition of RunMin.

(2)
= [C .128, Definition of RunMin]
time → Skip;

minsReq → ans?mins →
out !(mins, sec) → Skip; (µX • RunSec; X)

‖(
inc → IncMin
2 minsReq → ans!min → Skip

)
; (µX • RunMin; X)

\ Sync

Since inc is in the synchronisation channel, the first choice never happens; it may, there-
fore, be removed.

= [C .86]
time → Skip;

minsReq → ans?mins →
out !(mins, sec) → Skip; (µX • RunSec; X)

‖
minsReq → ans!min → Skip; (µX • RunMin; X)

 \ Sync

The synchronisation in minsReq may be removed because it is being hidden.

= [C .83]
time → Skip;

ans?minsReq →
out !(minsReq , sec) → Skip; (µX • RunSec; X)

‖
ans!min → Skip; (µX • RunMin; X)

 \ Sync

For the same reason, we may also remove the communication ans; however, the value
communicated must be used by the left-hand side of the parallel composition.

= [C .81,C .132]
time → Skip;

((out !(min, sec) → Skip; (µX • RunSec; X)) ‖ (µX • RunMin; X)) \ Sync

The event time is not in the synchronisation channel set and the action RunMin is firstly

1.3 A Simple Development 17

willing to synchronise; once again, we may apply the step law.

= [C .128,C .84,C .132]
time → Skip;

(out !(min, sec) → Skip; ((µX • RunSec; X) ‖ (µX • RunMin; X))) \ Sync

Finally, since the events time and out are not being hidden, we may move the hiding as
follows.

= [C .120,C .125,C .100]
time → out !(min, sec) → Skip; ((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

This concludes the refinement of this branch. We return to the proof of the main lemma.

(3)
=
tick → IncSec;

(sec = 0) & IncMin; ((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync
2 (sec 6= 0) & Skip; ((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

2 time → out !(min, sec) → Skip;
((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

However, as in the early stages of this proof, this is the result of distributing the entire
recursion through each of the choices inside the recursion body.

= [C .112,C .113]

tick → IncSec;
(sec = 0) & IncMin
2 (sec 6= 0) & Skip

2 time → out !(min, sec) → Skip

 ;

((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

The definition of Run concludes this proof.

= [Definition of Run]
Run; ((µX • RunSec; X) ‖ (µX • RunMin; X)) \ Sync

q

After this action refinement, we have a process with a state partitioned into two: one
is concerned with the seconds and the other one is concerned with the minutes. Each
partition has its own set of paragraphs, which are disjoint, since no action in one changes a
state component in the other. The main action of the refined process is defined in terms of
the parallel composition of actions from both partitions. The final step of our refinement
uses the process refinement Law C.146 in order to rewrite the process Chronometer in
terms of two independent processes as follows.

18 1 Introduction

process Seconds =̂ begin state SecSt =̂ [sec : RANGE]
SecInit =̂ [SecSt ′ | sec′ = 0]
IncSec =̂ [∆SecSt | sec′ = (sec + 1) mod 60]
RunSec =̂ tick → IncSec; (sec = 0) & inc → Skip

2 (sec 6= 0) & Skip
2 time → minsReq → ans?mins → out !(mins, sec) → Skip

• SecInit ;(µX • RunSec; X)
end

process Minutes =̂ begin state MinSt =̂ [min : RANGE]
MinInit =̂ [MinSt ′ | min ′ = 0]
IncMin =̂ [∆MinSt | min ′ = (min + 1) mod 60]
RunMin =̂ inc → IncMin

2 minsReq → ans!min → Skip
• MinInit ;(µX • RunMin; X)

end

process Chronometer =̂ (Seconds |[Sync]|Minutes) \ Sync

Using the Z refinement calculus [29], we may further refine the processes Seconds and
Minutes, transforming the schema operations into single assignments. For instance, the
refinement of the body of the action SecInit would result in the assignment sec := 0.
After this trivial refinement, we end with an implementable Circus specification.

The application of the translation strategy presented in Chapter 6 to this specification
results in the Java code that implements the Chronometer, which can be found in [71].
Besides some auxiliary classes, which are explained in Chapter 6, the Java code contains
three classes Seconds, Minutes, and Chronometer; they implement the behaviour of the
processes discussed in this section.

Figure 1.3 summarises the application of our method to this example. Although sim-
ple, this example illustrates our approach by deriving an implementation of a chronometer
from its abstract specification. The development of a larger scale case study is the topic
of Chapter 5, where we develop a fire control system.

1.4 Outline

In Chapter 2, we present an introduction to Circus and the UTP. Using a simple exam-
ple of a Register , we describe the Circus constructors for describing processes and their
constituent actions.

We start Chapter 3 by presenting the denotational semantics of Circus. Next in this
chapter, we present our steps towards a theorem prover for Circus. We present the mech-
anisation of the theories presented in the UTP: the theories of relation, designs, reactive
and CSP processes. These theories are the basis of the Circus theory, whose presentation
concludes this chapter.

Chapter 4 discusses the refinement notions for Circus processes and their constituent
actions. The simulation technique and the refinement strategy presented in [27] are also

1.4 Outline 19

Figure 1.3: Summary of the Chronometer Example

discussed in this chapter. Next, this chapter presents some of the new refinement laws
proposed in this work and the corrections made to some of the previously proposed Circus
refinement laws. We conclude this chapter with a discussion of the soundness proofs of
some of the refinement laws.

Chapter 5 presents a safety-critical fire control system: a case study on the refine-
ment calculus of Circus. First, we informally describe the system and present its abstract
centralised specification. Then, we describe the refinement strategy adopted in the devel-
opment of a distributed concrete specification of the fire control system.

In Chapter 6, a strategy for implementing Circus programs in Java is presented. First,
we present a brief introduction to JCSP [99, 98], a Java library that can be used to support
the implementation of CSP programs in Java. Then, we present the translation strategy
itself in a didactic account. The strategy is presented for a large subset of executable
Circus. Then, we extend the strategy in order to deal with synchronisation channels and
the Circus indexing operator, described in Chapter 2. Next, we describe the translation of
generic and multi-synchronised channels. Finally, we describe how we have applied this
translation strategy to obtain an implementation in Java of our case study presented in
Chapter 5.

Chapter 7 concludes this document. It discusses how the results that we present
support our thesis, and gives an account of related and future work.

20 1 Introduction

Chapter 2

Background

This chapter introduces the background of this thesis. Section 2.1 presents Circus and
discuss its operators in more detail. A simple example, a Register is used to illustrate
these operators. Finally, in Section 2.2, we describe the theoretical basis of Circus, the
Unifying Theories of Programming.

2.1 Circus

Circus is a language that is suitable for the specification of concurrent and reactive sys-
tems; it also has a theory of refinement associated to it. Its objective is to give a sound
basis for the development of concurrent and distributed system in a calculational style
like that of [63]. In the sections that follows, we introduce Circus based on its syntax,
which can be found in Appendix A.

2.1.1 Circus Programs

Circus is based on imperative CSP [80], and adds specification facilities in the Z [107]
style. This enables both state and communications aspects to be captured in the same
specification, as in [90]. In the same way as Z specifications, Circus programs are formed
by a sequence of paragraphs.

Program ::= CircusPar∗

Here, CircusPar∗ denotes a possibly empty list of elements of the syntactic category
CircusPar of Circus paragraphs.

Each of these paragraphs can either be a Z paragraph [91], here denoted by the
syntactic category Par, a definition of channels, a channel set definition, or a process
declaration.

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl

The syntactic category N is that of valid Z identifiers.

22 2 Background

We illustrate the main constructs of Circus using the specification of a simple reg-
ister (Figure 2.1). It is initialised with zero, and can store or add a given value to its
current value. It can also output or reset its current value. The specification is composed
of seven paragraphs.

2.1.2 Channel Declarations

All the channels that are used within a process must be declared. The syntactic categories
Exp and SchemaExp are those of Z expressions and schema expressions defined in [91].
Here, N+ denotes a non-empty list of elements of the syntactic category N.

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp

In a channel declaration, we declare the name of the channel and the type of the values it
can communicate. However, if the channel does not communicate any value, but it is used
only as a synchronising event, its declaration contains only its name; no type is defined.
A channel declaration may declare more than one channel of the same type. In this case,
instead of a single channel name, we have a comma-separated list of channel names. This
is illustrated in Figure 2.1 by the declaration of channels store, add , and out .

Generic channel declarations introduce a family of channels. For instance, the decla-
ration channel [T] c : T declares a family of channels c. For every actual type S , we
have a channel c[S] that communicates values of type S . Channels can also be declared
using schemas that group channel declarations, but do not have a predicate part. This
follows from the fact that the only restriction that may be imposed on a channel is the
type it communicates.

2.1.3 Channel Set Declarations

We may introduce sets of previously defined channels in a chanset paragraph. In this
case, we declare the name of the set and a channel-set expression, which determines the
channels that are members of this set. The empty set of channels {||}, channel enumer-
ations enclosed in {| and |}, and expressions formed by some of the Z set operators are
the elements of the syntactic category CSExp. In our example, we declare the alphabet
of the Register as the channel set RegAlphabet . These are the channels that can be used
to interact with this process.

2.1.4 Process Declarations

The declaration of a process is composed of its name and its definition. Furthermore, like
channels, processes may also be declared generic. In this case, the declaration introduces
a family of processes.

ProcDecl ::= process N =̂ ProcDef | process N[N+] =̂ ProcDef

A process is specified as a (possibly) parametrised process, or as an indexed process.
If a process is parametrised or indexed, we first have the declaration of its parameters.

2.1 Circus 23

channel store, add , out : Z
channel result , reset
process Register =̂

begin state RegSt =̂ [value : Z]
RegCycle =̂ store?newValue → value := newValue

2 add?newValue → value := value + newValue
2 result → out !value → Skip
2 reset → value := 0

• value := 0; (µX • RegCycle; X)
end

channel read ,write : Z
process SumClient =̂

begin
ReadValue =̂ read?n → reset → Sum(n)
Sum =̂ n : Z • (n = 0) & result → out?r → write!r → Skip

2 (n 6= 0) & add !n → Sum(n − 1)
• µX • ReadValue; X
end

chanset RegAlphabet == {| store, add , out , result , reset |}
process Summation =̂ (SumClient |[RegAlphabet]| Register) \ RegAlphabet

Figure 2.1: A Simple Register

The syntactic category Decl is the same as in [91]. Afterwards, following a •, in the case of
parametrised processes, or a ¯, in the case of indexed processes, we have the declaration
of the process body. In both cases, the parameters may be used as local variables in the
definition of the process. If the process is not parametrised, we have only the definition
of its body.

ProcDef ::= Decl • ProcDef | Decl¯ ProcDef | Proc

A process may be explicitly defined, or it may be defined in terms of other pro-
cesses (compound processes). An explicit process definition is delimited by the keywords
begin and end; it is formed by a sequence of process paragraphs and a distinguished
nameless main action, which defines the process behaviour, in the end. Furthermore, in
Circus we use the Z notation to define the state of a process. It is described as a schema
paragraph, after the keyword state.

Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end
| . . .

Process Register in Figure 2.1 is defined in this way. The schema RegState describes
the internal state of the process Reg : it contains an integer value that stores its value.

24 2 Background

The behaviour of Register is described by the unnamed action after a •. The process
Register has a recursive behaviour: after its initialisation, it behaves like RegCycle, and
then recurses.

2.1.5 Compound Processes

Processes may also be defined in terms of other previously defined processes using the
process name, CSP operators, iterated CSP operators, or indexed operators, which are
particular to Circus specifications.

Proc ::= . . .
| Proc; Proc | Proc 2 Proc | Proc u Proc
| Proc |[CSExp]| Proc | Proc ||| Proc | Proc \ CSExp
| (Decl • ProcDef)(Exp+) | N(Exp+) | N
| (Decl¯ ProcDef)bExp+c | NbExp+c | Proc[N+ := N+] | N[Exp+]
| o

9 Decl • Proc | 2Decl • Proc | uDecl • Proc
| |[CSExp]| Decl • Proc | |||Decl • Proc

Processes P1 and P2 can be combined in sequence using the sequence operator: P1;P2.
This process executes the process P2 after the execution of P1 terminates. The external
choice P1 2 P2 initially offers events of both processes. The performance of the first event
resolves the choice in favour of the process that performs it. Differently from the external
choice, the environment has no control over the internal choice P1 u P2, in which the
process internally (nondeterministically) resolves the choice.

The parallel operator follows the alphabetised parallel operator approach adopted
by [80]; we must declare a synchronisation channel set. For instance, in P1 |[cs]| P2 the
processes P1 and P2 synchronise on the channels in the set cs; events that are not listed
occur independently. By way of illustration, the process Summation in Figure 2.1 reads a
value n through channel read , interacts with a Register , and outputs the value of

∑n
i=1 i

through channel write. It is declared as a parallel composition of processes Register and
its client SumClient ; they synchronise on the set of events RegAlphabet .

Processes can also be composed in interleaving. For instance, a process RegisterTwice
that represents two Registers running independently can be defined as the composition
Register ||| Register . However, an event reset leads to a non-deterministic choice of which
Register process of the interleaving actually starts: one of the processes resets, and the
other one does not.

The event hiding operator P \ cs is used to encapsulate the events that are in the
channel set cs. This removes these events from the interface of P , which become no
longer visible to the environment. For instance, the process Summation encapsulates the
interaction between the processes Register and SumClient (RegAlphabet); the only ways
to interact with Summation are via the channels write and read .

As with CSP, Circus provides finite iterated operators that can be used to generalise the
binary operators of sequence, external and internal choice, parallel composition, and inter-
leaving. Furthermore, we may instantiate a parametrised process by providing values for
each of its parameters. For instance, we may have either P(v), where P =̂ (x : T • Proc),

2.1 Circus 25

or, for reasoning purposes, we can write directly (x : T • Proc)(v). Apart from sequence,
all the iterated operators are commutative and associative. For this reason, there is no
concern about the order of the elements in the type of the indexing variable. However,
for the sequence operator, we require this type to be a finite sequence. As expected, the
process o

9 x : T • P(x) is the sequential composition of processes P(v), with v taken from
T in the order that they appear.

Circus introduces a new operator that can be used to define processes. The indexed
process i : T ¯ P behaves exactly like P , but for each channel c of P , we have a freshly
named channel c i . These channels are implicitly declared by the indexed operator, and
communicate pairs of values: the first element, the index, is a value i of type T , and the
second element is the value of the original type of the channel. An indexed process P can
be instantiated using the instantiation operator Pbec; it behaves just like P , however, the
value of the expression e is used as the first element of the pairs communicated through
all the channels.

For instance, we may define a process similar to the previously defined RegisterTwice,
in order to have the same process that represents two Registers running independently,
but with an identification of which process is reset. In order to interact with the in-
dexed process IndexRegister =̂ i : {1, 2} ¯ Register , we must use the channels store i ,
add i , result i , out i and reset i . We may instantiate the process IndexRegister : the
process IndexRegisterb1c, for instance, outputs pairs through channel out i whose first
elements are 1 and the second elements are the values stored in the register. It may
be restarted by sending the value 1 through the channel reset i . Similarly, we have the
process IndexRegisterb2c. Finally, we have the process presented below that represents a
pair of registers: the first element of the pairs identifies the register.

RegisterTwiceId =̂ IndexRegisterb1c ||| IndexRegisterb2c
The renaming operator P [oldc := newc] replaces all the communications that are done

through channels oldc by communications through channels newc, which are implicitly
declared, if needed. Usually, indexing and renaming are used in conjunction, as in the
redefinition of the process RegisterTwice presented below.

RegisterTwice =̂ RegisterTwiceId

store i , add i ,
result i , out i ,
reset i

:=
storeid , addid ,
resultid , outid ,
resetid

We may also combine instantiations of an indexed process using the iterated operators.
For example, we may redefine the process RegisterTwiceId as ||| i : {1, 2} • Registerbic.
The same characteristics and restrictions still apply to the iterated operators.

Finally, generic processes may be instantiated: the expression P [T] instantiates a
generic process named P using the type T .

2.1.6 Actions

When a process is explicitly defined, besides the definitions of the state and the main
action, we have in its body Z paragraphs, definitions of (parametrised) actions, and

26 2 Background

variable sets definitions; they are used to specify the main action of the process.

PPar ::= Par | N =̂ ParAction | nameset N == NSExp

Like channel sets, the empty set {}, variable name enumerations enclosed in { and },
and expressions formed by some of the Z set operators are the elements of the syntactic
category NSExp.

As with processes, an action may be parametrised, in which case we have the decla-
ration of the parameters followed by a •, and then, the body of the action.

ParAction::= Action | Decl • ParAction

An action can be a schema expression, a guarded command, an invocation to a previous
defined action, or a combination of these constructs using CSP operators. Furthermore,
state components and local variables may be renamed; however, no channel name can be
changed.

Action ::= SchemaExp | Command | N | CSPAction | Action [N+ := Exp+]

Three primitive actions are available in Circus: Skip, Stop, and Chaos. The action
Skip does not communicate any value or changes the state: it terminates immediately.
The action Stop deadlocks, and the action Chaos diverges.

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action
| Action; Action | Action 2 Action | Action u Action
| Action |[NSExp | CSExp | NSExp]| Action
| Action ||[NSExp | NSExp]|| Action
| Action \ CSExp | ParAction(Exp+) | µ N • Action
| o

9 Decl • Action | 2Decl • Action | uDecl • Action
| |[CSExp]| Decl • |[NSExp]| • Action
| |||Decl •||[NSExp]|| Action

Comm ::= NCParameter∗ | N [Exp+]CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp

The syntactic category Pred is that of Z predicates defined in [91], which is supported by
the Circus parser that is currently available.

The prefix operator is standard. However, a guard construction may be associated
with it. For instance, given a Z predicate p, if the condition p is true, the action
p & c?x → A inputs a value through channel c and assigns it to the variable x , and
then behaves like A, which has the variable x in scope. If, however, the condition p
is false, the same action deadlocks. Such enabling conditions like p may be associated
with any action. Predicates may also be associated with an input prefix. For instance, a
communication c?x : p will only happen when a value of the type of the channel c that
satisfies the predicate p is communicated.

The action Sum in the process SumClient (Figure 2.1) exemplifies the output prefix
operator. While the number n is different from 0, this action requests the Register to

2.2 The Unifying Theories of Programming 27

add a value to its current value by outputting n through channel add . Finally, when n
reaches 0, it requests the result from the Register , reads it from channel out , and writes
it to channel write.

All the free variables of an action must be in scope in the containing process. All
actions are in the scope of the state components. Input communications introduce new
variables into scope, which may not be used as targets of assignments.

The CSP operators of sequence, external and internal choice, parallel, interleaving,
and hiding may also be used to compose actions. However, differently from processes, at
the level actions, recursive definitions are also available (µ).

Our Register , as previously described, has a recursive behaviour. Its cycle, the action
RegCycle, is an external choice: values may be stored or accumulated, using channels
store and add ; the result may be requested using channel result , and output through out ;
finally, the register may be reset through channel reset .

At the level of actions, the parallel and the interleaving operators are slightly different
from that of CSP in [80] and [52]. In order to avoid conflicts in the access to the variables
in scope, parallel composition and interleaving of actions must also declare two disjoint
sets (that may partition) of variables in scope: state components, and input and local
variables. In A1 |[ns1 | cs | ns2]| A2, both A1 and A2 have access to the initial values of
all variables in ns1 and ns2, but A1 may modify only the values of the variables in ns1,
and A2, the values of the variables in ns2. Besides, the actions A1 and A2 synchronise on
the channels in the set cs.

Parametrised actions can be instantiated: for instance, we can have the action A(x),
if A is a previously defined single-parametrised action; we can also have an instantiation
of the form (x : T • A)(x).

As for processes, the iterated operators for sequence, external and internal choice, par-
allel, and interleaving can also be used in order to generalise the corresponding operators.

Actions may also be defined using Dijkstra’s guarded commands [37].

Command ::= N+ := Exp+ | if GActions fi | var Decl • Action
| N+ : [Pred,Pred] | {Pred} | [Pred]
| val Decl • Action | res Decl • Action | vres Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

An action can be a (multiple) assignment, or a guarded alternation. For instance, we
store a value in the Register using the assignment value := newValue. Variable blocks
can also be used in an action specification. In the interest of supporting a calculational
approach to development, an action can also be written as a specification statement in
the style of Morgan’s refinement calculus [63]. We adopt the syntactic sugaring {pre} for
specification statements : [pre, true] (assumptions). In the same way, the coercion [post]
is a syntactic sugaring for : [true, post]. The invocation of substitutions by value, result,
or by value-result, as those presented in [22], are also available in Circus.

2.2 The Unifying Theories of Programming

The semantic model of Circus is based on Hoare & He’s Unifying Theories of Program-

28 2 Background

ming [54]. The UTP is a framework in which the theory of relations is used as a unifying
basis for programming science across many different computational paradigms: procedural
and declarative, sequential and parallel, closely-coupled and distributed, and hardware
and software. All programs, designs, and specifications are interpreted as relations be-
tween an initial observation and a single subsequent observation, which may be either an
intermediate or a final observation, of the behaviour of program execution.

Common ideas, such as sequential composition, conditional, nondeterminism, and
parallel composition are shared by different theories of different programming paradigms.
For instance, sequential composition is relational composition, conditional is boolean con-
nective, nondeterminism is disjunction, and parallel composition is a restricted form of
conjunction. Miracle is interpreted as an empty relation, abortion is interpreted as the uni-
versal relation, and correctness and refinement is interpreted as inclusion of relations: re-
verse implication. All the laws of the relational calculus may be used for reasoning about
correctness in all theories and in all languages.

Three elements of a theory are used to differentiate different programming languages
and design calculi: the alphabet, a set of names that characterise a range of external
observations of a program behaviour; the signature, which provides syntax for denoting
the objects of the theory; and the healthiness conditions, which select the objects of a
sub-theory from those of a more expressive theory in which it is embedded.

The alphabet of a theory collects the names within the theory that identify observation
variables that are important to describe all relevant aspects of a program behaviour. The
initial observations of each of these variables are undecorated and compose the input
alphabet (inα) of a relation. Subsequent observations are decorated with a dash and
compose the output alphabet (outα) of a relation. This allows a relation to be expressed
as in Z by its characteristic predicate. Table 2.1 summarises the observational variables
of the UTP that are used in the semantics of Circus.

In Circus, some combinations of these variables have interesting semantic meaning.
For instance, okay ′ ∧ wait ′ represents a non-divergent state of a process that is waiting
for some interaction with the environment; if, however, we have okay ′ ∧ ¬ wait ′, the
non-divergent process has terminated; finally, ¬ okay ′ represents a divergent process.

Besides these variables, there are also UTP theories that include variables that may
be used to represent program control, real time clock, or resource availability. For each
theory, we may select a subset of relevant variables.

The signature of a theory is a set of operators and atomic components of this the-
ory: it is the syntax of the language. The smaller the signature, the simpler the proof
techniques to be applied for reasoning. Signatures may vary according to the theory’s
purpose. Specification languages are least restrictive and often include quantifiers and all
relational calculus operators. Design languages successively remove non-implementable
operators. The negation is the first one to be removed. Thus, all operators are monotonic,
and recursion can safely be introduced as a fixed-point operator. Finally, programming
languages present only implementable operators in their signature. They are commonly
defined in terms of their observable effects using the more general specification language.

Healthiness conditions are used to test a specification or design for feasibility, and
reject it if it makes implementation impossible in the target language. They are expressed

2.3 Final Considerations 29

okay This boolean variable indicates if the system has been prop-
erly started in a stable state, in which case its value is true,
or not; okay ′ means subsequent stabilisation in an observ-
able state.

tr This variable, whose type is a sequence of events, records all
the events in which a program has engaged.

wait This boolean variable distinguishes the intermediate obser-
vations of waiting states from final observations on termi-
nation. In a stable intermediate state, wait ′ has true as its
value; a false value for wait ′ indicates that the program has
reached a final state.

ref This variable describes the responsiveness properties of the
process; its type is a set of events. All the events that may be
refused by a process before the program has started are ele-
ments of ref , and possibly refused events at a later moment
are referred by ref ′.

v All program variables (state components, input and local
variables, and parameters) are collectively denoted by v .

Table 2.1: Circus Alphabet

in terms of an idempotent function φ that makes a program healthy. Every healthy
program P must be a fixed-point P = φ (P). Some healthiness conditions are used to
identify the set of relations that are designs (H1 and H2), reactive processes (R1-R3),
and CSP processes (CSP1-CSP2). In Chapter 3.1, we discuss the relevant ones in more
detail.

In Figure 2.2, we present how some of the theories presented in [54] are related. Rela-
tions are predicates with an input and an output (dashed) alphabet. Designs are relations
that are H1 and H2 healthy. Reactive processes are R1, R2 and R3 healthy rela-
tions (this composition is represented by the healthiness condition R). Finally, there are
two ways of characterising the CSP processes: they are characterised as reactive processes
that are CSP1 and CSP2 healthy, or as relations that result from applying R to designs.

2.3 Final Considerations

Circus has been suggested as a link between two different schools of formal methods
for software engineering: the state-based school and the process algebraic. The former is
strongly represented by VDM [57], Z [107], and B [3], and the latter is strongly represented
by CCS [62] and CSP [52, 80]. Besides providing a link between these two schools, Circus
also includes a refinement theory and a refinement strategy in a calculational style as
in [63]. A refinement strategy for Circus, based on laws of simulation, and action and
process refinement (Appendix C), has been proposed in [27] and is also extended in this
thesis.

30 2 Background

Figure 2.2: Theories in the UTP

Basically, Circus programs are characterised by processes, which group paragraphs
that describe data and control behaviour. Mainly, we use the Z notation [91] to define
data, and actions, which are defined using Z, CSP, and guarded commands constructs, to
characterise behaviour.

Research involving Circus has been taken into a wide range of areas. In [45], a model-
checker for Circus and its theoretical foundations [106] are presented. In [86], Sherif and
He propose a time model for Circus and present a simple case study. A denotational
semantics for mobile processes in Hoare & He’s Unifying Theories of Programming can
be found in [94]; this is the first step towards a mobile Circus. Object-orientation is also
being considered by Sampaio, Woodcock and Cavalcanti [28, 15], and a mapping from
UML to Circus specifications is also under research [24]. Xavier is investigating a type-
checker for Circus. An automatic translation from Circus to JCSP that implements the
strategy presented in Chapter 6 can be found in [73]. Furthermore, synchrony, testing,
Circus compliance [5], Control Law Diagrams [23], and Ravenscar [6] are also in the Circus
agenda of research.

Chapter 3

Circus Denotational Semantics

This chapter presents the Circus denotational semantics and the first step towards a
theorem prover for Circus: the mechanisation of the Circus semantics in a theorem prover,
ProofPower-Z. First, Section 3.1 presents the Circus denotational semantics, which is
based on the UTP. Finally, in Section 3.2 we discuss the mechanisation of part of the
UTP and Circus. Most of the material presented in Section 3.2 was published in [77].

3.1 Circus Denotational Semantics

A denotational semantics for Circus was first published in [105], where Cavalcanti and
Woodcock base their work on the UTP; their model for a Circus program is a Z specifi-
cation. By using Z, their semantics allowed the use of tools like Z/EVES [83] to analyse
and validate their definitions, and to reason about systems specified in Circus. Unfortu-
nately, that semantics is not appropriate to prove our refinement laws. The reason is that
in [105] the authors provided a shallow embedding of Circus in Z; however, in order to
prove properties about Circus itself, like our refinement laws, a deep embedding of Circus
in Z is needed. The denotational semantics of Circus that we present in the sequel is
based on the work presented in [105] and [54], and constitutes the definitive reference to
the Circus denotational semantics. The mechanisation of the semantics is a conservative
extension of the existing theories of ProofPower-Z, which, by themselves, are defined as
conservative extensions. Because these are all conservative extensions, this guarantees
soundness.

In [31], Cavalcanti and Woodcock present an introduction to CSP in the UTP. Their
definitions correspond to the ones presented in [54], but with a different style of specifi-
cation: every CSP process is defined as a reactive design of the form R(pre ` post). A
design pre ` post is defined as okay ∧ pre ⇒ okay ′ ∧ post : if the program starts in a
state satisfying its precondition, the design will terminate, and, on termination, it will
establish its postcondition. Using this style, we use a design to define the behaviour of
a process when its predecessor has terminated and not diverged; the process behaviour
in the other situations is defined by the healthiness condition R, which, as discussed in
Chapter 2, is a composition of the three healthiness condition presented in Table 3.1.

32 3 Circus Denotational Semantics

Formal Representation Description
R1 R1(P) =̂ P ∧ tr ≤ tr ′ The execution of a reactive process never un-

does any event that has already been per-
formed.

R2 R2(P(tr , tr ′)) =̂ P(〈〉, tr ′ − tr) The behaviour of a reactive process is obliv-
ious to what has gone before.

R3 R3(P) =̂ II rea C wait B P Intermediate stable states do not progress.

Table 3.1: Healthiness Conditions — Reactive Processes

The first healthiness condition, R1, states that the history of interactions of a process
cannot be changed, therefore, the value of tr can only get longer. The condition tr ≤ tr ′

holds if, and only if, the sequence tr is a prefix of or equal to the sequence tr ′. The
second healthiness condition, R2, establishes that a reactive process should not rely on
the interactions that happened before its activation. The expression s − t stands for the
result of removing an initial copy of t from s; this partial operator is only well-defined
if t is a prefix of s. The sequence tr ′ − tr represents the traces of events in which the
process itself has engaged from the moment it starts to the moment of observation. The
final healthiness condition, R3, defines the behaviour of a process that is still waiting
for another process to finish: it should not start. If the condition b is true, the predicate
P C b B Q is equivalent to P ; otherwise, it is equivalent to Q . Formally, it is defined as
(b ∧ P) ∨ (¬ b ∧ Q).

In [54] it is not quite clear whether CSP processes may have state or not; however, it
is clear that, if there are state variables, they are not changed. In our work, we consider
the state variables as part of the following definition for the reactive skip.

Definition B.1

II rea =̂ (¬ okay ∧ tr ≤ tr ′)
∨ (okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ = v)

If the previous process diverged, the reactive skip only guarantees that the history of
communication is not forgotten; otherwise, it terminates and keeps the values of the
variables unchanged. For conciseness, throughout this chapter, given a process with state
components and local variables x1, . . . , xn , the predicate v ′ = v denotes the conjunction
x ′1 = x1 ∧ . . . ∧ x ′n = xn .

In what follows, we take the approach of [31]: a vast majority of the Circus actions
are defined as reactive designs of the form R(pre ` post). Those which are not defined
in this way, reuse the results of [54] and were proved to be indeed reactive. As a direct
consequence of this, we have that the following theorem holds; its proof is by induction
on the structure of the Circus actions.

Theorem 3.1 Every Circus action is R (R1, R2, and R3) healthy.

We start this section by giving semantics to CSP actions in Section 3.1.1. In Sec-
tion 3.1.2, we discuss the semantics of action invocation, parametrised actions and re-

3.1 Circus Denotational Semantics 33

naming. The semantics of Circus commands and schema expressions are presented in
Sections 3.1.3 and 3.1.4, respectively. In Section 3.1.5, we present and discuss the se-
mantics of Circus processes. Finally, we present further healthiness conditions which are
satisfied by every Circus program.

3.1.1 CSP Actions

The first action we present is the deadlock action Stop: it is incapable of engaging in any
events and is always waiting.

Definition B.2 Stop =̂ R(true ` tr ′ = tr ∧ wait ′)

Stop has a true precondition because it never diverges. Furthermore, it never engages
in any event and is indefinitely waiting; therefore, its trace is left unchanged and wait ′

must be true. Since it represents deadlock, Stop must refuse all events. We express this
by leaving the final value of the refusal set, ref ′, unconstrained; any refusal set is a valid
observation. Since state changes do not decide the choice, as we explain later in this
section, Stop must leave the values of the state components unconstrained in order to be
the unit for the external choice (see Section 4.5 for details).

Skip is the action that terminates immediately and makes no changes to the trace or
to the state components.

Definition B.3 Skip =̂ R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)

The value of ref ′ is left unspecified because it is irrelevant after termination.
The worst Circus action is Chaos; it has an almost unpredictable behaviour.

Definition B.4 Chaos =̂ R(false ` true)

Since it is defined as a reactive design, Chaos cannot undo the events of a process his-
tory. For this reason, it is not the right zero for sequential composition. The sequential
composition P ; Chaos only diverges after the successful termination of P . For instance,
the sequential composition (c → Skip); Chaos only diverges after the synchronisation on
c; however, the definition above guarantees that c is in the final trace of the sequential
composition, whereas Chaos alone only guarantees that the initial trace is a prefix of the
final trace (tr ≤ tr ′).

Circus sequential composition is trivially defined as relational sequence, which is ex-
plained in detail in Section 3.2.3. The guarded action g & A behaves like Stop if g is false,
and like A otherwise. For conciseness, in the definition that follows and throughout this
chapter, we abbreviate A[b/okay ′][c/wait] as Ab

c . Basically, Af
f gives us the conditions in

which action A diverges when it is not waiting for its predecessor to finish, and At
f gives

34 3 Circus Denotational Semantics

Formal Representation Description
CSP1 CSP1(P) =̂ P ∨ (¬ okay ∧ tr ≤ tr ′) Extension of the trace is the only

guarantee on divergence
CSP2 CSP2(P) =̂ P ; J A process may not require non-

termination
CSP3 CSP3(P) =̂ SKIP ; P A process does not depend on ref

Table 3.2: Healthiness Conditions — CSP Processes

us the conditions that are satisfied when A terminates without diverging.

Definition B.6 g & A =̂ R((g ⇒ ¬ Af
f) ` ((g ∧ At

f) ∨ (¬ g ∧ tr ′ = tr ∧ wait ′)))

If the guard g is false, this definition can be reduced to Stop. However, if the guard g is
true, we are left with the reactive design R(¬ Af

f ` At
f); the following theorem (from [54])

shows us that this reactive design is exactly A itself.

Theorem 3.2 For every CSP process A, A = R(¬ Af
f ` At

f).

This theorem is proved in [31] and applies to CSP processes. These processes are defined
in the UTP as reactive designs that satisfy two other healthiness conditions presented
in Table 3.2: the only guarantee on divergence of a CSP1 process is the extension of
the trace, and CSP2 processes may not require non-termination. In the definition of
CSP2 we take the approach of [31] instead of that in [54]. We make use of an idempotent
function CSP2, which is defined in terms of a predicate J defined as follows:

J =̂ (okay ⇒ okay ′) ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ = v

Besides CSP1 and CSP2, processes that can be defined using the notation of CSP satisfy
other healthiness conditions. One of them, CSP3, requires that the behaviour of a process
does not depend on the initial value of ref .

The following theorem guarantees that Circus actions are indeed CSP1, CSP2 and
CSP3 healthy, and therefore, Theorem 3.2 is applicable to them.

Theorem 3.3 Every Circus action is CSP1, CSP2, and CSP3 healthy.

Part of the proof of this theorem is a direct result from the fact that reactive designs are
indeed CSP1 and CSP2 [31]. The rest of the proof is done by induction on the syntax
of the language; for the sake of conciseness, it is omitted here. This proof and the proof
of all the new theorems presented in this chapter can be found in [71].

When its predecessor has terminated without diverging, an external choice A1 2 A2

does not diverge if neither A1 nor A2 do. We capture this behaviour in the precondition
of the following definition of external choice. The postcondition of this reactive design
establishes that if the trace has not changed and the choice has not terminated, the
behaviour of an external choice is given by the conjunction of the effects of both actions;

3.1 Circus Denotational Semantics 35

otherwise, the choice has been made and the behaviour is either that of A1 or A2.

Definition B.7

A1 2 A2 =̂ R((¬ A1
f
f ∧ ¬ A2

f
f) ` ((A1

t
f ∧ A2

t
f) C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f)))

It is a direct and important consequence of this definition that a state change does not
resolve a choice; this would be expressed by including v ′ = v in the condition of the
postcondition. By way of illustration, let us consider the following choice.

(x := 0; c1 → Skip) 2 (x := 1; c2 → Skip)

This choice does not happen instantly; it only happens when either c1 or c2 happens.
The final value of x depends on which communication actually happens. We have chosen
state changes not to resolve an external choice because states are encapsulated within a
Circus process, and so their changes should not be noticed by the external environment.

The internal choice is the first constructor which is not defined as a reactive design: it
is simply the disjunction of both actions.

Definition B.8 A1 u A2 =̂ A1 ∨ A2

This is a simple definition, and the use of reactive designs to define an internal choice gives
rise to a slightly more complicated definition; for this reason, we keep the disjunction. In
fact, if we consider A1 and A2 to be R(pre1 ` post1) and R(pre2 ` post2), respectively,
the following theorem holds.

Theorem 3.4 A1 u A2 =̂ R(pre1 ∧ pre2 ` post1 ∨ post2)

An internal choice diverges if either of the preconditions is not valid and establishes either
post1 or post2 on termination.

Because we express it as a reactive design, our semantics for prefix is simpler than the
one presented in [54]. It uses the function doC presented below, which gives the behaviour
of the prefix regarding the observational variables tr and ref . For us, an event is a pair
(c, e), where the first element is the name of the channel and the second element is the
value which was communicated. For synchronisation events, we have the special value
Sync.

Definition B.9 doC (c, e) =̂ tr ′ = tr ∧ (c, e) /∈ ref ′ C wait ′ B tr ′ = tr a 〈(c, e)〉

While waiting, an action that is willing to synchronise on an event (c, e) has not changed
its trace and cannot refuse this event. After the communication (¬ wait ′), the event is
included in the trace of the action.

36 3 Circus Denotational Semantics

A synchronisation c → Skip does not diverge; neither does it change the state.

Definition B.10 c → Skip =̂ R(true ` doC (c,Sync) ∧ v ′ = v)

In Circus, output communications are a simply syntactic sugaring for synchronisations
on output values. The only difference between a synchronisation event and a synchroni-
sation in some value is that the communicated value is taken into account.

Definition B.11 c.e → Skip =̂ R(true ` doC (c, e) ∧ v ′ = v)

In fact, for any communication that does not involve input, we have the following
definition.

Definition B.13 For any non-input communication, c → A =̂ (c → Skip); A.

This definition presents a way of expressing an action A prefixed by a communication c
as a sequential composition of the communication c and A.

Input prefix has a slightly more complex definition. This is because we must consider
every possible value that can be communicated through the given channel. Besides, once
the communication happens, the value of the input variable changes accordingly. The
function doC presented above does not consider these facts; we present another function,
doI , which although similar to doC , takes these aspects into account. In the following
definition, we consider the availability of an environment δ, that gives us the types of
every channel in the system. Before the communication, an input prefix c?x : P cannot
refuse any communication on a set of acceptable events; these are the events on c that
communicate values of the type of c which satisfy the predicate P . After the communi-
cation the trace is incremented by one of these possible events. Besides, the final value
of x is that which was communicated. The function snd returns the second element of a
pair, and the function last returns the last element of a non-empty list.

Definition B.14

doI (c, x ,P) =̂ tr ′ = tr ∧ {e : δ(c) | P • (c, e)} ∩ ref ′ = ∅
Cwait ′B
tr ′ − tr ∈ {e : δ(c) | P • 〈(c, e)〉} ∧ x ′ = snd(last(tr ′))

In the same way we did for non-input prefix, we define the input prefix in terms of
the function doI above. However, an input prefix c?x : P → A(x) implicitly declares
a new variable x and, after the communication, uses the communicated value in A. In
the following definition we declare the new variable x using a Circus variable block whose

3.1 Circus Denotational Semantics 37

semantics will be presented later in this section.

Definition B.15 c?x : P → A(x) =̂ var x • R(true ` doI (c, x ,P) ∧ v ′ = v); A(x)

The predicate true may be omitted in an input prefix.
An interesting and helpful theorem is presented below. It allows us to express an input

prefix in terms of an external choice, provided the set of values that can be communicated
is finite. This theorem makes the proofs of some refinement laws much simpler for finite
channels.

Theorem 3.5 c?x : P → A(x) =̂ 2 x : {e : δ(c) | P} • c.x → A(x),
provided {e : δ(c) | P} is finite.

In this thesis, we do not consider all the possible combinations of inputs and outputs that
can be used in a channel of infinite type. Their semantics is lengthy, but not illuminating.
For conciseness, we omit the definition of combinations of inputs and outputs that can
be used in a channel of finite type; all the definitions can be found in Appendix B. For
channels with a finite type, we consider the Theorem 3.5 to transform these possible
combinations into an external choice of simple synchronisations.

The parallel composition A1 |[ns1 | cs | ns2]|A2 models interaction and synchronisation
between the two concurrent actions A1 and A2. Another consideration for our semantics
is that we assume that the references to names and channels sets have already been
expanded using their corresponding definitions. As explained in Chapter 2, in Circus, we
follow the alphabetised parallel composition adopted by [80]: only events that are in the
specified synchronisation channel set cs are required to happen simultaneously in both
A1 and A2; the remaining events may happen independently. In what follows, we present
the semantics of parallel operator as a reactive design in two parts: first we discuss its
precondition, and then, we discuss its postcondition.

Divergence can only happen if it is possible for either of the actions to reach divergence.
This can be expressed by trying to find a trace that leads one of the actions to divergence
and on which both actions agree regarding cs. For instance, the following expression tells
us if it is possible for A1 to diverge.

∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr) ∧ (A2f ; 2.tr ′ = tr) ∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs [P1]

Basically, if there exist two traces 1.tr ′ and 2.tr ′, defined as a trace of A1 after divergence
and as a trace of A2, and if these two traces are equal modulo cs, then it is possible for A1

to reach divergence. First, we define the trace 1.tr ′ on which A1 diverges as A1
f
f ; 1.tr ′ = tr .

The first predicate of the sequence give us the conditions on which A1 diverges; we record
the final trace in 1.tr ′ in the second predicate of the sequence, which ignores the final
values of the other variables. Similarly, we define 2.tr ′ for A2 as A2f ; 2.tr ′ = tr . Since we
are not interested in divergence, we do not replace okay ′ by any particular value. Finally,
we compare both traces using the sequence filtering function ¹; given a sequence sq and
a set st , sq ¹ st gives us the largest subsequence of sq containing only those objects that
are elements of st .

38 3 Circus Denotational Semantics

In a very similar way as we presented above for A1, we can also express the possibility
of divergence in A2. The parallel composition diverges if either of these two conditions
is true; hence, the precondition of the reactive design for the parallel composition is the
conjunction of the negation of both conditions.

¬ ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr) ∧ (A2f ; 2.tr ′ = tr) ∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

∧ ¬ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr) ∧ (A2
f
f ; 2.tr ′ = tr) ∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

For the postcondition, we use the parallel by merge technique used by Hoare and
He in the UTP. Basically, we run both actions independently and merge their results
afterwards.

((A1
t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M‖cs

In order to express their independent executions, we use relabelling function Ul : the result
of applying Ul to an output alphabet {v ′1, . . . , v ′n} is the predicate presented below.

l .v ′1 = v1 ∧ . . . ∧ l .v ′n = vn

Before the merge, however, we extend the alphabet of the predicate presented above that
expresses the independent execution of both actions. For a predicate P and name n, the
alphabet extension P+{n} is equivalent to the predicate P ∧ n ′ = n. By extending the
alphabet with v ′ and tr ′ in the above definition, we record the initial values of the trace
tr and of the state components and local variables v in tr ′ and v ′, respectively; they can
be used by the merge function M‖cs , as we explain in the sequel.

The merge function M‖cs is not only responsible for merging the traces of both ac-
tion, but also for merging the state components, local variables and the remaining UTP
observational variables.

M‖cs =̂ tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr) ∧ 1.tr ¹ cs = 2.tr ¹ cs

∧

(
(1.wait ∨ 2.wait) ∧
ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs)

)

Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

The trace (tr ′ − tr) is extended according to the merge of the new events that happened
in both actions. The function ‖cs takes each of the individual traces and gives a set
containing all the possible combinations of these two traces according to cs. Its definition
is omitted here for conciseness, but can be found in Appendix B, and is originally presented
in [80]. The expression before the merge gives us all the possible behaviours of running
A1 and A2 independently; however, only those combinations that are feasible regarding
the synchronisation on cs should be considered. We eliminate the combinations that are
not feasible by including the restriction that the traces must be equal modulo cs. Finally,
the parallel composition has not terminated if any of the actions have not terminated. In
this case, the parallel composition refuses all events in cs that are being refused by any

3.1 Circus Denotational Semantics 39

of the actions and all the events not in cs which are being refused by both actions. In
order to terminate, both actions in the parallel composition must terminate; in this case,
we merge the state as follows.

MSt =̂ ∀ v • (v ∈ ns1 ⇒ v ′ = 1.v) ∧ (v ∈ ns2 ⇒ v ′ = 2.v)
∧ (v /∈ ns1 ∪ ns2 ⇒ v ′ = v)

For every local variable and state component v , if it is declared in ns1, its final value is
that of A1; if, however, it is declared in ns2, its final value is that of A2. Finally, if it is
declared in neither ns1 nor ns2, its value is left unchanged.

We present below the whole of the semantics of parallel composition.

Definition B.18

A1 |[ns1 | cs | ns2]|A2 =̂

R

¬ ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr) ∧ (A2f ; 2.tr ′ = tr)

∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs
∧ ¬ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr) ∧ (A2

f
f ; 2.tr ′ = tr)

∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs
`
((A1

t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M‖cs

The semantics of interleaving does not have to consider any synchronisation channel.
An interesting aspect regarding the differences between the definitions of parallel com-
position and interleaving is the much simpler precondition for interleaving. Since both
actions may execute independently, the interleaving of two actions diverges if either of
the actions do so. Therefore, its precondition is the same as that for external choice
¬ A1

f
f ∧ ¬ A2

f
f . Its postcondition is very similar to that of parallel operator, but uses a

different merge function M|||cs . As a matter of fact, interleaving is equivalent to parallel
composition on an empty synchronisation channel set; this is stated by the refinement
Law C.98.

As was the case with internal choice, the hiding operator is not defined as a reactive
design. The calculations to express hiding as a reactive design pointed out that the final
definition would be quite complicated and extensive; hence, we preferred to base our
definition on that presented in [54] for the CSP hiding.

Definition B.20

A \ cs =̂
R(∃ s • A[s, cs ∪ ref ′/tr ′, ref ′] ∧ (tr ′ − tr) = (s − tr) ¹ (EVENT − cs)); Skip

If A reaches a stable state in which it cannot perform any further events in cs, than the
action A \ cs has also reached such state. The new events (tr ′ − tr) performed by A \ cs
are those new events performed by A (in Definition B.20, we rename the final trace of
A to s; so s − tr gives us the new events of A), but filtered by the set of all events but

40 3 Circus Denotational Semantics

those in cs. We also include the events in cs in the final refusal set of A by replacing
ref ′ by cs ∪ ref ′. Skip guarantees that possible divergences introduced by hiding events
in a recursive action (Law C.131) are actually captured. The proof of Law C.131, which
can be found in [71], illustrates this situation. The calculation of the left-hand side of the
sequence leaves us with the predicate R(tr ′ = tr); Skip; it is the Skip on the right-hand
side of the sequence that allows us to reduce this sequential composition to Chaos.

A recursive action can be expressed in two ways: it can be explicitly defined using the
weakest fixed-point (µX • F (X)), or it can be implicitly defined by invoking the action
itself. For instance, we present below two ways of expressing a recursive action A that
indefinitely performs the event c.

A =̂ µX • c → X [Explicit notation]

A =̂ c → A [Implicit Notation]

The transformation from one notation to another is purely syntactic; the implicit notation
is simply syntactic sugar for the explicit one. In this chapter, we consider only the first
notation. The semantics of the action µX • A(X) is standard: for a monotonic function
F from Circus actions to Circus actions, the weakest fixed-point is defined as the greatest
lower bound (the weakest) of all the fixed-points of F . In the definition below, vA stands
for action refinement; its definition, which is expressed as an inverse implication, can be
found in Section 4.1.

Definition B.21 µX • F (X) =̂ {X | F (X) vA X }

The iterated operators are used to generalise the binary operators of sequence, external
and internal choice, parallel composition, and interleaving; only finite types can be used
for the indexing variables. Basically, the semantics of all the iterated operators is given
by the expansion of the operator. For sequence, we have that the type of the indexing
variables are finite sequences; the expansion respects this sequence.

Definition B.22 o
9 x : 〈v1, . . . , vn〉 • A(x) =̂ A(v1); . . . ; A(vn)

The definitions of the other iterated operators are very similar. However, in the ex-
pansion of iterated parallel composition and interleaving, the state partitions, which are
also parametrised by the indexing variable, must be considered. For example, given a set
of channels cs, a function f from numbers ranging in the interval 0 . . 2 to state compo-
nents, and a parametrised action A, the definition of the iterated parallel composition
|[cs]| x : 0 . . 2 • |[f (x)]|A(x) is A(0) |[f (0) | cs | f (1)∪ f (2)]| (A(1) |[f (1) | cs | f (2)]|A(2)).

3.1 Circus Denotational Semantics 41

Formally, we have the following definition of iterated parallel composition.

Definition B.25

|[cs]| x : {v1, . . . , vn} • |[ns(x)]|A(x) =̂ A(v1)
|[ns(v1) | cs |

⋃{x : {v2, . . . , vn} • ns(x)}]|
 . . .

A(vn−1)
|[ns(vn−1) | cs | ns(vn)]|
A(vn)

Each step of the expansion takes a value vi from the type of the indexing variable and
creates a binary parallel composition. The left-hand side is the instantiation A(vi) with
priority over the variables in ns(vi). The right-hand side is the expansion of the iterated
parallel composition for the remaining values |[cs]| x : {vi+1, . . . , vn} • |[ns(x)]| A(x); it
has priority on all the variables that are in the set of the remaining variables (expressed
as

⋃{x : {vi+1, . . . , vn} • ns(x)}). Iterated interleaving is given a very similar definition
that does not consider the synchronisation channel set.

3.1.2 Action Invocations, Parametrised Actions and Renaming

The semantics of a reference to an action name is given by the copy rule: it is the body
of the action. Invocation of unnamed parametrised actions is defined simply as the sub-
stitution of argument for the formal parameter.

Definition B.29 (x : T • A)(e) =̂ A[e/x]

The renaming of the local variables and state components is simply the syntactic
substitution of the new names for the old ones.

3.1.3 Commands

The semantics of an assignment is rather simple: it never diverges and terminates suc-
cessfully leaving the trace unchanged; of course, it sets the final values of the variables in
the left-hand side to their new corresponding values. The remaining variables, denoted
in the definition below by u (u = v \ {x1, . . . , xn}), are left unchanged.

Definition B.31

x1, . . . , xn := e1, . . . , en =̂
R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ x ′1 = e1 ∧ . . . ∧ x ′n = en ∧ u ′ = u)

Specification statements only terminate successfully establishing the postcondition if
its precondition holds; only the variables in the frame can be changed. Furthermore, on
successful termination, the trace is left unchanged. In the definition below, we use u to

42 3 Circus Denotational Semantics

denote the variables that are not in the frame (u = v \ w).

Definition B.32 w : [pre, post] =̂ R(pre ` post ∧ ¬ wait ′ ∧ tr ′ = tr ∧ u ′ = u)

Assumptions {g} and coercions [g] are simply syntactic sugaring for the specification
statements : [g , true] and : [true, g], respectively.

Alternation can only diverge if none of the guards is true, or if any action guarded by
a valid guard diverges; any of the guarded actions whose guard is valid can be chosen for
execution.

Definition B.35

if [] i • gi → Ai fi =̂ R((
∨

i • gi) ∧ (
∧

i • gi ⇒ ¬ Ai
f
f) `

∨
i • (gi ∧ Ai

t
f))

The last command, variable block, is defined in terms of the UTP constructors var
and end; the former begins the scope of a variable, and the latter ends it.

Definition B.36 var x : T • A =̂ var x : T ; A; end x : T

In fact, as we discuss in Section 3.2, these are defined in the UTP as existential quan-
tification on the dashed and undashed variables, respectively. As a consequence, we have
the following corollary.

Corollary 3.1 var x : T • A = ∃ x , x ′ : T • A

The declaration of a variable x actually introduces both x and x ′ into scope.
Parametrisation by value, result, or by value-result, like those presented in [22], can

be defined in terms of other existing Circus constructs, namely, variable blocks and as-
signments. For instance, in a parametrisation by value, the formal parameter receives the
value of the actual argument, which is actually to be used by the action. Therefore, we
may define it as follows.

Definition B.37 (val x : T • A)(e) =̂ (var x : T • x := e; A), provided x /∈ FV (e).

Similar syntactic transformations can be applied to the other kinds of parameters.

3.1.4 Schema Expressions

Our semantics for schema expressions differs from the one presented in [105]. As previously
discussed, Cavalcanti and Woodcock’s models for Circus programs are Z specifications;
hence, the semantics of a schema expression was simply the schema expression itself with
some adjustments to take the UTP observational variables into account. We use the basic
conversion rule of [22] to transform schema expressions into specification statements.

We assume that the schema expressions of the specification have already been nor-
malised using the normalisation techniques presented in [107]. Besides, in Circus, the Z

3.1 Circus Denotational Semantics 43

notations for input (?) and output (!) variables are syntactic sugar for undashed and
dashed variables, respectively. This implies that we actually have a schema containing
the declaration of dashed (ddecl ′) and undashed (udecl) variables and the predicate that
determines the effect of the schema. As a small abuse of notation, we use ddecl also to
stand for a comma-separated list of undashed variables introduced as dashed variables in
ddecl ′.

Definition B.40 [udecl ; ddecl ′ | pred] =̂ ddecl : [∃ ddecl ′ • pred , pred]

By way of illustration, let us consider a process with state S =̂ [x : N | x < 10]. The
semantics of the schema operation Odd =̂ [∆S | x ′ mod 2 6= 0], which chooses any odd
natural number below 10 for x , is as follows.

[∆S | x ′ mod 2 6= 0] [Normalisation]

= [x , x ′ : Z | x ∈ N ∧ x ′ ∈ N ∧ x ′ mod 2 6= 0 ∧ x < 10 ∧ x ′ < 10] [Definition B.40]

= x :

∃ x ′ : Z • x ∈ N ∧ x ′ ∈ N
∧ x ′ mod 2 6= 0
∧ x < 10 ∧ x ′ < 10

,
x ∈ N ∧ x ′ ∈ N
∧ x ′ mod 2 6= 0
∧ x < 10 ∧ x ′ < 10

First, we normalise the schema expression, and finally, we apply the Definition B.40. This
specification statement has the expected behaviour: if the precondition of the schema
operation is satisfied, then it chooses an odd natural number below 10 for x ′; however, if
the precondition is false, it aborts. The reactive behaviour of the schema is embedded in
the semantics of specification statements (see Definition B.32 above).

3.1.5 Circus Processes

An explicitly defined process has an encapsulated state, a sequence PPars of Circus para-
graphs, and a main action A, which defines its behaviour. It declares the state components
using a Circus variable block and behaves like A.

Definition B.41 begin state [decl | pred] PPars • A end =̂ var decl • A

All the compound processes can be defined in terms of an explicit process specification.
For instance, sequence, external and internal choice can be defined as follows.

Definition B.42 For op ∈ { ; , 2 ,u}:
P op Q =̂ begin state State =̂ P .State ∧ Q .State

P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act op Q .Act

end

The state of the process P op Q is defined as the conjunction of the individual state of

44 3 Circus Denotational Semantics

both P and Q ; for simplicity, we assume that name clashes are avoided through renam-
ing. Furthermore, every schema in the paragraphs of P (Q), specify an operation on
P .State (Q .State); they are not by themselves operations on P op Q . For this reason, we
need to lift them to operate on the global State. For a sequence of process paragraphs
P .PPar , the operation P .PPar ∧Ξ Q .State stands for the conjunction of each schema ex-
pression in the paragraphs P .PPar with ΞQ .State; this indicates that they do not change
the components of the state of process Q (Q .State). The main actions are composed in
the same way using op; all the references from P .Act to the components of P .State are
through schemas, which have already been conjoined with ΞQ .State; the same comment
applies to Q .Act .

For parallel composition and interleaving the only difference is that we must determine
the state partitions of the operators. These are trivially the state components of each
individual process as presented below.

Definition B.43

P |[cs]|Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act |[α(P .State) | cs | α(Q .State)]|Q .Act

end

The similar definition for interleaving is omitted here.
The semantics of hiding is very simple: all the process paragraphs are included as they

are; the only change is in the main action, which we modify to include the hiding.

Definition B.45 P \ cs =̂ state State =̂ P .State P .PPar • P .Act \ cs end

Our semantics for an indexed process x : T ¯ P is that of a parametrised process
x : T • P . However, all the communications within the corresponding parametrised
processes are changed. For every channel c used in P , we have a freshly named channel
c i , which communicates pairs of values: the first element, the index, is a value i of
type T , and the second element is the value of the original type of the channel. The
semantics of the corresponding parametrised process is given using an extended channel
environment δ that includes the new implicitly declared channels c i .

Definition B.46 x : T ¯ P =̂ (x : T • P)[c : usedC (P) • c x .x]

The notation P [c : usedC (P) • c x .x] denotes the change, in P , of all the references to
every used channel c by a reference to c x .x . Since our semantics for indexed processes
are parametrised processes, the semantics for their instantiation is simply a parametrised
process invocation.

Some of the semantics for processes take the same approach that was taken for actions.
For instance, the semantics of a reference to a process is the body of the process.

3.2 Towards a Theorem Prover for Circus 45

Formal Representation Description
C1 C1(P) =̂ P ; Skip The value of the variable ref ′ has no relevance

after termination
C2 C2(P) =̂ A ||[ns1 | ns2]|| Skip A deadlocked process that refuses some

events offered by its environment will still
be deadlocked in an environment which of-
fers even fewer events

C3 C3(P) =̂ R(¬ Af
f ; true ` At

f) The precondition of a Circus process ex-
pressed as a reactive design contains no
dashed variables

Table 3.3: Healthiness Conditions — Circus Processes

3.1.6 Circus Healthiness Conditions

From Theorems 3.1 and 3.3, we already know that every Circus action is R and CSP1-
CSP3 healthy. However, processes that can be defined using the notation of CSP also
satisfy two other healthiness conditions: the value of ref ′ has no relevance after termination
of CSP4 processes and a deadlocked CSP5 process that refuses some events offered by its
environment will still be deadlocked in an environment that offers even fewer events. Both,
CSP4 and CSP5, are expressed in terms of CSP constructs that have a slightly different
definition in Circus: CSP4 processes satisfy the right unit law (P ; SKIP = P) and CSP5
processes satisfy the unit law of interleaving (P ||| SKIP = P) [54]. The healthiness
conditions C1 and C2 presented in Table 3.3 lift these two healthiness conditions to
state-rich Circus processes.

The last of the Circus healthiness conditions, C3, guarantees that every Circus action,
when expressed as a reactive design, has no dashed variables in the precondition. Since
Circus actions are CSP1-CSP2 healthy, we use Theorem 3.2 to transform them into
reactive designs; if they are originally already expressed so, this transformation has no
effect whatsoever. The sequential composition of the precondition with true guarantees
that only those actions with no dashed variables in the precondition will be a fixed-point
of the function C3.

The last theorem regarding healthiness conditions guarantees that every Circus oper-
ator is indeed C1-C3 healthy.

Theorem 3.6 Every Circus action is C1, C2, and C3 healthy.

As for the similar theorems for R and CSP, the proof of this theorem is done by induction
on the language; it is omitted here for the sake of conciseness.

3.2 Towards a Theorem Prover for Circus

In this section we present the details of the mechanisation of Circus and its theoretical
basis [77], the UTP. For the sake of presentation, we do not present the Z generated by

46 3 Circus Denotational Semantics

the ProofPower-Z document preparation tool, which has an awkward indentation for ex-
pressions. Instead, we present a better indented copy of the pretty-printed ProofPower-Z
expressions. First, we introduce ProofPower-Z, a theorem prover that supports speci-
fications and proofs in Z. Then, we present the mechanisation of the UTP theories of
alphabetised relations, designs, reactive processes, and CSP processes. An account of
how this mechanisation is done, and more interestingly, of what issues were raised and of
our decisions, is presented here. This work provides tool support for further explorations
of Hoare & He’s unification, and for the mechanisation of languages based on this unifica-
tion. More specifically, this work supports the mechanisation of Circus, whose description
concludes this section. A summary of the material in this section is published in [77].

3.2.1 ProofPower-Z

ProofPower-Z is a higher-order tactic-based theorem prover implemented using New Jer-
sey SML that supports specifications and proofs in Z. It extends ProofPower-HOL, which
builds on ideas arising from research at the Universities of Cambridge [49] and Edin-
burgh [48]. Some of the extensions provided by the New Jersey SML were used in
ProofPower-Z in order to achieve features such as a theory hierarchy, extension of the
character set accepted by the metalanguage ML, and facilities for quotation of object
language (Z or HOL) expressions, and for automatic pretty-printing of the representation
of such expressions.

As it is an extension of ProofPower-HOL, definitions can be made using Z, HOL, and
even SML, which is the input command language. ProofPower-Z also offers the possibility
of simply defining a wide range of proof tactics, as opposed to Z/EVES, which can be
used to reduce, and modularise proofs. Among other analysis support, ProofPower-Z
provides syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving. Using the subgoal package, goals can be split into
simpler subgoals, and proved; proofs are finished once all the subgoals have been proved.
This allows users to focus their attention on a particular part of the theorem at each
time. The Z notation used in ProofPower-Z is almost the same as that of the Z standard.
Those points where it differs from the standard, and which are relevant in this section,
are pointed out as needed.

ProofPower-Z comes with a large number of formally verified theories, including el-
ementary number theory, algebra, set theory, linear arithmetics, and many Z related
theories are also included. Furthermore, as we intend to mechanise the UTP model of
relations, ProofPower-Z was a more convenient choice because it is based on sets, rather
than functions, like PVS [2]. Our project is largely funded by QinetiQ: they intend to use
Circus in their development process. ProofPower-Z is the theorem prover that they use
routinely and was a pragmatic choice as a basis to provide a theorem prover for Circus.

3.2.2 Design Issues

This section describes the issues raised during the automation of the UTP. The first
difficulty that we faced was that the name of a variable is used to refer both to the name

3.2 Towards a Theorem Prover for Circus 47

itself and to its value. For instance, in the relation ({x}, x = 0), the left-most x indicates
that x is the name of a variable in the alphabet, while the right-most x stands for the
value of x . We make explicit the difference between a variable name and a variable value.

We discarded the option of giving an axiomatic semantics to relations, since we would
not be able to use most of the theorems that are built-in in ProofPower-Z to reason about
sets and other models. Our relations are pairs of sets.

Since we want to prove refinement laws, our mechanisation gives the possibility of
expressing and proving meta-theorems. A shallow embedding, in which the mapping
from language constructs to their semantic representation is part of the meta-language,
would not allow us to express such theorems. We use a deep embedding, where the syntax
and the semantics of alphabetised relations is formalised inside the host language. The
deep embedding has the additional advantage of providing the possibility of introducing
new predicate combinators.

The syntax of relations and designs could be expressed as a data type (Z free types),
say REL PREDICATE , for the relations. In this case, the semantics would be given
as a partial (7→) function f : REL PREDICATE 7→ REL PREDICATE . If we took
this approach, most of the proofs would be by induction over REL PREDICATE . Any
extension to the language would require proving most of the laws again. Instead, we
express the language constructors as functions; this is a standard approach in functional
languages. Extensions require only the definition of the new constructors, and that they
preserve any healthiness conditions; no proofs need to be redone.

Using SML as a meta-language would not give us a deep embedding. We were left
with the choice of Z or HOL. If we used HOL as meta-language, reusing the definitions
of Z constructs would not be possible, because they are written in SML. Because of our
knowledge of Z, and the expressiveness of its toolkit, we have used Z as our meta and
target language.

In Figure 3.1, we present our hierarchy of theories. In order to handle sequences,
we extend ProofPower-Z’s theory z-library ; the result is utp-z-library. The theory utp-rel
is that of general UTP relations. It includes basic alphabetised operators like conjunc-
tion and existential quantification; relational operators like alphabet extension, sequential
composition, and skip; and refinement. Like all our theories, it includes the operator de-
finitions and their laws.

Two theories inherit from utp-rel : utp-okay is concerned with the observational vari-
able okay , and utp-wtr with wait , trace, and ref . These are the main variables of the
theory of reactive processes. The theory utp-okay is the parent of utp-des, the theory
for designs. Along with utp-wtr, utp-okay is also the parent of the reactive processes
theory (utp-rea), which redefines part of utp-rel. The theory for CSP processes, utp-csp,
inherits from both utp-rea and utp-des. The theory for Circus (utp-circus) inherits from
utp-csp. Our proofs of the laws of a theory does not expand definitions of its parent
theory; it uses the parent’s laws. This provides modularisation and encapsulation.

3.2.3 Relations

A name is an element of the given set [NAME]. Each relation has an alphabet of type

48 3 Circus Denotational Semantics

Figure 3.1: Theories in the UTP

ALPHABET =̂ PNAME . The Z abbreviation N == A is provided as N =̂ A in
ProofPower-Z; it gives a name N to the mathematical object A. Every alphabet a contains
an input alphabet of undashed names, and an output alphabet of dashed names. Instead
of using free types, which would lead to more complicated proofs in ProofPower-Z, we
use the injective (½) function dash : NAME ½ NAME to model name decoration. The
set of dashed names is defined as the range of dash. The complement of this set is the
set of undashed names; hence, names are either dashed or undashed , but multiple dashes
are allowed.

For the sake of conciseness, we omit the definitions of the functions in a and out a,
which return the input and the output alphabets of a given alphabet. All the definitions
and proof scripts can be found in [71].

An alphabet a in which n ∈ a ⇔ n ′ ∈ a, for every undashed name n, is called
homogeneous. For us, n ′ is mechanised as dash n. Similarly, a pair of alphabets (a1, a2)
is composable if n ∈ a2 ⇔ n ′ ∈ a1, for every undashed name n.

A value is an element of the free-type VALUE , which can be an integer, a boolean, a
channel, a sequence of values, a set of values, a pair of values, or a special synchronisation
value.

VALUE ::= Int(Z) | Bool(BOOL) | Channel(NAME) | Seq(seq VALUE)
| Set(PVALUE) | Pair(VALUE × VALUE) | Sync

In ProofPower-Z, Bool(BOOL) stands for the Z constructor Bool〈〈BOOL〉〉, which intro-
duces a collection of constants, one for each element of the set BOOL. The ProofPower-Z
type BOOL is the booleans. The type VALUE can be extended without any impact on
the proofs because they do not depend on its structure.

Although we are defining an untyped theory, the observational variables have types;
for instance, okay is a boolean. For this reason, we specify some types; for instance,
booleans are in the set BOOL VAL =̂ {Bool(true),Bool(false)}, channels are in the set

3.2 Towards a Theorem Prover for Circus 49

CHANNEL VAL =̂ {n : NAME • Channel(n)}, and events are in the set of events
EVENT VAL =̂ {c : CHANNEL VAL; v : VALUE • Pair(c, v)}.

Three definitions allow us to abstract from the syntax of expressions. The set of
relations between values is RELATION =̂ VALUE ↔ VALUE . The set of unary
functions is UNARY F =̂ VALUE 7→ VALUE ; similarly, for binary functions we
have the set BINARY F =̂ (VALUE × VALUE) 7→ VALUE , which defines the set
of partial functions from pairs of values to values. For instance, the sum function is
{(Int(0), Int(0)) 7→ Int(0), (Int(0), Int(1)) 7→ Int(1), . . .}. An expression can be a value,
a name, a relation, or a unary or binary function application.

EXPRESSION ::= Val(VALUE) | Var(NAME)
| Rel(RELATION × EXPRESSION × EXPRESSION)
| Fun1(UNARY F × EXPRESSION)
| Fun2(BINARY F × EXPRESSION × EXPRESSION)

The definitions for unary functions, binary functions, and relations only deal with values.
For instance, for a given unary function f , the expression Fun1(f , e) can only be evaluated
once e is evaluated to some VALUE .

A binding is defined as BINDING =̂ NAME 7→ VALUE , and BINDINGS is the set of
bindings. Given a binding b and an expression e with free-variables in the domain (dom)
of b, Eval(b, e) gives the value of e in b (beta-reduction).

A relation is modelled in our work by the type REL PREDICATE defined below. A
relation is a pair: the first element is its alphabet, and the second is a set of bindings,
which gives us all bindings that satisfy the UTP predicate modelled by the relation. The
domain of the bindings must be equal to the alphabet. Optional models in which this
restriction could be relaxed are possible; however, they would lead us to more complex
definitions, as we discuss in Section 3.3. The set comprehension {x : s | p • e} denotes the
set of all expressions e, such that x is taken from s and satisfies the condition p. Usually,
e contains one or more free occurrences of x . The true condition and the constructor e
may be omitted.

REL PREDICATE =̂
{a : ALPHABET ; bs : BINDINGS | (∀ b : bs • dom b = a) • (a, bs)}

This corresponds directly to the definition of alphabetised predicates of the UTP.
In our work, we use Z axiomatic definitions, which introduce constrained objects, to

define our constructs. For instance, let us consider the following axiomatic definition.

x : s

p

It introduces a new symbol x , an element of s, satisfying the predicate p.
Our first construct represents truth. For a given alphabet a, TrueR a is defined as the

50 3 Circus Denotational Semantics

pair with alphabet a, and with all the bindings with domain a.

TrueR : ALPHABET → REL PREDICATE

∀ a : ALPHABET • TrueR a = (a, {b : BINDING | dom b = a})
In our work, we subscript the names of the constructs in order to make it easier to identify
to which theory they belong; we use R for the theory of relations.

Nothing satisfies false: the second element of FalseR a is the empty set.

FalseR : ALPHABET → REL PREDICATE

∀ a : ALPHABET • FalseR a = (a,∅)

This operator is the main motivation for representing relations as pairs. If we had defined
relations just as a set of bindings with the same domain a, which would be considered as
the alphabet, we would not be able to tell the difference between FalseR a1 and FalseR a2,
since both sets would be empty. Besides, it is important to notice the difference between
TrueR ∅ and FalseR ∅: the former has a set that contains one empty set of bindings as
its second element, and the latter has the empty set as its second element.

As we are working directly with the semantics of predicates, we are not able to give a
syntactic characterisation of free variables. Instead, we have the concept of an unrestricted
variable, which is actually not equivalent to that of a free-variables. As a matter of fact,
if a variable is not a free-variable of a predicate, then it is unrestricted, but the reciprocal
does not hold. For instance, x is an unrestricted variable in x = x , but it is a free-variable
of this predicate.

UnrestVar : REL PREDICATE → PNAME

∀ u : REL PREDICATE •
UnrestVar u = {n : u.1 | ∀ b : u.2; v : VALUE • b ⊕ {n 7→ v} ∈ u.2}

For a relation u, a name n from its alphabet is unrestricted if, for every binding b of u,
all the bindings obtained by changing the value of n in b are in u. In Z, f ⊕ g stands
for the relational overriding of f with g ; furthermore, t .n refers to the n-th element of a
tuple t .

All usual predicate combinators are defined. Conjunctions and disjunctions extend
the alphabet of each relation to the alphabet of the other. The function ⊕R is alphabet
extension; the values of the new variables are left unconstrained. In the following definition
we make use of the Z domain restriction ACB : it restricts a relation B : X ↔ Y to a set
A, which must be a subset of X , ignoring any member of B whose first element is not a
member of A.

⊕R : REL PREDICATE × ALPHABET → REL PREDICATE

∀ u : REL PREDICATE ; a : ALPHABET
• u ⊕R a = (u.1 ∪ a, {b : BINDING | (u.1 C b) ∈ u.2 ∧ dom b = u.1 ∪ a})

The conjunction is defined as the union of the alphabets and the intersection of the

3.2 Towards a Theorem Prover for Circus 51

extended set of bindings of each relation.

∧R : REL PREDICATE × REL PREDICATE → REL PREDICATE

∀ u1, u2 : REL PREDICATE •
u1 ∧R u2 = (u1.1 ∪ u2.1, (u1⊕R u2.1).2 ∩ (u2⊕R u1.1).2)

The definition of disjunction is similar, but the union of the extend set of bindings is
the result. We have proved that these definitions are idempotent, commutative, and
associative, and that they distribute over each other. We have also proved that TrueR

is the zero for disjunction and the unit for conjunction; similar laws were also proved for
FalseR. However, restrictions on the alphabets must be taken into account. For example,
we have the unit law for conjunction. The ProofPower-Z output notation n ` t gives
name n to a theorem t . Besides, in Z, the quantification ∀ x : a | p • q corresponds to the
predicate ∀ x : a • p ⇒ q .

REL True ∧R id thm1
` ∀ a : ALPHABET ; u : REL PREDICATE | a ⊆ u.1 • u ∧R TrueR a = u

As expected, the conjunction of a relation u with TrueR is u, but the alphabet of TrueR

must be a subset of the alphabet of u. Otherwise, the conjunction may have an alphabet
other than that of u and the theorem does not hold.

The negation of a relation r does not change its alphabet. Only those bindings b
that do not satisfy r (b /∈ r .2) are included in the resulting bindings. For the sake of
conciseness, we omit the definitions of implication (⇒R), equivalence (⇔R), and
conditional (CR BR), which can be trivially defined in terms of the previously defined
operators.

The function −R removes variables from the alphabet of a relation using domain anti-
restriction (domain subtraction) to remove names from the set of bindings. It is defined as
u −R a = (u.1 \ a, {b : u.2 • a −C b}). Complementary to domain restriction, the domain
anti-restriction A −C B , ignores any member of B , whose first element is a member of A.
Existential quantification ∃−R simply removes the quantified variables from the alphabet
and changes the bindings accordingly.

∃−R : (ALPHABET × REL PREDICATE) → REL PREDICATE

∀ a : ALPHABET ; u : REL PREDICATE • ∃−R(a, u) = u −R a

Universal quantification ∀−R(a, u) is defined as ¬ R ∃−R(a,¬ Ru).
In the definition of the CSP SKIP , Hoare and He use another existential quantification,

in which the quantified variables are not removed from the alphabet. We define this
new quantifier ∃R(a, u) as (∃−R(a, u)) ⊕ a; we remove the quantified variables from the
alphabet and include them again, leaving their values unrestricted.

Our sequential composition u1; u2 is not defined as in the UTP [54], an existen-
tial quantification on the intermediary state; the motivation is the simplification of our
proofs. In the UTP definition [54], the existential quantification is described using new

52 3 Circus Denotational Semantics

0-subscripted names to represent the intermediate state. Its mechanisation requires two
functions: one for creating new names, and another one for expressing substitution of
names. Any proof on sequential composition would require induction on both functions.

Relations can only be combined in sequence if their alphabets are composable. If we de-
fined sequential composition as a partial function, domain checks would be required during
proofs. Instead, we define a total function on well-formed pairs of relations, WF SemiR,
which have composable alphabets.

;R : WF SemiR → REL PREDICATE

∀ u1 u2 : WF SemiR •
u1 u2.1 ;R u1 u2.2 =

(in a u1 u2.1.1 ∪ out a u1 u2.2.1,
{b1 : u1 u2.1.2; b2 : u1 u2.2.2
| (∀n : dom b2 | n ∈ undashed • b2(n) = b1(dash n))
• (undashed C b1) ∪ (dashed C b2)})

The alphabet of a sequential composition u1;R u2 is composed of the input alphabet of
the first relation and the output of the second relation. For each pair of bindings (b1,b2)
from u1 and u2, respectively, we make a combination of all input values in b1 (undashed
names) with output values in b2 (dashed names). However, only those pairs of bindings in
which the final values of all names in b1 correspond to their initial values in b2 are taken
into consideration in this combination.

The UTP defines an alphabet extension that enables sequential composition to be
applied to operands with non-composable alphabets. The function +R differs from ⊕R

in that it restricts the value of the new name. For a given predicate P and name n, it
returns the predicate P ∧R (n ′ ={n ′,n} n).

In our work the skip is defined as the function defined below. Given a well-formed
alphabet a, it does not change the alphabet and returns all the bindings b with domain
a, in which for every undashed name n in a, b n = b n ′. The type WF SkipR is the set
of all homogeneous alphabets.

ΠR : WF SkipR → REL PREDICATE

∀ a : WF SkipR •
ΠR a = (a, {b : BINDING

| dom b = a
∧ (∀n : a | n ∈ undashed • b(n) = b(dash n))})

Other programming constructs like variable blocks and assignments are also included in
this theory. For instance, we present below the definitions of variable declaration and
undeclaration.

varR, endR : WF Var EndR → REL PREDICATE

∀ a n : WF Var EndR • varR a n = ∃−R({a n.2}, ΠR a n.1)
∧ endR a n = ∃−R({dash a n.2},ΠR a n.1)

The type WF Var EndR is the set of pairs (a,n), such that a is an homogeneous alphabet

3.2 Towards a Theorem Prover for Circus 53

that contains both n, which must be an undashed name, and n ′. Further definitions can
also be found in [71].

We now turn to the definition of refinement as the universal implication of relations.
The universal closure used in UTP [54] is defined 〈R u 〉R = ∀−R(u.1, u). We have used
angled brackets, instead of the square brackets of [54], because of problems with the
LATEX automatically generated by the ProofPower’s document preparation tool. For a
pair of relations (u1,u2), such that (u1, u2) ∈ WF REL PREDICATE PAIR (both have
the same alphabet), we have that u1 is refined by u2, if, and only if, for all names in their
alphabets, u2 ⇒ u1. This is expressed by the definition below.

vR : WF REL PREDICATE PAIR → REL PREDICATE

∀ u1 u2 : WF REL PREDICATE PAIR •
u1 u2.1 vR u1 u2.2 = 〈R (u1 u2.2 ⇒R u1 u2.1) 〉R

We have proved that our interpretation of refinement is, as expected, a partial order [71].
Moreover, the set of relations with alphabet a is a complete lattice.

Only functions f : REL PREDICATE 7→ REL PREDICATE whose domain is a set
of relations with the same alphabet are considered in the theory of fixed-points. We call
the set of such functions REL FUNCTION . The definition of the weakest fixed-point of
a function f : REL FUNCTION is standard. The greatest fixed-point is defined as the
least upper bound of the set {X | X v f (x)}.

3.2.4 Proving Theorems

We have built a theory with more than two-hundred and seventy laws on alphabets,
bindings, relational predicates, and laws from the predicate calculus. In what follows, we
illustrate our approach in their proofs and the use of the facilities provided by ProofPower-
Z.

The proof of one of our laws is shown in Figure 3.2: the weakest fixed-point law
∀F ,Y • F (Y) v Y ⇒ µF v Y . We set our goal to be the law we want to prove using
the SML command set goal . It receives a list of assumptions and the proof goal. In
our case, since we are not dealing with standard predicates, we must explicitly say that
relations are TrueR.

We start our proof by rewriting the Z empty set definition (rewrite tac) and stripping
the left-hand side of the implication into the assumptions (z strip tac). The SML com-
mand a applies a tactic to the current goal; the tactical REPEAT applies the given tactic
as many times as possible. The next step is to rewrite the definition of least fixed-point
in the conclusion: we use forward chaining in the assumptions (all asm fc tac), giving
our Z definition of least fixed-point as argument, and use the new assumption to rewrite
the conclusion(asm rewrite tac).

The application of a previously proved theorem, REL lower bound thm, concludes
our proof. However, it requires some assumptions, before being applied. We introduce
them in the assumption list using the tactic lemma tac. The first condition is that Y
is an element of the set of relations u, with an alphabet a, such that F (u) vR u. We

54 3 Circus Denotational Semantics

SML SML

set goal([], pZ∀F : REL FUNCTION ;

Y : REL PREDICATE
| Y ∈ dom F

∧ (F (Y) vR Y = TrueR∅)
•µ R(F) vR Y = TrueR∅ q);

a (rewrite tac[]);
a (REPEAT z strip tac);
a (all asm fc tac[z get spec pZ µR q]);

a (asm rewrite tac[]);
a ((PC T1 “initial”

lemma tac
pZY ∈ {u : REL PREDICATE

| a = u.1 ∧ F u vR u = TrueR{}} q)
THEN1 (asm prove tac[]));

a (all asm fc tac[]);

a ((lemma tac
pZ{u : REL PREDICATE

| a = u.1 ∧ F u vR u = TrueR{}}
∈ P REL PREDICATE q)

THEN1 (PC T1 “z sets ext” asm prove tac[]));
a ((lemma tac

pZ(a, {u : REL PREDICATE

| a = u.1 ∧ F u vR u = TrueR{}})
∈ WF GlbR LubR q)

THEN1
((rewrite tac[z get spec pZWF GlbR LubR q])

THEN
(PC T1 “z sets ext” asm prove tac[])));

a (apply def REL lower bound thm

pZ(a=̂a, u=̂Y ,

us=̂{u : REL PREDICATE
| a = u.1 ∧ F u vR u = TrueR{}}) q);

Figure 3.2: Proof script for the weakest fixed-point theorem

use the tactical PC T1 to stop ProofPower-Z from rewriting our expression by using the
proof context initial , which is the most basic proof context. Furthermore, to avoid a new
subgoal, we use the tactical THEN 1 that applies the tactic in the right-hand side to the
first subgoal generated by the tactic in the left-hand side. In our case, this proves that
the assumption we are introducing is valid. The validity of the introduction of the first
assumption is proved using asm prove tac, a powerful tactic that uses the assumptions
in an automatic proof procedure. Next, after introducing the first condition explained
above in the list of assumptions, we use forward chaining again to state the fact that the
alphabet of Y is a.

The next step introduces the fact that the set to which Y belongs is in fact a set
of REL PREDICATE . The proof of the validity of this assumption uses ProofPower-
Z’s proof context z sets ext , an aggressive complete proof context for manipulating Z
set expressions. The last assumption that is needed is the fact that the pair composed
of the alphabet a and the set to which Y belongs, is indeed of type WF GlbR LubR,
which contains all sets of pairs (a, bs), in which every binding in the set bs has a as its
alphabet. Its proof rewrites the conclusion using the Z definition of WF GlbR LubR, and
then uses the tactic asm prove tac in the z sets ext proof context. Finally, we use a
tactic defined by us, apply def , to instantiate the theorem REL lower bound thm with
the given values. The tactic apply def instantiates the given theorem with the values
given as arguments, and tries to rewrite the conclusion, using this instantiation.

ProofPower-Z has provided us with facilities that resulted in a rather short proof, for
a quite complex theorem. Some of the facilities we highlight are forward chaining, use
of existing and user-defined tactics, proof contexts, and automated proof tactics, such as
asm rewrite tac.

3.2.5 Okay and Designs

The UTP theory of pre and postcondition pairs (designs) introduces an extra observa-

3.2 Towards a Theorem Prover for Circus 55

tional variable okay : it indicates that a program has started, and okay ′ indicates that
the program has terminated. In our theory utp-okay, we define okay as an undashed
name (okay : NAME | okay ∈ undashed) ranging over the booleans. We restrict the type
BINDING by determining that okay and okay ′ are only associated with boolean values.

∀ b : BINDING | {okay , dash okay} ⊆ dom b •
{b okay , b(dash okay)} ⊆ BOOL VAL

We could have introduced this restriction when we first defined BINDING , but as we in-
tend to have modular independent theories, we postponed the restriction on observational
variables used by specific theories.

Designs are defined in the theory utp-des. The set ALPHABET DES is the set of all
alphabets that contain okay and okay ′. First we define DES PREDICATE , the set of
relations u, such that u.1 ∈ ALPHABET DES . Designs with precondition p and postcon-
dition q are written p ` q and defined as okay ∧ p ⇒ okay ′ ∧ q . The expression okay is the
equality okay =a true, which is mechanised in our work as =R (a, okay ,Val(Bool(true))).
For a given alphabet a, name n, and expression e, such that n ∈ a and the free-variables
of e are in a, the function =R (a,n, e) returns a relational predicate (a, bs), in which for
every binding b in bs, b n = Eval(b, e). A design is defined as follows.

`D : WF DES PREDICATE PAIR → REL PREDICATE

∀ d : WF DES PREDICATE PAIR •
d .1 `D d .2 = (=R (d .1.1, okay ,Val(Bool(true))) ∧R d .1) ⇒R

(=R (d .1.1, dash okay ,Val(Bool(true))) ∧R d .2)

The members of WF DES PREDICATE PAIR are pairs of relations (r1, r2) of the type
DES PREDICATE with the same alphabet. The turnstile is used by both ProofPower-Z
and the UTP. The former uses it to give names to theorems, and the later uses it to
define designs. In our work, we have kept both of them, but we subscript the UTP design
turnstile with a D .

The most important result for designs, which is the motivation for its definition, has
also been proved in our mechanisation: the left-zero law for TrueR.

In this new setting, new definitions for ΠR and assignment are needed. The skip for
designs ΠD is defined in terms of the relational skip ΠR as follows.

ΠD : WF SkipD → REL PREDICATE

∀ a : WF SkipD • ΠD a = TrueR a `D (ΠR a)

The type WF SkipD is formed by all the homogeneous alphabets that contain okay and
okay ′. The new definition of assignment uses the relation assignment in a very similar
way and is omitted here.

Designs are also characterised by two healthiness conditions. The first, H1, guarantees
that observations cannot be made before the program starts. We define H 1(d) = okay ⇒ d
as H 1(d) = (=R ({okay}, okay ,Val(Bool(true)))) ⇒R d . The set of relations that sat-
isfy a healthiness condition h is the set of relations r such that h(r) = r . For instance,
H 1 healthy = {d : REL PREDICATE | H 1(d) = d}.

56 3 Circus Denotational Semantics

An H 2 healthy relation does not require non-termination. In previous research [31],
Cavalcanti and Woodcock presented a way of expressing H2 in terms of an idempotent
function: H 2(P) = P ; J , where J =̂ ((okay ⇒ okay ′) ∧ v ′ = v). We express v ′ = v as
the relational skip ΠR on the alphabet containing the names in the lists v and v ′. We
define J as a function that takes an alphabet a ′ containing only dashed variables, and
yields the relation presented below, where A = a ∪ a ′, and a is obtained by undashing all
the names in a ′.

(okay =A true ⇒R okay ′ =A true) ∧R ΠR(A \ {okay , okay ′})
Our definition of the function H 2 is presented below.

H 2 : REL PREDICATE 7→ REL PREDICATE

∀ d : REL PREDICATE | dash okay ∈ d .1 • H 2 d = (d ;R(J (out a d .1)))

The function H 2 is partial because J defines a relation that includes okay and okay ′ in
its alphabet, and hence, the alphabet of a relation d that can be made H 2 healthy must
contain okay ′ in order to be composable with J (out a d .1). In order to reuse the results
in [31], we use this definition for H2.

More than thirty laws from previous work [54, 31], involving design and their healthi-
ness conditions, have been included in our theory of designs. Their proofs do not expand
any definition in the relations theory. Many laws were included in the relations theory,
in order to carry out proofs in the designs theory.

3.2.6 WTR and Reactive Processes

The behaviour of reactive processes cannot be expressed only in terms of their final
states; interactions with the environment (events) need to be considered. Besides okay ,
in the theory of reactive processes we have the observational variables tr ,wait , and ref .
The variable wait records whether the process has terminated or is interacting with the
environment in an intermediate state. Since it is a boolean, the definition of wait is similar
to that of okay . The variable tr records the sequence of events in which the process has
engaged; it has type SEQ EVENT VAL. The variable ref is a set of events in which the
process may refuse to engage; its type is SET EVENT VAL. The definitions of these
variables are in the theory utp-wtr. In the theory utp-rea, we define REA PREDICATE ,
the set of relations whose alphabet is a member of ALPHABET REA; this is the set of
alphabets that contain okay , tr , wait , ref , and their dashed counterparts.

As with designs, healthiness conditions characterise the reactive processes. The first
healthiness condition R1 states that the history of interactions of a process cannot be
changed, therefore, the value of tr can only get longer. Our definition uses a function
≤R (sequence prefixing), which is the Z prefixing relation lifted to VALUE s.

≤R : VALUE ↔ VALUE

(≤R) = {s1, s2 : SEQ VAL | ((Seq∼) s1) prefixZ ((Seq∼) s2)}
The type SEQ VAL is defined as {s : seqVALUE | Seq(s)}. The type seqVALUE is

3.2 Towards a Theorem Prover for Circus 57

the set of all Z sequences of VALUEs; the application of Seq to a member s of this set
gives the VALUE that corresponds to s. The Z sequence prefixing prefixZ is defined in
utp-z-library and ∼ stands for the Z relational inverse operator.

The definition of R1 below mechanises the function R1(P) = P ∧ tr ≤ tr ′.

R1 : REL PREDICATE → REL PREDICATE

∀ r : REL PREDICATE •
R1 r = r ∧R (=+R ({tr , dash tr},

Rel((≤R),Var(tr),Var(dash tr)),
Val(Bool(true))))

In order to transform the expression tr ≤ tr ′ into a relational predicate, we assert that the
expression Rel((≤R),Var(tr),Var(dash tr)) is equal to Val(Bool(true)). We adopt
the same strategy to lift all needed Z relational operators (∈,/∈,⊆, . . .) and functions (using
Fun1 and Fun2) to relational predicates.

The second healthiness condition establishes that a reactive process should not rely on
events that happened before it started. We mechanise the following formulation from [54].

R2(P(tr , tr ′)) = P(〈〉, tr ′ − tr)

This requires that P is not changed if tr is taken to be the empty sequence, and tr ′ is
taken to be tr ′− tr . The notation P(〈〉, tr ′− tr) is implemented using substitution; R2(P)
is defined as P [〈〉/tr][tr ′ − tr/tr ′].

The final healthiness condition R3 defines the behaviour of a process that is still
waiting for another process to finish: it should not start. In UTP [54], R3 is defined as
R3(P) = Πrea C wait B P , and is mechanised in our work as follows.

R3 : REA PREDICATE 7→ REA PREDICATE

∀ r : REA PREDICATE | r .1 ∈ WF SkipREA •
R3 r = (ΠREA r .1) CR (=R ({wait},wait ,Val(Bool(true)))) BR r

This definition of R3 uses a conditional and the reactive skip ΠREA. Conditionals are
defined only if both branches have the same alphabet and ΠREA is only defined for
homogeneous reactive alphabets (WF SkipREA). For this reason, our definition reveals
that R3 is not a total function: it can only be applied to homogeneous reactive relations.

A reactive process is a relation with a reactive alphabet a, which is R healthy ; the
function R is defined as R(r) = R1(R2(R3(r))). Based on these definitions, more than
sixty laws are part of our theory of reactive processes. Among other properties, they prove
that the healthiness conditions for reactive processes are idempotent and commutative,
and the closure of some of the program operators with relation to the healthiness condi-
tions. They also explore relations between healthiness conditions for reactive processes
and designs.

58 3 Circus Denotational Semantics

3.2.7 CSP

Our mechanisation of the CSP theory is based on the work in [31]. Basically, CSP
processes are reactive processes that satisfy two other healthiness conditions; they can all
be expressed as reactive designs: the result of applying R to a design. The first healthiness
condition states that the only guarantee in the case of divergence (¬ okay) is that the
trace can only be extended. It is mechanised as CSP1 r =̂ r ∨ (¬ okay ∧ tr ≤ tr ′).

The second healthiness condition is a recast of H2, presented in Section 3.2.5, with
an extended reactive alphabet. The mechanisation of CSP2 in ProofPower-Z reveals, as
it does for H2, that this function is not total: it is only applicable to relational predicates
that contain okay ′, tr ′, wait ′, and ref ′ in their alphabet.

CSP2 : REL PREDICATE 7→ REL PREDICATE

∀ r : REL PREDICATE | {dash okay , dash tr , dash wait , dash ref } ⊆ r .1
• CSP2 r = r ;RJ (out a r .1)

A CSP PROCESS is a CSP1 healthy and CSP2 healthy reactive process. These are the
sets containing all the CSP1 healthy and CSP2 healthy processes, respectively.

The SKIP process terminates immediately. The initial value of ref is irrelevant, and
it is quantified in the definition of SKIP .

SKIP : CSP PROCESS

SKIP = R(∃R ({ref }, ΠREA ALPHABET CSP))

The set ALPHABET CSP is the alphabet that contains only okay , tr , wait , ref , and
their dashed counterparts. The existential quantification does not remove ref from the
alphabet, as opposed to that used in the definition, for instance, of variable blocks.

The mechanisation of doC , used in the definition of prefix, is not as straightforward as
one might expect. We have already discussed the mechanisation of the conditional (and
its condition wait ′), and the equality tr ′ = tr , which expresses that the trace does not
change. The former is mechanised as CR (=R (a, dash wait ,Val(Bool(true)))) BR ,
and the latter as =R (a, dash tr , tr). The mechanisation of ev /∈ ref ′ and tr ′ = tr a 〈ev〉
are a little more complex, as we explain now.

An EVENT VAL, as previously discussed, is a pair containing the channel name and
a value; however, in CSP, one might write n.e → SKIP , where e is actually an expression.
For this reason, our implementation of doC presented below receives two arguments: the
name n of the channel and the communicated EXPRESSION e. We assume that the
observational variables cannot be used in a CSP specification. The type VAR NAME is
the set of all names that are not an UTP observational variable.

In our implementation, we need to express an event itself as an expression; with
this purpose, we define a function MkPair that receives a pair of VALUE s (v1, v2) and
returns the VALUE Pair(v1, v2). The expression that defines the event as an expression
is Fun2(MkPair ,Val(Channel(n)), e); its evaluation will give us a pair where the first
element is Channel(n) and the second element is the evaluation of e. In the left-hand

3.2 Towards a Theorem Prover for Circus 59

side of the condition, we lift the set non-membership relation /∈R to VALUE s in the same
way we did for ≤R (page 56). In the right-hand side though, we use yet another function,
MkSingleton, which receives a value v and returns the singleton sequence value Seq(〈v〉).
The expression Fun1(MkSingleton,Fun2(MkPair ,Val(Channel(n)), e)) corresponds to the
expression 〈ev〉, where ev is itself an event expression. Finally, the same strategy to lift
Z relations is applied to lift the Z concatenation function; however, we do not need to
assert that the expression is equal to true.

do C : (VAR NAME × EXPRESSION) → CSPPROCESS

∀n : VAR NAME ; e : EXPRESSION •
do C (n, e) = ((=R (ALPHABET CSP , dash tr ,Var(tr)))

∧R (=+R ({ref , dash ref },
Rel((/∈R),

Fun2(MkPair ,Val(Channel(n)), e),
Var(dash ref)),

Val(Bool(true)))))
CR(=R (ALPHABET CSP , dash wait ,Val(Bool(true)))) BR

((=R (ALPHABET CSP ,
dash tr ,
Fun2((a

R),
Var(tr),
Fun1(MkSingleton,

Fun2(MkPair ,Val(Channel(n)), e))))))

This function is used in the definition of CSP prefix as a reactive design; furthermore, it
is also used in the mechanisation of prefix in the Circus theory, which is the subject of the
next section.

3.2.8 Circus

Although the constructors of CSP do not contain state variables, the set of processes de-
scribed by the theory of CSP in the previous section contains processes that might have
state components. By definition, a CSP PROCESS is a CSP1 healthy and CSP2 healthy
reactive process; the only restriction on the alphabet is that it must contain the observa-
tional variables and their dashed counterparts in the alphabet. Therefore, for us, Circus
actions are members of CSP PROCESS ; there is no need to define a new set of predi-
cates. The definitions of the theory of Circus, utp-circus, follow directly from the semantics
presented in Section 3.1. Besides, none of the Circus operators that are defined syntacti-
cally (i.e, iterated operators) are part of our mechanisation; the mechanisation of these
operators is left as future work. In what follows, we present some of the more interesting
definitions and discuss important aspects that were raised during this mechanisation.

We start with the definition of Stop. For a given homogeneous alphabet a that
contains ALPHABET CSP (WF SkipC), Stop is the reactive design with a true pre-
condition, which we mechanise using the relational TrueR, and with the conjunction

60 3 Circus Denotational Semantics

tr ′ =a tr ∧R wait ′ as its postcondition.

Stop : WF SkipC → CSP PROCESS

∀ a : WF SkipC •
Stop a = R(TrueR a `D ((=R (a, dash tr , tr))

∧R (=R (a, dash wait ,Val(Bool(true))))))

The mechanisation of Skip a is similar; however, besides leaving the trace unchanged, its
postcondition requires termination (¬ wait ′) and leaves the state components unchanged
as we present below.

Skip : WF SkipC → CSP PROCESS

∀ a : WF SkipC •
Skip a = R(TrueR a `D ((=R (a, dash tr , tr))

∧R (=R (a, dash wait ,Val(Bool(false))))
∧R ΠR(a \ ALPHABET CSP)))

By giving the expression a \ ALPHABET CSP as argument to the relational skip, we
keep all the variables in a that are not in ALPHABET CSP unchanged. Chaos is simply
mechanised as the reactive design R(FalseR a `D TrueR a), and sequential composition is
trivially defined in terms of the corresponding relational operator presented in Page 52;
it is “redefined” in this theory just for uniformity.

Before presenting the mechanisation of the semantics of guarded actions, we present
below four new functions. These functions mechanise the substitutions Ab

c used in Sec-
tion 3.1; in order to make it more alike the textual notation, we use a prefix notation for
them. For instance, Aσf ωf mechanises the predicate Af

f .

ωf , ωt , σf , σt : CSP PROCESS → CSP PROCESS

∀ c : CSP PROCESS • c σf = /R(c,Val(Bool(false)), dash okay)
∧ c σt = /R(c,Val(Bool(true)), dash okay)
∧ c ωf = /R(c,Val(Bool(false)),wait)
∧ c ωt = /R(c,Val(Bool(true)),wait)

Another important definition is that of predicates that can be used in the syntax of
Circus specifications, which cannot mention any of the UTP observational variables. In
our model, they are represented by the type CIRCUS PREDICATE , which contains all
the relational predicates in which the observational variables are in the alphabet, but left
unrestricted within their types. On the other hand, in the syntax of Circus, conditions are
predicates that contain no dashed variables. The type CIRCUS CONDITION contains
all the relational predicates, whose alphabet contains the observational variables, but in
which the dashed variables that are not observational are unrestricted and the values of
the observational variables are left unrestricted within their types.

3.2 Towards a Theorem Prover for Circus 61

A guarded action is defined in terms of a CIRCUS CONDITION and a Circus action.

&C : (CIRCUS CONDITION × CSP PROCESS) → CSP PROCESS

∀ g : CIRCUS CONDITION ; a : CSP PROCESS •
g &C a = R((g ⇒R ¬ R(a σf ωf))

`D

((g ∧R (a σt ωf))
∨R (¬ R g ∧R (=R (a.1, dash tr , tr))

∧R (=R (a.1, dash wait ,Val(Bool(true)))))))

This definition derives directly from the semantics given in Section 3.1, but uses the
new notation used in the mechanisation for substitution. The definitions of external and
internal choice are trivial; they are omitted here for the sake of conciseness, but can be
found in [71]. We now turn our attention to the prefix operators.

Simple prefix has a very similar definition to the CSP one; however, since Circus
processes have state, the postcondition must guarantee that it is left unchanged. Besides,
instead of defining two different functions, one for simple prefix followed by Skip, and other
for simple prefix followed by any other action, we define a single function as presented
below. The lack of uniformity is motivated by the convenience of implementation in
ProofPower-Z.

→CSync : (VAR NAME × CSP PROCESS) → CSP PROCESS

∀ c : VAR NAME ; a : CSP PROCESS •
c →CSync a = R(TrueR a.1 `D do C (c,Val(Sync))

∧R ΠR(a \ ALPHABET CSP)); A

Since no value is being communicated, we use the special synchronisation value Sync as
an argument to the function do C . Besides, as with the Circus Skip, we also use the
relational skip to state that the state components are left unchanged. If any value is
being communicated, we have yet another function →C , which, besides the channel
name and the action, also receives an expression e; the only change in its definition is
that e, instead of Val(Sync), is given as argument to do C .

The mechanisation of variable blocks is trivially done in terms of the relational opera-
tions that can be used to introduce and remove a variable from scope. Variable declaration
is used in the expected way in the mechanisation of the input prefix, which we omit here
for the sake of conciseness. The definitions are in direct correspondence with those in
Section 3.2.3.

We now turn our attention to parallel composition, which we have mechanised in
terms of a number of functions that correspond to elements of the original semantics in
Section 3.1. In what follows, we explain some of them in detail and describe the remaining
ones; their definitions can also be found in [71].

The function MTrPar (parallel trace merge) presented below mechanises the function
‖cs presented in Section 3.1: it receives a pair of traces Pair(tr1, tr2) and a set of events
Set(cs) and returns a set Set(s) containing all the possible sequences of events Seq(e),

62 3 Circus Denotational Semantics

where e is in the set of combinations of tr1 and tr2 according to cs. It uses a function
|[Z]|Z , which is defined in our utp-z-library that does the corresponding action for Z

sequences.

MTrPar : (PAIR SEQ EVENT VAL × SET EVENT VAL) →
SET SEQ EVENT VAL

∀ ps : PAIR SEQ EVENT VAL; cs : SET EVENT VAL •
MTrPar(ps, cs) = Set({ e : ((Seq∼)((Pair∼) ps).1)

|[Z ((Set∼)cs)]|Z
((Seq∼)((Pair∼) ps).2)

• Seq(e) })

The function MTrParPred receives a set of events cs and returns the mechanisation
of the predicate tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr). Its mechanisation is rather long,
but trivial. We mechanise the expression 1.tr and 2.tr as the application of two injective
functions one, two: NAME ½ NAME ; the only restriction on these functions is that their
ranges are disjoint. The expression 1.tr ¹ cs = 2.tr ¹ cs is mechanised as the invocation
of the function MSync cs. Two predicates BranchesWaiting and BranchesNotWaiting
are defined in order to make the final definition of the merge function more easily read-
able: the former mechanises the predicate 1.wait ∨ 2.wait and the latter mechanises the
predicate ¬ 1.wait ∧ ¬ 2.wait . Yet another function, which has a rather long but simple
definition, is MRefPar : it receives a set of events cs and returns the mechanisation of
the predicate ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs). Finally, the recur-
sive function MSt returns a predicate that corresponds to the state merge. It receives
three sets of names: the set st corresponds to the state components, and the sets ns1
and ns2 correspond to the names in the left-hand side and right-hand side partitions of
the parallel composition, respectively. By way of illustration, given a state st = {x , y , z}
and partitions ns1 = {x} and ns2 = {y}, the call MSt(st ,ns1,ns2) returns the pred-
icate x ′ = 1.x ∧ y ′ = 2.y ∧ z ′ = z . The conditional presented in the merge function
M‖cs (Page 38) is mechanised as follows.

MWtRefStPar : (SET EVENT VAL × ALPHABET × ALPHABET
× ALPHABET) → REL PREDICATE

∀ns1,ns2, st : ALPHABET ; cs : SET EVENT VAL •
MWtRefStPar(cs, st ,ns1,ns2) =

BranchesWaiting ∧R MRefPar(cs)
CR(=R (dashwait , dash wait ,Val(Bool(true))))BR

BranchesNotWaiting ∧R MSt(st ,ns1,ns2)

It receives the synchronisation channel set cs, the set of names st of the state components,
and the sets of names that correspond to the partitions ns1 and ns2. If the parallel combi-
nation is still waiting, then at least one of the branches is still waiting (BranchesWaiting),
and the refusal set is defined by the function MRefPar ; otherwise, both branches have
terminated (BranchesNotWaiting) and the state is merged accordingly (MSt).

3.2 Towards a Theorem Prover for Circus 63

The merge function M‖cs is mechanised as follows.

MPar : (SET EVENT VAL × ALPHABET × ALPHABET
× ALPHABET) → REL PREDICATE

∀ns1,ns2, st : ALPHABET ; cs : SET EVENT VAL •
MPar(cs, st ,ns1,ns2) = MTrParPred(cs) ∧R MSync(cs)

∧R MWtRefStPar(cs, st ,ns1,ns2)

It receives the same arguments as the function MWtRefStPar presented above and returns
the conjunction of the trace merge (MTrParPred), the predicate MSync(cs) and the
conditional described above.

Two more functions are needed in the mechanisation of parallel composition. Given
two processes a1 and a2 and a synchronisation channel set cs, the first function, DivPar ,
returns the predicate that describes the condition on which a1 may diverge. Basically, it
mechanises the predicate P1 presented in page 37.

DivPar : (CSP PROCESS × CSP PROCESS × SET EVENT VAL) →
REL PREDICATE

∀ a1, a2 : CSP PROCESS ; cs : SET EVENT VAL •
DivPar(a1, a2, cs) = ∃R({dash(one tr), dash(two tr)},

((a1σf ωf);C (=R (a1.1, dash(one tr),Var(tr))))
∧R ((a2ωf);C (=R (a2.1, dash(two tr),Var(tr))))
∧R (MSync(cs)))

As discussed in Section 3.1, in the parallel composition, we run both actions inde-
pendently and merge their results afterwards. With this purpose, we use relabelling to
capture their independent behaviours. In our work, the relabelling is done by the function
U presented below.

U : ((NAME ½ NAME) × ALPHABET) 7→ REL PREDICATE

∀ f : (NAME ½ NAME); a ′ : ALPHABET | a ′ ⊆ dashed
• (∃ a : ALPHABET

| a ⊆ undashed ∧ a ′ = dash (| a |)
• U (f , a ′) =

({n : NAME | n ∈ a • dash(f n)} ∪ a,
{b : BINDING | dom b = {n : NAME | n ∈ a • dash(f n)} ∪ a

∧ (∀n : NAME | n ∈ a • b(dash(f n)) = b(n))}))

It receives a renaming function f (i.e, one and two) and an alphabet a ′ containing only
dashed names, and returns a relational predicate whose alphabet is that resulting from the
union of a ′ with the corresponding undashed alphabet a. We use the Z relational image
to retrieve the undashed version of a ′; for a given relation D : X ↔ Y , and a subset A
of X , D (| A |) returns the set of all elements in Y to which some element of A is related
via D . The bindings of the resulting relational predicate are those whose domain is the

64 3 Circus Denotational Semantics

same as the relation’s alphabet, and in which the values of the final (dashed) values of the
relabelled names b(dash(f n)) are the same as the value of their corresponding undashed
original names.

Finally, the function that mechanises the parallel composition receives two process a1
and a2 with the same alphabet, the two partitions ns1 and ns2, which must be disjoint
and contain only undashed names, and the synchronisation channel set cs. As described
in Section 3.1, the parallel composition diverges if it is possible for either of the actions
to diverge; this is expressed in the precondition of the resulting reactive design by using
the function DivPar as follows.

|[C]|C : (CSP PROCESS ×
(ALPHABET × SET EVENT VAL × ALPHABET) ×
CSP PROCESS) 7→ CSP PROCESS

∀ a1, a2 : CSP PROCESS ; cs : SET EVENT VAL; ns1,ns2 : ALPHABET •
a1 |[C (ns1, cs,ns2)]|C a2 =

R((¬ R(DivPar(a1, a2, cs)) ∧R ¬ R(DivPar(a2, a1, cs)))
`D

(((((a1σt ωf);CU (one, out a a1.1))
((a2σt ωf);CU (two, out a a2.1)))
+R({tr} ∪ (a1.1 \ (ALPHABET CSP ∪ dashed)))) ;C

(MPar(cs, a1.1 \ (ALPHABET CSP ∪ dashed),ns1,ns2))))

We use the function U to relabel the final values of the execution of actions a1 and a2;
the relabelling functions one and two, respectively, are used as argument. Furthermore,
we extend the alphabet of the resulting predicate with tr and the state components; these
are all the names that are in the alphabet of a1 which are neither a UTP observational
variable nor dashed . Finally, we sequentially compose the parallel execution of both
actions with the merge function MPar .

Although rather long, the mechanisation of the parallel composition has a direct cor-
respondence to its semantics presented in Section 3.1. The same direct correspondence
happens to the mechanisation of interleaving, hiding, parametrised actions and substitu-
tions, which are omitted here, but can be found in [71]. Furthermore, the mechanisation of
recursion is trivially defined in terms of the weakest fixed-point described in Section 3.2.3.

The Circus assignment is reactive, and hence, it needs a definition different from that
of relational assignment. The Circus assignment also receives a homogeneous alphabet a
that contains at least all the UTP observational variables and their dashed counterparts,
a sequence ns of names and a sequence exps of expressions. The same restrictions from
the relational assignment apply: all the names in ns and free-variables in exps must be
undashed and belong to a; both lists ns and exps have the same length. The set of tuples
(a,ns, exps) that satisfy these conditions is WF AssignC .

The reactive design that is returned in the definition below has TrueR a as its precon-
dition; its postcondition states that the trace is left unchanged and that the final value
of wait is false. Furthermore, we use the relational assignment to express the change of
the state components accordingly.

3.2 Towards a Theorem Prover for Circus 65

AssignC : WF AssignC → CSP PROCESS

∀ a : ALPHABET ; ns : seqVAR NAME ; exps : seqEXPRESSION
| (a,ns, exps) ∈ WF AssignC

• AssignC (a,ns, exps) =
R((TrueR a)
`D ((=R (a, dash tr ,Var(tr))) ∧R (=R (a, dash wait ,Val(Bool(false))))

∧R AssignR(a,ns, exps)))

The specification statement f : [preC , postC] receives a homogeneous alphabet a that
contains, among other variables, all the UTP observational variables and their dashed
counterparts, a sequence f of names, the precondition preC , and the postcondition postC .
The set WF SpecStatementC is the set of all (a, f , preC , postC) such that: every name
in f is undashed , different from all of the UTP observational variables, and belongs to a;
and the alphabets of preC and postC are equal to a.

SpecStatementC : WF SpecStatementC → CSP PROCESS

∀ a : ALPHABET ; f : seqVAR NAME ; preC : CIRCUS CONDITION ;
postC : CIRCUS PREDICATE
| (a, f , preC , postC) ∈ WF SpecStatementC
• SpecStatementC (a, f , preC , postC) =

R(preC
`D

((=R (a, dash tr ,Var(tr))) ∧R (=R (a, dash wait ,Val(Bool(false))))
∧R postC
∧R ΠR(a \ ((ran f ∪ {n : ran f • dash n}) ∪ALPHABET CSP))))

As expected, the reactive design which is returned has preC as its precondition; as for
assignment, on termination, the specification statement does not change the trace and
terminates. Furthermore, it also establishes the postcondition postC . Finally, the specifi-
cation statement cannot change any variable that is not in the frame f ; we mechanise this
property using the relational skip on the alphabet that does not contain any observational
variable and any variable that is in the frame (and their dashed counterpart).

The next Circus action whose mechanisation we present is the schema expression. As
in Section 3.1, we also assume that schema expressions have already been normalised.
However, a very important aspect is implicitly considered in Section 3.1 and must be
made explicit in the mechanisation: the typing of the declared variables. The recursive
function Typing receives a list of variable declarations and an alphabet, and returns
a conjunction of predicates: for each variable n declared to be of type T , it contains
a predicate x ∈R T . For instance, given the declaration x : Z; y : Z, the result of
Typing ((〈x , y〉, 〈Val(Set(Z)),Val(Set(Z))〉), {x , y}) is the following mechanisation for the
predicate x ∈ Z ∧ y ∈ Z.

(=R ({x , y},Rel((∈R),Var(x),Val(Set(Z))),Val(Bool(true))))
∧R (=R ({x , y},Rel((∈R),Var(y),Val(Set(Z))),Val(Bool(true))))

Notice that the first argument of the function Typing , the variable declaration, is a pair

66 3 Circus Denotational Semantics

of lists: the first element is the list of variable names, which must be elements of the
alphabet a, and the second element is the list of types; both lists must have the same
size. These restrictions are captured by the type VAR DECLS , whose cartesian product
with ALPHABET is the domain of the function Typing .

Typing : (VAR DECLS × ALPHABET) 7→ REL PREDICATE

The set of well-formed schema expressions, WF SchemaExpC , is the set containing all
pairs (decls, p), where decls are the well-formed variable declarations, and p is a relational
predicate, such that the set of all variables that are declared in decls is equal to the al-
phabet of p removing the observational variables in ALPHABET CSP . For us, a schema
expression is defined like a specification statement: the alphabet contains all the declared
variables and the observational variables, the frame contains the undashed versions of
all the dashed declared variables, the precondition is the existential quantification of the
dashed variables, where the predicate also includes the typing restrictions of the variables,
and the postcondition is the conjunction of the typing restrictions of the variables and p.

SchemaExpC : WF SchemaExpC → CSP PROCESS

∀ decls : VAR DECLS ; p : REL PREDICATE | (decls, p) ∈ WF SchemaExpC

• ∃ f : seqVAR NAME
| ran f ⊆ undashed ∧ ran(decls.1 ¹ dashed) = dash(| ran f |)
• SchemaExpC (decls, p) =

SpecStatement(ran decls.1 ∪ALPHABET CSP , f ,
∃

R
(ran(decls.1) \ undashed ,Typing(decls, p.1) ∧R p),

Typing(decls, p.1) ∧R p)

Three auxiliary recursive functions are used in the mechanisation of our last com-
mand presented in this section, alternation. The three of them receive an element of
GUARDED ACTIONS as argument. This type contains all the pairs of finite lists with
same length, in which the first element is a list of Circus conditions (the guards) and the
second element is a list of actions. For example, the guarded actions g1 → A1[] g2 → A2

is represented in our mechanisation as the pair (〈g1, g2〉, 〈A1,A2〉). The first function,
ValidGuards, mechanises the predicate

∨
i • gi ; it returns the disjunction of all guards

in the first list. The function NonDivActions mechanises the predicate
∧

i • gi ⇒ ¬ Ai
f
f .

Finally, the function ExecActions mechanises the predicate
∨

i • gi ∧ Ai
t
f .

An alternation does not diverge if at least one of the guards is valid (ValidGuards)
and if every action guarded by a valid guard does not diverges (NonDivActions). When it
terminates, it establishes the result of executing one of the actions that are being guarded
by a valid guard (ExecActions).

ifC fiC : GUARDED ACTIONS → CSP PROCESS

∀ gactions : GUARDED ACTIONS •
ifC gactions fiC = R(ValidGuards(gactions) ∧R NonDivActions(gactions)

`D ExecActions(gactions))

In order to simplify proofs, we also provide a simpler binary alternation.

3.3 Final Considerations 67

The semantics of all Circus processes are given as syntactic transformations from the
process definition to some Circus action. Their mechanisation is left as future work.

3.3 Final Considerations

This chapter presented Circus’s denotational semantics and its mechanisation in a theorem
prover, ProofPower-Z. In the denotational semantics, we took the approach from [31],
where the semantics of the CSP operators are given as reactive designs. By expressing
the vast majority of the Circus operators as reactive designs, we reuse the results presented
in [31], bring uniformity to proofs, and foster reuse of our results. Furthermore, we believe
that the definitions of the operators as reactive designs provided us with simpler and more
intuitive definitions.

Although based on the work presented in [105], the denotational semantics we pre-
sented in this chapter has some major differences. For instance, the semantics presented
in [105] did not allow us to prove our refinement laws because it was a shallow embedding
of Circus in Z. This was our main motivation for defining a new denotational semantics
for Circus.

The semantic model for Circus processes presented in [105] was a Z specification.
For this reason, the state invariant was implicitly maintained by all operators. In our
semantics, this is no longer a fact: nothing is explicitly stated about the invariant in our
semantics. We assume specifications that initially contain no command, and therefore,
change the state using only Z operations, which explicitly include the state invariant and
guarantee that it is maintained. For this reason, our semantics ignores any existing state
invariants, since they are considered in the refinement process, just as in Z.

As a direct consequence of our definition for external choice and the need for Stop
to be its unit, our semantics of Stop does not keep the state unchanged, but loose. An
alternative would be to allow state changes to resolve the choice, in which case, Stop
would keep the state unchanged. However, the states of the processes are encapsulated
and state changes should not be noticed by the external environment; for this reason, we
chose the first approach.

Another major difference from the semantics presented in [105] is the state parti-
tions in parallel composition and interleaving, which remove the problems intrinsic to
shared variables. These partitions were originally introduced in [27], and also have a
direct consequence in the semantics of parallel composition and interleaving of processes.
In [105], the parallel composition P |[cs]| Q conjoins each paragraph in P (Q) with
∆Q .State (∆P .State); this lifts the paragraphs in P (Q) to a state containing also the
elements of Q (P), but with no extra restrictions. For us, in the semantics of parallel
composition and interleaving, each side of the composition has a copy of all the variables
in scope. They may change the values of all these variables, but only the changes to those
variables that are in their partition have an effect in the final state of the composition. For
this reason, we do not need to leave Q .State unconstrained. We use a definition that is
very similar to the other binary process combinators; the only change is the consideration
of state partitions.

68 3 Circus Denotational Semantics

For most of the Circus operators, the fact that they are R and CSP healthy follows
directly from their definitions and from the fact that reactive designs are CSP1 and
CSP2 [31]. Those which were not defined as reactive designs were also proved to be R
and CSP healthy. However, process that can be defined using the CSP notation also
satisfy healthiness conditions, which are expressed in terms of CSP constructs; in this
chapter, we lifted these conditions to Circus, giving rise to the healthiness conditions C1
and C2. A final healthiness condition was also needed for Circus actions, C3. It states
that, when expressed as a reactive design, every Circus action does not contain any dashed
variable in its precondition.

We started our way towards a theorem prover for Circus by giving a set-based model to
relations. This is the basis for the development of five theories: relations, designs, reactive
processes, CSP processes, and Circus processes. For us, a relation is a pair, whose first
element is a set that represents its alphabet and whose second element is a set of functions
from names to values; the domain of all these functions are equal to the relation alphabet.

This is not the only possible model for relations. Our choice was based on the fact
that any restriction that applies to relations has a direct impact on the complexity of the
proofs. Our model imposes a simple restriction: the domain of the bindings must be equal
to the alphabet. This restriction results in simpler definitions, and hence proofs. As an
example of an alternative, in [32] a relation is defined as a pair formed by an alphabet
and a set of pairs of bindings: for every pair (b1, b2) of bindings in a relation, the domain
of b1 has only undashed names and that of b2 only dashed names. Such a restriction has
to be enforced by the definition of every operator. There is, however, an isomorphism
between our model and this one. By joining and splitting the sets of bindings, we can
move from one model to another; our concern is only with the practicality of mechanical
theorem proving.

We also could have used bindings whose domains could be different from the relation’s
alphabet. However, the alphabet is the set of names constrained by the relation. Hence,
the alphabet a of a relation would have to be either a subset or equal to the domain of
each binding b. Values of names that were not in the alphabet would actually have no
meaning. We chose bindings whose domain is the alphabet because, by taking the other
approach, we have a more complex definition for alphabet extension: bindings for names
that are not in the alphabet need to be removed before being left unrestricted. Alphabet
extension is at the heart of the definitions of conjunction and disjunction.

If, in the hope to find simplifications in other points, we accepted the more complex
definition of alphabet extension, then we would need to determine how to handle the
names that are not in the alphabet of the relation. For example, bindings could be total
functions that map these names to an undefined value ⊥; or we could leave these names
unrestricted. These restrictions on relations are in fact more complex than that in our
model, and lead to more complex definitions and proofs. We also have an isomorphism
between our model and each of these; by applying a domain restriction to the bindings
in these models and extending our model’s bindings, we can change the representations.

As an industrial theorem prover, ProofPower-Z proved to be powerful (and helpful).
The support provided by hundreds of built-in tactics and theories, as libraries for Z
constructs and set theory, made our work much simpler. The axiomatisation of the

3.3 Final Considerations 69

theorems proved in our work in other theorem provers, like Z/Eves, and the development
of new theories based on these axioms makes the use of our results in different theorem
provers possible. In ProofPower-Z, the tactics that can be created are more powerful than
the tactics available in Z/Eves; however, the level of expertise needed for initial users of
Z/Eves is not as high as for ProofPower-Z.

The discussion above of alternative models is based on our experience with ProofPower-
Z; some of them could make proofs easier in another theorem prover. An investigation of
alternative theorem provers is a topic for future research.

Nuka and Woodcock formalised the alphabetised relational calculus in Z/EVES [67].
They did not restrict the set of bindings in the same way we do, but the restriction on the
domain of the bindings is satisfied by all the constructors. By including the restriction
on the set of bindings, we make this information available in all the proofs, and not only
in those including some particular operators. We extend [67] by including many other
operations, such as sequencing, assignment, refinement, and recursion. The hierarchical
mechanisation of the theories of designs, reactive processes, CSP, and Circus is also a
contribution of our work that provides a powerful tool for further investigations on them.

In [68], the authors present the same mechanisation that was presented in [67] but, this
time, in ProofPower-Z. They also extend [67] by mechanising a specification language that
includes, among other operators, skip, abort, miracle, Hoare triples, assertions, coercions,
weakest preconditions, and iterations. However, their syntax is defined using Z free types;
as discussed in this chapter, this makes it harder to extend their specification language.

Hoare and He [54], although dealing with alphabetised predicates, often leave alpha-
bets quite implicit. For example, true is often seen unalphabetised, while in fact, it is
alphabetised. This abstraction simplifies the presentation of the theory, but is not suit-
able for theorem provers. With the obligation to deal with alphabets, our work gives
more details on how the alphabets are handled within the UTP.

The alphabet extension used in the UTP constrains the values of the new vari-
ables: they cannot be changed. However, our set-based model for relations needed a
different alphabet extension that leaves their values unconstrained. Furthermore, in the
UTP, existential quantifications are used in two different ways: in the definition of vari-
able blocks, the authors explicitly state that the quantified variables are removed from
the alphabet; and in the definition of the reactive SKIP , the alphabet is, implicitly, left
unchanged. Our implementation defines two existential and two universal quantifica-
tions: one of them removes the quantified variables from the alphabet, and the other one
does not. We also changed the formulation of some of the UTP definitions in order to
facilitate our proofs; the relational sequence is an example of such definition.

Our work also reveals details that are left implicit in the UTP regarding the domain of
the healthiness conditions. By mechanising the healthiness conditions, R3 for instance,
we make it explicit that R3, and consequently R, is a partial function that can only be
applied to homogeneous reactive processes.

We expressed the language constructors as functions. For this reason, they can be
simply extended without losing the previous proofs; the syntax of expressions was ab-
stracted by using three simple definitions. Furthermore, the strategy that we adopted for
lifting Z functions and relations to relational predicates, for instance ≤R, makes the Z

70 3 Circus Denotational Semantics

toolkit directly available in our theory.
The mechanisation of the CSP and Circus theory proved to be harder than we first

imagined. Some simple expressions proved to be non-trivial when it came to the mechani-
sation. For instance, in the mechanisation of the function do C , the expressions regarding
the refusal set and the increment of the trace, and the representation of events were not
trivial. However, our strategy for lifting Z functions and relations to values proved to be
of much use in both cases.

Another interesting topic was raised in the mechanisation of schema expressions. Im-
plicitly, in the denotational semantics, the type of the variables is already considered;
however, in the mechanisation, we have to make this explicit. In our mechanisation, we
defined a function that characterises a relational predicate that imposes the typing of the
variables.

In [45, 106], Freitas et al. present a model checker for Circus that will be integrated to
our theorem prover. Furthermore, an operational semantics for Circus is also presented;
proving the correspondence between our semantics presented in this chapter and that
in [45] using the method presented in [54] is an interesting piece of future work.

Our aim is to provide a mechanisation of the UTP that can support the development of
other languages theoretically based on the UTP. Circus is such a language, and is the first
one to use our mechanisation of the UTP. In this chapter, we presented a mechanisation
of the Circus theory, which is based on the CSP theory, and mechanises the final version of
the semantics of Circus. In the next chapter, we present the refinement notions and laws
of Circus. This includes the proofs of the refinement laws proposed so far, whose manual
proofs we intend to automate in the near future providing Circus with a mechanised
refinement calculus that can be used in the formal development of state-rich reactive
programs.

Chapter 4

Refinement: Notions and Laws

In this chapter we discuss the refinement notions for Circus processes and their con-
stituent actions. The simulation technique, a refinement strategy for the development
of centralised specifications into distributed implementations, and some laws presented
in [27] are also discussed. Furthermore, new refinement laws are presented in this chapter.
Finally, we present some of the proofs that show that the Circus refinement laws proposed
by us are sound with respect to its semantics presented in Chapter 3.

4.1 Refinement Notions and Strategy

The central notion in the UTP is refinement, which is expressed as an implication: an
implementation P satisfies a specification S if, and only if, [P ⇒ S]. The square brackets
denote the universal quantifier over the alphabet, as in [38], which must be the same
for implementation and specification. In Circus, the basic notion of refinement is that of
action refinement [26, 84].

Definition 4.1 (Action Refinement) For actions A1 and A2 on the same state space,
the refinement A1 vA A2 holds if, and only if, [A2 ⇒ A1]. q

The action refinement relation is a partial order and the action constructors are monotonic
with respect to it. Hence, we can adopt a piecewise and stepwise refinement technique.

For processes, since we have that the state of a process is private, we have a slightly
different definition. Basically, the main action of a process defines its behaviour. For
this reason, process refinement is defined in terms of action refinement of local blocks. In
the following, P1.State and P1.Act denote the local state and the main action of process
P1; similarly for process P2.

Definition 4.2 (Process Refinement) P1 vP P2 if, and only if,
(∃P1.State; P1.State ′ • P1.Act) vA (∃P2.State; P2.State ′ • P2.Act) q

The actions P1.Act and P2.Act may act on different state spaces and their dashed coun-
terparts, and so may not be comparable. Actually, we compare the actions we obtain by
hiding the state components of processes P1 and P2, as if they were declared in a local

72 4 Refinement: Notions and Laws

Figure 4.1: Forwards Simulation

variable block, whose semantics is given by existential quantification. We are left with a
state space containing only the UTP observational variables okay , wait , tr , and ref .

As discussed above, the state of a process is private. This allows processes’ components
to be changed during a refinement. This can be achieved in much the same way as we
can data refine variable blocks and modules in imperative programs [64]. A well-known
technique of data refinement in those contexts is forwards simulation [56].

In [27], the standard simulation techniques used in Z were adopted to handle processes
and actions. A simulation is a relation between the states of two processes that satisfies
a number of properties.

Definition 4.3 (Forwards Simulation) A forwards simulation between actions A1 and
A2 of processes P1 and P2, with local state L, is a relation R between P1.State, P2.State,
and L satisfying

1. (Feasibility) ∀P2.State; L • (∃P1.State • R)
2. (Correctness) ∀P1.State; P2.State; P2.State ′; L •

R ∧ A2 ⇒ (∃P1.State ′; L′ • A1 ∧ R′) q

We write A1¹P1,P2,R,L A2 to denote such a simulation; we omit the subscripts when they
are clear from the context. A forwards simulation between P1 and P2 is a forwards
simulation between their main actions.

In Figure 4.1, we illustrate both properties. The feasibility property guarantees that
for every initial concrete state P2.State there exists an initial abstract state P1.State that
can be reached via the retrieve relation R. The correctness property guarantees that for
every abstract and concrete states P1.State and P2.State, connected by R, and for every
concrete state P2.State ′ resulting from the execution of A2 in the state P2.State, there
must exist a final abstract state P1.State ′, which is the result of the execution of A1 in
the state P1.State, and is connected by R′ to P2.State ′.

Notice that, in Definition 4.3, no applicability requirement concerning preconditions
exists. This follows from the fact that actions are total. If an action is executed outside
its precondition, it diverges; arbitrary new synchronisation and communication can be ob-
served, but no past observation is affected. Furthermore, no specific condition is imposed
on the initialisation: state initialisations are explicitly included in the main action.

A theorem presented in [27] and proved in [71], ensures that, if we provide a forwards

4.2 Laws of Simulation 73

simulation between two processes P1 and P2, we can substitute P1 for P2 in a program.

Theorem 4.1 (Forwards simulation is sound) When a forwards simulation exists be-
tween two processes P1 and P2, we also have that P1 vP P2. q

A refinement strategy for Circus has already been presented [27]. This strategy, al-
though simple, can effectively serve as a tool to guide and transform an abstract (usu-
ally centralised) specification into a concrete (usually distributed) solution of the system
implementation. This strategy is based on laws of simulation, and action and process
refinements, which are presented in Appendix C. We, however, present further simulation
and refinement laws.

Each iteration within the refinement strategy, which may include many iterations,
includes three steps: simulation, action refinement, and process refinement. Figure 4.2,
taken from [27], summarises one of these iterations. The first two steps are used to reor-
ganise the internal structure of the process: we use simulation to introduce the elements
of the concrete system state, and then, the actions are refined in order to be partitioned in
a way that each partition operates on different components of the modified state. These
changes result in the splitting of the state space and the accompanying actions into two
different partitions, in such a way that each partition groups some state components and
the actions that access these components. After the second step, we have a structure in
which each partition clearly has an independent state and behaviour. The third step of the
strategy upgrades each of these partitions to individual processes: the resulting processes
are combined in the same way as their main actions were in the previous process (see
Chapters 1 and 5 for examples).

4.2 Laws of Simulation

In order to carry the data refinement in a stepwise way, some laws of simulation are
provided. These laws provide support to prove that a relation R is indeed a forwards
simulation. Besides, they can be used to prove simulations for schema actions, in much
the same way as we do in Z.

Simulation distributes through the primitive actions Skip, Stop, and Chaos. The
simulation of schemas raises the same provisos as in the standard Z rule. The law C.4
presented below includes an applicability condition, which does not appear in the defini-
tion of forwards simulation, since it is concerned with the semantics of actions, which are
total operations on the state that include the UTP variables. A schema expression, on
the other hand, is an operation over the process state, and it is not total.

Law C.4 (Schema expressions). ASExp ¹ CSExp
provided

í ∀P1.State; P2.State; L • R ∧ pre ASExp ⇒ pre CSExp

í ∀P1.State; P2.State; P2.State ′; L •
R ∧ pre ASExp ∧ CSExp ⇒ (∃P1.State ′; L′ • R′ ∧ ASExp) q

Forwards simulation distributes through the other constructs. In the following, we

74 4 Refinement: Notions and Laws

begin

end

state Sc Sc1 /\ Sc2

• ActC Act1C Act2Cop

Act1C1

Act1Ck

…

Act2C1

Act2Ck

…

begin

end

state Sc1

• Act1C

Act1C1

Act1Ck

…

begin

ActA1

ActAk

end

Sa

a1: TA1; ... an: TAn

• ActA

…

state

begin

ActC1

ActCk

end

Sc

c1: TC1; ... cn: TCn

• ActC

…

state

begin

end

state Sc2

• Act2C

Act2C1

Act2Ck

…

simulation

action refinement

process
refinement

op

=̂ ...

=̂ ...

=̂ ...

=̂ ...

=̂

=̂ ...

=̂ ...

=̂ ...

=̂ ...

=̂

=̂ ...

=̂ ...=̂ ...

=̂ ...

Figure 4.2: An iteration of the refinement strategy

4.2 Laws of Simulation 75

present some of the distributions laws. The distribution of simulation through external
choice was first proposed in [27]; however, an important restriction on the retrieve relation
was not considered.

Law C.13 (External choice distribution∗). A1 2 A2 ¹ B1 2 B2

provided

í A1 ¹ B1

í A2 ¹ B2

í R is a function from the concrete to the abstract state q

Besides having the expected requirements regarding the simulation of each of the branches,
the distribution of simulation through an external choice between two arbitrary actions
also requires the retrieve relation to be a function from the concrete to the abstract state,
as in [57]. Intuitively, if different abstract values correspond to the same concrete value,
such values could have been merged in the abstraction; “abstract enough” abstractions
would not have non-functional retrieve relations (from concrete to abstract).

The following example illustrates the need for the restriction on the retrieve relation.
Let us have an abstract process PA with a non-empty sequence OnOffSq : seq 0..1 as the
only state component. Now, let us consider a data refinement to a concrete process PC

with a state component OnOff : 0..1, using the retrieve relation presented below. The
function head returns the head of a given non-empty list.

Ret =̂ [OnOffSq : seq 0..1; OnOff : 0..1 | OnOffSq 6= 〈〉 ∧ OnOff = head(OnOffSq)]

Now, suppose we have the following action in PA.

OnOffSq := 〈0〉; ((c.OnOffSq → Skip) 2 (c.OnOffSq a 〈1〉 → Skip))

Each of the branches in the choice are individual simulations of the following action.

c.〈OnOff 〉 → Skip

We have no actual choice happening in PC . Hence, 〈(c, 〈0〉)〉 and 〈(c, 〈0, 1〉)〉 are possible
traces of the abstract action, but only 〈(c, 〈0〉)〉 is a possible trace of the concrete action;
although the individual concrete branches are refinements of the corresponding abstract
ones, we do not have an overall refinement.

The restriction on the retrieve relation may be relaxed if, for instance, we guarantee
that the choices are on different channels, as we present in the following law.

Law C.14 (External choice/Prefix distribution∗).

2 i • ci → Ai ¹ 2 i • ci → Bi

provided ∀ i • Ai ¹ Bi q

Parallel actions work on disjoint parts of the state: no interference occurs. This fact is
used in the simulation law for the parallel operator. In [27], the restrictions on the state
partitions of the parallel operator were not considered; hence, we present a new version

76 4 Refinement: Notions and Laws

of this law below.

Law C.21 (Parallel composition distribution∗).

A1 |[ns1A | cs | ns2A]|A2 ¹ B1 |[ns1B | cs | ns2B]| B2

provided

í A1 ¹ B1

í A2 ¹ B2

í ∀ vA, vB • R(vA, vB) ⇒ (vA ∈ ns1A ⇒ vB ∈ ns1B)

í ∀ vA, vB • R(vA, vB) ⇒ (vA ∈ ns2A ⇒ vB ∈ ns2B) q

The last two proof obligations guarantee that if a component is in a partition in a ab-
stract parallel composition then it is in the corresponding partition in a concrete parallel
composition.

Further new simulation laws are straightforward; for conciseness, they are omitted
here, but can be found in Appendix C. They complete the evidence for the claim that
simulation distributes through the structure of actions by considering the prefix operator
of a synchronisation event c, internal choice, and interleaving.

In [27], the law for simulation of recursive actions is not strong enough to support
distribution. It considers part of the recursive body, but not all of it. Nevertheless,
simulation does distribute through recursion if the concrete function is simulated by the
abstract one, as we state in the following law.

Law C.23 (Recursion distribution∗). µX • F (X) ¹ µX • F ′(X)
provided F ¹ F ′ q

The above law is what is actually used in our case study.

4.3 Action Refinement

In the second step of the refinement strategy, an algorithmic refinement on actions is
proposed. This action refinement is justified by the following theorem, which is proved
in [71].

Theorem 4.2 (Soundness of action refinement) Suppose we have a process P with
actions A1 and A2. If A1 vA A2, then the identity is a forwards simulation between A1

and A2. q

In this definition, and in the following, we make no distinction between the Circus action
and its UTP semantics.

In the following, we present corrections for some of the laws presented in [27] and some
of the new laws required by our case study presented in Chapter 5. They are samples of
some groups of laws: assumptions, guards, schemas, parallel composition, prefix, external
choice, hiding, and commands.

4.3 Action Refinement 77

4.3.1 Laws of Assumptions

Most of the laws of assumptions are novel. They are very useful in the refinement process,
because they allow us to record information about the state of the process that is needed
in many points.

Our first law allows us to compose any assumption in sequence with a weaker one.

Law C.27 (Assumption Introduction∗). {g} = {g}; {g1}
provided g ⇒ g1 q

Our next law states that we may assume that g is valid after a guard g .

Law C.31 (Guard/Assumption—introduction 1∗). g & A = g & {g}; A

Our case study [75] was defined using mutually recursive actions. During its develop-
ment, we needed to distribute assumptions over mutually recursive actions, which can be
expressed as follows.

µX1, . . . ,Xi , . . . ,Xn •
〈 F1(X1, . . . ,Xi , . . . ,Xn), . . . ,

Fi(X1, . . . ,Xi , . . . ,Xn), . . . ,
Fn(X1, . . . ,Xi , . . . ,Xn)

〉

The Law C.40 that follows states that if an assumption g is valid before a mutual recursion,
it is also valid before the i -th action Fi , provided no action invalidates g before any
recursive invocation. In the law presented below, the angled brackets denote a vector
of fixed points. Furthermore, the law does not impose the start of the execution in any
action; we omit the index of the initial action.

Law C.40 (Assumption/Mutual recursion—distribution∗).

{g}; µX1, . . . ,Xi , . . . ,Xn •
〈 F1(X1, . . . ,Xi , . . . ,Xn), . . . ,

Fi(X1, . . . ,Xi , . . . ,Xn), . . . ,
Fn(X1, . . . ,Xi , . . . ,Xn)

〉

vA

µX1, . . . ,Xi , . . . ,Xn •
〈 F1(X1, . . . ,Xi , . . . ,Xn), . . . ,
{g}; Fi(X1, . . . ,Xi , . . . ,Xn), . . . ,
Fn(X1, . . . ,Xi , . . . ,Xn)

〉

provided for all j , such that 1 ≤ j ≤ n,

{g}; Fj (X1, . . . ,Xi , . . . ,Xn) vA Fj ({g}; X1, . . . , {g}; Xi , . . . , {g}; Xn),

q

The following example illustrates an application of this law. It moves an assumption that
a variable y has the value 0 to the first action of the recursion. The fact that y is changed

78 4 Refinement: Notions and Laws

to 1 if an event c2 happens does not invalidate the refinement because, after c3 happens
the value of y is set to zero again before the recursive invocation.

{y = 0}; µX1,X2 • 〈(c1 → X1) 2 (c2 → y := 1; c3 → y := 0; X2), c3 → X1〉
vA
µX1,X2 • 〈{y = 0}; ((c1 → X1) 2 (c2 → y := 1; c3 → y := 0; X2)), c3 → X1〉

provided

í {y = 0}; ((c1 → X1) 2 (c2 → y := 1; c3 → y := 0; X2))
vA
(c1 → {y = 0}; X1) 2 (c2 → y := 1; c3 → y := 0; {y = 0}; X2)

í {y = 0}; (c3 → X1) vA c3 → {y = 0}; X1 q

Both provisos are trivial; however, they need refinement laws for distributing the assump-
tion. Some of them are already presented in [27]; others are introduced here. For instance,
the next laws allow the distribution of an assumption through the prefix operator. First,
we have that it distributes through output prefix.

Law C.45 (Assumption/Output prefix—distribution∗).

{g}; c!x → A vA c!x → {g}; A

This law is valid because Circus specifications do not mention any of the UTP variables.
Otherwise, g could mention some property on the traces that could not be valid after the
event c; this would invalidate the refinement.

Next, we have that an assumption also distributes through an input prefix. However,
in order to avoid capture, the input variable x cannot occur in g .

Law C.47 (Assumption/Input prefix—distribution∗).

{g}; c?x → A vA c?x → {g}; A

provided x /∈ FV (g) q

Finally, assumption also distributes through synchronisation events.

Law C.41 (Assumption/Prefix—distribution∗). {g}; c → A vA c → {g}; A

Our final law on assumptions allows assumptions to be moved over schemas.

Law C.53 (Assumption/Schema—distribution∗).

{g}; [decl | p] vA [decl | p]; {g}
provided g ∧ p ⇒ g ′ q

Nevertheless, the schema predicate cannot invalidate the assumption.

4.3 Action Refinement 79

4.3.2 Laws of Guards

First, we present a simple law that transforms an action guarded by a disjunction into an
external choice of two guarded actions.

Law C.58 (Guards Expansion∗). (g1 ∨ g2) & A = g1 & A 2 g2 & A

The action (g1 ∨ g2) & A behaves like A if any of g1 or g2 is valid. In the equivalent
action, a choice is given between two actions guarded by g1 and g2; if any of these guards
is valid, A is the available choice.

If a parallel composition is guarded by a conjunction of two guards g1 and g2, we may
move each of these guards to a different side of the parallel composition, provided the two
conjuncts are equivalent.

Law C.64 (Guards/Parallel composition—distribution 3∗).

(g1 ∧ g2) & (A1 |[ns1 | cs | ns2]|A2) = (g1 & A1) |[ns1 | cs | ns2]| (g2 & A2)

provided g1 ⇔ g2 q

If both g1 and g2 are valid, both actions behave like the parallel composition of A1 and
A2; otherwise, they deadlock.

4.3.3 Laws of Schemas

The laws of schemas are particularly interesting because they lie on the very intersection
between the CSP and the Z parts of a Circus specification.

In the laws that follow, we use two more functions to specify the provisos of the
laws: the function usedV gives the set of used variables (read, but not written); the
function wrtV gives the set of variables that are written by a given action. For schema
expressions, wrtV gives the set of variables that are constrained by the schema. In this
definition from [27], we use v ′ to denote the list of dashed variables v ′1, . . . , v ′n of dashed
free-variables (DFV) of SExp. The undashed representation v denotes the corresponding
list of undashed free-variables. Furthermore, the notation v ′ : T stands for the sequence
of declarations v ′1 : T1; . . . ; v ′n : Tn , which declares each of the variables in v ′ with its
corresponding type as defined in SExp.

wrtV (SExp) =
{v ′ : DFV (SExp) | SExp 6= (∃ v ′ : T • SExp) ∧ [v , v ′ : T | v ′ = v] • v}

We hide all the dashed free-variables of the SExp and then, we declare them again;
however, we restrict their values to be the same as the values of their corresponding
undashed variables. If we get a different schema expression, that means that their values
were actually changed in the original expression, and hence, they should belong to the
set of written variables.

If we have a schema expression followed by a parallel composition, the following law
specifies the conditions under which we may move it to one of the sides of the parallel
composition.

80 4 Refinement: Notions and Laws

Law C.73 (Schema/Parallel composition—distribution∗).

SExp; (A1 |[ns1 | cs | ns2]|A2) = (SExp; A1) |[ns1 | cs | ns2]|A2

provided

í wrtV (SExp) ⊆ ns1
í wrtV (SExp) ∩ usedV (A2) = ∅ q

Moving the schema into the parallel composition is possible if the schema changes only
variables declared in the corresponding partition of the parallel composition, and if the
variables it writes are not used by the other side of the parallel composition. A similar
law holds for interleaving.

The final law on schemas is concerned with refinement of schemas. The definition of
this law and a few others are standard; they are omitted here for the sake of conciseness.

4.3.4 Laws of Parallel Composition

The parallel composition is commutative. Furthermore, new variables may be included in
one of the partitions of a parallel composition if they do not belong to the other partition
already.

Law C.77 (Partition expansion∗).

var x : T • A1; (A2 |[ns1 | cs | ns2]|A3)
= var x : T • A1; (A2 |[ns1 ∪ {x} | cs | ns2]|A3)

provided x /∈ ns2 q

Actually, the final value of x might be different in both sides of the refinement law: in the
left-hand side, we have that the final value of x may be either that determined by A1, if
x /∈ ns1, or that determined by A2, otherwise; in the right-hand side, the final value of x
is that determined by A2. However, since we have a variable block, this difference cannot
be seen by any other action afterwards. If, we had an action A4 within the variable block
following the parallel composition, this law would not be valid; but this is not the case.

An event c prefixing an action A may be put in parallel with the same event prefixing
Skip as follows.

Law C.78 (Parallel composition introduction 1∗).

c → A = (c → A |[ns1 | {| c |} | ns2]| c → Skip)

provided

í c /∈ usedC (A)

í wrtV (A) ⊆ ns1 q

It is valid since the proviso ensures that A will not deadlock because it has no occurrences

4.3 Action Refinement 81

of c and that it does not update any variable in ns2. This derives directly from the fact
that, by definition, ns1∩ns2 = ∅, and hence, wrtV (A) ⊆ ns1 ⇔ wrtV (A)∩ns2 = ∅. The
function usedC returns a set of all channels mentioned in an action.

Communications may be introduced using the following law. It extends a parallel com-
position by communicating a value e from an action A1 to an action A2(x) and replaces,
in A2, direct references to x by the expression e. The introduced communication must
be already in the synchronisation set, and hidden from the environment. Furthermore, in
order to avoid capture, the variable x cannot be already in use.

Law C.82 (Channel Extension 3∗).

(A1 |[ns1 | cs1 | ns2]|A2(e)) \ cs2
=
((c!e → A1) |[ns1 | cs1 | ns2]| (c?x → A2(x))) \ cs2

provided

í c ∈ cs1
í c ∈ cs2
í x /∈ FV (A2) q

In [27], the authors present a very useful law: the Parallel composition/Sequence—
step law provides a way of moving one action that precedes a parallel composition to
one of the sides of this composition. However, an important proviso regarding the state
partition is not considered. The function initials gives a set containing all the events in
which action A is initially willing to synchronise.

Law C.84 (Parallel composition/Sequence—step∗).

(A1; A2) |[ns1 | cs | ns2]|A3 = A1; (A2 |[ns1 | cs | ns2]|A3)

provided

í initials(A3) ⊆ cs

í cs ∩ usedC (A1) = ∅
í wrtV (A1) ∩ usedV (A3) = ∅
í A3 is divergence-free

These provisos guarantee that, because its initial events are in cs and it is divergence-free,
A3 cannot do anything apart from wait to synchronise. On the other hand, A1 can work
independently, since its channels are not in the synchronisation channel set. Finally, A3

does not use any variable that is written by A1. However, in the right-hand side of the
law, the changes that A1 does to the state components are not lost; they are the initial
values of the parallel composition. However, in the left-hand side of the law, any change

82 4 Refinement: Notions and Laws

that A1 does to any component that is in ns2 will be lost since its side of the parallel
composition does not have priority on the partition ns2. Hence, this law still needs one
more proof obligation; This last proviso guarantees that A1 can indeed be moved to the
left-hand side of the parallel composition because it writes only on variables that are in
ns1; therefore, any changes to state components will not be lost.

í wrtV (A1) ⊆ ns1 q

The next law can be used to introduce new choices to one side of a parallel composition.

Law C.86 (Parallel composition/External choice—expansion∗).

(2 i • ai → Ai) |[ns1 | cs | ns2]| (2 j • bj → Bj)
=
(2 i • ai → Ai) |[ns1 | cs | ns2]| ((2 j • bj → Bj) 2 (c → C))

provided

• ⋃
i{ai} ⊆ cs

• c ∈ cs

• c /∈ ⋃
i{ai}

• c /∈ ⋃
j {bj}

The provisos guarantee that no ai can synchronise with c because they are different from
c and all of them are in cs. Furthermore, c is different from any of the bis; we are not
introducing nondeterminism. This law is very useful when we want one of the branches
to have a particular form.

An iterated external choice of guarded parallel actions, in which the right-hand side
of the parallel composition is always the same action A, can be written as the parallel
composition of the iterated external choice and the action A.

Law C.87 (Parallel composition/External choice—distribution∗).

2 i • (Ai |[ns1 | cs | ns2]|A) = (2 i • Ai) |[ns1 | cs | ns2]|A

provided

í initials(A) ⊆ cs

í A is deterministic. q

In the external choice, A is executed in parallel with some Ai . In the equivalent parallel
composition, the proviso guarantees that, initially, A is able to execute no independent
event; for this reason, it is executed in parallel with some action Ai . The second proviso
guarantees that no deadlock will occur in the left-hand side of the law, which would not
occur in the right-hand side. By way of illustration, let us consider the following example;

4.3 Action Refinement 83

for conciseness, we omit the state partitions, and the synchronisation channel set, which
contains the channels c1 and c2.

(c1 → Skip) ‖ ((c1 → Skip) u (c2 → Skip))
2 (c2 → Skip) ‖ ((c1 → Skip) u (c2 → Skip))

This action can indeed deadlock if the internal choice of the first branch chooses c2 and
the internal choice of the second branch chooses c1. However, if we did not have the
second proviso, we would be able to apply Law C.87 and obtain the following action.

((c1 → Skip) 2 (c2 → Skip)) ‖ ((c1 → Skip) u (c2 → Skip))

Clearly, whatever branch is internally chosen in the right-hand side of the parallel com-
position, the synchronisation is still possible, and this action terminates successfully. A
similar law (with stronger provisos) can be found in [27].

The next law states the conditions on which we may transform a sequence of parallel
compositions into a parallel composition of sequences.

Law C.88 (Parallel composition/Sequence—distribution∗).

(A1 |[ns1 | cs | ns2]|A2); (B1 |[ns1 | cs | ns2]| B2)
=
(A1; B1) |[ns1 | cs | ns2]| (A2; B2)

provided

í initials(B1) ∪ initials(B2) ⊆ cs

í usedC (A1) ∩ initials(B2) = usedC (A2) ∩ initials(B1) = ∅
í usedV (B1) ∩ ns2 = usedV (B2) ∩ ns1 = ∅ q

Basically, both B1 and B2 in the second parallel composition need to synchronise before
proceeding. Furthermore, the initial events of B1 and B2 are not used by A2 and A1,
respectively. These provisos guarantee that B1 and B2 will start only when both A1 and
A2 are finished. A final proviso guarantees that B1 is only concerned with the variables
that belong to its partition ns1; hence, whatever A2 does to the other variables in ns2 will
not affect its behaviour. The same applies to B2 and A1.

The parallel composition of two actions that are willing to synchronise on some event
in the synchronisation set, but have no common initial communications, deadlocks.

Law C.92 (Parallel composition Deadlocked 1∗).

(c1 → A1) |[ns1 | cs | ns2]| (c2 → A2) = Stop = Stop |[ns1 | cs | ns2]| (c2 → A2)

provided

í c1 6= c2

í {c1, c2} ⊆ cs q

The parallel composition is also deadlocked if one of the branches is already dead-
locked (Stop) and the other one is waiting to synchronise on some event that will actually
never happen.

84 4 Refinement: Notions and Laws

4.3.5 Laws of Prefix

Any event c prefixing an action A may be replaced by the sequential composition of the
event c prefixing Skip, and A.

Law C.100 (Prefix/Skip∗). c → A = (c → Skip); A

If an event c is not used within an action A, we may prefix A with c and hide this
event from the environment.

Law C.103 (Prefix Introduction∗). A = (c → A) \ {| c |}
provided c /∈ usedC (A) q

The Prefix/External choice—distribution law was first proposed in [27].

Law C.104 (Prefix/External choice—distribution∗).

c → 2 i • gi & Ai = 2 i • gi & c → Ai

provided

í ∨ i • gi

The proviso guarantees that at least one of the guards is valid, and hence, the event c
will indeed happen. However, if more than one guard is valid and the external choice
2 i • gi & Ai is deterministic, the distribution of the prefix through the external choice
introduces a non-deterministic choice on c; one more proof obligation is needed. The
proof obligation presented below states that two different guards cannot be valid at the
same time; it guarantees that the nondeterminism will not be introduced.

í ∀ i , j | i 6= j • ¬ (gi ∧ gj) (guards are mutually exclusive) q

The next law on prefix allows us to distribute an input prefix over a parallel compo-
sition.

Law C.108 (Input prefix/Parallel composition—distribution∗).

c?x → (A1 |[ns1 | cs | ns2]|A2) = (c?x → A1) |[ns1 | cs | ns2]| (c?x → A2)

provided c ∈ cs q

The proviso is that c must be in the synchronisation channel set cs.

4.3.6 Laws of External Choice

External choice is associative. Furthermore, we may remove a choice between two identical
actions.

4.3 Action Refinement 85

Law C.111 (External choice elimination∗). A 2 A = A

External choice of guarded actions may distribute through sequence.

Law C.112 (External choice/Sequence—distribution).

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B

Finally, Stop is the external choice zero.

4.3.7 Laws of Hiding

The following CSP laws of hiding are also valid in Circus, but were not presented in [27].
The first law states that hiding has no effect if the channel we are hiding is not being
used by the action.

Law C.120 (Hiding Identity∗). A \ cs = A
provided cs ∩ usedC (A) = ∅ q

Yet another important law is the distribution of hiding through external choice.

Law C.122 (Hiding/External choice—distribution∗).

(A1 2 A2) \ cs = (A1 \ cs) 2 (A2 \ cs)

provided (initials(A1) ∪ initials(A2)) ∩ cs = ∅ q

The only proviso guarantees that we are not hiding the initial communication of any of
the choices, and hence, introducing nondeterminism.

A new law of hiding expansion allows us to included channels in the hidden set of
channels.

Law C.124 (Hiding expansion 2∗). A \ cs = A \ cs ∪ {c}
provided c /∈ usedC (A) q

These channels, however, may not be already in use by the action from which they are
going to be hidden from.

Hiding also distributes through sequence; no proviso is needed.

Law C.125 (Hiding/Sequence—distribution∗).

(A1; A2) \ cs = (A1 \ cs); (A2 \ cs)

However, in the distribution through parallel composition, we need to guarantee that we

86 4 Refinement: Notions and Laws

are not hiding any of the channels on which the parallel composition is synchronising.

Law C.127 (Hiding/Parallel composition—distribution∗).

(A1 |[ns1 | cs1 | ns2]|A2) \ cs2 = (A1 \ cs2) |[ns1 | cs1 | ns2]| (A2 \ cs2)

provided cs1 ∩ cs2 = ∅ q

Finally, we have that Chaos is the zero for hiding.

4.3.8 Laws of Commands

Laws of commands are also very interesting because they are in the intersection of the
CSP and the commands of a Circus specification. Before introducing the new refinement
laws for commands in Circus, we present below a very important and useful theorem; it
allows us to reuse the majority of the work done by Cavalcanti and Woodcock on the
ZRC.

Theorem 4.3 For every program P and Q in ZRC expressed using only skip, specifica-
tion statements, assumptions, coercions, assignments, and sequences, if P v Q in ZRC,
then P v Q also holds in the Circus refinement calculus.

In what follows, we informally discuss the proof of this theorem, which is rather long and
omitted here; it can be found in [71].

The semantics of ZRC is given using predicate transformers. Since we are not con-
sidering logical constants, these predicates transformers are universally conjunctive [29].
In [33], Cavalcanti and Woodcock present an isomorphism pt2p between universally con-
junctive predicate transformers and relations. First, we prove that pt2p is monotonic
with respect to refinement. Next, we consider wp.z to be the semantics of any ZRC
construct z expressed using only the constructs listed in Theorem 4.3. The relation r
that corresponds to the semantics of z is given by the expression pt2p(wp.z). Finally,
the expression R(H1(H2(r))) is the reactive design that corresponds to the semantics of
z . We conclude the proof by showing that the following equality holds for c being skip,
specification statements, assumptions, coercions, assignments and sequences.

C(c) = R(H1(H2(pt2p(wp.c))))

Here, we use C to denote the Circus semantic function. q

As a direct consequence of this theorem, refinement laws for specification statements
such as strengthening the post-condition and weakening the pre-condition, among others,
may also be used in the Circus refinement calculus.

For the other commands, however, like alternations and variable blocks, we are not
able to reuse the results presented in [29] because ZRC alternations and variable blocks
are not defined in terms of Circus actions. Therefore, new refinement laws, some of which
resemble the ones in ZRC, are needed.

In [27], the case study did not require any law for variable blocks. Our first new law

4.3 Action Refinement 87

regards the extension of variable blocks over parallel composition.

Law C.138 (Variable block/Parallel composition—extension∗).

(var x : T • A1) |[ns1 | cs | ns2]|A2

=
(var x : T • A1 |[ns1 ∪ {x} | cs | ns2]|A2)

provided x /∈ FV (A2) ∪ ns1 ∪ ns2 q

The new declared variable must be included in the partition of A1 of the parallel compo-
sition. This is valid if the new variable x is not free in A2 and if it is neither a member
of ns1 nor a member of ns2.

An example of a Circus refinement law that has a direct correspondence with ZRC is
the Alternation Introduction law.

Law C.140 (Alternation Introduction∗).

w : [pre, post] vA if []igi → w : [gi ∧ pre, post] fi

provided pre ⇒ ∨
i gi q

The proviso guarantees that the precondition of the specification ensures that at least one
of the guards is valid. Additionally, we introduce each of the guards into the precondition
of each of the guarded commands.

Another refinement law creates the link between alternations and guards. These two
constructs differ in the cases where we have either no valid guards or more than one valid
guard. We illustrate their differences in the binary case in the Table 4.1.

if g1 → A1[] g2 → A2 fi g1 & A2 2 g2 & A2

g1 ⇔ false ∧ g2 ⇔ false Chaos Stop
g1 ⇔ true ∧ g2 ⇔ true A1 u A2 A1 2 A2

Table 4.1: Alternation and Guards Different Behaviours

If neither g1 nor g2 are valid, the alternation diverges and the external choice between
two actions guarded by g1 and g2 deadlocks. However, if both g1 and g2 are valid, the
alternation internally chooses one of the branches; the external choice of the guarded ac-
tion still offers the external choice to the environment. Apart from these two possibilities,
both actions are the same.

Law C.141 (Alternation/Guarded Actions—interchange∗).

if g1 → A1[] g2 → A2 fi = g1 & A1 2 g2 & A2

provided (g1 ∨ g2) ∧ (g1 ⇒ ¬ g2) q

The proviso guarantees that exactly one of the guards is valid.

88 4 Refinement: Notions and Laws

4.4 Process Refinement

The laws for process refinement deal simultaneously with state and control behaviour.
The first law applies to processes whose state components are partitioned in such a way
that each partition has its own set of paragraphs. By way of illustration, we present the
process P below.

process P =̂ begin state State =̂ Q .State ∧ R.State
Q .PPar ∧Ξ R.State
R.PPar ∧Ξ Q .State
• F (Q .Act ,R.Act)

end

The state of the processes P is defined as a conjunction of two other schemas: Q .State
and R.State. Furthermore, the paragraphs in P are also partitioned in a way that the
paragraphs in Q .PPar do not change the components in R.State, since they are conjoined
with ΞR.State; in a similar way, the paragraphs in R.PPar do not change the components
in Q .State. Finally, the main action of P is defined as an action context F , which must
also make sense as a function on processes, according to the Circus syntax (Appendix A).

The law presented below transforms such partitioned process into three processes: each
of the first two includes a partition of the state and the corresponding paragraphs, and
the third process, defined in the terms of the first two, has the same behaviour as the
original one.

Law C.146 (Process splitting). Let qd and rd stand for the declarations of the
processes Q and R, determined by Q .State, Q .PPar , and Q .Act , and R.State, R.PPar ,
and R.Act , respectively, and pd stands for the declaration of process P above.

pd = (qd rd process P =̂ F (Q ,R))

provided Q .PPar and R.PPar are disjoint with respect to R.State and Q .State. q

The second law applies to a process defined using the well-known Z promotion tech-
nique [107]. Using this family of laws, we may refine a specification using a free promotion
to an indexed family of processes, each one representing an element of the local type. In
what follows, the function promote2 extends the Z promotion technique to Circus actions.
Firstly, as expected, we have that the promotion of schemas is as in Z.

promote2(SExp) =̂ ∃∆L.State • SExp ∧ Promotion

L.State stands for the local state, and Promotion for the promotion schema.
The promotion of Skip, Stop, Chaos, and channels do not change them.

promote2(A) =̂ A, for A ∈ {Skip,Stop,Chaos}
promote2(c.e → A) =̂ c.promote2(e) → promote2(A)

References to the local components have to become references to the corresponding com-

4.4 Process Refinement 89

process GAreas =̂
begin LState =̂ [id : AreaId ; mode : Mode]
state GState =̂ [f : AreaId → LState | ∀ a : AreaId • (f a).id = a]

Promotion
∆LState; ∆GState; id? : Range

θLState = f id? ∧ f ′ = f ⊕ {id? 7→ θLState ′}

LInit =̂ [LState ′ | mode ′ = automatic]
GInit =̂ ∀ id? : AreaId • LInit ∧ Promotion
LStart =̂ switchOn → LInit
GStart =̂ |[{| switchOn |}]| i : AreaId •

|[θ (f i)]| • (promote2 LStart) [id , id? := i , i]
• GStart
end

Figure 4.3: Process GAreas

ponent in the global state; all other references remain unchanged. An implicit parameter
is a function f that maps indexes to instances of the local state. Another implicit para-
meter is the index i that identifies an instance of the local state in the global state.

promote2(x) =̂ (f i).x provided x is a component ofL.State
promote2(x) =̂ x provided x is not a component ofL.State

The definitions of promotion for the other forms of prefix and actions are very similar;
we need to promote every expression in the specification.

In Figure 4.3 we present a simplified version of a process that is part of our case
study presented in Chapter 5. It consists of a fire control system that covers two separate
physical areas. In this simplified version, each area has only an identification and a mode
in which it is running. The process GAreas defines a controller for the areas covered by
the system; the channel and type declarations are omitted.

The internal state of GAreas is declared as a function f that maps area identifications
to local states LState. The local state of each area is composed of an identifier id , which is
determined by the index of the area in f , and a mode. The Promotion schema is standard
to Z; it relates an individual LState to the function f of areas. The global initialisation
GInit is defined as the promotion of the local initialisations LInit of all areas. Similarly,
GStart is declared as a parallel composition of the promotion of each local action LStart ,
which waits for the system to be switched on, and initialises the local state. The main
action determines that, initially, GAreas behaves like GStart .

The behaviour of all the areas can be expressed in terms of the behaviour of each
individual area. The process LArea presented in Figure 4.4 is parametrised by an identifier
id ; it represents the behaviour of a single area. Each LArea has a component that indicates

90 4 Refinement: Notions and Laws

process LArea =̂ (id : AreaId • begin state LState =̂ [mode : Mode]
LInit =̂ [LState ′ | mode ′ = automatic]
LStart =̂ switchOn → LInit
• LStart end)

process GAreas =̂ |[{| switchOn |}]| id : AreaId • LArea(id)

Figure 4.4: Process GAreas Refined

in which mode it is running. This component is initialised to automatic by the operation
LInit . Initially, LArea behaves like action LStart . The global behaviour GAreas can be
rewritten as a parallel composition of all areas.

Law C.147 presented in Appendix C can be used to make the refinement of process
GAreas. This law applies to processes containing a local and a global state LState and
GState, local paragraphs that do not affect the global state, a promotion schema, and
global paragraphs expressed in terms of the promotion of local paragraphs to the global
state using iterated parallel operator. The results of this application are two processes: a
local process L parametrised by an identifier id and a global process G defined as an
iterated parallel composition of local processes.

4.5 Soundness of the Refinement Laws

The aim of our work presented in the last section is to provide a basis for a theorem
prover for Circus. This theorem prover will support the development of Circus programs
by providing a library of refinement laws which have been mechanically proved. However,
before doing the mechanical proof, we have done the proofs by hand. We conclude this
chapter by presenting three out of over a hundred proofs we have done. The first one,
the external choice unit law, explicitly shows why we have chosen Stop to leave the state
loose; the second one, the parallel composition deadlocked 1 law, illustrates our approach
in the proofs involving parallel composition; we conclude this section by presenting the
proof of a derived law, the prefix/external choice—distribution law.

External choice has a unit action, Stop. This fact is expressed by the Law C.114
presented below.

Law C.114 Stop 2 A = A

Before presenting the proof of this refinement law, we present two auxiliary lemmas
that are used in the proof. The first one gives the conditions on which Stop diverges.

Lemma 4.1 Stopf
f = ¬ okay ∧ tr ≤ tr ′

Since the precondition of Stop is true, as we would expect, Stop only diverges if its
predecessor has done so and, in this case, only guarantees that the trace history is not
forgotten. The next lemma tells us the effects of Stop when it does not diverge.

4.5 Soundness of the Refinement Laws 91

Lemma 4.2 Stopt
f = CSP1(tr ′ = tr ∧ wait ′)

From the definition of CSP1, if the predecessor diverges, Stop only guarantees that the
trace history is not forgotten; otherwise, it does not change the trace and waits indefinitely.

We start our proof by applying the definition of external choice.

Stop 2 A

= R

(¬ Stopf
f ∧ ¬ Af

f)
`
((Stopt

f ∧ At
f) C tr ′ = tr ∧ wait ′ B (Stopt

f ∨ At
f))

 [External choice]

Next, we use Lemmas 4.1 and 4.2 to transform Stopf
f and Stopt

f , respectively.

= R

(¬ (¬ okay ∧ tr ≤ tr ′) ∧ ¬ Af
f)

̀

(CSP1(tr ′ = tr ∧ wait ′) ∧ At
f)

Ctr ′ = tr ∧ wait ′B
(CSP1(tr ′ = tr ∧ wait ′) ∨ At

f)

[Lemmas 4.1 and 4.2]

The direct application of simple predicate calculus gives us the following result.

= R

(¬ ((¬ okay ∧ tr ≤ tr ′) ∨ Af
f))

̀

(CSP1(tr ′ = tr ∧ wait ′) ∧ At
f)

Ctr ′ = tr ∧ wait ′B
(CSP1(tr ′ = tr ∧ wait ′) ∨ At

f)

[Predicate calculus]

The predicate Af
f is a notation that corresponds to the substitution of okay ′ and wait in

A; however, the predicate ¬ okay ∧ tr ≤ tr ′ does not mention either of these variables.
Therefore, we may expand the substitution; this leaves us with the definition of CSP1.

= R

(CSP1(A))ff
̀

(CSP1(tr ′ = tr ∧ wait ′) ∧ At
f)

Ctr ′ = tr ∧ wait ′B
(CSP1(tr ′ = tr ∧ wait ′) ∨ At

f)

[Substitution and CSP1]

Theorem 3.3 tells us that every Circus action is a CSP1 process; therefore, the application
of CSP1 to A can be removed.

= R

 Af

f `

(CSP1(tr ′ = tr ∧ wait ′) ∧ At
f)

Ctr ′ = tr ∧ wait ′B
(CSP1(tr ′ = tr ∧ wait ′) ∨ At

f)

 [Theorem 3.3]

Next, by expanding the definition of CSP1, we get the following disjunction.

= R

 Af

f `

(((tr ′ = tr ∧ wait ′) ∨ (¬ okay ∧ tr ≤ tr ′)) ∧ At
f)

Ctr ′ = tr ∧ wait ′B
(((tr ′ = tr ∧ wait ′) ∨ (¬ okay ∧ tr ≤ tr ′)) ∨ At

f)

 [CSP1]

The simple expansion of designs shows us that okay cannot be false in the postcondition;

92 4 Refinement: Notions and Laws

hence, the predicate ¬ okay ∧ tr ≤ tr ′ is false. This leaves us with the following reactive
design.

= R

 Af

f `

(tr ′ = tr ∧ wait ′ ∧ At
f)

Ctr ′ = tr ∧ wait ′B
((tr ′ = tr ∧ wait ′) ∨ At

f)

 [Design and Predicate calculus]

At this point, we are able to contemplate our decision on the semantics of Stop. The
next step in our proof is to remove the disjunction of the right-hand side of the condition
and leave just the predicate At

f ; this can be done because the expression tr ′ = tr ∧ wait ′

is false. The condition comes direct from our definition of external choice, in which, as
explained in Section 3.1, state changes have no direct consequence. If we had chosen state
changes to decide the choice, this would be expressed by including the predicate v ′ = v
in the condition of the choice. If this were the case, then Stop would also have to leave
the state unchanged. However, this is not the case, and hence, in order to go ahead with
our proof, it is clear that Stop cannot restrict the state to be kept unchanged.

= R(Af
f ` ((tr ′ = tr ∧ wait ′ ∧ At

f) ∨ At
f)) [Conditional and Predicate calculus]

= R(¬ Af
f ` At

f) [Predicate calculus]

Since, every Circus action is CSP1-CSP3 healthy, the application of Theorem 3.2, con-
cludes this proof.

= A [Theorem 3.2]

q

The next law states that the parallel composition of two actions that are willing
to synchronise on some event in the synchronisation set, but have no common initial
communications, deadlocks. Furthermore, if one of the processes is already deadlocked
and the other is waiting to synchronise on some event, the parallel composition also
deadlocks. The proof of Law C.92 is done in two parts: the left-hand side equality and
the right-hand side equality. In what follows, we only present the proof of the first one.
The proof of the second one is pretty similar and omitted here.

Law C.92 (Parallel composition Deadlocked 1∗).

(c1 → A1) |[ns1 | cs | ns2]| (c2 → A2) = Stop = Stop |[ns1 | cs | ns2]| (c2 → A2)

provided

í c1 6= c2

í {c1, c2} ⊆ cs q

As we did for the proof previously presented, we first discuss the lemmas that are
used in the proof. The proofs of both lemmas are rather long; in what follows, we present
them and give the intuition behind their proofs.

4.5 Soundness of the Refinement Laws 93

Lemma 4.3 presented below guarantees that, provided the previous action did not
diverge, divergence is not feasible in this parallel composition. Intuitively, the prefixed
action c → A may diverge, but the event c will be in the final trace, because R1 guarantees
that, even in divergence, the trace history is not forgotten. For this reason, since both
channels are different and members of the synchronisation channel set, it is not possible
to have two traces 1.tr ′ and 2.tr ′, where the first one is a trace of the left-hand side prefix,
the second one is a trace of the right-hand side prefix, and they are equal, modulo the
synchronisation set cs.

Lemma 4.3

 okay ∧ ¬ ∃ 1.tr ′, 2.tr ′ •

((c1 → A1)
f
f ; 1.tr ′ = tr)

∧ ((c2 → A2)f ; 2.tr ′ = tr)
∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

 = okay

provided c1 6= c2 and {c1, c2} ⊆ cs.

The next lemma gives us the result of executing both actions independently and
merging their behaviours, provided the previous action did not diverge.

Lemma 4.4

(
okay ∧

((
((c1 → A1)tf ; U 1)
∧ ((c2 → A2)tf ; U 2)

)

+{v ,tr}
; M‖cs

))
= okay ∧ tr ′ = tr ∧ wait ′

provided c1 6= c2 and {c1, c2} ⊆ cs.

The only behaviour that remains, if we expand all the possible behaviours of this execution
followed by the merge, is the one that states that the trace is left unchanged and it is
indefinitely waiting. This holds because, from the definition of M‖cs , the only possibilities
that are considered are those in which the traces are equal modulo cs. However, in their
first progress, both actions will already have a different trace. Therefore, the traces of
both actions are the same only while they are waiting to synchronise.

We start our proof by expanding the definition of the parallel composition.

(c1 → A1) |[ns1 | cs | ns2]| (c2 → A2)

= R

¬ ∃ 1.tr ′, 2.tr ′ •

((c1 → A1)
f
f ; 1.tr ′ = tr)

∧ ((c2 → A2)f ; 2.tr ′ = tr)
∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

∧ ¬ ∃ 1.tr ′, 2.tr ′ •

((c1 → A1)f ; 1.tr ′ = tr)
∧ ((c2 → A2)

f
f ; 2.tr ′ = tr)

∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

`
(((c1 → A1)tf ; U 1) ∧ ((c2 → A2)tf ; U 2))+{v ,tr}; M‖cs

[Parallel]

Next, we apply the definition of a design and some trivial predicate calculus as follows.

94 4 Refinement: Notions and Laws

[Designs and predicate calculus]

= R

okay ∧ ¬ ∃ 1.tr ′, 2.tr ′ •

((c1 → A1)
f
f ; 1.tr ′ = tr)

∧ ((c2 → A2)f ; 2.tr ′ = tr)
∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

∧ ¬ ∃ 1.tr ′, 2.tr ′ •

((c1 → A1)f ; 1.tr ′ = tr)
∧ ((c2 → A2)

f
f ; 2.tr ′ = tr)

∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs

⇒

(
okay ∧ okay ′

∧ (((c1 → A1)tf ; U 1) ∧ ((c2 → A2)tf ; U 2))+{v ,tr}; M‖cs

)

The application of the Lemma 4.3 twice removes the existential quantification in the
left-hand side of the implication.

R

okay ⇒

okay ∧ okay ′

∧
(

((c1 → A1)tf ; U 1)
∧ ((c2 → A2)tf ; U 2)

)

+{v ,tr}
; M‖cs

[Lemma 4.3]

And the application of the Lemma 4.4 gives us the actual postcondition of the design.

= R(okay ⇒ okay ∧ okay ′ ∧ tr ′ = tr ∧ wait ′) [Lemma 4.4]

Finally, we apply the definition of designs again and use some predicate calculus in order
to get a reactive design, which is in fact, the definition of Stop itself.

= R(true ` tr ′ = tr ∧ wait ′) [Predicate calculus and Designs]

= Stop [Stop]

q

Before concluding this section, we present the proof of a derived law. In such proofs,
we do not need to expand any of the constructors’ definitions, but simply use other
refinement laws. The next law states that we may distribute prefix over an external
choice of guarded actions, provided exactly one of the guards is valid.

Law C.104

c → ((g1 & A1) 2 (g2 & A2)) = (g1 & c → A1) 2 (g2 & c → A2)

provided

í ∨ i • gi

í ∀ i , j | i 6= j • ¬ (gi ∧ gj) (guards are mutually exclusive). q

The proof of this law is done by case analysis on the guards; since they are mutually
exclusive, and at least one of them is true, we are left with two cases, either g1 is true and

4.5 Soundness of the Refinement Laws 95

g2 is false, or vice-versa. We present below the proof of the first case. First, we introduce
the Skip using the sequence unit law, and transform it into a true assumption using the
assumption unit law.

c → ((g1 & A1) 2 (g2 & A2))

= {true}; c → ((g1 & A1) 2 (g2 & A2)) [Laws C.132 and C.55]

Our assumption in this part of the proof is that g1 is true and g2 is false; the next step
can be done by simple predicate calculus.

= {g1 ∧ ¬ g2}; c → ((g1 & A1) 2 (g2 & A2)) [Predicate calculus]

The distribution laws for assumption allows us to distribute it to each of the branches of
the choice.

= {g1 ∧ ¬ g2}; c →
(
{g1 ∧ ¬ g2}; g1 & A1

2 {g1 ∧ ¬ g2}; g2 & A2

)
[Laws C.42 and C.37]

Since the assumption validates the guard g1, we can eliminate this guard in the first
branch of the external choice. Furthermore, from Law C.33 we have that the second
branch is deadlocked, because the assumption negates the guard.

= {g1 ∧ ¬ g2}; c →
(
{g1 ∧ ¬ g2}; A1

2 {g1 ∧ ¬ g2}; Stop

)
[Laws C.32 and C.33]

Using the distribution laws once again, we move the assumption back to its original point.

= {g1 ∧ ¬ g2}; c → (A1 2 Stop) [Laws C.42 and C.37]

The application of the unit law for external choice, twice, allows us to move the prefix to
the first branch of the choice.

= {g1 ∧ ¬ g2}; ((c → A1) 2 Stop) [Law C.114]

Once again, we distribute the assumption over the external choice.

= ({g1 ∧ ¬ g2}; c → A1) 2 ({g1 ∧ ¬ g2}; Stop) [Law C.37]

And, in the same way we did to remove the guards, we use the Laws C.32 and C.33, but
in this time, we re-introduce the guards.

= {g1 ∧ ¬ g2}; (g1 & c → A1)
2 {g1 ∧ ¬ g2}; (g2 & c → A2)

[Laws C.32 and C.33]

Finally, in the same way we did in the start of this proof, we can remove the assumptions
because we are assuming that g1 is true and g2 is false, and a true assumption is the same
as Skip, which is the unit for sequence.

= (g1 & c → A1) 2 (g2 & c → A2) [Predicate calculus and Laws C.55 and C.132]

q

Some of the refinement laws we propose in this thesis were also proved in this way: us-

96 4 Refinement: Notions and Laws

ing other refinement laws. Following the approaches presented in this section, among
others, we have proved over ninety percent of the refinement laws proposed here. The
remaining proofs, although rather long, are not challenging; they are left as future work.

4.6 Final Considerations

Refinement plays a major role in the UTP, which is the theoretical basis for Circus. In
the UTP, it is expressed as an implication: an implementation P satisfies a specification
S if, and only if, [P ⇒ S]. In Circus, this definition of refinement is used for the most
basic notion of refinement: action refinement.

For processes, since they encapsulate their state, we have that process refinement is
defined in terms of action refinement between the main actions of the abstract and the
concrete process, but we hide the state components of the processes as if they were de-
clared in a local variable block; we are left with a state space containing only the UTP
observational variables okay , wait , tr , and ref . For data refinement, the standard simu-
lation techniques used in Z are adopted to handle processes and actions. However, since
actions are total, their definitions differ slightly from the usual definitions: no applicability
requirement concerning preconditions exists. Furthermore, since state initialisation must
be explicitly included in the main action, no conditions is imposed on the initialisation.

The refinement strategy for Circus presented in [27], and discussed in this chapter,
is based on laws of simulation, and action and process refinement. In this chapter, we
have presented further laws of simulation and refinement. The need for these laws was
raised during the development of the case study presented in Chapter 5, which is the
first industrial application of the refinement technique. Some of the new laws could be
proved using previously defined laws; these proofs are also presented in this thesis. The
corrections of some of the laws from [27] were also discussed in this chapter. However,
our work has also revealed that the following law proposed in [27] was not valid.

Law A.19 (Parallel composition Introduction: Sequence 2).

A1; A2(x) = (c!x → A1 |[wrtV (A2) | {| c |} | wrtV (A2)]| c?y → A2(y)) \ {| c |}
provided

í wrtV (A1) ∩ usedV (A2) = ∅
í c /∈ usedC (A1) ∪ usedC (A2)

í y /∈ FV (A2) q

After the hidden synchronisation in c, the action in the right-hand side of the law behaves
as an interleaving between A1 and A2. This is a direct consequence of the fact that c is
not used by any of these actions. However, the action in the left-hand side of the law is
a sequential composition; the law is not valid.

This chapter also presented Theorem 4.3 that allows most of the laws from ZRC to
be used in the Circus refinement calculus. This is a very important result since Circus
specifications may contain Z schemas and specification statements.

4.6 Final Considerations 97

The case studies that have been carried out on the Circus refinement calculus give us
confidence that the set of laws that is presented here is appropriate for useful applications.
We do not seek a completeness result; in fact, we know that our laws are not complete,
because we only consider forwards simulation and leave backwards simulation as future
work. In the future, we plan to provide an algebraic semantics for Circus, define a normal
form, and establish that we have a set of laws that is enough to reduce any terminating
Circus program to its normal form. The laws of an algebraic semantics, however, are
equalities; in this work, we are concerned with the practicalities of refinement.

Laws of programming have been of interest for a very long time [53]. Laws for imper-
ative, functional [14], and object-oriented languages [16] are available in the literature.
Our laws are more closely related to those presented in [81] to provide an algebraic se-
mantics for terminating occam programs. Our laws, however, are aimed at supporting
program development; we focus on novel laws that relate constructs to manipulate data
with constructs to specify behaviour. We present equalities and also refinement laws.

The vast majority of the laws presented in this thesis were proved; in this chapter, we
illustrated these proofs and pointed out the interesting aspects raised. For instance, the
proof of Law C.114 makes clear the design options we make regarding the aspects that
would resolve a choice; for us, state change does not resolve a choice and, as a consequence,
Stop leaves the state loose in its postcondition.

Some other laws proposed in this work were proved in terms of other refinement laws.
Although not strictly needed, these laws provide shortcuts for the users of our method,
shortening the development of programs. This result could also be obtained with the use
of tactics of refinement, like those presented in [74, 70, 72]; we leave this as future work.

Throughout this thesis, we consider Circus specifications that do not mention any of
the UTP variables. Some of our laws (e.g, Law C.45) would not be valid if this were not
the case. An investigation on the advantages and consequences of Circus specifications
that do mention the UTP variables is an interesting piece of future research.

The mechanisation of these proofs is a hard task that will provide Circus with a
theorem prover that can be used in the development process shown in this thesis; it is
left as future work as well.

98 4 Refinement: Notions and Laws

Chapter 5

Case Study

In this chapter we present a case study on the Circus refinement calculus. The case study
is a safety-critical fire control system, that is described in Section 5.1. In Section 5.2, we
describe the types and channels used within the system, some axiomatic definitions that
are used throughout its specification and design, and an abstract specification for the
fire control system. In Section 5.3, this specification is refined to a concrete design using
the refinement strategy presented in Chapter 4. Finally, in Section 5.4 we present some
conclusions on the case study. The material in this chapter was published in [75, 76].

5.1 System Description

Our case study consists of a fire control system, which was implemented by Wormald
Ltd. The system monitors fire detections in six distributed zones: four of these zones are
distributed into two different areas (two zones for each area) and the two remaining zones
are for fire detection only (see Figure 5.1). A fire detection in one or more zones may
lead to a gas discharge in the area that includes the zone in which the fire was detected.
If, however, a fire is detected in one of the zones used only for fire detection, no gas is
discharged. In both cases, the detection of a fire is indicated in a display panel, which
also indicates whether the system is on or off, there are system faults, the alarm has
been silenced, the actuators of the system need to be replaced, or any gas discharge has
happened.

The system can be in one of three modes: manual, automatic, or disabled. In manual
mode, an alarm sounds when a fire is detected, and the corresponding detection lamp is

Figure 5.1: Zones and Areas in the Fire Control System

100 5 Case Study

Figure 5.2: Fire Control System State Machine

lit on the display. The alarm can be silenced, and, when the reset button is pressed, the
system returns to normal. In manual mode, gas discharge is manually initiated.

In automatic mode, a fire detection is followed by the alarm being sounded; however,
if a fire is detected in a second zone of the same area, a second stage alarm is sounded,
and a countdown starts. When the countdown finishes, the gas is discharged and the
circuit fault lamp is illuminated in the display; the system mode is switched to disabled.

In disabled mode, the system can only have the actuators replaced, identify relevant
faults within the system, and be reset. The system is back to its normal mode after the
actuators are replaced and the reset button is pressed.

Some further requirements should also be satisfied: the system must be started with
a switchOn event, and afterwards the system on lamp should be illuminated; the system
mode can be switched between manual and automatic mode, provided no detection hap-
pens. Also, when the system is reset, all fire detection lamps must be switched off; if a gas
discharge occurred, the actuators need to be replaced, and the system mode is switched
to automatic. Following a fire detection, the corresponding lamp must be lit. After a gas
discharge, no subsequent discharge may happen before the actuators are replaced.

To summarise, the system may be in one of the states presented in Figure 5.2. Initially,
the system is in the fireSysStarts state. After being switched on, its state is changed to
fireSyss ; in this state, a fire detection results in the state being changed to manuals or

5.1 System Description 101

channel switchOn, silenceAlarm, reset
channel actuatorsReplaced , startClock , clockFinished
channel detection : ZoneId
channel modeSwitch : SwitchMode
channel externalManualDischarge : PAreaId
channel fault : FaultId
channel alarm : AlarmStage
channel [T]switchLamp : T × OnOff
channel switchBuzzer : OnOff
channel systemState : SystemState

Figure 5.3: System External Channels

autos depending on the system mode. In countdowns , it is waiting for the clock to finish
the countdown. During gas discharge, the system is in the discharges state. After the gas
discharge happens, the state is changed to resets and the system mode is automatically
set to disabled. In the resets state, the system is waiting to be reset. If the actuators are
replaced, the system continues in the resets state, but its mode is changed to automatic.
If the system is reset in a disabled mode, its state is changed to fireSysDs ; otherwise,
it goes back to the fireSyss state. A fire detection in the fireSysDs state results in the
system state being changed to disableds . Finally, if the alarm is silenced in the disableds

state, the system goes back to the resets state.
The external channels of the fire control system are presented in Figure 5.3. Fire

detection is indicated through the channel detection, which inputs the zone where it
happened. The system mode can be manually switched using the channel modeSwitch.
In manual mode, when the conditions that lead to a gas discharge are met, gas can be
manually discharged using the channel externalManualDischarge. Faults are reported
to the system through the channel fault . The channel alarm can be used to sound the
alarm, which can be silenced through silenceAlarm. Channel reset resets the system.
The channel actuatorsReplaced indicates that the actuators have been replaced. The
system indicates that a lamp must be switched using the generic channel switchLamp;
it provides the type of lamp and the new lamp mode. The buzzer is controlled using

102 5 Case Study

AreaId ::= A0 | A1

ZoneId ::= Z0 | Z1 | Z2 | Z3 | Z4 | Z5

Mode ::= automatic | manual | disabled
SwitchMode == Mode \ {disabled}
OnOff ::= on | off
AlarmStage ::= alarmOff | firstStage | secondStage
LampId ::= zoneFaultLamp | earthFaultLamp | sounderLineFaultLamp

| powerFaultLamp | systemOnLamp | isolateRemoteSignalLamp
| actuatorLineFaultLamp | circuitFaultLamp | alarmSilencedLamp

FaultId ::= zoneFault | earthFault | sounderLineFault | powerFault
| isolateRemoteSignal | actuatorLineFault

SystemState ::= fireSysStarts | fireSyss | fireSysDs | autos

| countdowns | discharges | resets | manuals | disableds

Figure 5.4: System Types

the channel switchBuzzer . After each state change, the system reports its current state
using the channel systemState. The fire control system may request a clock to execute
the countdown using the channel startClock ; the clock indicates that the countdown is
finished using the channel clockFinished .

The display is composed of the lamps and the buzzer. The lamps can be of three
different types; however, the three types of lamps are instances of the same generic process
GenericLamp, which has a component status of a type OnOff that contains two values: on
and off . Initially, all the lamps are switched off ; they can be switched on using an
appropriate instance of channel switchLamp.

5.2 Abstract Fire Control System

The basic types used within the system are presented in Figure 5.4. The areas and zones
are identified by the types AreaId and ZoneId ; the system modes are represented by the
type Mode; the type SwitchMode, is a subset of the type Mode. All the lamps and the
buzzer of the display can be either on or off , which are represented by the type OnOff .
The alarm states are represented by the type AlarmStage. The type LampId contains
identifiers for all the lamps in the system’s display. Faults are represented by the type
FaultId . Finally, the system can be in one of the states of the type SystemState.

Process AbstractFireControl formalises the requirements previously described. In this
Chapter we omit some formal definitions for the sake of conciseness; they can be found
in [71]. The abstract state is defined by the Z schema named AbstractFireControlState
presented below. AbstractFireControlState contains five components: mode indicates the
mode in which the fire control is running; controlledZones is a total function that maps
the areas to a set that contains their controlled zones; activeZones maps the areas to
the zones in which a fire detection has occurred; discharge indicates in which areas a gas

5.2 Abstract Fire Control System 103

discharge happened; finally, active contains the active areas identifications.

process AbstractFireControl =̂ begin
state

AbstractFireControlState
mode : Mode
controlledZones, activeZones : AreaId → PZoneId
discharge, active : PAreaId

∀ a : AreaId •
(mode = manual) ⇒ a ∈ active ⇔ #activeZones a ≥ 1
∧ (mode = automatic) ⇒ a ∈ active ⇔ #activeZones a ≥ 2
∧ activeZones a ⊆ controlledZones a
∧ controlledZones a = getZones a

The state invariant determines that, if the system is running in manual mode (predicate
mode = manual), an area is active if, and only if, some zone controlled by it is active.
On the other hand, if the mode is automatic, an area is active if, and only if, there is
more than one active zone controlled by it. Finally, for each area, its controlled zones are
defined by the function getZones, whose definition we omit. In Z, #s is the cardinality
of the set s.

Initially, the system is in automatic mode, there is no active zone, and no discharge
occurred in any area. The state invariant guarantees that there is no active area.

InitAbstractFireControl
AbstractFireControlState ′

mode ′ = automatic ∧ discharge ′ = ∅
activeZones ′ = {a : AreaId • a 7→ ∅}

Three operations are used to switch the system mode; they leave the other components
unchanged. The first operation receives the new mode as argument.

SwitchAbstractFireControlMode
∆AbstractFireControlState; nm? : Mode

mode ′ = nm? ∧ activeZones ′ = activeZones
discharge ′ = discharge

SwitchAbstractFireControl2AutomaticMode and SwitchAbstractFireControl2DisabledMode
do not receive arguments; they switch the mode to automatic and disabled , respectively.

The schema AbstractActivateZone receives a zone nz? and changes activeZones by
including nz? in the set of active zones of the area that controls it; active may also be

104 5 Case Study

State Abstract FireControl Concrete FireControl Concrete Area
fireSysStarts AbstractFireSysStart FireSysStart StartArea
fireSyss AbstractFireSys FireSys AreaCycle
manuals AbstractManual Manual ManualArea
autos AbstractAuto Auto AutoArea
resets AbstractReset Reset ResetArea
countdowns AbstractCountdown Countdown WaitingDischarge
discharges AbstractDischarge Discharge WaitingDischarge
fireSysDs AbstractFireSysD FireSysD AreaD
disableds AbstractDisabled Disabled DisabledArea

Table 5.1: The System States and Corresponding Actions

changed to maintain the state invariant. All other state components are left unchanged.

AbstractActivateZone
∆AbstractFireControlState; nz? : ZoneId

mode ′ = mode ∧ discharge ′ = discharge
activeZones ′ = activeZones ⊕ {a : AreaId

| nz? ∈ controlledZones a
• a 7→ activeZones a ∪ {nz?}}

The schema AbstractAutomaticDischarge activates the discharge in the active areas;
only discharge is changed. Finally, AbstractManualDischarge receives the areas in which
the user wants to discharge the gas, but discharges only in those that are active.

All the other actions are defined using CSP operators. We have one action for each
possible state within the system as described in Table 5.2.

The action AbstractFireSysStart starts by communicating the current system state.
Then, it waits for the system to be switched on through channel switchOn, switches
on the lamp systemOnLamp, initialises the system state and, finally, behaves like action
AbstractFireSys.

AbstractFireSysStart =̂
systemState!fireSysStarts → switchOn →

switchLamp[LampId].systemOnLamp!on →
InitAbstractFireControl ; AbstractFireSys

In the action AbstractFireSys, after communicating the system state, the mode can
be manually switched between automatic and manual . Furthermore, if any detection
occurs, the zone in which the detection occurred is activated, the corresponding lamp is
lit, the alarm sounds in firstStage, and then, the system behaves like AbstractManual or
AbstractAuto, depending on the current system mode. If the actuators are replaced, the
circFaultLamp is switched off , the system is set to automatic mode, and waits to be reset .

5.2 Abstract Fire Control System 105

Figure 5.5: Refinement Strategy for the Fire Control System

Finally, if any fault is identified, the corresponding switchLamp is lit, and the buzzer is
switched on.

AbstractFireSys =̂
systemState!fireSyss →

modeSwitch?nm → SwitchAbstractFireControlMode; AbstractFireSys
2 detection?nz → AbstractActivateZone; switchLamp[ZoneId].nz !on →

alarm!firstStage →
(mode = manual) & AbstractManual
2 (mode = automatic) & AbstractAuto

2 actuatorsReplaced → switchLamp[LampId].circFaultLamp!off →
SwitchAbstractFireControl2AutomaticMode; AbstractReset

2 fault?faultId → switchLamp[LampId].(getLampId faultId)!on →
switchBuzzer !on → AbstractFireSys

. . .

The function getLampId maps fault identifications to their corresponding lamp in the
display.

Throughout this chapter, we illustrate the refinement of the fire control system using
these two actions only. For this reason, we omit the definitions of the remaining actions.
All the definitions can be found in [71].

The main action of process AbstractFireControl is defined below.

• AbstractFireSysStart end

In the next section, we refine AbstractFireControl to a concrete distributed system.

106 5 Case Study

Figure 5.6: Concrete Fire Control

5.3 Refinement

The motivation for the fire control system refinement is the natural distribution arising
from the physical locations of actuators, sensors, zones, and areas. Section 5.3.1 presents
the target of our refinement, the concrete fire control system. In the following sections,
we present the refinement steps summarised graphically in Figure 5.5.

In the first iteration, we split AbstractFireControl into two process. The first, Areas,
models the areas of the system, and is split into two Area processes in parallel in the
last iteration. The second, InternalSystem, is the core of the system, which is split into a
display controller DisplayController and the system controller FireControl in the second
iteration.

5.3.1 Concrete Fire Control System

The concrete fire control system has three components: the controller, the display, and
the detection system. They communicate through the channels below.

channel displayDischarge,manualDischarge : PAreaId
channel switched , automaticDischarge, anyDischarge,

noDischarge, countdown, counting
channel gasDischarged , gasNotDischarged : AreaId

The controller indicates discharges to the display through displayDischarge. The display
acknowledges this communication through channel switched . The detection process may
request a countdown to the controller, if it is in automatic mode and the conditions for a
gas discharge are met. The controller indicates that it started counting through counting .
The controller requests gas discharges to the detection process through manualDischarge
and automaticDischarge. Each of the areas in the detection process replies to the con-
troller’s request via channels gasDischarged or gasNotDischarged . After receiving all the
answers from the areas, the controller indicates to all areas if any discharge has hap-
pened (anyDischarge) or not (noDischarge). In Figure 5.6, we summarise the internal
communications of the concrete fire control system.

5.3 Refinement 107

Controller The process FireControl is similar to the abstract specification. However,
all the state components and events related to the areas and to the display are removed.

process FireControl =̂ begin state FireControlState =̂ [mode1 : Mode]
InitFireControl =̂ [FireControlState ′ | mode ′1 = automatic]

The state of the concrete fire control contains only one component, mode1, which indicates
the mode in which the system is running. This mode is initialised to automatic; three
operations can be used to switch it. The first one receives the new mode as argument.

SwitchFireControlMode =̂ [∆FireControlState; nm? : Mode | mode1 = nm?]

The second and third operations do not receive any argument; they simply switch the
system mode to automatic or disabled .

The fire control system is responsible for communicating the current system state. Af-
ter being switched on, the fire control initialises its state and behaves like action FireSys.
Where a lamp was switched on in the abstract specification, an acknowledgment event
switched is received from the display controller.

FireSysStart =̂ systemState!fireSysStarts → switchOn → switched →
InitFireControl ; FireSys

Similar to the abstract system, all the other actions corresponds to a possible state within
the system as described in Table 5.2.

In action FireSys, after communicating the system state, the mode can be switched.
Furthermore, if any detection occurs, the controller waits for a switched signal, sets the
alarm to firstStage, and behaves like Manual or Auto, depending on the current system
mode. Since the areas are the processes which have the area-zone information, following
a detection communication, the zone activation is not part of the controller behaviour. If
the actuators are replaced, the system is set to automatic mode, and waits to be reset .
Finally, all the faults are ignored by this process, except that it waits for a switched signal
from the display.

FireSys =̂ systemState!fireSyss →

modeSwitch?nm → SwitchFireControlMode; FireSys
2 detection?nz → switched → alarm!firstStage →

(mode1 = manual) & Manual
2 (mode1 = automatic) & Auto

2 actuatorsReplaced → switched →
SwitchFireControl2Auto; Reset

2 fault?faultId → switched → FireSys

As for the abstract system, we omit the definition of the remaining actions.

108 5 Case Study

• FireSysStart end

The main action of process FireControl is FireSysStart presented above.

Display Controller This process models the display controller requests for the lamps
to be switched on or off after the occurrence of the relevant events. It waits for the
system to be switched on, switches the lamp systemOnLamp on, and indicates this to
FireControl through switched . A gas discharge is indicated by FireControl to this process
through displayDischarge. If the system is reset , the display switches off the buzzer and
all the lamps, except the lamps circFaultLamp and systemOnLamp.

Areas The process Area is parametrised by the area identifier.

process Area =̂ (id : AreaId • begin

The state of an area is composed of the mode in which it is running, its controlled
zones, the active zones in which a fire detection occurred, a boolean discharge that records
whether a gas discharge has occurred or not, and a boolean active that records whether
the area is willing to discharge gas or not.

state AreaState
mode : Mode
controlledZones, activeZones : PZoneId
discharge, active : Bool

controlledZones = getZones id ∧ activeZones ⊆ controlledZones
(mode = automatic) ⇒ active = true ⇔ #activeZones ≥ 2
(mode = manual) ⇒ active = true ⇔ #activeZones ≥ 1

The invariant establishes that the component activeZones is a subset of the controlled
zones of this area, which is defined by getZones. If running in automatic mode, an area
is active if, and only if, all controlled zones are active. On the other hand, if running in
manual mode, an area is active if, and only if, any controlled zone is active.

Each area is initialised as follows: there is no active zone; no discharge occurred; and
it is in automatic mode. The state invariant guarantees that it is not active.

InitArea
AreaState ′

activeZones ′ = ∅
discharge ′ = false
mode ′ = automatic

The schema SwitchAreaMode receives the new mode and sets the area mode. The
schemas SwitchArea2AutomaticMode and SwitchArea2DisabledMode set the area mode

5.3 Refinement 109

to automatic and disabled . All other state components are left unchanged. A zone can be
activated using the operation ActivateZone. If the given zone is controlled by the area,
it is included in the activeZones.

Initially, an area synchronises in switchOn, initialises its state, and starts its cycle.

StartArea =̂ switchOn → InitArea; AreaCycle

During its cycle, if the actuatorsReplaced event occurs, the mode is switched to automatic
and the area waits to be reset . If the system mode is switched, so is the area mode.
Finally, any detection may activate a zone, if it is controlled by this area; after this, the
area behaves like either AutoArea or ManualArea, depending on its current mode.

AreaCycle =̂ actuatorsReplaced → SwitchArea2AutomaticMode;ResetArea
2 modeSwitch?nm → SwitchAreaMode; AreaCycle
2 detection?nz → ActivateZone;

(mode = automatic) & AutoArea
2 (mode = manual) & ManualArea

. . . • StartArea end)

The main action of the process Area is the action StartArea.
The process ConcreteAreas represents all the areas within the system. It is a parallel

composition of all areas synchronising on the channel set Σareas .

chanset Σareas == {| switchOn, reset ,modeSwitch, detection, silenceAlarm,
actuatorsReplaced , automaticDischarge,manualDischarge,
anyDischarge,noDischarge, counting |}

process ConcreteAreas =̂ |[Σareas]| id : AreaId • Area(id)

The internal system is defined as the parallel composition of the fire control FireControl
and the display controller DisplayController . All the communications between them are
hidden.

chanset DisplaySync == {| displayDischarge, switched |}
chanset Σ1 == {| switchOn, reset , detection, displayDischarge, silenceAlarm,

actuatorsReplaced , fault |}
process ConcreteInternalSystem =̂

FireControl |[Σ1]|DisplayController \ DisplaySync

The concrete fire control is the parallel combination of ConcreteInternalSystem and
Areas. Internal communications are again hidden.

chanset GasDischargeSync ==
{| manualDischarge, automaticDischarge, countdown, counting ,

gasDischarged , gasNotDischarged , anyDischarge,noDischarge |}
chanset Σ2 == {| switchOn, reset , detection,modeSwitch, silenceAlarm,

actuatorsReplaced |} ∪GasDischargeSync
process ConcreteFireControl =̂

(ConcreteInternalSystem |[Σ2]|Areas) \ GasDischargeSync

In the following sections, we prove that AbstractFireControl is refined by the process

110 5 Case Study

ConcreteFireControl , or rather, AbstractFireControl vP ConcreteFireControl .

5.3.2 First Iteration: splitting the AbstractFireControl into the internal
controller and the areas processes

Data refinement In this step we make a data refinement in order to introduce a state
component that is used by the areas. The new modeA component indicates the mode in
which the areas are running. The process AbstractFireControl is refined to the process
FireControl1 presented below.

process FireControl1 =̂ begin
state

FireControlState1

mode1,modeA : Mode
controlledZones1, activeZones1 : AreaId → PZoneId
discharge1, active1 : PAreaId

∀ a : AreaId •
(mode1 = automatic) ⇒ a ∈ active1 ⇔ #activeZones1 a ≥ 2
∧ (mode1 = manual) ⇒ a ∈ active1 ⇔ #activeZones1 a ≥ 1
∧ activeZones1 a ⊆ controlledZones1 a
∧ controlledZones1 a = getZones a

The state FireControlState1 is the same as that of AbstractFireControl , except that it
includes an extra component modeA. In order to prove that the FireControl1 is a refine-
ment of the AbstractFireControl , we have to prove that there exists a forwards simulation
between the main actions of FireControl1 and AbstractFireControl . The retrieve rela-
tion RetrFireControl relates each component in the AbstractFireControlState to one in
FireControlState1; it states that modeA is a duplicated record of mode.

RetrFireControl
AbstractFireControlState; FireControlState1

mode1 = mode ∧ modeA = mode ∧ active1 = active
controlledZones1 = controlledZones
activeZones1 = activeZones ∧ discharge1 = discharge

The laws of Circus establish that simulation distributes through the structure of an ac-
tion. We refine each schema using Law C.4. In the concrete initialisation, the new state
component modeA is initialised in automatic mode.

InitFireControl1
FireControlState ′1

mode ′1 = automatic ∧ mode ′A = automatic ∧ discharge ′1 = ∅
activeZones ′1 = {a : AreaId • a 7→ ∅}

The following lemma states that this is actually simulated by the abstract initialisation.

5.3 Refinement 111

Lemma 5.1 InitAbstractFireControl ¹ InitFireControl1

Proof. The application of Law C.4 raises two proof obligations. The first one concerns
the preconditions of both schemas.

∀AbstractFireControlState; FireControlState1 •
RetrFireControl ∧ pre InitAbstractFireControl ⇒ pre InitFireControl1

It is easily proved because the preconditions of both schemas are true.
The second proof obligation concerns the postcondition of both operations.

∀AbstractFireControlState; FireControlState1; FireControlState ′1 •
RetrFireControl ∧ pre InitAbstractFireControl ∧ InitFireControl1 ⇒

∃AbstractFireControlState ′ • RetrFireControl ′ ∧ InitAbstractFireControl

This proof obligation can also be easily discarded using the one-point rule. When this rule
is applied, we remove the universal quantifier, and then we are left with an implication
in which the consequent is present in the antecedent. q

There is no special rule to handle initialisation operations. This is because the be-
haviour of a process is defined by its main action; there is no implicit initialisation. An
initialisation schema is just a simplified way of specifying an operation like any other.

All other schema expressions are refined in pretty much the same way. Their definitions
are very similar to the corresponding abstract operations except that the value assigned
to mode1 is also assigned to the new state component modeA.

For the remaining actions, we rely on distribution of simulation. The new actions have
the same structure as the original ones, but use the new schemas. By way of illustration,
we present the action FireSysStart1 that is simulated by AbstractFireSysStart .

FireSysStart1 =̂ systemState!fireSysStarts → switchOn →
switchLamp[LampId].systemOnLamp!on →

InitFireControl1; FireSys1

To establish the simulation, we need Laws C.7 and C.11. Since all the output and input
values, and guards are not changed, only their second proviso must be proved. They
follow from Lemma 5.1 and FireSys ¹ FireSys1.

FireSysStart1 is the main action of FireControl1, and we have just proved that it is
simulated by the main action of AbstractFireControl .

• FireSysStart1 end

This concludes this data refinement step.

Action Refinement In this step we change FireControl1 so that its state is composed
of two partitions: one that models the internal system and another that models the areas.
We also change the actions so that the state partitions are handled separately.

process ConcreteFireControl =̂ begin

The internal system state is composed only by its mode. The remaining components

112 5 Case Study

are declared as components of the areas partition of the state.

InternalSystemState =̂ [mode1 : Mode]

AreasState
modeA : Mode
controlledZones1, activeZones1 : AreaId → PZoneId
discharge1, active1 : PAreaId

∀ a : AreaId •
(modeA = automatic) ⇒ a ∈ active1 ⇔ #activeZones1 a ≥ 2
∧ (modeA = manual) ⇒ a ∈ active1 ⇔ #activeZones1 a ≥ 1
∧ activeZones1 a ⊆ controlledZones1 a
∧ controlledZones1 a = getZones a

The state of FireControlState1 is declared as the conjunction of the two previously defined
schemas.

state FireControlState1 =̂ InternalSystemState ∧ AreasState

The first group of paragraphs access only mode1. It is initialised to automatic.

InitInternalSystem =̂ [InternalSystemState ′ | mode ′1 = automatic]

The schema SwitchInternalSystemMode receives the new mode as argument, and
switches the InternalSystem mode.

SwitchInternalSystemMode
∆InternalSystemState
ΞAreasState
nm? : Mode

mode ′1 = nm?

Similarly, SwitchInternalSystem2Auto and SwitchInternalSystem2Dis set the mode of
the InternalSystem to automatic and disabled , respectively.

The behaviour of this internal system is very similar to that of the abstract one (Ta-
ble 5.2); however, after being switched on, it initialises only mode1 and behaves like action
FireSys2. All the operations related to the areas are no longer controlled by the internal
system actions, but by the areas actions. Here, they are handled by a different set of
actions, that we present below.

For instance, consider the action FireSysStart2 below.

FireSysStart2 =̂ systemState!fireSysStarts → switchOn →
switchLamp[LampId].systemOnLamp!on →

InitInternalSystem; FireSys2

When a synchronisation on modeSwitch happens, only the InternalSystem mode is

5.3 Refinement 113

switched by action FireSys2. Furthermore, since the informations about the areas are
no longer in this partition, following a detection communication, this action does not
activate the area in which the detection occurred. If the actuators are replaced, this
action switches the corresponding lamp on, switches only mode1 to automatic, and waits
to be reset . The behaviour, if any fault happens, is not changed.

FireSys2 =̂ systemState!fireSyss →
modeSwitch?nm → SwitchInternalSystemMode; FireSys2
2 detection?nz → switchLamp[ZoneId].nz !on →

alarm!firstStage →
(

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

)

2 actuatorsReplaced → switchLamp[LampId].circFaultLamp!off →
SwitchInternalSystem2Auto; Reset2

2 fault?faultId → switchLamp[LampId].(getLampId faultId)!on →
switchBuzzer !on → FireSys2

The second group of paragraphs is concerned with the areas. They are initialised in
automatic mode; furthermore, there are no active zones, no discharge has occurred, and
no area is active.

InitAreas
AreasState ′

mode ′A = automatic ∧ discharge ′1 = ∅
activeZones ′1 = {a : AreaId • a 7→ ∅}

The areas mode can be switched to a given mode with schema SwitchAreasMode. The ar-
eas mode can also be switched to automatic or disabled using SwitchAreas2AutomaticMode
and SwitchAreas2DisabledMode, respectively.

SwitchAreasMode
∆AreasState; ΞInternalSystemState; nm? : Mode

mode ′A = nm? ∧ activeZones ′1 = activeZones1
discharge ′1 = discharge1

The schema ActivateZoneAS includes a given zone nz? in the set of active zones of
the area that controls nz?.

ActivateZoneAS
∆AreasState; ΞInternalSystemState; nz? : ZoneId

mode ′A = modeA ∧ discharge ′1 = discharge1

activeZones ′1 = activeZones1 ⊕ {a : AreaId
| nz? ∈ controlledZones1 a
• a 7→ activeZones1 a ∪ {nz?}}

Initially, the areas synchronise on switchOn, initialise the state, and start their cycle.

114 5 Case Study

StartAreas =̂ switch → InitAreas; AreasCycle

In AreasCycle, the actuators can be replaced, setting the mode to automatic, and
the areas wait to be reset . If the system mode is switched, so is the areas mode. Any
detection in a zone nz leads to the activation of nz ; the behaviour afterwards depends on
the Areas mode.

AreasCycle =̂ actuatorsReplaced → SwitchAreas2AutomaticMode;ResetAreas
2 modeSwitch?nm → SwitchAreasMode;AreasCycle
2 detection?nz → ActivateZoneAS ;

(modeA = automatic) & AutoAreas
2 (modeA = manual) & ManualAreas

. . .

As for the paragraphs of the internal system, the areas have an action corresponding
to each action in the abstract system (Table 5.2); the remaining actions are omitted here.

The main action of process ConcreteFireControl is the parallel composition of the
actions FireSysStart2 and StartAreas. These actions actually represent the initial actions
of each partition within the process. They synchronise on the channels in the set Σ2. All
the synchronisation events between the internal system and the areas are hidden in the
main action.

• (FireSysStart2 |[α(InternalSystemState) | Σ2 | α(AreasState)]| StartAreas)
\ GasDischargeSync end

Action FireSysStart2 may modify only the components of InternalSystemState, and action
StartAreas may modify only the components of AreasState.

Despite the fact that this is a significant refinement step, it involves no change of
data representation. In order to prove that this is a valid refinement, we must prove
that the main action of process ConcreteFireControl refines the main action of process
FireControl1; however, they are defined using mutual recursion, and for this reason, we
use the result below in the proof. The symbol vV represents the vectorial refinement,
which is defined as the individual action refinement of the corresponding actions in each
vector.

Definition 5.1 (Vectorial Refinement) For two vector of actions V1 = [a1, . . . , an]
and V2 = [c1, . . . , cn], V1 vV V2 if, and only if, ai vA ci for all i in 1 . . n.

In order to prove that a vector of actions SS as defined below is refined by a vector
of actions [Y0, . . . ,Yn], it is enough to show that, for each action Ni in SS , we can prove
that its definition Fi , if we replace N0, . . . ,Nn with Y0, . . . ,Yn in Fi , is refined by Yi .

Theorem 5.1 (Refinement of Mutually Recursive Actions) For a given vector of
actions SS defined in the form SS =̂ [N0, . . . ,Nn], where Ni =̂ Fi(N0, . . . ,Nn):

SS vV [Y0, . . . ,Yn] ⇐

F0[Y0, . . . ,Yn/N0, . . . ,Nn] vA Y0,
. . . ,
Fn [Y0, . . . ,Yn/N0, . . . ,Nn] vA Yn

This result is proved in Appendix D.1.

5.3 Refinement 115

We want to prove the following proposition.

FireSysStart1 vA (FireSysStart2 ‖ StartAreas) \ GasDischargeSync

Here, ‖ stands for |[α(InternalSystemState) | Σ2 | α(AreasState)]|.
As FireSysStart1 is defined using mutual recursion, we use the Theorem D.1, with SS

as the following vector including all actions involved in the definition of FireSysStart1, to
prove this refinement.

SS = [FireSysStart1,FireSys1, . . .]

The vector [Y0, . . . ,Yn] includes the parallel composition below.

(FireSysStart2 ‖ StartAreas) \ GasDischargeSync

Furthermore, it also contains all the refinements of each action in SS as a parallel compo-
sition of the same form: with the same partition, the same synchronisation set, and the
same hiding.

To prove this refinement, however, using Theorem D.1, we need a modified SS , in
which some actions are preceded by an assumption. We introduce these assumptions
using Law C.40.

[FireSysStart1,FireSys1, . . .]
vA [C .40]
[FireSysStart1, {mode1 = modeA}; FireSys1, . . .]

Although long, the proof obligation raised by this law application is trivial; we omit it
here, for the sake of conciseness.

By way of illustration, let us consider the action FireSys1: it is invoked by actions
FireSysStart , Auto1, Reset1, FireSysD1, and recursively by itself. However, before most
of these invocations, we have either as state initialisation, or SwitchFireControlMode1.
The assumptions presented below may be introduced using laws C.28 and C.29.

{mode1 = automatic ∧ modeA = automatic}
{mode1 = newMode? ∧ modeA = newMode?}

Finally, using law C.36, we may replace these two assumptions by {mode1 = modeA},
since both predicates imply this equality. The only point in which no operation is present
before the invocation is in the action FireSys1 itself. However, no operation is invoked
before this recursive invocation, and hence, the state does not change.

The remaining assumption introductions can be proved in a very similar way. We
have that the components mode1 and modeA are always changed together and to the
same values. This allows us to introduce the assumption {mode1 = modeA} as explained
above. Then, we may distribute this assumption using the distribution laws presented in
Appendix C.

116 5 Case Study

Using Theorem D.1 we get the following result.

FireSysStart1,
{mode1 = modeA}; FireSys1,
. . .

vA

(FireSysStart2 ‖ StartAreas) \ GasDischargeSync,
(FireSys2 ‖ AreasCycle) \ GasDischargeSync,
. . .

⇐(
FireSysStart1[subst] vA (FireSysStart2 ‖ StartAreas) \ GasDischargeSync, (1)
FireSys1[subst] vA (FireSys2 ‖ AreasCycle) \ GasDischargeSync, . . . (2)

)

Here, subst corresponds to the following substitution.

subst = [((FireSysStart2 ‖ StartAreas) \ GasDischargeSync)/FireSysStart1]
[((FireSys2 ‖ AreasCycle) \ GasDischargeSync)/FireSys1]
. . .

Lemmas 5.2 and 5.3 prove refinements (1) and (2), respectively.

Lemma 5.2 (1)

FireSysStart1[subst] vA (FireSysStart2 ‖ StartAreas) \ GasDischargeSync

Proof. We start the refinement using the definitions of FireSysStart1 and substitution.

FireSysStart1[subst]
= [Definition of FireSysStart1, Definition of Substitution]
systemState!fireSysStarts → switch → switchLamp[LampId].systemOnLamp!on →

InitFireControl1; (FireSys2 ‖ AreasCycle) \ GasDischargeSync

First, we may expand the hiding since the channels switchLamp, switchOn, and systemState
are not in GasDischargeSync.

= [C .120,C .125]

systemState!fireSysStarts → switchOn →
switchLamp[LampId].systemOnLamp!on →

InitFireControl1; (FireSys2 ‖ AreasCycle)

 \ GasDischargeSync

The schema InitFireControl1 can be written as the sequential composition of two other
schemas as follows. In [27], a refinement law is provided to introduce a schema sequence;
however, in our case, we have a initialisation schema, which has no reference to the initial
state. For this reason, we use a new law that is similar to the one in [27]. Some trivial

5.3 Refinement 117

proof obligations are omitted.

= [C .72]

systemState!fireSysStarts → switchOn →
switchLamp[LampId].systemOnLamp!on →

InitInternalSystem; InitAreas; (FireSys2 ‖ AreasCycle)

\ GasDischargeSync

Each one of the newly inserted schema operations writes in a different partition of the
parallel composition that follows them. For this reason, we may distribute them over the
parallel composition. Again, two new laws are used: the first moves a (guarded) schema
expression to one side of the parallel composition; commutativity of parallel composition
is also provided as a new law.

= [C .73,C .76]

systemState!fireSysStarts → switchOn →
switchLamp[LampId].systemOnLamp!on →

((InitInternalSystem; FireSys2) ‖ (InitAreas; AreasCycle))

\ GasDischargeSync

Next, we move the switchLamp event to the internal system side of the parallel compo-
sition. This step is valid because all the initial channels of InitAreas; AreasCycle are in
Σ2, and switchLamp is not.

= [C .84]

systemState!fireSysStarts → switchOn →

(
switchLamp[LampId].systemOnLamp!on →

InitInternalSystem; FireSys2

)

‖(
InitAreas;

AreasCycle

)

\ GasDischargeSync

Now, switchOn may be distributed over the parallel composition because it is in Σ2.

= [C .106]

systemState!fireSysStarts →

switchOn →
switchLamp[LampId].systemOnLamp!on →

InitInternalSystem; FireSys2

‖
(switchOn → InitAreas; AreasCycle)

\ GasDischargeSync

Since it is not in Σ2, systemState may be moved to the internal system side of the parallel

118 5 Case Study

composition.

= [C .100,C .84]

systemState!fireSysStarts → switchOn →
switchLamp[LampId].systemOnLamp!on →

InitInternalSystem; FireSys2

‖
(switchOn → InitAreas; AreasCycle)

\ GasDischargeSync

Finally, using the definitions of FireSysStart2 and StartAreas we conclude this proof.

= [Definition of FireSysStart2 and StartAreas]
(FireSysStart2 ‖ StartAreas) \ GasDischargeSync q

The next lemma we present is the refinement of the action FireSys1.

Lemma 5.3 (2)

{mode1 = modeA}; FireSys1[subst]
vA
(FireSys2 ‖ AreasCycle) \ GasDischargeSync

Proof. We start the proof using the definitions of FireSys1 and substitution.

{mode1 = modeA}; FireSys1[subst]
= [Definition of FireSys1,Definition of Substitution]
{mode1 = modeA};
systemState!fireSyss →

modeSwitch?nm →
SwitchFireControlMode1; (FireSys2 ‖ AreasCycle) \ GasDischargeSync

2 detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on →
alarm!firstStage →

(mode1 = manual) & (Manual2 ‖ ManualAreas) \ GasDischargeSync
2 (mode1 = automatic) & (Auto2 ‖ AutoAreas) \ GasDischargeSync

2 actuatorsReplaced → switchLamp[LampId].circFaultLamp!off →
SwitchFireControl2Auto1; (Reset2 ‖ ResetAreas) \ GasDischargeSync

2 fault?faultId → switchLamp[LampId].(getLampId faultId)!on →
switchBuzzer !on → (FireSys2 ‖ AreasCycle) \ GasDischargeSync

Next, we expand the hiding to the whole action. This is valid because all the events

5.3 Refinement 119

involved in the expansion are not in the hidden set of channels.

= [C .120,C .125,C .122]

{mode1 = modeA};
systemState!fireSyss →

modeSwitch?nm → SwitchFireControlMode1; (FireSys2 ‖ AreasCycle)(3)
2 detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on → (4)

alarm!firstStage →
(mode1 = manual) & (Manual2 ‖ ManualAreas)
2 (mode1 = automatic) & (Auto2 ‖ AutoAreas)

2 actuatorsReplaced → switchLamp[LampId].circFaultLamp!off → (5)
SwitchFireControl2Auto1; (Reset2 ‖ ResetAreas)

2 fault?faultId → switchLamp[LampId].(getLampId faultId)!on → (6)
switchBuzzer !on → (FireSys2 ‖ AreasCycle)

\ GasDischargeSync

Next, we aim at the refinement of each branch to a parallel composition in order to be
able to apply the exchange Law C.85. First, we refine (3) as follows: SwitchFireControlMode1

can be written as the sequential composition of the two schemas SwitchInternalSystemMode
and SwitchAreasMode.

(3)vA [C .71]
modeSwitch?nm → SwitchInternalSystemMode; SwitchAreasMode;

(FireSys2 ‖ AreasCycle)

The two schemas can be moved to different sides of the parallel composition.

= [C .76,C .73]
modeSwitch?nm →

((SwitchInternalSystemMode; FireSys2) ‖ (SwitchAreasMode; AreasCycle))

Finally, as modeSwitch is in Σ2, we may distribute this event over the parallel composition.
Here, a new law (distribution of input channels over parallel composition) is used.

= [C .108]

modeSwitch?nm →
SwitchInternalSystemMode;

FireSys2

 ‖

(
modeSwitch?nm →

SwitchAreasMode; AreasCycle

)

For (4), we first use the assumption laws in order to move the assumption into the
action.

(4)vA [C .45,C .37,C .35,C .132,C .47,C .53]
detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on →

alarm!firstStage → {mode1 = modeA};
{mode1 = modeA}; (mode1 = manual) & (Manual2 ‖ ManualAreas)
2 {mode1 = modeA}; (mode1 = automatic) & (Auto2 ‖ AutoAreas)

Next, we use the assumption to change the guards.

120 5 Case Study

= [C .34]
detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on →

alarm!firstStage →
{mode1 = modeA};

{mode1 = modeA};
(mode1 = manual ∧ modeA = manual) &

(Manual2 ‖ ManualAreas)
2 {mode1 = modeA};

(mode1 = automatic ∧ modeA = automatic) &
(Auto2 ‖ AutoAreas)

The assumptions can then be absorbed by the guards.

= [C .30,C .57,C .35,C .132]
detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on →

alarm!firstStage →
{mode1 = modeA};

(mode1 = modeA ∧ mode1 = manual ∧ modeA = manual) &
(Manual2 ‖ ManualAreas)

2 (mode1 = modeA ∧ mode1 = automatic ∧ modeA = automatic) &
(Auto2 ‖ AutoAreas)

Now, we distribute the guards over the parallel composition.

= [C .64]
detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on →

alarm!firstStage → {mode1 = modeA};

(
mode1 = modeA ∧
mode1 = manual

)
&

Manual2

 ‖

(
mode1 = modeA ∧
modeA = manual

)
&

ManualAreas

2

(
mode1 = modeA ∧
mode1 = automatic

)
&

Auto2

 ‖

(
mode1 = modeA ∧
modeA = automatic

)
&

AutoAreas

The guards are mutually exclusive; we may apply an exchange law that simplifies them.

= [C .85,C .37,C .34,C .35,C .132]
detection?nz → ActivateZone1; switchLamp[ZoneId].nz !on →

alarm!firstStage →

(mode1 = manual) &
Manual2

2 (mode1 = automatic) &
Auto2

 ‖

(modeA = manual) &
ManualAreas

2 (modeA = automatic) &
AutoAreas

Next, we move the outputs channels to the left-hand side of the parallel composition.
This follows from the fact that the initial channels of both ManualAreas and AutoAreas

5.3 Refinement 121

are in Σ2, and alarm and switchLamp are not.

= [C .100,C .84]
detection?nz → ActivateZone1;

switchLamp[ZoneId].nz !on →
alarm!firstStage →

(mode1 = manual) &
Manual2

2 (mode1 = automatic) &
Auto2

‖

(modeA = manual) &
ManualAreas

2 (modeA = automatic) &
AutoAreas

The schema ActivateZone1 can easily be transformed to ActivateZoneAS using the schema
calculus. The resulting schema can also be distributed over the parallel composition.
Finally, channel detection can be distributed over the parallel composition, since it is in
Σ2.

= [SchemaCalculus,C .76,C .73,C .108]

detection?nz → switchLamp[ZoneId].nz !on → alarm!firstStage →
(mode1 = manual) &

Manual2
2 (mode1 = automatic) &

Auto2

‖

detection?nz → ActivateZoneAS ;(
(modeA = manual) & ManualAreas
2 (modeA = automatic) & AutoAreas

)

Using similar strategies, we refine (5) and (6) to the following external choice.

(5, 6)= [. . .]

actuatorsReplaced →
switchLamp[LampId].circFaultLamp!off →

SwitchInternalSystem2Auto; Reset2

‖
(actuatorsReplaced → SwitchAreas2AutomaticMode; ResetAreas)

2

fault?faultId →
switchLamp[LampId].(getLampId faultId)!on →

switchBuzzer !on → FireSys2

‖
AreasCycle

We are left with the external choice of parallel actions. Since the initial channels of the

122 5 Case Study

first three parallel actions are in the set Σ2, we may apply the exchange law as follows.

= [C .85]
systemState!fireSyss →

modeSwitch?nm → SwitchInternalSystemMode; FireSys2
2 detection?nz → switchLamp[ZoneId].nz !on →

alarm!firstStage →
(

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

)

2 actuatorsReplaced → switchLamp[LampId].circFaultLamp!off →
SwitchInternalSystem2Auto; Reset2

‖

modeSwitch?nm → SwitchAreasMode; AreasCycle
2 detection?nz → ActivateZoneAS ;

(modeA = manual) & ManualAreas
2 (modeA = automatic) & AutoAreas

2 actuatorsReplaced → SwitchAreas2AutomaticMode; ResetAreas

2

fault?faultId →
switchLamp[LampId].(getLampId faultId)!on →

switchBuzzer !on → FireSys2

 ‖ AreasCycle

Using the associativity of external choice, we have that the right-hand side of the first
parallel composition corresponds to the definition of the action AreasCycle. So, we have
that both branches of the external choice have this action as the right-hand side of the
parallel composition. Since all the initials of AreasCycle are in Σ2, we may apply the
distribution of parallel composition over external choice.

= [C .87]
systemState!fireSyss →

modeSwitch?nm → SwitchInternalSystemMode; FireSys2
2 detection?nz → switchLamp[ZoneId].nz !on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsReplaced →
switchLamp[LampId].circFaultLamp!off →

SwitchInternalSystem2Auto; Reset2
2 fault?faultId →

switchLamp[LampId].(getLampId faultId)!on →
switchBuzzer !on → FireSys2

‖
AreasCycle

Finally, we can distribute the communication that uses systemState and use the definition
of FireSys2 to conclude our proof. Again, this is valid because all the initials of AreasCycle

5.3 Refinement 123

are in Σ2, and systemState is not.

= [C .100,C .84]

systemState!fireSyss →
modeSwitch?nm → SwitchInternalSystemMode; FireSys2
2 detection?nz → switchLamp[ZoneId].nz !on →

alarm!firstStage →
(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsReplaced →
switchLamp[LampId].circFaultLamp!off →

SwitchInternalSystem2Auto; Reset2
2 fault?faultId →

switchLamp[LampId].(getLampId faultId)!on →
switchBuzzer !on → FireSys2

‖ AreasCycle

= [Definition of FireSys2]
(FireSys2 ‖ AreasCycle) \ GasDischargeSync q

Using these lemmas, and those related to the remaining actions, which are omitted
here, we prove that FireControl1 is refined by ConcreteFireControl .

Process Refinement We partitioned the state of the process FireControl1 into the
schemas InternalSystemState and AreasState. Each partition has its own set of para-
graphs, which are disjoint, since, no action in one changes a state component in the other.
Furthermore, the main action of the refined process is defined in terms of these two parti-
tions. Therefore, we may apply Law C.146 in order to split process ConcreteFireControl
into two independent processes as follows.

process ConcreteFireControl =̂
(InternalSystem |[Σ2]|Areas) \ GasDischargeSync

The ConcreteFireControl is redefined as the parallel composition of InternalSystem and
Areas. Their definitions can be deduced from the definition of ConcreteFireControl .

5.3.3 Second Iteration: splitting InternalSystem into two controllers

In this iteration, we split InternalSystem into two separated partitions: the first one
corresponds to the FireControl controller, and the other the DisplayController (see Fig-
ure 5.5). The fire control internal system state is left unchanged, and so this iteration
does not require a data refinement.

Action Refinement We rewrite the actions so that the FireControl paragraphs no
longer deal with the display events, which are dealt by DisplayController . The display

124 5 Case Study

controller has no state at all, so the new state is defined as follows.

process ConcreteInternalSystem =̂ begin
FireControlState =̂ [mode1 : Mode]
state InternalSystemState1 =̂ FireControlState

The operations over the InternalSystemState are slightly changed: they are renamed
and affect the FireControlState, which is the same as the InternalSystemState. Their
definitions, and those of all actions over FireControlState have the same definition and
description as those of the process FireControl in the target design. Also, the display
paragraphs are those of DisplayController , which can be found in Section 5.3.1.

The main action of the ConcreteInternalSystem is as follows.

•

FireSysStart
|[α(FireControlState) | Σ2 | α(DisplayControllerState)]|
StartDisplay

 \ DisplaySync

end

We have the parallel composition of action FireSysStart and StartDisplay , with the
channels used exclusively for their communication hidden. Again, since FireSysStart2,
FireSysStart , and StartDisplay are defined using mutual recursion, we use Theorem D.1
to prove that the process InternalSystem is refined by ConcreteInternalSystem. The
details can be found in [71].

Process Refinement Each partition in ConcreteInternalSystem has its own set of
paragraphs, which are disjoint. Furthermore, we define the main action of the refined
process in terms of these two partitions. Applying Law C.146, we get the following result.

process ConcreteInternalSystem =̂
(FireControl |[Σ1]|DisplayController) \ DisplaySync

The processes FireControl and the DisplayController were already described in the spec-
ification of the concrete system in Section 5.3.1.

5.3.4 Third Iteration: splitting the Areas into individual Areas

This last iteration aims at splitting Areas in individual processes Area for each area.

Data Refinement First, we must apply a data refinement to the original process Areas.

process Areas1 =̂ begin

We introduce a local state AreaState of an individual Area. Its definition is very similar
to that of the concrete system, but includes an identifier id : AreaId . The new global
state AreasState1 is defined as a total function from AreaId to local states. The invariant

5.3 Refinement 125

handles the new data structure.

state
AreasState1

areas : AreaId → AreaState

∀ a : AreaId •
(areas a).id = a
∧ ((areas a).mode = automatic) ⇒

(areas a).active = true ⇔ #(areas a).activeZones ≥ 2
∧ ((areas a).mode = manual) ⇒

(areas a).active = true ⇔ #(areas a).activeZones ≥ 1
∧ (areas a).activeZones ⊆ (areas a).controlledZones
∧ (areas a).controlledZones = getZones a

The retrieve relation is very simple and is defined below.

RetrieveAreas
AreasState; AreasState1

∀ a : AreaId • (areas a).mode = modeA

∧ (areas a).controlledZones = controlledZones1 a
∧ (areas a).activeZones = activeZones1 a
∧ (areas a).discharge = true ⇔ a ∈ discharge1

∧ (areas a).active = true ⇔ a ∈ active1

The mode in each of the local areas is that of Areas; the controlled and active zones of an
area is defined as the corresponding image in the global state; a discharge has occurred
in an area, if it is in discharge1; and finally, the area is active if it is in active1.

We introduce the paragraphs related to the local state AreaState. Basically, we have
a corresponding local action for each global action. They are identical to those pre-
sented within the process Area in the concrete system, and are omitted at this point for
conciseness.

Next, we redefine each of the global operations. Basically, all global operations have
an effect in each of the individual local states. For instance, InitAreas is refined below.

InitAreas1
AreasState ′1

∀ a : AreaId • (areas ′ a).activeZones = ∅
∧ (areas ′ a).discharge = false
∧ (areas ′ a).mode = automatic

The proof of the simulations are simple, but long. As before, for the main action, we rely
on the fact that forwards simulation distributes through action constructors. The new

126 5 Case Study

actions have the same structure as the original ones, but use new schema actions.

StartAreas1 =̂ switchOn → InitAreas1; AreasCycle1

AreasCycle1 =̂ actuatorsReplaced → SwitchAreas2AutomaticMode1;ResetAreas1
2 modeSwitch?nm → SwitchAreasMode1; AreasCycle1

2 detection?nz → ActivateZoneAS1;
(∀ a : AreaId • (areas a).mode = automatic) & AutoAreas1
2 (∀ a : AreaId • (areas a).mode = manual) & ManualAreas1

Since all the output and input values are not changed, in the application of Law C.7 we
only rely on distribution. On the other hand, all the guards are changed. Both provisos
raised by Law C.11 need to be proved. For instance, to prove the refinement of simulation
for AreasCycle1 we need the following lemma.

Lemma 5.4 For any mode M ,

∀AreasState; AreasState1 • RetrieveAreas ⇒
modeA = M ⇔ ∀ a : AreaId • (areas a).mode = M

Proof. The proof of this lemma follows from predicate calculus, using the retrieve relation
RetrieveAreas to relate modeA with each individual area’s mode. q

The main action of the areas, Areas1, is the simulation of the original action.

• StartAreas1
end

This concludes this data refinement step.

Action Refinement In order to apply a process refinement that splits the Areas1
process into individual areas, we redefine each of the paragraphs within Areas1 as a
promotion of the corresponding original one.

The local paragraphs and the global state remain unchanged. However, a promotion
schema is introduced; it relates the local state to the global one.

Promotion
∆AreasState1; ∆AreaState; id? : AreaId

θAreaState = areas id? ∧ areas ′ = areas ⊕ {id? 7→ θAreaState ′}

The global operations are refined to a definition in terms of the corresponding local
operations. For instance, the initialisation is refined as follows.

InitAreas1 =̂ ∀ id? : AreaId • InitArea ∧ Promotion

This can be proved using the action refinement laws presented in Appendix C. The rede-
finition of the remaining operations are trivially similar and omitted here.

5.4 Final Considerations 127

Each action is defined as an iterated parallel composition of the promotion of the
corresponding local operation, but substituting the area id by the indexing variable i .
Each branch of the parallel composition may change its corresponding local state areas i ;
the remaining branches j , such that j 6= i , may change the remaining local states areas j .
For instance, the actions StartAreas1 and AreasCycle1 can be rewritten as follows.

StartAreas2 =̂
|[Σareas]| i : AreaId • |[α (areas i)]| • (promote2 StartArea) [id , id? := i , i]

The remaining actions are rewritten in a very similar way. Finally, we replace the main
action.

• StartAreas2
end

Since StartAreas1 and StartAreas2 use mutual recursion, we use Theorem D.1 again to
prove that Areas2 is a refinement of Areas1.

Process Refinement This last process split needs the process refinement law C.147.
This law applies to processes whose definition contains a local state and local operations,
and a global state and global operations expressed in terms of the promotion of local
paragraphs to the global state using iterated parallel operator. The application of this
law creates a local process parametrised by an identifier and a global process defined as
an iterated parallel composition of local processes.

We apply this law to Areas1 in order to express the Areas process as the following
parallel composition of individual Area processes.

process ConcreteAreas =̂ |[Σareas]| id : AreaId • Area(id)

The Area definition corresponds to that in the concrete system.

5.4 Final Considerations

In this Chapter, we presented the development of a case study on the Circus refinement
calculus. Using Circus, we were able to specify elegantly both behavioural and data
aspects of an industrial scale application. With that, we demonstrate that the refinement
strategy presented in [27] is also applicable to large systems. The development consisted
of three iterations: the first one splits the system into a system controller and the sensors.
In the second iteration, the control is subdivided into two different controllers: one for
the system and one for the display. Finally, the third iteration splits the sensors into
individual processes, one for each area.

The set of laws presented in [27] was not sufficient. Our case study has motivated the
proposal of new refinement laws. For instance, we require some laws for inserting and
distributing assumptions, and a new process refinement law. In total, more than one-
hundred new laws have been identified during the development of our case study; they

128 5 Case Study

can be found in Appendix C. Furthermore, some laws presented in [27] were found to
be incorrect, and they are corrected in this thesis (see Chapter 4). Next, the refinement
of mutually recursive actions was considered, and we presented a notation used to prove
refinement of such systems that results in more concise and modular proofs.

Other case studies on refinement in Circus have already been presented elsewhere.
Woodcock and Cavalcanti present the development of a steam boiler in [104]; Freitas
presents the refinement of a connection pool in [45]. However, so far, only small examples
have taken a calculational approach [27, 101]. As far as we know, the case study presented
in this chapter is the largest case study on the Circus refinement calculus.

The development presented in this chapter and all the proofs that were needed have
been done by hand. In the future, we intend to use the mechanisation of our refinement
laws, in order to mechanically verify our refinement.

The result of the refinement presented here does not involve only executable con-
structs; additional simple schema refinements using [29] were omitted here. The imple-
mentation of this case study in Java and the strategy that we devised to obtain this
implementation are the subject of the next chapter.

Chapter 6

Translation to Java with Processes

In this chapter we present a strategy for implementing Circus programs in JCSP [99, 98].
The strategy is based on a number of translation laws, which if applied exhaustively,
transform a Circus program into a Java program that uses the JCSP library. We assume
that, before applying the translation strategy presented in this chapter, the specification
of the system we want to implement has been already refined, using the Circus refine-
ment strategy (Chapter 4), to meet the translation strategy’s requirements discussed in
Section 6.2.

First, Section 6.1 presents JCSP and some examples. Section 6.2 presents the strategy
to implement Circus programs using JCSP: the basics of our strategy are presented from
Section 6.2.1 to 6.2.6. In Section 6.2.7 we extend the types of communication considered;
we deal with communication events of the form N.Expression as opposed to inputs and
outputs. The translation strategy for the Circus indexed operator is presented in Sec-
tion 6.2.8. Generic channels are considered in Section 6.2.9 and multi-synchronisation
in Section 6.2.10. Finally, in Section 6.3 we discuss the translation of our case study
presented in Chapter 5. Part of the material in this chapter was published in [73, 76].

6.1 JCSP

Since the facilities for concurrency in Java do not directly correspond with the idea of
processes in CSP and Circus, we use JCSP, a library that provides a model for processes
and channels. This allows us to abstract from basic monitor constructs provided by Java.
In JCSP, a process is a class that implements the following Java interface.

interface CSProcess{ public void run(); }

The method run encodes its behaviour. We present an Example process below.

import jcsp.lang.*; // further imports
class Example implements CSProcess {

// state information, constructors, and auxiliary methods
public void run { /* execution of the process */ } }

After importing the basic JCSP classes and any other relevant classes, we declare Example,

130 6 Translation to Java with Processes

which may have private attributes, constructors, and auxiliary methods. We must also
give the implementation of the method run.

Some JCSP interfaces represent channels: ChannelInput is the type of channels used
to read objects; ChannelOutput is for channels used to write objects; and AltingChannel
is for channels used in choices. Other interfaces are available, but these are the only ones
used in our work.

The class One2OneChannel, which represents a point-to-point channel, is the simplest
implementation of a channel interface provided by JCSP; multiple readers and writers
are not allowed. On the other hand, Any2OneChannel channels allow many writers to
communicate with one reader. For any type of channel, a communication happens between
one writer and one reader only.

Mostly, JCSP channels communicate Java objects. For instance, in order to communi-
cate an object o through a channel c, a writer process may declare c as a ChannelOutput,
and invoke c.write(o); a reader process that declares c as a ChannelInput invokes
c.read(), which returns the communicated Object.

The class Alternative implements the choice operator. Although other types of
choice are available, we use a fair choice. Only AltingChannelInput channels may be
involved in choices. The code below reads from either channel l or r.

AltingChannelInput[] chs = new AltingChannelInput[]{l,r};
final Alternative alt = new Alternative(chs);
chs[alt.select()].read();

The channels l and r are included in an array of channels chs, which is given to the
constructor of the Alternative. The method select waits for one or more channels
to become ready, makes an arbitrary choice between them, and returns an int that
corresponds to the index of the chosen channel in chs. Finally, we read from the channel
located at the chosen position of chs.

Parallel processes are implemented using the class Parallel. Its constructor takes
an array of CSProcesses and returns a CSProcess that is the parallel composition of
its process arguments. A run of a Parallel process terminates when all its component
processes terminate. For instance, the code presented below executes two processes P_1
and P_2 in parallel.

(new Parallel(new CSProcess[]{P_1,P_2})).run();

It creates the array of processes that run in parallel, gives it to the constructor of
Parallel, and finally, runs the parallel composition.

The CSP constructors Skip and Stop are implemented by the classes Skip and Stop.
JCSP includes other facilities beyond those available in CSP; here we concentrate on those
that are relevant for our work. For more details, refer to [98].

6.2 From Circus to JCSP

Our strategy for translating Circus programs considers each paragraph individually, and
in sequence. In Figure 6.1, we present an overview of the translation strategy. First,

6.2 From Circus to JCSP 131

Figure 6.1: Translation Strategy Overview

for a given Program, we use a rule (6.24) that deals with the Z paragraphs and channel
declarations. Each process declaration ProcDecl in the program is transformed into a new
Java class (6.1). The next step (6.2) declares the class attributes, constructor, and its
run method. Basic process definitions are translated (6.3) to the execution of a process
whose private methods correspond to the translation (6.4) of actions of the original Circus
process; the translation of the main Action, which determines the body of the method run,
and of the Action bodies conclude the translation of basic processes (6.5-6.19, 6.25-6.28,
and 6.33-6.36). Compound processes are translated using a separate set of rules (6.20-
6.23, 6.29-6.31, and 6.37) that combines the translations of the basic processes.

Requirements. Only executable Circus programs can be translated: the technique
in [27] can be used to refine specifications. Other restrictions are syntactic and can
be enforced by a (mechanised) pre-processing; they are listed below.

• The Circus program is well-typed and well-formed.

• Paragraphs are grouped in the following order: Z paragraphs, channel declarations,
and process declarations.

• Z paragraphs are axiomatic definitions of the form v : T | v = e, free types, or
abbreviations.

• The only Z paragraphs inside a process declaration are axiomatic definitions of the
above form.

• Variable declarations are of the form x1 : T1; x2 : T2; . . . ; xn : Tn , and names are
not reused.

132 6 Translation to Java with Processes

• There are no nested external choices or nested guards.

• Actions in a parallel composition do not invoke any other action.

• The synchronisation sets in any parallel composition are the intersection of the sets
of channels used by the parallel actions or processes.

• No channel is used by two interleaved actions or processes.

• The types used are already implemented in Java.

• There are no output guards.

• Channels involved in a multi-synchronisation are neither generic nor synchronisation
channels.

Axiomatic definitions can be used to define only constants. All types, abbreviations
and free types, need a corresponding Java implementation. If necessary, the Circus data
refinement technique should be used. Nested external choices and guarded actions can be
eliminated with simple refinement laws.

In a parallel composition, the actions cannot invoke any other action. This restriction
can be easily satisfied by replacing any action invocation by its body with the substitution
of the formal parameters for the arguments used in the invocation.

The JCSP parallel construct does not allow the definition of a synchronisation channel
set. For this reason, the intersection of the alphabets determines this set: if it is not empty,
we have a parallel composition; otherwise, we have actually an interleaving. JCSP does
not have an interleaving construct; when possible we use the parallel construct instead.

Output guards are not implementable in JCSP. Before applying the translation strat-
egy they must be removed applying refinement strategies like that presented in [101] for
multi-synchronisation.

The output of the translation is Java code composed of several class declarations that
can be split into different files and allocated in packages. For each program, we require a
project name proj. The translation generates six packages: proj contains the main class,
which is used to execute the system; proj.axiomaticDefinitions contains the class
that encapsulates the translation of all axiomatic definitions; the processes are declared
in the package proj.processes; proj.typing contains all the classes that implement
types; and proj.util contains all the utility classes used by the generated code. For
example, the class RandomGenerator is used to generate random numbers; it is used in
the implementation of internal choice.

The translation uses a channel environment δ. For each channel c, it maps c to
its type, or to Sync, if c is a synchronisation channel. We consider δ to be available
throughout the translation. In order to simplify the definitions throughout this chapter,
we use a non-standard representation of a channel type. For instance, the generic channel
declared as channel [T]c : T × Z is represented in this environment as the mapping
c 7→ ([T], [T ,Z]). The first list contains the typing variables and the second contains the
types used in the declaration of the channel. Untyped channels are mapped to ([], [Sync]).

6.2 From Circus to JCSP 133

For each process, two environments store information about channels: ν and ι for visi-
ble and hidden channels; both map channel names to an element of ChanUse ::= I | O | A.
The constant I is used for input channels, O for output channels, and A for input channels
that take part in external choices. Synchronisation channels must also be associated to
one of these constants, since every JCSP channel is either an input or an output channel.
If a channel c is regarded as an input channel in a process P , then it must be regarded
as an output channel in any process parallel to P , and vice-versa. A multi-synchronised
channel is regarded as an output channel in only one of the processes that synchronise on
it; it is regarded as an input channel in the other processes.

A type environment is also considered available in the translation: the environment τ
of type seqExpression lists all the types that are used in the Circus program which is being
translated. This list includes all the basic types, free types, abbreviations, and possible
types created for encapsulating multiple inputs and outputs.

The function JType defines the Java type corresponding to each of the used Circus
types; and JExp translates expressions. The definitions of these functions are sim-
ple; for conciseness, we omit them. By way of illustration, the invocation JType(Z) returns
Integer, and the invocation JExp(x > y) returns x.intValue() > y.intValue().

Table 6.1 presents a summary of the environments that are used throughout the
translation strategy. Some of these environments have not already been described; they
will be presented and described as we use them.

This section is organised as follows: the rules of translation of processes declarations
are presented in Section 6.2.1. Section 6.2.2 presents the translation of the body of ba-
sic processes, which is followed by the translation of the CSP actions (Section 6.2.3),
and commands (Section 6.2.4). The translation of compound processes is presented in
Section 6.2.5. Section 6.2.6 presents how to run the program. The sections that fol-
low extend the strategy by providing means to translate synchronisation channels (Sec-
tion 6.2.7), the Circus indexing operator (Section 6.2.8), generic channels (Section 6.2.9),
and multi-synchronised channels (Section 6.2.10). For conciseness, we omit some of the
formal definitions of our translation strategy. They can be found in [71].

6.2.1 Processes Declarations

Each process declaration is translated into a class that implements the JCSP interface
jcsp.lang.CSProcess. For a process P in a project named proj , we declare a class P that
imports the Java utilities package, the basic JCSP package, and all the project packages.

Rule 6.1 [[process P =̂ ParProc]]ProcDeclproj =
package proj.processes;
import java.util.*; import jcsp.lang.*;
import proj.axiomaticDefinitions.*;
import proj.typing.*; import proj.util.*;
public class P implements CSProcess {[[ParProc]]ParProcP }

The function [[]]ProcDecl takes a Circus process declaration and a project name to yield an

134 6 Translation to Java with Processes

Name Description Observations
δ Gives the type of every channel in the system
ν For every visible channel within a process, tells

if the channel is used as an input, output, or
alting channel

Available for each process

ι For every hidden channel within a process, tells
if the channel is used as an input, output, or
alting channel

Available for each process

τ Contains all the types that are used within the
system

λ Gives the types of every local variable and state
component in scope for a given action

Available for each action

ς For every channel within the system, tells if the
channel is used for communication of values or
not

Used only for dealing with
generic channels

ω For every channel involved in a multi-
synchronisation within the system, gives a
function that identifies every process involved
in the synchronisation, the number of processes
that take part in the synchronisation, and the
identity of the process responsible for writing
in the synchronisation

Used only for dealing with
multi-synchronisation

Table 6.1: Environments used in the Translation Strategy

Java class definition; our rule defines this function. The body of the class is determined
by the translation of the paragraphs of P .

As an example, we translate Register , SumClient , and Summation (Figure 2.1 in
Chapter 2); the resulting code is in [71] and the code for Register is in Figure 6.5 (Page 143).
The translation of Register is shown below; we omit package and import declarations.

public class Register implements CSProcess

{[[begin . . . • value := 0; (µX • . . .) end]]ParProcRegister }

The translation of the body of a parametrised process is captured by the rule presented
below.

Rule 6.2 [[D • P]]ParProcN = (ParDecl D) (VisCDecl ν) (HidCDecl ι)
public N (ParArgs D,VisCArgs ν) {

(MAss (ParDecl D) (ParArgs D))
(MAss (VisCDecl ν) (VisCArgs ν))
HidCC ι }

public void run(){ [[P]]Proc }

The process parameters D are declared as attributes: for each x : T , the function ParDecl

6.2 From Circus to JCSP 135

yields a declaration private (JType T) x;. The visible channels are also declared as
attributes: for each channel c, with use t , VisCDecl gives private (TypeChan t) c;,
where TypeChan t gives ChannelInput for t = I , ChannelOutput for t = O , and
AltingChannelInput for t = A. For Register , we have declarations for the channels
in the set RegAlphabet .

private AltingChannelInput store;...; ChannelOutput out;

Hidden channels are also declared as attributes, but they are instantiated within the
class. We declare them as Any2OneChannel, which can be instantiated. The process
Summation hides all the channels in the set RegAlphabet . For this reason, within the
class Summation they are declared to be of type Any2OneChannel.

The constructor receives the process parameters and visible channels as arguments (the
functions ParArgs D and VisCArgs ν generate fresh names). The arguments are used to
initialise the corresponding attributes using the following expression:

MAss (ParDecl D) (ParArgs D)
MAss (VisCDecl ν) (VisCArgs ν)

Furthermore, as explained above, hidden channels are instantiated locally (HidCC ι). In
our example, we have the result below.

public Register (AltingChannelInput newstore, ...)
{ this.store = newstore; ... }

For Summation, we have the instantiation of all channels in the set RegAlphabet . For
instance, this.store = new Any2OneChannel(); instantiates store.

Finally, the method run implements the process body translated by [[]]Proc . In our
example, we have public void run(){[[begin . . . end]]Proc }. For a non-parametrised
process, like Register , we actually do not use Rule 6.2, but a simpler rule. The difference
between the translation of parametrised and non-parametrised processes is only that in a
class that corresponds to a parametrised process, we have extra attributes corresponding
to parameters.

6.2.2 Basic Processes

Each process body is translated by [[]]Proc : Proc 7→ JCode to an execution of an anony-
mous inner class that implements CSProcess. Inner classes are a Java feature that allows
classes to be defined inside classes. The use of inner classes allows compositional transla-
tion even in the presence of nameless processes.

Basic processes are translated as follows.

Rule 6.3 [[begin PPars1 state PSt PPars2 • A]]Proc =
(new CSProcess(){ (StateDecl PSt) ([[PPars1 PPars2]]

PPars)
public void run(){[[A]]Action}}).run();

The inner class declares the state components as attributes (StateDecl PSt). Each action

136 6 Translation to Java with Processes

gives rise to a private method ([[PPars1 PPars2]]
PPars). The body of run is the translation

of the main action A. Our strategy ignores any existing state invariants, since they have
already been considered in the refinement of the process. The invariants are kept in a
Circus program just for documentation purposes.

As an example, we present the translation of the body of Register . For conciseness,
we name its paragraphs PPars, and its main action Main.

(new CSProcess(){ private Integer value; [[PPars]]PPars

public void run() {[[Main]]Action} }).run();

The function [[]]PPars : PPar∗ 7→ JCode translates the paragraphs within a Circus
process, which can either be axiomatic definitions, or (parametrised) actions. The trans-
lation of an axiomatic definition v : T | v = e is the following method

private (JType T) v(){return (JExp e);}

Since the paragraphs of a process p can only be referenced within p, the method is declared
private. We omit the relevant rule, and a few others in the sequel, for conciseness.

Both parametrised actions and non-parametrised actions are translated into private
methods. However, the former requires that the parameters are declared as arguments of
the new method. The reason for the method to be declared private is the same as that
discussed above for the axiomatic definitions.

Rule 6.4 [[N =̂ (D • A) PPars]]PPars =
private void N(ParArgs D){[[A]]Action}[[PPars]]PPars

The function ParArgs declares an argument for each of the process parameters. The body
of the method is defined by the translation of the action body.

For instance, the translation of action RegCycle generates the following Java code.
We use body to denote the body of the action.

[[RegCycle =̂ body]]PPars = private void RegCycle(){[[body]]Action}

The function [[]]Action : Action 7→ JCode translates CSP actions and commands.

6.2.3 CSP Actions

In the translation of each action, the environment λ is used to record state components
and the local variables in scope in the translation of parallel and recursive actions. For
each variable and state component, λ maps its name to its type. As we did for processes,
we have channel environments ν and ι to store information about how each channel is
used.

The translations of Skip and Stop use basic JCSP classes: Skip is translated into
the Java code (new Skip()).run();, and Stop is translated to (new Stop()).run();.
Chaos is translated to an infinite loop while(true){};, which is a valid refinement of
Chaos. For input communications, we declare a new variable whose value is read from the

6.2 From Circus to JCSP 137

channel. A cast is needed, since the type of the objects transmitted through the channels
is Object; we use the channel environment δ to determine the type to which the object
should be cast.

Rule 6.5 [[c?x → Act]]Action = { t x = (t)c.read(); [[Act]]Action}

where t = JType(last (snd (δ c))).

For instance, the communication add?newValue used in the action RegCycle is translated
to Integer newValue = (Integer)add.read();

An output communication is easily translated as follows.

Rule 6.6 [[c!x → Act]]Action = c.write(x); [[Act]]Action

For synchronisation channels, we need to know whether it is regarded as an input or
an output channel; this information is retrieved either from ν or ι.

Rule 6.7 [[c → Act]]Action = c.read();

provided ν c ∈ { I ,A } ∨ ι c ∈ { I ,A } q

Rule 6.8 [[c → Act]]Action = c.write(null);

provided ν c = O ∨ ι c = O q

For example, in the process SumClient , the action reset → Sum(n) is translated to the
Java code reset.write(null);, followed by the translation of Sum(n). Within Register ,
the translation of reset is reset.read();. The difference is because reset is an output
channel for SumClient , and an input channel for Register .

Sequential compositions are translated to Java sequential compositions.

Rule 6.9 [[A1; . . . ; An]]Action = [[A1]]Action; . . . ; [[An]]Action

The translation of external choice uses the corresponding Alternative JCSP class; all
the initial visible channels involved take part.

Rule 6.10 [[A1 2 . . . 2 An]]Action =
Guard[] g = new Guard[]{ICAtt A1, . . . ,ICAtt An};
final Alternative alt = new Alternative(g);
(DeclCs (ExIC A1) 0) . . . (DeclCs (ExIC An) (#(ExIC An−1)))
switch(alt.select()){Cases (ExIC A1) A1 . . . Cases (ExIC An) An}

provided A1, . . ., An are not guarded actions gi & Ai . q

In this chapter, #s stands for the length of the sequence s.
In Figure 6.2 we present the translation of the body of RegCycle. It declares an array

containing all initial visible channels of the choice (1). The function ICAtt returns a
comma-separated list of all initial visible channels of an action; informally, these are the

138 6 Translation to Java with Processes

Guard[] guards = new Guard[]{store,add,result,reset}; (1)
final Alternative alt = new Alternative(guards); (2)
final int C_STORE = 0; ... ; final int C_RESET = 3; (3)
switch(alt.select()) (4)

{ case C_STORE:{ . . . } break; . . . ; case C_RESET:{ . . . } break; } (5)

Figure 6.2: Example of External Choice Translation - Action RegCycle(Page 23)

first channels through which the action is prepared to communicate. The array is used in
the instantiation of the Alternative process (2). Next, an int constant is declared for
each channel (3). The function DeclCs returns a semicolon-separated list of int constant
declarations. The first constant is initialised with 0, and each subsequent constant with
the previous constant incremented by one. Finally, a choice is made, and the chosen
action executed. We use a switch block (4); the body of each case is the translation
of the corresponding action (5); the function Cases takes the initial visible channel as
argument (ExIC).

For guarded actions 2 i • gi & Ai , we have to declare an array g of booleans JExp gi .
We use this array in the selection alt.select(g). Each unguarded action Ai can be
easily refined to true & Ai . If the guards are mutually exclusive, we can apply a different
rule to obtain an if-then-else. This simplifies the generated code, and does not require
the guarded actions to be explored in the translation of the external choice.

The translation of an internal choice chooses a random number between 1 and n. It
uses the static method generateNumber of class RandomGenerator. Finally, it uses a
switch block to choose and run the chosen action.

Rule 6.11 [[A1 u . . . u An]]Action =
switch(RandomGenerator.generateNumber(1,n))

{case 1:{[[A1]]
Action}break; . . . case n:{[[An]]Action}break;}

To translate a parallel composition, we define an inner class for each parallel action,
because the JCSP Parallel constructor takes an array of processes as argument. To
deal with the partition of the variables, we use auxiliary variables to make copies of each
state component and local variable in scope. The body of each branch is translated and
each reference to state components or local variables is replaced with its copy. After the
parallel composition, we merge the values of the variables in each partition. The copies
are initialised in the constructor of each parallel action. Their initial values are given to
the constructor as arguments.

The names of the inner classes are defined in the translation. To avoid clashes, we use
a fresh index ind in the name of inner classes and local variables copies. In the following
rule, LName and RName stand for the names of the classes that implement A1 and A2.
We omit RName, which is similar to LName.

The function DeclLcCopies declares one copy of each state component and local vari-
able in scope; the initial values are taken by the constructor (LcCopiesArgs). In the body

6.2 From Circus to JCSP 139

of the constructor, the function ILcCopies initialises the copies with the corresponding
values received as argument. The body of the method run is the translation of the ac-
tion. The function RenVars is used to replace occurrences of the state components and
variables in scope with their copies.

After the conclusion of the declaration of the inner class LName, we create an object
of LName. A similar approach is taken in the translation of A2 to RName and an
object creation. The next step is to run the parallel composition. Afterwards, a merge
retrieves the final values of the state components and the variables in scope from their
copies (MergeVars).

Rule 6.12 [[A1 |[ns1 | cs | ns2]|A2]]
Action =

class LName implements CSProcess {
(DeclLcCopies λ ind L)
public LName((LcCopiesArg λ)) { ILcCopies λ ind L }
public void run() {

RenVars [[A1]]
Action (ListFirst λ) ind L } }

CSProcess l_ind = new LName(JList (ListFirst λ));
//class RName declaration, process r_ind instantiation
CSProcess[] procs_ind = new CSProcess[]{ l_ind,r_ind };
(new Parallel(procs_ind)).run();
(MergeVars LName ns1 ind L) (MergeVars RName ns2 ind R)

where LName = ParLBranch_ind and RName = ParRBranch_ind

For instance, we present the translation of x := 0 |[{x} | ∅ | {y}]| y := 1 in Figure 6.3.
We consider that the action occurs within a process with one state component x : Z, and
that there is one local variable y : Z in scope.

The class ParLBranch_0 has two attributes: one corresponding to the state component
x (2) and one corresponding to the local variable y (3); their initial values are received in
the constructor (4). The body of the method run (8) replaces all the occurrences of x by
its copy aux_l_x_0. This concludes the declaration of the class ParLBranch_0, which is
followed by the creation of an object l_0 of this class (9). For conciseness, we omit the
declaration of the class related to the right-hand side of the parallel composition (10). Its
declaration, however, is very similar to the left-hand side: the copies of the state compo-
nent x and the local variable y are declared and initialised as in class ParLBranch_0; the
body of method run is the assignment aux_r_y_0 = new Integer(1);. Finally, after
running the parallel composition (11,12), the final value of x is that of its left branch
copy (13), and the final value of y is that of its right branch copy (14).

If we have a Circus action invocation, all we have to do is to translate it to a method
call. If no parameter is given, the method invocation has no parameters. However, if
any parameter is given, we use a Java expression corresponding to each parameter in the
method invocation. In our example, Sum(n) and Sum(n − 1) translate to Sum(n); and
Sum(new Integer(n.intValue()-1));.

We also use inner classes to declare the body of recursions. As for parallel composition,
this requires the use of copies of state components and local variables, which are declared

140 6 Translation to Java with Processes

class ParLBranch_0 implements CSProcess { (1)
public Integer aux_l_x_0; (2)
public Integer aux_l_y_0; (3)
public ParLBranch_0(Integer x, Integer y) { (4)

this.aux_l_x_0 = x; (5)
this.aux_l_y_0 = y; (6)

} (7)
public void run() { aux_l_x_0 = new Integer(0); } } (8)

CSProcess l_0 = new ParLBranch_0(x,y); (9)
* Right-hand side of the parallel composition *\ (10)
CSProcess[] procs_0 = new CSProcess[]{l_0,r_0}; (11)
(new Parallel(procs_0)).run (); (12)
x = ((ParLBranch_0)procs_0[0]).aux_l_x_0; (13)
y = ((ParRBranch_0)procs_0[1]).aux_r_y_0; (14)

Figure 6.3: Example of Parallel Operator Translation

as attributes of the inner class, and initialised in its constructor with the values given as
arguments. The run method of this new inner class executes the body of the recursion,
instantiates a new object of this class, where the recursion occurs, and executes it.

Rule 6.13 [[µX • A(X)]]Action =
class I_ind implements CSProcess {

DeclLcCopies λ ind L
public I_ind(LcCopiesArg λ) { ILcCopies λ ind L }
public void run(){

RenVars [[A(RunRec ind)]]Action (dom λ) ind L } };
(RunRec ind)

The function RunRec instantiates a recursion process, invokes its run method, and finally
retrieves the final values of the state components and local variables in scope. For the
same reason as for the translation of parallel composition, we use a fresh index in the
name of the inner class created for the recursion.

For instance, in Figure 6.4, we present the translation of the main action of process
Register . First, we initialise value with 0 (1). Next, we declare the class I_0, which
implements the recursion. It has a copy of the state component value as its attribute (3),
which is initialised in the constructor (4). The method run calls the method RegCycle (6),
instantiates a new recursion (7), executes it (7), and retrieves the final value of the
local copy of value (8); this concludes the declaration of the recursion class. Next,
we instantiate an object of this class, and execute it (9). Finally, we retrieve the final
value (10).

In order to reuse the previous definitions, the translation of parametrised unnamed
action invocations also makes use of inner classes. Since inner classes cannot access the

6.2 From Circus to JCSP 141

value:=new Integer(0); (1)
class I_0 implements CSProcess { (2)

public Integer aux_l_value_0; (3)
public I_0(Integer value){ this.aux_l_value_0 = value; } (4)
public void run() { (5)

RegCycle(); (6)
I_0 i_0_0 = new I_0(aux_l_value_0); i_0_0.run(); (7)
aux_l_value_0 = i_0_0.aux_l_value_0; } }; (8)

I_0 i_0_0 = new I_0(value); i_0_0.run(); (9)
value = i_0_0.aux_l_value_0; (10)

Figure 6.4: Example of Recursion Translation

attributes corresponding to the state components and local variables in scope, each one of
them have a corresponding copy as an attribute of the new class. The action parameters
are also declared as attributes of the new class; both the attributes corresponding to the
copies of the state components and local variables, and parameters are initialised within
the class constructor with the corresponding values given as arguments. The run method
of the new class executes the parametrised action. However, the references to the local
variables are replaced by references to their copies. Next, the translation creates an object
of the class with the given arguments, and calls its run method. Finally, it restores the
values of the local variables.

The translation of iterated sequential composition is presented below.

Rule 6.14 [[o
9 x1 : T1; . . . ; xn : Tn • Act]]Action =
InstActions pV_ind (x1 : T1; . . . ; xn : Tn) Act ind
for(int i = 0; i < pV_ind.size(); i++)

{ ((CSProcess)pV_ind.elementAt(i)).run(); }

The function InstActions declares an inner class I_ind that implements the action Act
parametrised by the indexing variables. Then, it creates a vector pV_ind of actions using
a nested loop over the possible values of each indexing variable: for each iteration, an
object of I_ind is created using the current values of the indexing variables, and stored
in pV_ind . Finally, each action within pV_ind is executed in sequence.

The translation of iterated internal choice uses the RandomGenerator to choose a value
for each indexing variable. Then, it instantiates an action using the chosen values, and
runs it.

6.2.4 Commands

Single assignments are directly translated to Java assignments.

Rule 6.15 [[x := e]]Action = x = (JExp e);

For multiple assignments, however, we have two cases. Assignments in which no expression

142 6 Translation to Java with Processes

in the right-hand side of the assignment mention any variable in its left-hand side are
implemented simply as a sequence of each single assignment.

Rule 6.16 [[x1, . . . , xn := e1, . . . , en]]Action = x_1=(JExp e1); . . . ; x_n=(JExp en);
provided {x1, . . . , xn} ∩ (FV (e1) ∪ . . . ∪ FV (en)) = ∅ q

Otherwise, we create a copy of every variable involved in the assignment, and use these
copies in the assignment. The types of the copy variables are the same as the original
variables; they are retrieved from the variables environment λ.

Rule 6.17 [[x1, . . . , xn := e1, . . . , en]]Action =
(JType (λ x1)) aux_ind_x_1 = (JExp e1);
. . . ;
(JType (λ xn)) aux_ind_x_n = (JExp en);
x_1=aux_ind_x_1; . . . ; x_n=aux_ind_x_n;

provided {x1, . . . , xn} ∩ (FV (e1) ∪ . . . ∪ FV (en)) 6= ∅ q

Variable declarations only introduce the declared variables in scope.

Rule 6.18 [[var x1 : T1; . . . ;xn : Tn • Act]]Action =
{ (JType T1) x_1; . . . ; (JType Tn) x_n; [[Act]]Action }

Alternations(if fi) are translated to if-then-else blocks; possible nondeterminism
is removed by choosing the first true guard. If none of the guards is true, the action
behaves like Chaos (while(true){}).

Rule 6.19 [[if g1 → A1 2 . . . 2 gn → An fi]]Action =
if(JExp g1){[[A1]]

Action} . . . else if(JExp gn){[[An]]Action}
else { while(true){} }

At this point, we are able to translate basic processes. By way of illustration, Fig-
ure 6.5 presents the complete translation of process Register .

6.2.5 Compound Processes

We now concentrate in the translation of the processes that are defined in terms of other
processes. At this stage, we are actually translating the body of some process (Figure 6.1).
This means we are translating the body of its method run.

For a single process name N , we must instantiate the process N, and then, invoke its
run method. The visible channels of the process are given as arguments to the process
constructor. The function ExtChans returns a list of all channel names in the domain of
the environment ν.

Rule 6.20 [[N]]Proc = (new N(ExtChans ν)).run();

The invocation of unnamed parametrised processes is translated to a new inner class.

6.2 From Circus to JCSP 143

// Package declaration and imports (See Rule 6.1)
public class Register implements CSProcess {
private AltingChannelInput store; private AltingChannelInput add;
private AltingChannelInput result; private AltingChannelInput reset;
private ChannelOutput out;
public Register (AltingChannelInput newstore, AltingChannelInput newadd,

AltingChannelInput newresult,
AltingChannelInput newreset, ChannelOutput newout) {

this.store = newstore; this.add = newadd; this.result = newresult;
this.reset = newreset; this.out = newout; }

public void run(){
(new CSProcess(){
private Integer value;
private void RegCycle(){
Guard[] guards = new Guard[]{store,add,result,reset};
final Alternative alt = new Alternative(guards);
final int C_STORE = 0; final int C_ADD = 1;
final int C_RESULT = 2; final int C_RESET = 3;
switch(alt.select()) {

case C_STORE:
{ { Integer newValue = (Integer)store.read();

value = newValue; } } break;
case C_ADD:
{ { Integer newValue = (Integer)add.read();

value = new Integer(value.intValue() +
newValue.intValue()); } } break;

case C_RESULT:
{ result.read(); out.write(value);
(new Skip()).run(); } break;

case C_RESET:
{ reset.read(); value = new Integer(0); } break; } }

public void run() {
value = new Integer(0);
class I_0 implements CSProcess {

public Integer aux_l_value_0;
public I_0(Integer value) { this.aux_l_value_0 = value; }
public void run () {
RegCycle(); I_0 i_0_0 = new I_0(aux_l_value_0);
i_0_0.run(); aux_l_value_0 = i_0_0.aux_l_value_0; } }

I_0 i_0_0 = new I_0(value); i_0_0.run();
value = i_0_0.aux_l_value_0; } }).run(); } }

Figure 6.5: Translation of Process Register (Figure 2.1, Page 23)

144 6 Translation to Java with Processes

It runs the parametrised process instantiated with the given arguments. The new class
name is also indexed by a fresh ind to avoid clashes.

The sequential composition of processes is also easily translated to the sequential
execution of each process.

Rule 6.21 [[P1; . . . ; Pn]]Proc = [[P1]]
Proc ; . . . ; [[Pn]]Proc

External choice has a similar solution to that presented for actions. The idea is to
create an alternative in which all the initial channels of both processes, that are not
hidden, take part. However, all auxiliary functions used in the previous definitions apply
to actions. All we have to do is use similar functions that take processes into account.

As the internal choice for actions, the internal choice P1 u . . . u Pn for processes
randomly chooses a process, and then executes it. Its definition is very similar to the
corresponding one for actions.

The translation of parallel operator executes a Parallel process. This process exe-
cutes all the processes that are elements of the array given as argument to its constructor
in parallel. In our case, this array has only two elements: each one corresponds to a
process of the parallel composition. Furthermore, the translation of parallel composition
of processes does not have to take into account variable partitions.

Rule 6.22 [[P1 |[cs]| P2]]
Proc =

(new CSProcess(){
public void run(){

new Parallel(
new CSProcess[]{

new CSProcess(){ public void run(){[[P1]]
Proc} },

new CSProcess(){ public void run(){[[P2]]
Proc} }

}).run();
}

}).run();

It is important to notice that, when using JCSP, the intersection of the alphabets deter-
mines the synchronisation channels set. For this reason, cs may be ignored.

The renaming operation P [x1, . . . , xn := y1, . . . , yn] is translated by replacing all the
x_is by the corresponding y_is in the translated Java code of P .

As for actions, the iterated operators are translated using for loops. The same re-
strictions on the type of the indexing variables apply for processes. The first iterated
operator on processes is the sequential composition o

9 . As for actions, we use an auxiliary
function to create a vector of processes, and execute in sequence each process within this
vector. The iterated internal choice chooses a value for each indexing variable, and runs
the process with the randomly chosen values for the indexing variables.

The translation of iterated parallel composition of processes are simpler than that of

6.2 From Circus to JCSP 145

actions, since we do not need to deal with partitions of variables in scope.

Rule 6.23 [[|[cs]| x1 : T1; . . . ; xn : Tn • P]]Proc =
(new CSProcess(){

public void run(){
InstProcs pV_ind (x1 : T1; . . . ; xn : Tn) P ind
CSProcess[] pA_ind = new CSProcess[pV_ind.size()];
for (int i = 0; i < pV_ind.size(); i++)

{ pA_ind[i] = (CSProcess)pV_ind.get(i); }
(new Parallel(pA_ind)).run(); } }).run();

It uses the function InstProcs to instantiate a vector pV_ind containing each of the
processes obtained by considering each possible value of the indexing variables. Then,
it transforms this pV_ind into an array pA_ind , which is given to the constructor of a
Parallel process. Finally, we run the Parallel process.

6.2.6 Running the program

The function [[]]Program summarises our translation strategy. Besides the Circus program,
this function also receives a project name, which is used to declare the package for each new
class. It declares the class that encapsulates all the axiomatic definitions (DeclAxDefCls),
and translates all the declared processes.

Rule 6.24 [[Types AxDefs ChanDecls ProcDecls]]Programproj =
(DeclAxDefCls proj AxDefs) ([[ProcDecls]]ProcDeclsproj)

In order to generate a class with a main method, which can be used to execute a
given process, we use the function [[]]Run . This function is applied to a Circus process
name and a project name. It creates a Java class named Main, which is created in the
package proj . After the package declaration, the class imports the packages java.util,
jcsp.lang, and all the packages within the project. The method main is defined as the
translation of the given process.

For instance, in order to run the process Summation, we have to apply the function
[[]]Run to this process and give the project name sum as argument. This application
results in the following Java code.

package sum;
import jcsp.lang.*;
import summation.typing.*; import summation.processes.*;
import summation.util.*;
public class Main {

public static void main(String args[]) {
(new CSProcess(){

public void run(){ (new Summation()).run(); } }).run();
}

}

The execution of this class executes the process Summation.

146 6 Translation to Java with Processes

6.2.7 Synchronisations

In this section, we extend the types of communications considered in our strategy; we deal
with communication events of the form N.Expression. Our strategy implements synchro-
nisation using arrays of channels. Throughout this section, we illustrate our definitions
using the channel gasDischarged , which is used in Chapter 5 to indicate that gas has been
discharged in a particular area.

channel gasDischarged : AreaId

For example, the synchronisation gasDischarged .0, which represents a gas discharge in
area 0, is implemented as gasDischarged[0], the 0th element in the array gasDischarged .
Basically, each synchronisation .exp is implemented as an additional dimension in an array
of channels. In order to simplify our definitions, we consider that the uses of such channels
first declare possible synchronisation of the form .Exp, and finally possible communications
of the form ?N or !Exp. For the purpose of characterising the kind of communications
contemplated by our strategy, our definitions of Comm and CParameter are altered below.

Comm ::= N .Exp∗ CParameter
CParameter ::= ?N | !Exp | .Exp

Our strategy still constrains the channels to have only one input or output value. Multiple
inputs and outputs must be encapsulated in Java objects.

Another important constraint is that if a channel c is used in a synchronisation of the
form N.Exp, it must be declared as channel c : T , where T is finite. This constraint arises
from the fact that our strategy uses arrays of channels for representing synchronisation
events. In order to determine the dimension of the arrays, we use the maximum and the
minimum values of the type of the channel. In the case of infinite types, we would not be
able to calculate the dimension of the arrays.

A very important change in this extension is the use of a new channel environment
ς: N → SC . It maps each channel used within the system to a value of type SC , which
indicates if the channel is a communication channel (C), or a synchronisation channel
(S). In our example, the channel gasDischarged is mapped to the value S .

The changes in the translation strategy are concerned with the declaration, instanti-
ation, and use of these channels. Therefore, all the previously defined functions that are
used to translate these aspects of the Circus programs must be redefined.

First, the function VisCDecl is changed in order to deal with the possibility of channel
array declarations. Besides the type and the name of the channel, this function, and others
that follow, use an auxiliary function ArrayDimSync in order to check the dimension of
the array of channels that implements the given channel. If this dimension is equal to
zero, the channel is implemented in the same way as previous definitions: a single channel.

The function ArrayDimSync receives two arguments: the type of the channel, types,
and a value sc of type SC indicating if the channel is a synchronisation or a communication
channel.

If the channel is untyped, the list types is a singleton with the element Sync. In this
case, the dimension is zero. However, the dimension for typed channels is as follows. If

6.2 From Circus to JCSP 147

no inputs and outputs are involved in the communications through a channel (S), the
dimension of the array is equal to the size of the types list. Otherwise, if the channel
is a communication channel (C), the last type indicates the type that is communicated,
and therefore, we remove one from the final array dimension. We return as many []’s as
the dimension we calculated for the array. We use the notation (code)n to represent n
repetitions of code; if n ≤ 0, (code)n is the empty string ε.

Definition 6.1

ArrayDimSync types sc = let dim = if (types = [Sync]) then 0
else if (sc = C) then #types − 1
else #types

in []dim

A local definition is used to make the definition more concise: we use the notation
let n = e in p to represent the substitution in p of n by e.

For channel gasDischarged , we have that types = [AreaId], sc = S . The application
of function ArrayDimSync with these arguments returns the string []; in the process
FireControl , the function VisCDecl returns private ChannelInput[] gasDischarged
for the declaration of channel gasDischarged .

As for the used channels, we redefine the function HidCDecl . The definition of the
dimension of possible arrays of channels is the same as for the visible channels. However,
we declare the channels as Any2OneChannel channels, since they are instantiated within
this process. The redefinition of function VisCArgs is very similar to the original one.
However, it also takes into account the existence of possible channel arrays, using the
auxiliary function ArrayDimSync.

If a hidden channel is not declared as an array the channel is instantiated as a
Any2OneChannel channel. Otherwise, we use the auxiliary function InstArraySync to
instantiate the channel as an array of channels.

The function InstArraySync instantiates an array of channels. It receives the types
used in the declaration of the channel, and a value sc of type SC , indicating whether the
channel is used for inputs and outputs or not. If we have only one type in the list of types
used in the channel declaration, we use the function BaseCase to declare either a channel
instantiation (C), or an array of channels creation (S). Otherwise, we instantiate an
array of channels with dimension defined by the function ArrayDimSync. The function
InstArraySync is used in order to instantiate each of the elements in the array.

Definition 6.2

InstArraySync types sc =
let type = (head types), dim = (ArrayDimSync types sc)
in if (#types = 1) then BaseCase type sc

else new Any2OneChannel dim
{ TypeInstSync types sc

(Max (JType(type)))− (Min(JType(type))) + 1 }

Our example falls in the first case: we have that BaseCase AreaId S instantiates this chan-

148 6 Translation to Java with Processes

nel. If the channel is a communication channel (C), the function BaseCase instantiates
a single Any2OneChannel() channel; otherwise (S), it instantiates an array of channels
with the number of elements equal to the number of possible values of the type T given
as argument using the expression below.

Any2OneChannel.create((Max (JType(T)))-(Min(JType(T)))+1)

In JCSP, the static function create creates an array of Any2OneChannels. The functions
Max and Min return the code MAX_T and MIN_T, which represent the maximum and
the minimum values in the Java type T given as argument, respectively. The channel
gasDischarged is instantiated as follows.

this.gasDischarged =
Any2OneChannel.create(MAX_AREA_ID - MIN_AREA_ID + 1);

The function TypeInstSync invokes the function InstArraySync for the other type
expressions used in the channel declaration (tail types) for each element in the current
type (head types). This is done by invoking the function TypeInstSync, giving the number
of elements in the type that is in the head of the list types as argument. The function
tail , as expected, returns the tail of a given list.

Definition 6.3

TypeInstSync types sc 1 = InstArraySync (tail types) sc
TypeInstSync types sc n = InstArraySync (tail types) sc,

TypeInstSync types sc (n − 1)

Most of the translation of actions remains the same; only those that are concerned
with communications and external choice must be extended. For a given input channel
c, the type of communicated value (commType) is given by the Java type of the last
element in the list (last) of types of c. This is the type used to declare an input variable,
if needed. Each synchronisation .i is translated to an access of the i -th element in an
array of channels.

Rule 6.25 [[c .e0em?x → Act]]Act =
let commType = JType(last (snd (δ c)))
in { commType x = (commType)c[JExp e0] . . . [JExp en].read();

[[Act]]Act}

Given a triple (a, b, c), we have that the functions fst , snd , and trd return a, b, and c,
respectively.

An output still writes to the channel. Again, we use the function JExp in order to
access the correct element in the array of channels.

Rule 6.26 [[c .e0em !x → Act]]Act =
c[JExp e0] . . . [JExp en].write(JExp x); [[Act]]Act

Finally, synchronisation channels simply read from a channel or write a null value to

6.2 From Circus to JCSP 149

the corresponding channel.

Rule 6.27 [[c .e0em → Act]]Act = c[JExp e0] . . . [JExp en].read(); [[Act]]Act

provided ν c ∈ { I ,A } ∨ ι c ∈ { I ,A } q

Rule 6.28 [[c .e0em → Act]]Act = c[JExp e0] . . . [JExp en].write(); [[Act]]Act

provided ν c = O ∨ ι c = O q

In the case of external choice, we must redefine some of the auxiliary functions to take
into account the existence of arrays of channels; each channel in an array of channels is
considered as a different visible channel.

The function ICAtt , which is used in the declaration of the array of channels that take
part in the external choice, is redefined in order to take into account possible synchroni-
sation values in the channels. This means that synchronisations of the form c.x0xm

are directly translated to c[(JExp x0)]. . .[(JExp xm)].
The function ExIC , that extracts the initial channels of a given action, returns a list

of pairs. For each initial visible channel of the given action, it includes a new pair in this
list: the first element is the channel (possibly with its synchronisation values) and the
second element is a predicate that represents its guard.

The function DeclCs is used to declare one constant for each channel that takes part
in the external choice. It returns a semicolon-separated list of int constant declarations.
These constants make the resulting code easier to understand. Its definition, however,
takes into account the possible existing arrays of channels. Therefore, for each channel
c.x0xm , we have a new constant declaration as follows.

final int CONST_C_X_0_ . . . X_m = n;

Finally, the redefined function Cases, which returns a sequence of Java case blocks,
one for each initial channel in a given channel list, also returns a different case block for
each element in an array of channel that takes part in the external choice.

As an example, we have the external choice below. For simplicity, we consider that
the channels a and b are declared as channel a, b : {0..1}.

(a.0 → Skip) 2 (a.1 → Skip) 2 (b.0 → Stop) 2 (b.1 → Stop)

First, we declare the array that contains all the visible channels within the action, and an
Alternative on this array. Notice that each element of the channel arrays are considered
as different visible channels.

Guard[] guards = new Guard[]{a[0],a[1],b[0],b[1]};
final Alternative alt = new Alternative(guards);

Then, all the constants that are used in the switch block are declared. They identify

150 6 Translation to Java with Processes

each possible choice that can be made by the select method.

final int CONST_A_0 = 0; final int CONST_A_1 = 1;
final int CONST_B_0 = 2; final int CONST_B_1 = 3;

Finally, we have a switch block. For each value that can be returned by the method
select invocation, we have a case, which reads from the corresponding channel, and
then behaves like the translation of the corresponding action.

switch(alt.select(g)) {
case CONST_A_0:

{ a[0].read(); (new Skip()).run(); } break;
case CONST_A_1:

{ a[1].read(); (new Skip()).run(); } break;
case CONST_B_0:

{ b[0].read(); (new Stop()).run(); } break;
case CONST_B_1:

{ b[1].read(); (new Stop()).run(); } break;
}

This concludes the translation of our example.
With a translation strategy for synchronisation channels of the form c.e we can easily

deal with the Circus indexing operator, as we present in the sequel.

6.2.8 Indexing Operator

An indexed process can be seen as a kind of parametrised process. The difference, how-
ever, is that a syntactic substitution on the channels, as defined in Chapter 3, is made. It
is very important to notice that the creation of the channels environment already takes
into account the indexed processes. So, the channels implicitly created by the indexed
operator are already within the channel environment. For instance, consider the following
channel environment δ =̂ {c 7→ ([], [Z])} that has a channel c of type Z. In the trans-
lation of the process x : T ¯ Proc, we consider that the environment δ is extended to
δ =̂ {c 7→ ([], [Z]), c x 7→ ([], [T ,Z])}.

The renaming in the channels within a given indexed process Decl ¯Proc is reflected
in the way the channels are instantiated, referenced, and used. An indexed process
x1 : T1; . . . ; xn : Tn ¯ Proc is translated as the following parametrised process.

x1 : T1; . . . ; xn : Tn • Proc

However, for every channel c used within the process, we replace every reference to c, by
a reference to c x 1 . . . x n.x1.xn .

Rule 6.29 [[x1 : T1; . . . ; xn : Tn ¯ Proc]]ParProcP =
[[(x1 : T1; . . . ; xn : Tn • Proc)

[c : usedC (Proc) • c x 1 . . . x n.x1.xn]]]ParProcP

The process P [c : used(Proc) • c x 1 . . . x n.x1.xn] is that obtained from P by

6.2 From Circus to JCSP 151

changing all the references to a used channel c by a reference to the channel c x 1 . . . x n,
with synchronisation x1.xn .

An instantiation of an indexed process is translated as an invocation of a parametrised
process. However, the same syntactic substitution as the one present in the rule above is
made before the translation.

Rule 6.30 [[(x1 : T1; . . . ; xn : Tn ¯ Proc)bv1, . . . , vnc]]Proc =
[[((x1 : T1; . . . ; xn : Tn • Proc)

[c : usedC (Proc) • c x 1 . . . x n.x1.xn]) (v1, . . . , vn)]]Proc

Finally, if the instantiation uses the process name, we may translate it as follows.

Rule 6.31 [[N bv1, . . . , vnc]]Proc = [[N (v1, . . . , vn)]]Proc

This concludes the translation of indexed processes; in the next sections we extend our
translation strategy further by allowing generic and multi-synchronised channels.

6.2.9 Generic Channels

In this section, we deal with generic channels. We consider the declaration of the chan-
nel lamp used in our case study, which is used throughout this section to illustrate the
definitions.

channel[T] lamp : T × OnOff

This declaration introduces a family of channels lamp. In this declaration, T is used as a
parameter used to determine the type of the values that are used in the communication
of a value of type OnOff .

Each generic typing variable in a generic channel declaration is implemented as an
additional dimension in an array of channels: each element represents a possible instance
of the channel. By way of illustration, we have the instantiation of the generic channel
lamp[AreaId] from our example, which is implemented as lamp[Type.AREA ID].

The simplification we did for synchronisation channels still holds throughout this
section: we consider communications of the following form.

Comm ::= N [Exp+] .Exp∗ CParameter | N .Exp∗ CParameter

The only difference from the Section 6.2.7 is the possibility of generic channel instantia-
tions.

Our translation strategy assumes that every type used within the system is already
implemented in Java. Besides, the class Type has an integer constant for each type used
within the system. The translation strategy translates references to a type into a reference
to the corresponding constant in class Type.

A generic process declaration is translated as a process parametrised by the types used
in the declaration. For this reason, if we have a generic process P , we consider the type
arguments as arguments of P in its translation, and replace every reference to that type
identifier, by the primitive value of the integer given as argument. Besides, any reference

152 6 Translation to Java with Processes

to the generic type variable is replaced by a reference to the superclass Type. The typing
variables are not defined as types; we assume that the function JType returns the names
given as arguments in these cases.

Rule 6.32 [[process P [T0, . . . ,Tn] =̂ Decl • Proc]]Proc proj =
([[process P =̂ t0 : Z; . . . ; tn : Z; Decl • Proc]]Proc proj)

Type, . . . , Type,
t_0.intValue(),
. . . ,
t_n.intValue()

/

JType T0, . . . , JType Tn ,
Type.(CJType(T0)),
. . .
, Type.(CJType(Tn))]

For a given type T , the function CJType, returns the name of the Java type of T with
all the letters capitalised.

Instead of using the previously defined function ArrayDimSync, the functions VisCDecl ,
HidCDecl , VisCArgs, and the instantiation of hidden channels, use the function ArrayDim
defined below in order to find out the dimension of the possible array of channels.

The function ArrayDim receives three arguments: a list genPars of the generic pa-
rameters of the channel, and the two arguments used by the function ArrayDimSync.

Definition 6.4

ArrayDim genPars types sc =
let dim = #genPars + (ArrayDimSync types sc) in []dim

This function adds the number of generic parameters used in the declaration of a given
channel to the result of ArrayDimSync.

For channel lamp, we have that genPars = [T], types = [T ,OnOff], and sc = C . The
application of function ArrayDim with these arguments returns the string [][]. For this
reason, the function VisCDecl returns the Java code private ChannelOutput[][] lamp.
The array dimension for this channel is two, one for being a single generic channel and
another for being a synchronisation channel.

As in Section 6.2.7, the changes in the translation strategy are concerned with the
declaration, instantiation, and use of the generic channels. Regarding the channel decla-
ration and instantiation, the only difference from Section 6.2.7 is that we replace the use
of the function InstArraySync by the use of the function InstArray , which also instan-
tiates an array of channels. First, it deals with the dimensions related with the generic
parameters, and then it uses the previously defined function InstArraySync, in order to
deal with dimensions that are originated from synchronisation. It receives the generic pa-
rameters (genPars) and the types (types) used in the declaration of the channel, a value
sc of type SC indicating if the channel is a synchronisation or a communication channel,
and a list of all types used within the system (τ).

For each generic parameter, this function instantiates an array of channels with a
dimension determined by the function ArrayDim. This instantiation uses an auxiliary
function GenericInst , which declares an element in the array for each type Tn used

6.2 From Circus to JCSP 153

within the system. Finally, when all the generic parameters have been dealt with, the
function invokes the function InstArraySync, in order to instantiate any further arrays
related to possible synchronisation.

Definition 6.5

InstArray genPars types sc tEnv =
let dim = (ArrayDim genPars types sc)
in if (#genPars > 0) then

new Any2OneChannel dim{
GenericInst genPars types sc tEnv tEnv }

else InstArraySync types sc

For each type T within the system, the function GenericInst invokes the function InstArray
in order to deal with the remaining (if any) generic parameters. However, each element
corresponds to an instantiation of the first generic variable in the list with a certain type
T ; for this reason, we change the channel types by using the function replace in order to
replace every reference to the the first generic parameter in the list (head genPars) by the
type T .

Definition 6.6

GenericInst genPars types sc tEnv [T] =
InstArray (tail genPars) (replace(head genPars,T , types)) sc tEnv

GenericInst genPars types sc tEnv T :: TS =
InstArray (tail genPars) (replace(head genPars,T , types)) sc tEnv,
GenericInst genPars types sc tEnv TS

Our example falls in the first case of function InstArray . As previously discussed, for
this channel, we have genPars = [T], and so #[T] = 1 > 0. As we already know, the
array dimension for this channel is two, so we have the following instantiation for channel
lamp.

this.switchLamp = new Any2OneChannel[][]{
GenericInst [T] [T ,OnOff] C tEnv tEnv };

In the specification of our case study, eight types were used in total, and hence, the appli-
cation of function GenericInst results in the following comma-separated list of invocation
of the function InstArray .

InstArray (tail [T]) [AreaId ,OnOff] C tEnv,
. . . ,
InstArray (tail [T]) [AlarmStage,OnOff] C tEnv

Each of the lines corresponds to a certain type within the system. Notice that the function
replace has replaced the parameter T , in the types list [T ,OnOff] by each corresponding
type. For instance, in the first line, which corresponds to the type AreaId , we have that

154 6 Translation to Java with Processes

the types list given to the function InstArray as argument is [AreaId ,OnOff]. Besides,
we have that tail [T] = []. For this reason, for each of the eight elements above, we have
that the function applications above return the following results.

InstArraySync [AreaId ,OnOff] C
. . .
InstArraySync [AlarmStage,OnOff] C

For example, the result for the first of them is presented below. By applying the definition
of InstArraySync, we see that the dimension of the array is now one. Hence, we have the
following result.

new Any2OneChannel[]{ TypeInstSync [AreaId ,OnOff]C 2}

The function TypeInstSync creates two comma-separated invocations to the function
InstArraySync as follows.

InstArraySync [OnOff]C,InstArraySync [OnOff]C

Again, if we follow the definition of InstArraySync, we get to the base case, which, since
we have a communication channel (C), returns a single channel instantiation.

new Any2OneChannel(),new Any2OneChannel()

This concludes the instantiation of the channel lamp. In Figure 6.6, we present the whole
Java code for the instantiation of this channel. We are left now with the usage of these
channels.

As for synchronisation channels, just a few rules must be redefined. These redefinitions
are straightforward. Basically, we extend the definitions for synchronisation channels, by
taking into account possible generic channel instantiations. For a given input or output
channel c, the type of the communicated value (commType) is given by the Java type of
the last element in the list (last) of types of c. This is the type used to declare the new
variable.

Rule 6.33 [[c [T0, . . . ,Tn].e0em?x → Act]]Act =
let commType = JType(last (snd (δ c)))
in { commType x = (commType)c[Type.(CJType T0)] . . .

[Type.(CJType Tn)]
[JExp e0] . . . [JExp en].read();

[[Act]]Act}

An output still writes to the channel. However, as we have arrays of channels, we
must guarantee we access the correct element in the array.

Rule 6.34 [[c [T0, . . . ,Tn].e0em !x → Act]]Act =
c[Type.(CJType T0)] . . . [Type.(CJType Tn)]
[JExp e0] . . . [JExp en].write(JExp x);

[[Act]]Act

Finally, synchronisation channels simply read from an channel or write a null value to

6.2 From Circus to JCSP 155

this.switchLamp =
new Any2OneChannel[][]{

// Type AreaId
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel()},
// Type ZoneId
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel(),

new Any2OneChannel(), new Any2OneChannel(),
new Any2OneChannel(), new Any2OneChannel()},

// Type LampId
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel(),

new Any2OneChannel(), new Any2OneChannel(),
new Any2OneChannel(), new Any2OneChannel(),
new Any2OneChannel(), new Any2OneChannel(),
new Any2OneChannel() },

// Type FaultId
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel(),

new Any2OneChannel(), new Any2OneChannel(),
new Any2OneChannel(), new Any2OneChannel()},

// Type OnOff
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel()},
// Type Mode
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel(),

new Any2OneChannel() },
// Type SwitchMode
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel()},
// Type AlarmStage
new Any2OneChannel[]{ new Any2OneChannel(), new Any2OneChannel(),

new Any2OneChannel() } };

Figure 6.6: Instantiation of channel lamp

156 6 Translation to Java with Processes

the corresponding channel.

Rule 6.35 [[c [T0, . . . ,Tn].e0em → Act]]Act =
c[Type.(CJType T0)] . . . [Type.(CJType Tn)]
[JExp e0] . . . [JExp en].read();

[[Act]]Act

provided ν c ∈ { I ,A } ∨ ι c ∈ { I ,A } q

Rule 6.36 [[c [T0, . . . ,Tn].e0em → Act]]Act =
c[Type.(CJType T0)] . . . [Type.(CJType Tn)]
[JExp e0] . . . [JExp en].write(null);

[[Act]]Act

provided ν c = O ∨ ι c = O q

As for synchronisation channels, in the case of external choice, we must redefine some
of the auxiliary functions to take into account the existence of arrays of channels; each
channel in an array of channels is considered as a different visible channel. These rede-
finitions are pretty straightforward. For instance, the function ICAtt , which is used in
the declaration of the array of channels that take part in the external choice, takes into
account possible generic channels and synchronisation values in the channels. This means
that channels of the form c.[T0, . . . ,Tn]x0xm are translated to the communication
presented below.

c[Type.(CJType T0)] . . . [Type.(CJType Tn)][JExp x0] . . . [JExp xm]

The function DeclCs is used to declare one constant for each channel that takes part
in the external choice. It returns a semicolon-separated list of int constant declarations,
one for each channel in the given channel list. Its redefinition, however, takes into account
the possible existence of arrays of channels. Therefore, for each channel c in the form
presented above, we have a new constant declaration as follows.

final int CONST_C_(CJType(T0))_ . . . _(CJType(Tn))_X_0_ . . . X_m = n;

Finally, the redefined function Cases, which returns a sequence of Java case blocks, one
for each initial channel in given channel list, returns a different case block for each element
in an array of channels that take part in the external choice.

As discussed before, the types are declared as arguments of a generic process. For
this reason, we must use the constants which represent each of the types used in the
instantiation. These are given as Java Integers, which are constructed using the corre-
sponding constants, to the constructor of the class corresponding to the process that is

6.2 From Circus to JCSP 157

being instantiated.

Rule 6.37 [[N [T0, . . . ,Tn](e0, . . . en)]]Proc =
(new CSProcess(){

public void run() {
(new N(new Integer(Type.(CJType T0)), . . . ,

new Integer(Type.(CJType Tn)),
(JExp e0), . . . (JExp en),
ExtChans ν)).run();

}
}).run();

Besides, for parametrised processes, we have that JExp e is also given to the constructor,
for each parameter e, used to instantiate the process. Finally, as expected, a comma-
separated list of visible channels of the process is also used to instantiate the process.

6.2.10 Multi-synchronisation

In this section, we deal with multi-synchronisation channels. First, we present some Java
components that were implemented by us for use in this translation. Then, we present
the translation rules.

We implement multi-synchronisation using a centralised solution based on the work
presented in [101]: the distribution of a multi-synchronisation is replaced by a process
that controls the multi-synchronisation in a given channel, and by client processes that
potentially synchronise on the channel. Four components were implemented by us us-
ing JCSP and are used here: the first two are the process that represents the multi-
synchronisation controller (MultiSyncControl) and the process that represents the multi-
synchronisation client (MultiSyncClient). Their implementation follows directly from
our extension of the protocol presented in [101]. The controllers are implemented using
a infinite loop. For this reason, their direct use in the implementation of the process will
never reach termination; we use two other components that guarantee that, when the
process terminates, the controllers also terminate. All the controllers within a process
are managed by a process ControllersManager and the process itself is managed by
the process ProcessManagerMultiSync, which uses the channel endManager to signal to
the ControllersManager that the process has terminated. This leads to the controllers
manager stopping the execution of every controller that it is responsible for.

For each channel involved in a multi-synchronisation, we have a controller; each time
a process is willing to engage in a multi-synchronisation, we must instantiate a new client
process and run it. At the end of the execution, possibly communicated values can be
retrieved from the client.

In Figure 6.7, we illustrate an architecture using these components for two channels
involved in a multi-synchronisation and a process whose behaviour is a parallel compo-
sition of four individual processes. In this example, we have one MultiSyncControl for
each channel, and each individual process instantiates its own MultiSyncClient. The
controllers use an array of channels fromSync to communicate with each of their clients.

158 6 Translation to Java with Processes

Figure 6.7: Architecture for the Multi-synchronisation components

The clients share a channel toSync to communicate with their controller. This chan-
nel is not multi-synchronised, since in JCSP communications happen only between two
processes. The three top-most clients synchronise on the channel that is controlled by
the right-hand side controller, and the three bottom clients synchronise in the channel
controlled by the left-hand side controller. Each of the clients have a different identifi-
cation regarding each of the controllers. For instance, the second client from the top is
identified as client zero on the left, and as client one on the right. We extend the work
presented in [101]: clients may take part in more than one multi-synchronisation, in non-
multi-synchronised communications, and values may be carried through channels involved
in a multi-synchronisation. All the controllers are managed by the ControllersManager
and the process itself is managed by the ProcessManagerMultiSync; they communicate
via the channel endManager.

Another environment is considered to be available throughout the translation strat-
egy: the environment ω : N 7→ ((N 7½ Z) × Z × N) includes a triple for every name of
channel involved in a multi-synchronisation. The first element is a function that gives
an identification number for every process involved in the multi-synchronisation. Our
strategy considers that these identifications start from zero, and are incremented by one
for each process. For instance, consider a channel c, in which processes P0, P1, and P2

synchronise. A possible identification function would be {P0 7→ 0,P1 7→ 1,P2 7→ 2}. The
second element in the triple is the number of processes that are involved in the multi-
synchronisation. This can be easily calculated from the cardinality of the domain of the
identification function, but we keep it for conciseness in the definitions. The third ele-

6.2 From Circus to JCSP 159

ment in the triple is the name of the process that is writing to the channel; following a
limitation from JCSP, all other processes are considered readers.

Consider a system with only one channel c used for multi-synchronisation and a
process P whose execution is the parallel composition of three other processes P0, P1,
and P2 (the writer) that synchronise on c. In this case, the environment ω would be
{c 7→ ({P0 7→ 0,P1 7→ 1,P2 7→ 2}, 3,P2)}.

In order to create a MultiSyncControl process that controls the synchronisation of
channel c, the user must give the array of channels from_c, and the channel to_c that
the clients use to communicate with the controller, as arguments. The number of clients
can be easily retrieved from the ω environment (JExp(snd(ω c))).

Any2OneChannel[] from_c = Any2OneChannel.create(3);
Any2OneChannel to_c = new Any2OneChannel();
MultiSyncControl c = new MultiSyncControl(from_c, to_c);

The constructor of a controller manager takes its controllers as an argument; the other
argument that it takes is the channels used to communicate with the process manager,
which must be instantiated.

Any2OneChannel endManager = new Any2OneChannel();
ControllersManager cManager = new ControllersManager(endManager,c);

The process manager receives the communication channel endManager and the process
P it must manage. For conciseness, we omit the arguments needed to instantiate the
process P .

CSProcess p = new P(...);
ProcessManagerMultiSync pManager =

new ProcessManagerMultiSync(endManager,p);

Finally, the execution of the process P is actually implemented as the parallel composition
of the process manager and the controllers manager as presented below.

(new Parallel(new CSProcess[]{cManager,pManager})).run();

The instantiation of the clients requires a little bit more of information. For each
multi-synchronisation c on which the process takes part we must create a synchronisation
object that contains the channel used by this client in the array of channels from_c, the
channel to_c, the identification of the process in this multi-synchronisation (0), and the
identification of the writer in that channel (2). For instance, in the translation of process
P0, we create the following synchronisation object for channel c.

Object[] sync = new Object[]{from_c[0], to_c, 0, 2};

Next, we create a Vector that contains all these multi-synchronisation objects.

Vector sqOfSyn = new Vector(); sqOfSyn.addElement(sync);...

A Vector of channels that are not involved in a multi-synchronisation is also used in the

160 6 Translation to Java with Processes

instantiation of a client.
For instance, consider we have a channel nm, which is not multi-synchronised. We

have the following Java code.

Vector sqOfNSyn = new Vector(); sqOfSyn.addElement(nm);

Finally, we instantiate the client and execute it as follows.

MultiSyncClient client = new MultiSyncClient(sqOfSyn,sqOfNSyn,v);
client.run();

The last argument v is the value communicated through the channel. If this client is the
writer, this is the value that will be communicated to the readers once the synchronisation
happens. If this process is not the writer, we use null instead of v.

Most of the extension for dealing with multi-synchronisation is done simply by replac-
ing code in the Java code generated by the translation strategy presented so far. These
replacements change only those parts of the Java code that are related to the multi-
synchronisation channels. Basically, every reference to a channel involved in a multi-
synchronisation is replaced by a reference to the channels used in the communication
with the multi-synchronisation controller.

Furthermore, the translation of external choice is changed in order to deal with chan-
nels involved in a multi-synchronisation, and the translation of the body of a process
is also changed in order to include the execution of the controllers for the channels in-
volved in a multi-synchronisation that are hidden within that process. All the changes
are discussed later in this section.

The first code substitution deals with the declaration of every hidden channel c in-
volved in a multi-synchronisation within a process. We replace every declaration of
such channel by the declaration of a channel private Any2OneChannel to_c and the
channel array private Any2OneChannel[] from_c used to communicate with the multi-
synchronisation controller.

In a similar way, we also make a substitution of the declarations of visible channels
involved in a multi-synchronisation. However, since the control of reading and writing in
a channel involved in a multi-synchronisation is now left to the synchronisation controller,
we do not make any distinction between input and output channels. The same applies
in the declaration of the class constructors arguments that are related to the channels
involved in a multi-synchronisation.

Next, we replace instantiations of these channels by instantiations of the channels
that make the communications between servers and clients as follows. The environment
ω gives how many processes take part in the multi-synchronisation.

this.from_c = Any2OneChannel.create(JExp(fst(ω c)));
this.to_c = new Any2OneChannel();

The initialisation of visible channels in the constructor is also replaced by the assignment
of both channels related to c: this.from_c = newFrom_c; this.to_c = newTo_c;. We

6.2 From Circus to JCSP 161

consider MSyncDCSubst as the composition of all these substitutions; this function will
be used later in this section.

Every access to a channel involved in a multi-synchronisation must be made in the
ways explained before: each time that a multi-synchronisation is used, we must instantiate
a client and execute it. Given an index ind , the function InstMultiSync returns the
Java code that implements a multi-synchronisation on channel c within a process P .
The index of the right channel within the array from_c is the result of the expression
JExp((fst(ω c))P), which is the Java expression corresponding to the identity of the
process in the synchronisation. The identity of the writer is given as the application of
the function that gives us the processes’ identities to the name of the writer process, thus
JExp((fst(ω c)) (trd(ω c))).

We present below how a multi-synchronisation on c within P0 must be implemented.

Vector sqOfSyn_0 = new Vector();
Object[] sync_0 = new Object[]{from_c[0],to_c,0,2};
sqOfSyn.addElement(sync_0);
MultiSyncClient client_0 =

new MultiSyncClient(sqOfSyn_0, new Vector(),null);
client_0.run();

We replace any channel reading that stores the read value and then, we replace the re-
maining communications. The reading T x=(T)c.read() from every multi-synchronised
channel c, where T is any java type, is replaced by the following: we execute a client,
as the one presented above, and finally, we retrieve the communicated value from the
client T x=(T)client_ind.getValueTrans();. Writing (c.write(x)) to a channel and
reading (c.read()) from a channel (if we do not store the read value) are also replaced
by a client execution. Processes that write a value x are considered to be the channel
writer; therefore, in this case, we also replace the null value used in the instantiation
of the client, by x. The combination of both substitutions is called ChanUseSubst , and
replaces any use of channels involved in multi-synchronisation.

The only rules that need changes are those for parametrised processes and for external
choice. The new translation of external choice is similar to the one presented before. The
only change from Rule 6.10, is that it does not use the Alternative JCSP class, but
a multi-synchronisation client. For every multi-synchronised channel c involved in the
external choice, we create a synchronisation object corresponding to c and insert it the
vector sqOfSync_ind ; the remaining channels are inserted in the vector sqOfNSync_ind .
Finally, as explained before, we create a multi-synchronisation client client_ind and
execute it. At the end of its execution, client_ind has the index of the chosen channel,
and possibly a communicated value. Since there is no output guards, every channel that
takes part in an external choice is not willing to write anything to the channel, hence,
the communicated value used to instantiate the MultiSyncClient is null. Finally, the
translation of switch block remains almost the same: the choice is actually retrieved from
the client using the method getChosen, which returns the index of the chosen channel.

In the previous translation of external choice, after choosing a channel in the switch
block, the first line of the code is the translation of the channel reading. However, in the

162 6 Translation to Java with Processes

case of multi-synchronisation, this is already done by the multi-synchronisation client.
For this reason, the translation of the case bodies related to the channels involved
in a multi-synchronisation are slightly changed: we replace (T)x = (T)c.read() by
(T)x =(T)client_ind.getValueTrans() and remove the remaining readings.

Every channel is instantiated within the process that hides it; otherwise it is received
and initialised in the constructor. For this reason, we chose to instantiate the multi-
synchronisation controller for a given channel in the same class in which c is instantiated.
First, we need to retrieve the information of which multi-synchronisation channels are
hidden within a process. This can be easily defined as the intersection of the hidden
channels of a process (dom ι) and the multi-synchronisation channels (dom ω). We em-
phasise that the environment ι stores information for every hidden channel in a certain
process.

MultiSyncChs =̂ dom ι ∩ domω

For a given process whose MultiSyncChs is {c1, . . . , cn}, we have that the process that
represents the parallel composition of a controller for every channel in MultiSyncChs is de-
fined as MultiSyncControl(from c1, to c1) ‖ . . . ‖ MultiSyncControl(from cn , to cn). We
redefine Rule 6.2 for parametrised processes, by replacing the declarations, constructor
arguments, and initialisation of the multi-synchronised channels accordingly. Further-
more, the run method body has two changes: the references to the multi-synchronised
channels are also changed accordingly and it also deals with the instantiation of the multi-
synchronisation controllers. In the declaration part and in the constructor, we replace the
references to multi-synchronised channels using the substitution MSyncDCSubst ; in the
body of the run method we replace references to the multi-synchronised channels using
the substitution ChanUseSubst .

Rule 6.38 [[D • P]]ParProcN =̂

Subst MSyncDCSubst (domω)

(ParDecl D) (VisCDecl ν) (HidCDecl ι)
public N (ParArgs D,VisCArgs ν) {

(MAss (ParDecl D) (ParArgs D))
(MAss (VisCDecl ν) (VisCArgs ν))
HidCC ι }

public void run(){
final Any2OneChannel endManager = new Any2OneChannel();
Subst ChanUseSubst (domω)

[[ProcessManagerMultiSync(P)

‖ ControllersManager

MultiSyncControl(from c1, to c1)
‖ . . .
‖ MultiSyncControl(from cn , to cn)

]]Proc

}

provided MultiSyncChs 6= ∅ q

The application Subst s cs jc, where jc is a Java code, returns the java code resulting
from applying the substitution s to jc, for every channel c in the set of channels cs.

6.3 Implementing the Fire Control System 163

One last rule that must be changed is the rule that translates process invocations.
This is needed to deal with the fact that we actually have invocations of three very special
processes: MultiSyncControl , ProcessManagerMultiSync, and ControllersManager . These
processes need particular translations: for instance, we do not need to give each of the
external channels to these processes.

In the translation of the first one, the MultiSyncControl , we use only two argu-
ments: the array of channels used by the controller to communicate with the clients,
and the channel used to communicate with the controller.

Rule 6.39 [[MultiSyncControl(from c, to c)]]Proc =
(new MultiSyncControl(from_c,to_c)).run();

The translation of the ProcessManagerMultiSync uses only the process which is going
to be controlled by this component.

Rule 6.40 [[ProcessManagerMultiSync(Proc)]]Proc =
(new ProcessManagerMultiSync(

endManager, new CSProcess(){ public void run(){ [[Proc]]Proc }}
)).run();

Finally, the translation of ControllersManager is very similar to the one presented above
for ProcessManagerMultiSync; the only change is that it instantiates and executes an
object of class ControllersManager, using the same arguments.

This extension of the translation strategy presented in [73] was vital in the implemen-
tation of our case study since multi-synchronisation plays a major role in our system.

6.3 Implementing the Fire Control System

The implementation of the whole system can be found in [71]. After translation, the
classes that implement the processes are located in the package processes. Figure 6.8
presents a UML class diagram of this package after the translation strategy was applied
to our case study. We highlight the core of the system which was presented in this paper,
the process ConcreteFireControl. This process hides multi-synchronisation channels,
and for this reason, it is the one responsible for instantiating the multi-synchronisation
controllers, and their respective managers, for each of these channels. On the other hand,
the process that implements each of the areas in the fire control system (Area), the process
that implements the display controller (DisplayController), and the process that im-
plements the core of the fire control (FireControl) take part in multi-synchronisation,
and hence, instantiate multi-synchronisation clients.

In order to run the whole system, we have created a parallel composition of the
ConcreteFireControl with a process that represents a Clock. The external devices
where also implemented. A Keyboard may be used to input signals to the system. The
Output process encapsulates the Alarm and the Display. The last is composed of a buzzer
and the lamps. There are three different instantiations of the lamps: the FireLamps indi-
cate where a fire has been detected; the GasReleasedLamps indicate where gas has been

164 6 Translation to Java with Processes

Figure 6.8: Fire Control System Class Diagram (processes only)

discharged; and the remaining lamps are implemented within the process SimpleLamps.
All the lamps are instantiations of the generic process GenericLamp. The parallel com-
position of the ConcreteTimedFireControl with the ExternalDevices represents the
whole system, ConcreteMain. The implementation has also included typing classes, util-
ity classes, which are also part of our translation strategy (e.g., RandomGenerator), and
graphic interface classes, which, although not arising from the translation, where imple-
mented in order to allow us to interact with the system.

In Figure 6.9, we present a snapshot of the execution of the process ConcreteMain.
This interface contains the following elements: gas lamps for areas 0 and 1, fire lamps
for zones 0 to 5, one fault lamp for each possible fault within the system, the lamp that
indicates whether the system is on or off, a clock that shows if the clock is counting down,
a keyboard that can be used by the user to simulate inputs to the system, and an alarm
in the form of a progress bar: an empty bar indicates that the alarm is off, a half filled bar
indicates a first stage alarm, and a full filled bar indicates a second stage alarm. Besides,
a sound is also played if the display buzzer is switched on.

In this snapshot, we have that fire has been detected in zones 0, 1, and 2, and that
three faults have been detected: second line fault, power fault, and isolate remote signal.
In this example, the system is running in automatic mode. As specified, the fact that
fire has been detected in two zones in the same area, has started the counting down of
the clock and has set the alarm to its second stage. After the conclusion of the counting
down, the gas is discharged in area 0 and this is indicated in the display by switching the
gas lamp 0 on.

The implementation of the fire control system using the translation strategy yielded
5400 lines of Java code [71]. Unfortunately, no access to the original source code was given;
this would allow us to compare the size and complexity of the source codes. Throughout

6.4 Final Considerations 165

Figure 6.9: Fire Control System Graphic Interface

the translation of the case study, we could verify the correctness of our translation strategy,
and even simplify the definitions of some rules. Furthermore, the translation of the case
study also provided us with a industrial example of application of the strategy.

6.4 Final Considerations

The translation strategy presented in this work extends the one we presented in [73],
by including synchronisation and generic channels, indexing operators, generic processes,
and multi-synchronisation. The strategy has been used to implement several programs,
including a quite complex fire control system developed from its abstract centralised
specification [71], which is also presented here. The application of the translation rules
was straightforward; only human errors, which could be avoided using the prototype
of the translation tool [44] that implements the translation strategy presented in this
chapter, raised problems. The choice of JCSP was motivated by the extent support of
the JCSP implementors. Furthermore, the direct correspondence between many CSP and
Circus constructs is a motivation for extending JCSP to support Circus, instead of creating
another library from scratch.

The strategy presented in this chapter is slightly different from the one we present
in [76]; here, we present the corrections to the problems pointed out by the work done
by Freitas [44]. In [76], we did not have the managers in the implementation of multi-
synchronised channels; this led to a non-terminating behaviour of the controllers. In this

166 6 Translation to Java with Processes

chapter, we introduced the managers in order to stop the execution of the controllers at
the end of the process execution.

Another correction done to the strategy presented in [73, 76] regards the copies of the
state components and local variables in the parallel composition of actions. Previously,
we only had copies for the elements in the partitions used in the declaration of the parallel
composition. Both sides of the composition should have copies of all the state components
and local variables in scope. In Section 6.2, we correct this by creating these copies in
both sides of the parallel composition.

In this chapter, we have considered that the types used in the system are already
implemented in Java. In [44], Freitas presents how this can be achieved for free types,
abbreviations, and integers. Another extension to our strategy presented in [44] is in
the translation of the parallel composition of actions: Freitas allows actions in a parallel
composition to invoke other actions. Furthermore, the translation of nested external
choices and guards is also presented in [44]. Finally, in Section 6.2.10, for simplicity, the
translation of multi-synchronised channels is defined in terms of some substitutions in
the Java code. The design used in [44] allows the direct translation of multi-synchronised
generic channels without the need of any substitutions.

Certainly, code generated by hand could be simpler. For instance, the translation of
compound processes do not always need anonymous inner classes; they are used in the
rules for generalisation purposes. However, our experiments have shown no significant
improvement in performance after simplification.

Throughout the translation we assume that the specification has been refined into a
specification that meets the translation strategy’s requirements. For instance, all opera-
tion schemas and specification constructs have already been refined. Another requirement
is the order of the paragraphs: we assume that, in the Circus program to be implemented,
we have first Z paragraphs, then, channel declarations, and finally, process declarations.
This, however, can be achieved with a simple reordering of the paragraphs. The next
requirement concerns the Z paragraphs used to group channel declarations, and channel
sets. Our strategy requires they have already been expanded. This can also be achieved
with a simple refinement. The only Z paragraphs considered are axiomatic definitions of
the form v : T | v = e, free types, or abbreviations. The considerations of other types of
paragraphs is left as future work.

Due to JCSP limitations, we consider a restricted set of communications: untyped
inputs, outputs, synchronisations, generic channels, synchronisations c.e over a channel
c with expression e, and multi-synchronisations. Strategies to refine out the remaining
forms of communication and output guards are left as future work.

JCSP itself restricts our strategy in the translation of parallel operator. It does not
support the definition of a synchronisation channel set: the intersection of the alphabets
determines the synchronisation channels set.

Not all iterated operators are treated directly. The translation of iterated parallel op-
erator and interleaving of actions requires their expansion. For external choice, expansion
is required for both the action and the process operator, due to the need to determine
their initials.

An important piece of future work is the implementation of a tool to support the

6.4 Final Considerations 167

translation strategy; a prototype of such a tool, which is based on the translation strategy
presented in this thesis can be found in [44]. In order to prove the soundness of such a tool,
the proof of the translation rules presented here would be necessary. In [44], the first step
towards this proof is given: Freitas validates our implementation of multi-synchronisation
by modelling multi-synchronisation and the protocol used in the implementation in Circus
and proving that these models are related by refinement. A complete formalisation of the
strategy, however, is a very complex task, as it involves the semantics of Java and Circus.
We currently rely on the validation of the implementation of our industrial case study [75],
on the implementation of the translator [44], on the fairly direct correspondence of JCSP
and Circus, and on the trust that JCSP is correctly implemented.

168 6 Translation to Java with Processes

Chapter 7

Conclusion

In this chapter we present an overview of the contributions of our work. Furthermore,
related work is also brought into the context of Circus. A comparison of Circus and these
works is provided. Finally, topics for future work are presented.

7.1 Contributions

Recently, researchers have increasingly concentrated their interest in the combination of
different existing programming paradigms, which consider different aspects and stages of
the software development. Hoare & He did one of the most significant works towards
unification [54]. In the Unifying Theories of Programming, they use Tarski’s relational
calculus to give a denotational semantics to constructs from different programming para-
digms. Relations between an initial and a subsequent observation of computer devices are
used to give specifications, designs, and programs their meanings. Observational variables
and associated healthiness conditions characterise theories for imperative, communicat-
ing, or sequential processes and their designs.

Following this trend of research, Circus [103, 27] combines a model-based language,
Z [107], a process algebra, CSP [52], Dijkstra’s language of guarded commands [37],
and specification statements [63]. It differs from other combinations in that it has an
associated refinement theory and calculus.

The Circus semantics presented in [30] did not allow us to prove meta-theorems in
the Circus theory and, as a direct consequence, our refinement laws. For this reason,
in Chapter 3, we provided Circus with a new and definitive denotational semantics. The
approach taken by Cavalcanti and Woodcock [31] was an inspiration for this semantics: we
express the semantics of the vast majority of the Circus constructs as reactive designs. This
uniformity allows us to reuse the results presented in [31]. Together, the work presented
in this thesis and the one presented in [31] provide us with a library of lemmas involving
reactive designs and foster reuse of these results.

Another important difference between our semantics and the one presented in [30] is
the change to the semantics of some of the Circus operators. For instance, as a consequence
of state changes not resolving choice, in our semantics Stop leaves the state loose. Another

170 7 Conclusion

major difference is the state partitions in the parallel composition and interleaving, which
remove the problems intrinsic to shared variables and were suggested in [27]. These
partitions also had a direct consequence in the semantics of the parallel composition and
interleaving of processes.

Besides the healthiness conditions satisfied by reactive processes (R1-R3) and by
CSP processes (CSP1-CSP3), Circus processes were also proved to satisfy three further
healthiness conditions: the first two of them, C1 and C2, have a direct correspondence
with two of the extra CSP healthiness conditions, CSP4 and CSP5. However, C3 is
novel; it guarantees that our reactive designs, as one might expect, do not contain any
dashed variables in the precondition.

In our way towards a theorem prover for Circus, we first gave a set-based model to
relations. In order to make the results reusable in the case of a language extension,
we have chosen to represent the syntax as functions instead of data types. Based on the
theory of relations, we developed four theories: designs, reactive processes, CSP processes,
and Circus processes. Furthermore, theories that include the declaration and theorems
involving the UTP observational variables okay , tr , wait , and ref were also created and
included accordingly in the theories hierarchy, which follows directly from the UTP. With
the theory hierarchy we have made the results as general as possible; they can be reused by
any other work that has the UTP as its theoretical basis, like, for instance, TCOZ (Timed
Communicating Object-Z) [60].

By mechanising the UTP in a theorem prover, we were able to take into account as-
pects of the UTP that are many times left implicit. The obligation to deal with alphabets
makes our work reveal more details on how the alphabets are handled within the UTP.
An example is the different use of the existential quantification in different definitions: for
variables blocks, it removes the quantified variable from the alphabet, while in the CSP
SKIP , it does not. Differences were also found in alphabet extension: our model required
an alphabet extension which left the value of the new variables unconstrained; in the
UTP’s alphabet extension, its value cannot change. Finally, some of the healthiness con-
ditions (e.g, R) were found to be partial functions, and not total functions as we might
expect.

As far as we know, the mechanisation of the Circus semantics in ProofPower-Z makes
Circus the first specification language of concurrent reactive systems that has a mechanised
semantics. Based on this result, we intend to mechanise the proof of the refinement laws,
providing academia and industry with a mechanised refinement calculus that can be used
in the formal development of state-rich reactive programs.

In the UTP, which is the theoretical basis for Circus, the notion of refinement is very
important. Circus adopts for its most basic notion of refinement, action refinement, the
UTP definition of refinement: an implementation P satisfies a specification S if, and only
if, [P ⇒ S]. Circus processes encapsulate state; hence process refinement is defined in
terms of action refinement of the main actions, with the state components taken as local
variables. The standard simulation techniques used in Z are adapted to handle processes
and data refinement. However, they are slightly different, since actions are total and state
initialisation must be explicitly included in the main action: no applicability requirement
concerning preconditions exists, and no condition is imposed on the initialisation.

7.1 Contributions 171

Laws of simulation, and action and process refinements are the basis of the refinement
strategy presented in Chapter 4. In this thesis, further laws of simulation and refinement,
than those presented in [27], which were needed during the development of the case study
presented in Chapter 5, are presented. Furthermore, we present the corrections for some
of the laws proposed in [27]; one of the laws proposed in that work was also found to be
invalid.

In this thesis, we also prove the correctness of the vast majority of the refinement
laws used in our case study. In Chapter 4, we illustrate these proofs and point out the
interesting aspects. Some of these proofs were done in terms of other refinement laws.
Although not strictly needed, these derived refinement laws provide shortcuts for the users
of our method, shortening the development of programs.

Our case study on Circus, a safety-critical fire control system, is described in Chapter 5.
So far, this is the largest case study on the refinement of Circus programs. We have used
this case study to verify the usefulness and soundness of the refinement laws discussed
in Chapter 4. Using our set of laws, we were able to refine the abstract and centralised
specification of the system into a concrete and distributed specification. Furthermore, the
case study was also used to analyse the expressiveness of the language. We believe that
the use of the refinement strategy in the development of this industrial case study, and
in some others [27, 101], provides empirical evidence that the strategy is indeed scalable.

Chapter 6 presented a translation strategy, which makes possible the Java implemen-
tation of Circus programs. This strategy extends the one published in [73] by including
synchronisation and generic channels, indexing operators, generic processes, and multi-
synchronisation. It also differs slightly from the one presented in [76]; we present the
corrections to the problems pointed out by the work done by Freitas [44]. The main
corrections were the introduction of the managers in order to stop the execution of the
controllers at the end of the process execution, and the creation of copies of the state
components and local variables in both sides of the parallel composition.

In spite of the restrictions on the Circus programs discussed in Chapter 6, this transla-
tion strategy is already an important tool in the implementation of Circus programs, and
has been used to implement our case study. Further, it has been used as guideline for a
mechanisation of a translation tool presented in [44]. In that work, Freitas also extends
our translation strategy by presenting the translation rules for free types, abbreviations,
nested external choices and guards, multi-synchronised generic channels, and by allowing
actions in a parallel composition to invoke other actions. This tool would have avoided
some of the human errors that occurred during the translation of our case study. Hand
generated code would be quite simpler; however, some experiments were done and pre-
sented almost no performance improvement. More experiments are needed; they become
feasible with the availability of the tool.

In summary, this thesis extends and formalises the Circus refinement calculus that
allows us to develop safety-critical systems following the calculational style of Back [8],
Morris [65], and Morgan [63]. Furthermore, it provides a translation strategy from Circus
to a practical programming language. Together, the refinement calculus and the transla-
tion strategy, provide a framework to derive state-rich reactive systems from an abstract
specification.

172 7 Conclusion

7.2 Related Work

Some other works have already presented the integration of Z or one of its extensions
with a process algebra. The main objective of Circus is not to be another language like
those, but to provide support for the formal development of concurrent programs in a
calculational style.

Fischer [40] presents a survey of several integrations of Z with process algebras. Com-
binations of Z with CCS [46, 93], Z with CSP [82], and Object-Z with CSP [39] are
considered in this survey, which also discusses issues involved in the integration of Z with
a process algebra. All the approaches above are analysed with respect to these issues.

In [47], Galloway and Stoddart investigate a dialect of value-passing CCS which em-
ploys Z as its value calculus. They present a syntactic definition, an example, and finally
an operational semantics for the combination. However, using CCS-Z, they are not able
to employ the component language CCS in a natural and intuitive way: the syntax of
CCS agents are quite complex. For instance, using CCS-Z, we are not able to invoke Z
operations simply by name, in a CCS agent, as we do in Circus. Besides, no refinement
theory was investigated in this combination.

In [82], Woodcock et al. give an informal translation from Z to CSP by separating
input and output communications. The application of a Z operation is modelled by two
CSP events. Fischer generalises this result in his work with CSP-OZ [39], a combination of
Object-Z and CSP. CSP-OZ extends Object-Z with the notion of communication channels
and CSP syntax. A CSP-OZ specification is composed mostly of class definitions that
model processes. They contain an interface (channels definitions), Z schemas that describe
the internal state and its initialisation, and CSP processes that model the behaviour of
the class. For each channel, an enable schema specifies when communication is possible,
and an effect schema specifies the state changes caused by the communication.

Fischer provides a failures-divergences semantics for classes with empty CSP parts [39].
Then, the combination of the CSP and Z parts can be simply done by a parallel com-
position of two classes; one of them contains the interface and the CSP part, and the
other one contains the interface and the Z part. This approach reuses existing theories
and inherits a lot of theorems. For instance, the monotonicity of the parallel operator
allows separate (failures-divergences) refinement of the CSP and Z parts. In a different
way, Smith [87] gives failures-divergences semantics to Object-Z classes, but uses these
classes as processes in the CSP part. Furthermore, state-based refinement relations for
use on the Object-Z components within an integrated specification have been presented
in [89]; these relations, however, do not allow the structure of the specification to be
changed in a refinement. In [35], the authors provide such relations, which allow devel-
opers to refine the very structure of specifications. Refinement in a calculational style,
however, is not considered in any of these works.

TCOZ [60, 61] takes one step further in the combination of CSP and Object-Z: it
includes timing primitives by using the timed derivative of CSP [34]. Furthermore, dif-
ferently from [39] and [87], where operation names take on the role of CSP channels with
input and output parameters being passed down the operation channel as values, TCOZ
models operations as terminating processes: it accepts a number of inputs, performs a

7.2 Related Work 173

calculation, performs a number of outputs, and terminates. This approach, which is
similar to the Circus approach, makes it feasible to specify the temporal properties of
this calculation when describing the operation, in contrast with [39] and [87], where the
atomicity of operations collapses the temporal aspects of operations. The semantics of
TCOZ presented in [79], where the authors also present some algebraic laws, blends both
timed CSP and Object-Z in a single semantic model based on the UTP framework, as
we do in Circus. Nevertheless, by using Object-Z, instead of Z, TCOZ compromises a
compositional approach to refinement. This is due to Object-Z’s reference semantics [88].

Another combination of CSP and Object-Z with real-time constraints is CSP-OZ-
DC [55]. Instead of using timed CSP to describe time constraints, as in TCOZ, Hoenicke
and Olderog combine Fischer’s CSP-OZ with the duration calculus [109], a logic and
calculus for specifying real-time systems. The semantics of each CSP-OZ-DC class is
given as a timed process; however, only classes with a divergence-free CSP-OZ part are
considered. In CSP-OZ-DC, process refinement, data refinement, and time constraint
refinement of a system imply the refinement of the whole. A limited reuse of tools like
FDR and UPPAAL [13], a model-checker for real-time systems is also possible.

The use of a CSP controller to drive a B machine is the subject of research in
CSP ‖ B [95, 96, 85], where the semantic combination of CSP and B preserves the original
semantics of both languages; each description can be analysed separately using the tool
support currently available. The style of CSP ‖ B is akin to Fischer’s [39], where each
event maps to one operation. In [95], the authors present a method to prove the consis-
tency (in their context, divergence freedom) between a CSP controller and a B machine.
They extend these results in [96], where they present a method to ensure deadlock-freedom
of these combinations. This result is proved to be compositional in [85], where the authors
add assertions and guards in order to prove deadlock and divergence freedom of many
controllers and machines, by separately proving that each of the controller-machine pair
is divergence free, and that the composition of the controllers (without the machines) is
deadlock free. Refinement of controllers and machines can be proved correct using FDR
and the B-Toolkit, respectively. However, restrictions on the architecture of CSP con-
trollers and B machines must be enforced in order to make the use of these tools feasible
and valid.

Butler and Waldén present an embedding of action systems in the B-method in [20, 18],
where they also compare the refinement notions of action systems and B, and suggest ex-
tensions to the refinement machines and the proof obligations generated from them for
refinement with internal actions (actions that do not affect the global variables of the B
machine). Parallel composition of two action systems is introduced as the combination
of the disjoint sets of variables and actions. However, without the suggested extensions,
the need for extra operations and machines may lead to very complex extra proof condi-
tions. Butler has used these results as an inspiration for csp2b [19], a tool that translates
CSP processes into B machines; this translation is justified by an operational semantics.
Only a subset of CSP that includes prefix, external choice, and parallel composition and
interleaving at the outermost level, is considered.

Abrial presents B# [4], which brings together the notions of refinement, proof, and
tools from B, the notion of events from action systems [10], and the notion of generic

174 7 Conclusion

extension from Z. From B, it also inherits a subset of the mathematical toolkit. The very
basic component in a B# system specification is that of a model, which describes a state
transition system. States are composed of variables and an invariant, and transitions
are events in the form of guarded before-after predicates; there is no conditional action,
no explicit choice action, no sequential action, no loop action, and so on. Furthermore,
neither a refinement calculus, nor a tool support for it, are available for B#.

In [92], Stoddart uses Z as the basis of an event calculus for communicating state
machines, in which communication is modelled by means of shared events that cause a
simultaneous change of state in two or more processes. As in Circus, machines have their
own private data state, which can only be seen by other machines via communication.
Although data refinement can be done using standard Z techniques, the refinement of the
concurrent aspects does not seem trivial.

Using RSL [50], the RAISE [97] Specification Language, one is also able to describe
both data and behavioural aspects of systems. In this language, parallel composition
describes communications that may happen, while interlocking describes communications
that must happen. External and internal choice, as well as hiding and renaming are
also available. Refinement is done using an invent-and-verify method as opposed to a
refinement calculus.

The work with action systems is closely related to Circus. In an action system, sys-
tems are described as a state and a set of guarded commands. Its behaviour is given by
a simple interpreter for the program that repeatedly selects an enabled action and exe-
cutes it. Parallel composition is modelled as the sequential interleaving of atomic steps.
Concurrency with shared variables is modelled by partitioning the variables amongst dif-
ferent processes; a model for distributed systems is obtained by partitioning the variables
amongst the processes.

The combination of the refinement calculus and action system in the derivation of
parallel and distributed algorithms is described in [11]: from a purely sequential algorithm,
a stepwise refinement is accomplished until an efficient parallel program is derived. Most
steps involve sequential refinements; parallel composition is introduced only through the
decomposition of atomic actions.

The very basic nature of the action systems formalism in comparison with process
algebra is the main difference between action systems and Circus. Action systems have
a flat structure, where auxiliary variables simulating program counters are needed to
guarantee the proper sequencing of actions. This is due to the simple control flow of
action systems: select an enable guard, execute it, repeat. In Circus, a richer control flow
is provided using CSP operators.

The study of refinement for combinations of Object-Z and CSP has already been
undertaken in [90]. Nevertheless, a calculational approach like that of Circus has not been
adopted. Stepwise refinement for action system has been presented in [11]. However,
most of the refinement steps are sequential refinements; in order to introduce parallel
composition, one must decompose atomic actions.

Circus adopts the semantic approach to combination: as previously discussed, the UTP
is used as the model for Circus. The semantic approach adopted by Circus, provides a
deep integration of the notations. However, with this approach, the semantics of both

7.2 Related Work 175

the Z and CSP operators must be redefined. Fortunately, this is not a major problem
for us because we are using an existing semantic model: UTP. Compared to the other
combinations presented above, the novelty in Circus is the support for refinement of state-
rich reactive systems in a calculational style as that presented in [63]. Furthermore,
some extensions have already been proposed for Circus: a time model for Circus has been
presented by Sherif and He in [86]; mobile Circus processes have been considered in [94];
object-oriented Circus is discussed in [24]; and a synchronous Circus is currently under
investigation.

In [67], the alphabetised relational calculus is formalised in Z/EVES. We extend [67]
by including many other operations, such as sequencing, skip, assignment, and nonde-
terminism. Furthermore, refinement, the complete lattice of relations, and recursion, are
part of our work [77].

Besides the work presented in [27], and further case studies, the design rules presented
in [69] were another source of inspiration for Circus refinement laws. In this work, stepwise
development of correct programs is supported by a design calculus for occam-like [58]
communicating programs. Specifications are given in terms of assertions. Both program
and specifications semantics are uniformly presented in a predicative style similar to that
adopted in the UTP.

Lai and Sanders have considered occam in [59], where they present a refinement cal-
culus for communicating processes with states. In their work, they extend an occam-like
language with a specification statement in the style of [63]. However, no data refinement
method is proposed, and the operators used are limited. Another difference from our
work is that they represent deadlock as a special state >, whereas in our model, deadlock
is represented as a state in which wait ′ is true.

A refinement calculus for Abstract State Machines is presented in [78] using a style
similar to the classical approaches [9, 63] and gives support for the development of ASM
specifications. Although possible, the extension of this work in order to deal with com-
munications is left as future work.

In [41], Fischer formalises a translation from CSP-OZ to annotations of Java pro-
grams. In the translation, enable and effect schemas become preconditions and post-
conditions; the CSP part becomes trace assertions, which specify the allowed sequences
of method calls; finally, state invariants become class invariants. The result is not an
implementation of a CSP-OZ class, but annotations that support the verification of a
given implementation. The treatment of class composition is left as future work. Dif-
ferently, our work supports the translation from Circus specifications, possibly describing
the interaction between many processes, to correct Java code.

The translation from a subset of CSP-OZ to Java is also considered in [25], where a
language called COZJava, which includes CSP-OZ and Java, is used. A CSP-OZ specifi-
cation is first translated to a description of the structure of the final Java program, which
still contains the original CSP processes and Z schemas; these are translated afterwards.
The library that they use to implement processes is called CTJ [51], which is in many
ways similar to JCSP. The architecture of the resulting Java program is determined by
the architecture of CSP-OZ specifications, which keep communications and state update
separate. As a consequence, the code is usually inefficient and complicated; this difficulty

176 7 Conclusion

has motivated the design of Circus.
In Circus, communications are not attached to state changes, but are freely mixed as

exemplified by the action RegCycle of process Register . As a consequence, the reuse of
Z and CSP tools is not straightforward. On the other hand, Circus specifications can be
refined to code that follow the usual style of programming in languages like occam, or
JCSP, and are more efficient.

7.3 Future Work

The work presented in this thesis has provided a means for the formal development of
Circus specifications into implementable code. However, research on the Circus refinement
calculus is far from over; a long and rather interesting agenda of research can be envisaged.

The refinement strategy and its laws presented in Chapter 4 are not in the context
of the extensions of Circus. Refinement calculi for Circus time [86], travelling Circus [94],
OhCircus [24], and synchronous Circus still need to be devised. Furthermore, confidential-
ity aspects of Circus is another interesting topic of research.

In Chapter 4, retrieve relations are required to relate every concrete state to some
abstract state. Furthermore, the distribution of simulation through a generic external
choice required the retrieve relation to be a function from the concrete to the abstract
state. In the future, we intend to investigate the completeness of data refinement in
Circus.

In the calculational approach adopted in this thesis, the repeated application of refine-
ment laws to an abstract specification produces a concrete specification that implements
it correctly. However, this may be a hard task, since developments may prove to be
long and repetitive. Some development strategies may be captured as sequences of rule
applications, and used in different developments, or even several times within a single
development. Identifying these strategies, documenting them as refinement tactics in the
style of [74], and using them as single transformation rules brings a profit in time and
effort. Also, a notation for describing derivations can be used for modifying and analysing
formal derivations.

The case studies that have been carried out on the Circus refinement calculus give
us confidence that the set of laws that are presented in this thesis is appropriate for
useful applications. We are aware, however, that the results presented in this thesis are
not complete. Nevertheless, in this work, we are concerned with the practicability of
refinement, rather than its completeness. In the future, we plan to provide an algebraic
semantics for Circus, define a normal form, and establish that we have a set of laws that
is enough to reduce any terminating Circus program to its normal form; this will provide
us with a notion of completeness. Furthermore, an investigation on the advantages and
consequences on the validity of the laws of refinement for Circus specifications that mention
the UTP variables is an interesting piece of research that is left as future work.

In Chapter 3, our discussion on alternative models for relations concludes that our re-
striction on the bindings results in simpler definitions, and hence proofs. This conclusion,
however, is based on our experience with ProofPower-Z; some of the alternative mod-

7.3 Future Work 177

els could make proofs easier in another theorem prover. An investigation of alternative
theorem provers is a topic for future research.

A natural next step for the mechanisation of the Circus semantics is the mechanical
proof of the refinement laws proposed in this thesis. This mechanisation is on our agenda
of research and will provide Circus with a mechanised refinement calculus (and a theorem
prover) that can be used in the formal development of state-rich reactive programs.

Some of the hand proofs of the Circus refinement laws expand the definition of sequen-
tial composition. The mechanical proof of a number of laws for sequential composition
will make it possible to avoid these expansions in the mechanisation of the proofs of the
refinement laws; it is an important piece of future work.

In the translation strategy presented in Chapter 6 some points still need to be ad-
dressed. The first one concerns the translation of iterated parallel composition and inter-
leaving of actions. In the work presented here, we demand the previous extension of such
operators before the translation strategy is applied. In order to remove this requirement,
we intend to find a way to generalise the solution provided for the simple parallel compo-
sition of actions. We also left the investigation into the translation of nested parametrised
and indexing processes as future work.

Some of the requirements made concerning the Circus programs could be satisfied
simply by applying some refinement strategies to the Circus programs. Some of these are: a
refinement strategy to deal with the restriction on the synchronisation set of channels for
parallel composition and interleaving described in Chapter 6 and a refinement strategy
for removing output guards.

In Chapter 6, axiomatic definitions of a particular format, free types and abbreviations
are considered. Other formats of Z paragraphs still need to be taken into consideration.

In [44], Freitas presents the implementation of a tool that supports our translation
strategy; furthermore, she gives the first step towards the validation of the translation
strategy by validating our implementation of multi-synchronisation. The complete for-
malisation of the strategy is a complex task that involves the semantics of Java and Circus
and is left as future work.

In [45], the author presents the formalisation and implementation of a model-checker
for Circus; its theoretical basis is the operational semantics for Circus presented in [106].
A very interesting piece of future work is to prove the correspondence between our de-
notational semantics and this operational semantics using the method presented in [54].
Furthermore, the integration of the Circus model-checker and our theorem prover pre-
sented in Chapter 3, is an adventurous piece of future work. We believe, that together,
these tools provide a very powerful framework for formal development of concurrent reac-
tive systems, and for the use of Circus refinement calculus in both industry and academia.

178 7 Conclusion

Appendix A

Syntax of Circus.

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp
CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp

ProcDecl ::= process N =̂ ProcDef | process N[N+] =̂ ProcDef
ProcDef ::= Decl • ProcDef | Decl¯ ProcDef | Proc
Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end

| Proc; Proc | Proc 2 Proc | Proc u Proc
| Proc |[CSExp]| Proc | Proc ||| Proc | Proc \ CSExp
| (Decl • ProcDef)(Exp+) | N(Exp+) | N
| (Decl¯ ProcDef)bExp+c | NbExp+c | Proc[N+ := N+] | N[Exp+]
| o

9 Decl • Proc | 2Decl • Proc | uDecl • Proc
| |[CSExp]| Decl • Proc | |||Decl • Proc

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp
| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | nameset N == NSExp

ParAction ::= Action | Decl • ParAction

Action ::= SchemaExp | Command | N | CSPAction | Action [N+ := N+]
CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action; Action | Action 2 Action | Action u Action
| Action |[NSExp | CSExp | NSExp]| Action
| Action ||[NSExp | NSExp]|| Action
| Action \ CSExp | ParAction(Exp+) | µ N • Action
| o

9 Decl • Action | 2Decl • Action | uDecl • Action
| |[CSExp]| Decl • |[NSExp]| Action | |||Decl •||[NSExp]|| Action

Comm ::= N CParameter∗ | N [Exp+] CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp

180 A Syntax of Circus.

Command ::= N+ := Exp+ | if GActions fi | var Decl • Action
| N+ : [Pred,Pred] | {Pred} | [Pred]
| val Decl • Action | res Decl • Action | vres Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

Appendix B

Semantics of Circus

B.1 Circus Actions

B.1.1 CSP Actions

Definition B.1

IIrea =̂ (¬ okay ∧ tr ≤ tr ′)
∨ (okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ = v)

Definition B.2 Stop =̂ R(true ` tr ′ = tr ∧ wait ′)

Definition B.3 Skip =̂ R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)

Definition B.4 Chaos =̂ R(false ` true)

Definition B.5 A1; A2 =̂ A1;R A2

Definition B.6 g & A =̂ R((g ⇒ ¬ Af
f) ` ((g ∧ At

f) ∨ (¬ g ∧ tr ′ = tr ∧ wait ′)))

Definition B.7

A1 2 A2 =̂ R((¬ A1
f
f ∧ ¬ A2

f
f) ` ((A1

t
f ∧ A2

t
f) C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f)))

Definition B.8 A1 u A2 =̂ A1 ∨ A2

Definition B.9 doC (c, v) =̂ tr ′ = tr ∧ (c, v) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, v)〉

Definition B.10 c → Skip =̂ R(true ` doC (c,Sync) ∧ v ′ = v)

Definition B.11 c.e → Skip =̂ R(true ` doC (c, e) ∧ v ′ = v)

182 B Semantics of Circus

Definition B.12 c!e → Skip =̂ c.e → Skip

Definition B.13 For any non-input communication c, c → A =̂ (c → Skip); A

Definition B.14

doI (c, x ,P) =̂ tr ′ = tr ∧ {v : δ(c) | P • (c, v)} ∩ ref ′ = ∅
Cwait ′B
tr ′ − tr ∈ {v : δ(c) | P • 〈(c, v)〉} ∧ x ′ = snd(last(tr ′))

Definition B.15 c?x : P → A(x) =̂ var x • R(true ` doI (c, x ,P) ∧ v ′ = v); A(x)

Definition B.16 c?x → A =̂ c?x : true → A

Definition B.17 Multiple data transfer prefix (channels of finite type)

c cio → AVars(cio) =̂{
c cio → AVars(cio) provided ? is not in cio
2Decls(cio) • c Flatten(cio, ε) → A(Vars(cio)) otherwise

Decls(cio) =̂ Sep(Inputs(cio, 〈〉), ;)

Vars(〈〉) =̂ ε
Vars(cio) =̂ (Sep(Names(Inputs(cio, 〈〉), ,)))

Sep(〈〉, symbol) =̂ 〈〉
Sep(d1 : 〈d2〉, symbol) =̂ d1 symbol d2

Sep(d1 : ds, symbol) =̂ d1 symbol (SC (ds))

Inputs(ε, ds) =̂ ds
Inputs(.e cio, ds) =̂ Inputs(cio, ds)
Inputs(!e cio, ds) =̂ Inputs(cio, ds)
Inputs(?x cio, ds) =̂ Inputs(cio, ds a 〈x : {x | true}〉)
Inputs(?x : P cio, ds) =̂ Inputs(cio, ds a 〈x : {x | P}〉)
Names(〈〉,ns) =̂ ns
Names(x : ds,ns) =̂ (ds,ns a 〈x 〉)
Names((x : P) : ds,ns) =̂ (ds,ns a 〈x 〉)
Flatten(ε, rs) =̂ rs
Flatten(.e cio, rs) =̂ Flatten(cio, e.Flatten(rs))
Flatten(!e cio, rs) =̂ Flatten(cio, e.Flatten(rs))
Flatten(?x cio, rs) =̂ Flatten(cio, x .Flatten(rs))
Flatten(?x : P cio, rs) =̂ Flatten(cio, x .Flatten(rs))

B.1 Circus Actions 183

Definition B.18

A1 |[ns1 | cs | ns2]|A2 =̂

R

¬ ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr) ∧ (A2f ; 2.tr ′ = tr)

∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs
∧ ¬ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr) ∧ (A2

f
f ; 2.tr ′ = tr)

∧ 1.tr ′ ¹ cs = 2.tr ′ ¹ cs
`
((A1

t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M‖cs

U 1(v ′1, . . . , v ′n) =̂ 1.v ′1 = v1 ∧ . . . ∧ 1.v ′n = vn

αU 1(v ′1, . . . , v ′n) = {1.v ′1, . . . , 1.v ′n , v1, . . . , vn}
U 2(v ′1, . . . , v ′n) =̂ 2.v ′1 = v1 ∧ . . . ∧ 2.v ′n = vn

αU 2(v ′1, . . . , v ′n) = {2.v ′1, . . . , 2.v ′n , v1, . . . , vn}
MSt =̂ ∀ v • v ∈ ns1 ⇒ v ′ = 1.v

∧ v ∈ ns2 ⇒ v ′ = 2.v
∧ v /∈ ns1 ∪ ns2 ⇒ v ′ = v

M‖cs =̂ tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr ¹ cs = 2.tr ¹ cs

∧

(
(1.wait ∨ 2.wait)
∧ ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs)

)

Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

〈〉 ‖cs 〈〉 =̂ {〈〉}
e : tr ‖cs 〈〉 =̂ {〈〉}C e ∈ cs B {x | hd(x) = e ∧ tl(x) ∈ (tr ‖cs 〈〉)}
〈〉 ‖cs e : tr =̂ {〈〉}C e ∈ cs B {x | hd(x) = e ∧ tl(x) ∈ (〈〉 ‖cs tr)}
e : tr1 ‖cs e : tr2 =̂

{x | hd(x) = e ∧ tl(x) ∈ (tr1 ‖cs tr2)}
Ce ∈ csB

{x | hd(x) = e ∧ tl(x) ∈ (tr1 ‖cs e : tr2)}
∪
{x | hd(x) = e ∧ tl(x) ∈ (e : tr1 ‖cs tr2)}

e1 : tr1 ‖cs e2 : tr2 =̂

{〈〉}
Ce2 ∈ csB
{x | hd(x) = e2 ∧ tl(x) ∈ (e1 : tr1 ‖cs tr2)}

Ce1 ∈ csB

{x | hd(x) = e1 ∧ tl(x) ∈ (tr1 ‖cs e2 : tr2)}
Ce2 ∈ csB

{x | hd(x) = e1 ∧ tl(x) ∈ (tr1 ‖cs e2 : tr2)}
∪
{x | hd(x) = e2 ∧ tl(x) ∈ (e1 : tr1 ‖cs tr2)}

184 B Semantics of Circus

Definition B.19

A1 ||[ns2 | ns2]|| A2 =̂

R

(¬ A1
f
f ∧ ¬ A2

f
f)

`
((A1

t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M|||cs

M||| =̂ tr ′ − tr ∈ (1.tr − tr ||| 2.tr − tr)

∧

((1.wait ∨ 2.wait) ∧ ref ′ ⊆ 1.ref ∩ 2.ref)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

〈〉 ||| 〈〉 =̂ {〈〉}
tr1 ||| 〈〉 =̂ {tr1}
〈〉 ||| tr2 =̂ {tr2}
e1 : tr1 ||| e2 : tr2 =̂ {x | hd(x) = e1 ∧ tl(x) ∈ (tr1 ||| e2 : tr2)}

∪
{x | hd(x) = e2 ∧ tl(x) ∈ (e1 : tr1 ||| tr2)}

Definition B.20

A \ cs =̂
R(∃ s • A[s, cs ∪ ref ′/tr ′, ref ′] ∧ (tr ′ − tr) = (s − tr) ¹ (EVENT − cs)); Skip

Definition B.21 µX • F (X) =̂ {X | F (X) vA X }

Iterated Operators

Definition B.22 o
9 x : 〈v1, . . . , vn〉 • A(x) =̂ A(v1); . . . ; A(vn)

Definition B.23 2 x : T • A(x) =̂ A(v1) 2 . . . 2 A(vn)

Definition B.24 u x : T • A(x) =̂ A(v1) u . . . u A(vn)

Definition B.25

|[cs]| x : {v1, . . . , vn} • |[ns(x)]|A(x) =̂ A(v1)
|[ns(v1) | cs |

⋃{x : {v2, . . . , vn} • ns(x)}]|
 . . .

A(vn−1)
|[ns(vn−1) | cs | ns(vn)]|
A(vn)

Definition B.26

||| x : {v1, . . . , vn} •||[ns(x)]|| A(x) =̂ A(v1)
||[ns(v1) |

⋃{x : {v2, . . . , vn} • ns(x)}]||
 . . .

A(vn−1)
||[ns(vn−1) | ns(vn)]||
A(vn)

B.1 Circus Actions 185

B.1.2 Action Invocations, Parametrised Actions and Renaming

In what follows, we consider the function B, which gives us the body of the action, given
its name.

Definition B.27 N =̂ B(N)

Definition B.28 N (e) =̂ B(N)(e)

Definition B.29 (x : T • A)(e) =̂ A[e/x]

Definition B.30

A[old1, . . . , oldn := new1, . . . ,newn]
=̂
A[old1, . . . , oldn/new1, . . . ,newn]

B.1.3 Commands

Definition B.31

x1, . . . , xn := e1, . . . , en =̂
R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ x ′1 = e1 ∧ . . . ∧ x ′n = en ∧ u ′ = u)

Definition B.32 w : [pre, post] =̂ R(pre ` post ∧ ¬ wait ′ ∧ tr ′ = tr ∧ u ′ = u)

Definition B.33 {g} =̂ : [g , true]

Definition B.34 [g] =̂ : [g]

Definition B.35

if [] i • gi → Ai fi =̂ R((
∨

i • gi) ∧ (
∧

i • gi ⇒ ¬ Ai
f
f) `

∨
i • (gi ∧ Ai

t
f))

Definition B.36 var x : T • A =̂ var x : T ; A; end x : T

Definition B.37

(val x : T • A)(e) =̂ (var x : T • x := e; A)

provided x /∈ FV (e)

Definition B.38 (res x : T • A)(y) =̂ (var x : T • A; y := x)

Definition B.39

(vres x : T • A)(y) =̂ (var x : T • x := y; A; y := x)

provided x 6= y

186 B Semantics of Circus

B.1.4 Schema Expressions

Definition B.40 [udecl ; ddecl ′ | pred] =̂ ddecl : [∃ ddecl ′ • pred , pred]

B.2 Circus Processes

Definition B.41

begin state [decl | pred] PPars • A end =̂ var decl • A

Definition B.42 For op ∈ { ; , 2 ,u}:

P op Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act op Q .Act

end

Definition B.43

P |[cs]|Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act |[α(P .State) | cs | α(Q .State)]|Q .Act

end

Definition B.44

P ||| Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act ||[α(P .State) | α(Q .State)]|| Q .Act

end

Definition B.45 P \ cs =̂ state State =̂ P .State P .PPar • P .Act \ cs end

Definition B.46 x : T ¯ P =̂ (x : T • P)[c : usedC (P) • c x .x]

Definition B.47 (x : T ¯ P)bvc =̂ (x : T ¯ P)(v)

Definition B.48 N bv1c =̂ B(P)bvc

Definition B.49 N =̂ B(N)

Definition B.50 N (e) =̂ B(N)(e)

Definition B.51 (x : T • P)(e) =̂ P [e/x]

B.2 Circus Processes 187

Definition B.52 o
9 x : 〈v1, . . . , vn〉 • P(x) =̂ P(v1); . . . ; P(vn)

Definition B.53 2 x : {v1, . . . , vn} • P(x) =̂ P(v1) 2 . . . 2 P(vn)

Definition B.54 u x : {v1, . . . , vn} • P(x) =̂ P(v1) u . . . u P(vn)

Definition B.55 |[cs]| x : {v1, . . . , vn} • P(x) =̂ P(v1) |[cs]| (. . . (P(vn−1) |[cs]| P(vn)))

Definition B.56 ||| x : {v1, . . . , vn} • P(x) =̂ P(v1) ||| (. . . (P(vn−1) ||| P(vn)))

Definition B.57 P [oldc := newc] =̂ P [newc/oldc]

In what follows, we consider the function I, which instantiates the Z paragraphs and
channels within a generic process (declared using generic parameters T0, . . . ,Tn) with the
types that are given.

Definition B.58 P [te0, . . . , ten] =̂ I(B(P), 〈te0, . . . , ten〉)

188 B Semantics of Circus

Appendix C

Refinement Laws

Simulation

Law C.1 (Skip)

Skip ¹ Skip

Law C.2 (Stop)

Stop ¹ Stop

Law C.3 (Chaos)

Chaos ¹ Chaos

Law C.4 (Schema expressions)

ASExp ¹ CSExp

provided

í ∀P1.State; P2.State; L • R ∧ pre ASExp ⇒ pre CSExp

í ∀P1.State; P2.State; P2.State ′; L • R ∧ pre ASExp ∧ CSExp ⇒
(∃P1.State ′; L′ • R′ ∧ ASExp) q

Law C.5 (Prefix distribution∗)

c → A1 ¹ c → A2

provided A1 ¹ A2 q

190 C Refinement Laws

Law C.6 (Simple prefix distribution∗)

c.ae → Skip ¹ c.ce → Skip

provided

í ∀P1.State; P2.State; L • R ⇒ ae = ce q

Law C.7 (Output prefix distribution)

c!ae → A1 ¹ c!ce → A2

provided

í ∀P1.State; P2.State; L • R ⇒ ae = ce

í A1 ¹ A2 q

Law C.8 (Input prefix distribution)

c?x → A1 ¹ c?x → A2

provided A1 ¹ A2 q

Law C.9 (Input constrained prefix distribution∗)

c?x : T1 → A1 ¹ c?x : T1 → A2

provided

í A1 ¹ A2

í ∀A1.State; A2.State; L • R ⇒ (T1 ⇔ T2) q

Law C.10 (Multiple prefix distribution∗)
For every channel c and communication parameters as and cs,

c as → A1 ¹ c cs → A2

provided

í A1 ¹ A2

í For every abstract expression eai in as and its corresponding concrete expression
eci in cs: ∀P1.State; P2.State; L • R ⇒ (eai ⇔ eai)

í The names of all input variables are not changed from as to cs.

í Type of c is finite. q

191

Law C.11 (Guard distribution)

ag & A1 ¹ cg & A2

provided

í ∀P1.State; P2.State; L • R ⇒ (ag ⇔ cg)

í A1 ¹ A2 q

Law C.12 (Sequence distribution)

A1; A2 ¹ B1; B2

provided

í A1 ¹ B1

í A2 ¹ B2 q

Law C.13 (External choice distribution∗)

A1 2 A2 ¹ B1 2 B2

provided

í A1 ¹ B1

í A2 ¹ B2

í R is a function from the concrete to the abstract state q

Law C.14 (External choice/Prefix distribution∗)

2 i • ci → Ai ¹ 2 i • ci → Bi

provided ∀ i • Ai ¹ Bi q

Law C.15 (External choice/Simple prefix distribution∗)

2 i • ci .aei → Ai ¹ 2 i • ci .cei → Bi

provided

í ∀ i • Ai ¹ Bi

í ∀ i • ∀P1.State; P2.State; L • R ⇒ aei = cei q

192 C Refinement Laws

Law C.16 (External choice/Output Prefix distribution∗)

2 i • ci !aei → Ai ¹ 2 i • ci !cei → Bi

provided

í ∀ i • Ai ¹ Bi

í ∀ i • ∀P1.State; P2.State; L • R ⇒ aei = cei q

Law C.17 (External choice/Input Prefix distribution∗)

2 i • ci?xi → Ai ¹ 2 i • ci?xi → Bi

provided ∀ i • Ai ¹ Bi q

Law C.18 (External choice/Constrained Input Prefix distribution∗)

2 i • ci?xi : TAi → Ai ¹ 2 i • (ci?xi : TBi → Bi

provided

í ∀ i • Ai ¹ Bi

í ∀ i • ∀A.State; B .State; L • R ⇒ (TAi ⇔ TBi) q

Law C.19 (External choice/Multiple Prefix distribution∗)
For every channel ci and communication parameters asi , and csi ,

2 i • ci asi → Ai ¹ 2 i • ci csi → Bi

provided

í Type of c is finite

í ∀ i • Ai ¹ Bi

í For every i , and every abstract expression ea in asi and its corresponding con-
crete expression
ec in csi : ∀P1.State; P2.State; L • R ⇒ ea ⇔ ec

í For every i , the names of all input variables are not changed neither from asi to
csi q

Law C.20 (Internal choice distribution∗)

A1 u A2 ¹ B1 u B2

provided

í A1 ¹ A2

í B1 ¹ B2 q

193

Law C.21 (Parallelism composition distribution∗)

A1 |[ns1A | cs | ns2A]|A2 ¹ B1 |[ns1B | cs | ns2B]| B2

provided

í A1 ¹ B1

í A2 ¹ B2

í ∀ vA, vB • R(vA, vB) ⇒ (vA ∈ ns1A ⇒ vB ∈ ns1B)

í ∀ vA, vB • R(vA, vB) ⇒ (vA ∈ ns2A ⇒ vB ∈ ns2B) q

Law C.22 (Interleave distribution∗)

A1 ||[ns1 | ns2]|| A2 ¹ B1 ||[ns1 | ns2]|| B2

provided

í A1 ¹ A2

í B1 ¹ B2

í ∀ vA, vB • R(vA, vB) ⇒ (vA ∈ ns1A ⇒ vB ∈ ns1B)

í ∀ vA, vB • R(vA, vB) ⇒ (vA ∈ ns2A ⇒ vB ∈ ns2B) q

Law C.23 (Recursion distribution∗)

µX • FA(X) ¹ µX • FC (X)

provided FA ¹ FC q

Law C.24 (Specification Statement Distribution∗)

wA : [preA, postA] ¹ wB : [preB , postB]

provided

í ¬ preA ¹ ¬ preB

í postA ∧ u ′A = uA ¹ postB ∧ u ′B = uB , where u are the state variables that are
not in the frame w . q

Law C.25 (Variable Block Distribution∗)

var x • A1 ¹ var x • A2

provided

A1 ¹ A2 q

194 C Refinement Laws

Action Refinement

Assumptions

Law C.26 (Assumption Conjunction∗)

{g1}; {g2} = {g1 ∧ g2}

Law C.27 (Assumption introduction∗)

{g} = {g}; {g1}

provided g ⇒ g1 q

In the following two laws we refer to a predicate assump′. In general, for any predicate
p, the predicate p′ is formed by dashing all its free undecorated variables.

Law C.28 (Schema Expression/Assumption—introduction)

[∆State; i? : Ti ; o! : To | p ∧ assump′]
=
[∆State; i? : Ti ; o! : To | p ∧ assump′]; {assump}

The schema in this law is an arbitrary schema that specifies an action in Circus: it acts
on a state schema State and, optionally, has input variables i? of type Ti , and output
variables o! of type To .

Law C.29 (Initialisation schema/Assumption—introduction∗)

[State ′ | p ∧ assump′]
=
[State ′ | p ∧ assump′]; {assump}

Law C.30 (Assumption/Guard—introduction)

{ g }; A = { g }; g & A

Law C.31 (Guard/Assumption—introduction 1∗)

g & A = g & {g}; A

Law C.32 (Assumption/Guard—elimination 1)

{ g1 }; (g2 & A) = { g1 }; A

provided g1 ⇒ g2 q

195

Law C.33 (Assumption/Guard—elimination 2)

{ g1 }; (g2 & A) = { g1 }; Stop

provided g1 ⇒ ¬ g2 q

Law C.34 (Assumption/Guard—replacement)

{ g1 }; (g2 & A) = { g1 }; (g3 & A)

provided g1 ⇒ (g2 ⇔ g3) q

Law C.35 (Assumption elimination)

{p} vA Skip

Law C.36 (Assumption substitution 1∗)

{g1} vA {g2}

provided g1 ⇒ g2 q

Law C.37 (Assumption/External choice—distribution)

{p}; (A1 2 A2) = ({p}; A1) 2 ({p}; A2)

Law C.38 (Assumption/Parallelism composition—distribution)

{p}; (A1 |[ns1 | cs | ns2]|A2) = ({p}; A1) |[ns1 | cs | ns2]| ({p}; A2)

Law C.39 (Assumption/Interleaving—distribution)

{p}; (A1 ||[ns1 | ns2]|| A2) = ({p}; A1) ||[ns1 | ns2]|| ({p}; A2)

196 C Refinement Laws

Law C.40 (Assumption/Mutual recursion—distribution∗)

{g}; µX1, . . . ,Xi , . . . ,Xn •
〈 F1(X1, . . . ,Xi , . . . ,Xn), . . . ,

Fi(X1, . . . ,Xi , . . . ,Xn), . . . ,
Fn(X1, . . . ,Xi , . . . ,Xn)

〉

vA

µX1, . . . ,Xi , . . . ,Xn •
〈 F1(X1, . . . ,Xi , . . . ,Xn), . . . ,
{g}; Fi(X1, . . . ,Xi , . . . ,Xn), . . . ,
Fn(X1, . . . ,Xi , . . . ,Xn)

〉

provided for all j , such that 1 ≤ j ≤ n,

{g}; Fj (X1, . . . ,Xi , . . . ,Xn) vA Fj ({g}; X1, . . . , {g}; Xi , . . . , {g}; Xn),

q

Law C.41 (Assumption/Prefix—distribution∗)

{g}; c → A vA c → {g}; A

Law C.42 (Assumption/Prefix—distribution 2∗)

{g}; c → A = {g}; c → {g}; A

Law C.43 (Assumption/Simple Prefix—distribution∗)

{g}; c.e → A vA ; c.e → {g}; A

Law C.44 (Assumption/Simple Prefix—distribution 2∗)

{g}; c.e → A = {g}; c.e → {g}; A

Law C.45 (Assumption/Output prefix—distribution∗)

{g}; c!x → A vA c!x → {g}; A

Law C.46 (Assumption/Output prefix—distribution 2∗)

{g}; c!x → A = {g}; c!x → {g}; A

Law C.47 (Assumption/Input prefix—distribution∗)

{g}; c?x → A vA c?x → {g}; A

provided x /∈ FV (g) q

197

Law C.48 (Assumption/Input Prefix—distribution 2∗)

{g}; c?x → A = {g}; c?x → {g}; A

provided x /∈ FV (g) q

Law C.49 (Assumption/Constrained Input prefix—distribution∗)

{g}; c?x : T → A vA c?x : T → {g}; A

provided x /∈ FV (g) q

Law C.50 (Assumption/Constrained Input Prefix—distribution 2∗)

{g}; c?x : T → A = {g}; c?x : T → {g}; A

provided x /∈ FV (g) q

Law C.51 (Assumption/Multiple prefix—distribution∗)
For every channel c and communication parameters as,

{g}; c as → A vA c as → {g}; A

provided

í The names of all input variables are not free in g . q

Law C.52 (Assumption/Multiple Prefix—distribution 2∗)
For every channel c and communication parameters as,

{g}; c as → A = c as → {g}; A

provided

í The names of all input variables are not free in g . q

Law C.53 (Assumption/Schema—distribution∗)

{g}; [decl | p] vA [decl | p]; {g}

provided g ∧ p ⇒ g ′ q

198 C Refinement Laws

Law C.54 (Assumption/Assignment—distribution∗)

{g}; x := e = {g}; x := e; {g}

provided x /∈ FV (g) q

Law C.55 (Assumption Unit∗)

{true} = Skip

Law C.56 (Assumption Zero∗)

{false} = Chaos

Guards

Law C.57 (Guard combination)

g1 & (g2 & A) = (g1 ∧ g2) & A

Law C.58 (Guards expansion∗)

(g1 ∨ g2) & A = g1 & A 2 g2 & A

Law C.59 (Guard/Sequence—associativity)

(g & A1); A2 = g & (A1; A2)

Law C.60 (Guard/External choice—distribution)

g & (A1 2 A2) = (g & A1) 2 (g & A2)

Law C.61 (Guard/Internal choice—distribution)

g & (A1 u A2) = (g & A1) u (g & A2)

Law C.62 (Guard/Parallelism composition—distribution 1)

g & (A1 |[ns1 | cs | ns2]|A2) = (g & A1) |[ns1 | cs | ns2]| (g & A2)

199

Law C.63 (Guard/Parallelism composition—distribution 2)

(g1 & A1) |[ns1 | cs | ns2]| (g2 & A2)
=
(g1 ∨ g2) & ((g1 & A1) |[ns1 | cs | ns2]| (g2 & A2))

provided

í g1 ⇔ g2 q

Law C.64 (Guards/Parallelism composition—distribution 3∗)

(g1 ∧ g2) & (A1 |[ns1 | cs | ns2]|A2)
=
(g1 & A1) |[ns1 | cs | ns2]| (g2 & A2)

provided

í g1 ⇔ g2 q

Law C.65 (Guard/Interleaving—distribution 1)

g & (A1 ||[ns1 | ns2]|| A2) = (g & A1) ||[ns1 | ns2]|| (g & A2)

Law C.66 (Guard/Interleaving—distribution 2)

(g1 & A1) ||[ns1 | ns2]|| (g2 & A2)
=
(g1 ∨ g2) & ((g1 & A1) ||[ns1 | ns2]|| (g2 & A2))

Law C.67 (True guard)

true & A = A

Law C.68 (False guard)

false & A = Stop

Law C.69 (Guarded Stop)

g & Stop = Stop

200 C Refinement Laws

Schema Expressions

Law C.70 (Schema disjunction elimination)

pre SExp1 & (SExp1 ∨ SExp2) vA pre SExp1 & SExp1

Law C.71 (Schema expression/Sequence—introduction)

[∆S1; ∆S2; i? : T | preS1 ∧ preS2 ∧ CS1 ∧ CS2]
vA
[∆S1; ΞS2; i? : T | preS1 ∧ CS1]; [ΞS1; ∆S2; i? : T | preS2 ∧ CS2]

provided

í α(S1) ∩ α(S2) = ∅
í FV (preS1) ⊆ α(S1) ∪ {i?}
í FV (preS2) ⊆ α(S2) ∪ {i?}
í DFV (CS1) ⊆ α(S ′1)

í DFV (CS2) ⊆ α(S ′2)

í UDFV (CS2) ∩DFV (CS1) = ∅ q

Law C.72 (Initialisation schema/Sequence—introduction∗)

[S ′1; S ′2 | CS1 ∧ CS2]
=
[S ′1 | CS1]; [S ′2 | CS2]

provided

í α(S1) ∩ α(S2) = ∅
í DFV (CS1) ⊆ α(S ′1)

í DFV (CS2) ⊆ α(S ′2) q

Law C.73 (Schemas/Parallelism composition—distribution∗)

SExp; (A1 |[ns1 | cs | ns2]|A2)
=
(SExp; A1) |[ns1 | cs | ns2]|A2

provided

í wrtV (SExp) ⊆ ns1
í wrtV (SExp) ∩ usedV (A2) = ∅ q

201

Law C.74 (Schemas/Interleaving—distribution∗)

(2 i • gi & SExpi); (A1 ||[ns1 | ns2]|| A2)
=
((2 i • gi & SExpi); A1) ||[ns1 | ns2]|| A2

provided

í
⋃

i wrtV (SExpi) ⊆ ns1
í

⋃
i wrtV (SExpi) ∩ usedV (A2) = ∅ q

Law C.75 (Schemas refinement∗)

SExp1 vA SExp2

where

• SExp1 =̂ [∆S ; di?; do! | P1]

• SExp2 =̂ [∆S ; di?; do! | P2]

provided

í pre SExp1 ⇒ pre SExp2

í (pre SExp1 ∧ P2) ⇒ P1 q

Parallelism composition

Law C.76 (Parallelism composition commutativity∗)

A1 |[ns1 | cs | ns2]|A2 = A2 |[ns2 | cs | ns1]|A1

Law C.77 (Partition expansion∗)

var x : T • A1; (A2 |[ns1 | cs | ns2]|A3)
=
var x : T • A1; (A2 |[ns1 ∪ {x} | cs | ns2]|A3)

provided x /∈ ns2 q

202 C Refinement Laws

Law C.78 (Parallelism composition introduction 1∗)

c → A = (c → A |[ns1 | {| c |} | ns2]| c → Skip)

c.e → A = (c.e → A |[ns1 | {| c |} | ns2]| c.e → Skip)

provided

í c /∈ usedC (A)

í wrtV (A) ⊆ ns1 q

Law C.79 (Sequence/Parallelism composition—introduction 1)

A1; A2(e)
=
((A1; c!e → Skip) |[wrtV (A2) | {|c|} | wrtV (A2)]| c?y → A2(y)) \ {|c|}

provided

í c /∈ usedC (A1) ∪ usedC (A2)

í y /∈ FV (A2)

í wrtV (A1) ∩ usedV (A2) = ∅
í FV (e) ∩ wrtV (A2 before e) = ∅ q

Law C.80 (Channel extension 1)

A1 |[ns1 | cs | ns2]|A2 = A1 |[ns1 | cs ∪ {|c|} | ns2]|A2

provided c /∈ usedC (A1) ∪ usedC (A2) q

Law C.81 (Channel extension 2)

A1 |[ns1 | cs | ns2]|A2(e)
=
(c!e → A1 |[ns1 | cs ∪ {|c|} | ns2]| c?x → A2(x)) \ {|c|}

provided

í c /∈ usedC (A1) ∪ usedC (A2)

í x /∈ FV (A2)

í FV (e) ∩ wrtV (A2 before e) = ∅ q

203

Law C.82 (Channel extension 3∗)

(A1 |[ns1 | cs1 | ns2]|A2(e)) \ cs2
=
((c!e → A1) |[ns1 | cs1 | ns2]| (c?x → A2(x))) \ cs2

provided

í c ∈ cs1
í c ∈ cs2
í x /∈ FV (A2) q

Law C.83 (Channel extension 4∗)

(A1 |[ns1 | cs1 | ns2]|A2) \ cs2 = ((c → A1) |[ns1 | cs1 | ns2]| (c → A2)) \ cs2

(A1 |[ns1 | cs1 | ns2]|A2) \ cs2 = ((c.e → A1) |[ns1 | cs1 | ns2]| (c.e → A2)) \ cs2

provided

í c ∈ cs1
í c ∈ cs2 q

Law C.84 (Parallelism composition/Sequence—step∗)

(A1; A2) |[ns1 | cs | ns2]|A3 = A1; (A2 |[ns1 | cs | ns2]|A3)

provided

í initials(A3) ⊆ cs

í cs ∩ usedC (A1) = ∅
í wrtV (A1) ∩ usedV (A3) = ∅
í A3 is divergence-free

í wrtV (A1) ⊆ ns1 q

Law C.85 (Parallelism composition/External choice—exchange)

(A1 |[ns1 | cs | ns2]|A2) 2 (B1 |[ns1 | cs | ns2]| B2)
=
(A1 2 B1) |[ns1 | cs | ns2]| (A2 2 B2)

provided A1 |[ns1 | cs | ns2]| B2 = A2 |[ns1 | cs | ns2]| B1 = Stop q

204 C Refinement Laws

Law C.86 (Parallelism composition/External choice—expansion∗)

(2 i • ai → Ai) |[ns1 | cs | ns2]| (2 j • bj → Bj)
=
(2 i • ai → Ai) |[ns1 | cs | ns2]| ((2 j • bj → Bj) 2 (c → C))

provided

• ⋃
i{ai} ⊆ cs

• c ∈ cs

• c /∈ ⋃
i{ai}

• c /∈ ⋃
j {bj }

Law C.87 (Parallelism composition/External choice—distribution∗)

2 i • (Ai |[ns1 | cs | ns2]|A) = (2 i • Ai) |[ns1 | cs | ns2]|A

provided

í initials(A) ⊆ cs

í A is deterministic q

Law C.88 (Parallelism composition/Sequence—distribution∗)

(A1 |[ns1 | cs | ns2]|A2); (B1 |[ns1 | cs | ns2]| B2)
=
(A1; B1) |[ns1 | cs | ns2]| (A2; B2)

provided

í initials(B1) ∪ initials(B2) ⊆ cs

í usedC (A1) ∩ initials(B2) = ∅
í usedC (A2) ∩ initials(B1) = ∅
í usedV (B1) ∩ ns2 = usedV (B2) ∩ ns1 = ∅ q

Law C.89 (Parallelism composition Assignment/Skip∗)

vl := el |[ns1 | cs | ns2]| Skip = vl := el

provided

í ns1 and ns2 partition the variables in scope

í vl ∈ ns1 q

205

Law C.90 (Parallelism composition unit∗)

Skip |[ns1 | cs | ns2]| Skip = Skip

Law C.91 (Parallelism composition unit 2∗)

Stop |[ns1 | cs | ns2]| Stop = Stop

Law C.92 (Parallelism composition Deadlocked 1∗)

(c1 → A1) |[ns1 | cs | ns2]| (c2 → A2) = Stop = Stop |[ns1 | cs | ns2]| (c2 → A2)

provided

í c1 6= c2

í {c1, c2} ⊆ cs q

Law C.93 (Parallelism composition Deadlocked 2)

g1 & c1 → A1 |[ns1 | cs ∪ {|c1, c2|} | ns2]| g2 & c2 → A2 = Stop

provided

í c1 6= c2

í {c1, c2} ⊆ cs q

Law C.94 (Parallelism composition Zero∗)

Chaos |[ns1 | cs | ns2]|A = Chaos

Interleaving

Law C.95 (Interleaving/Sequence—distribution∗)

(A1 ||[ns1 | ns2]|| A2); (B1 |[ns1 | cs | ns2]| B2)
=
(A1; B1) |[ns1 | cs | ns2]| (A2; B2)

provided

í (usedC (A1) ∪ usedC (A2)) ∩ cs = ∅
í initials(B1) ∪ initials(B2) ⊆ cs q

206 C Refinement Laws

Law C.96 (Interleaving Zero∗)

Chaos ||[ns1 | ns2]|| A = Chaos

Law C.97 (Interleaving Stop∗)

Stop ||[ns1 | ns2]|| Stop = Stop

Law C.98 (Parallelism composition/Interleaving Equivalence∗)

A1 ||[ns2 | ns2]|| A2 = A1 |[ns2 | ∅ | ns2]|A2

Law C.99 (Interleaving Choices∗)

(c1 → A1) ||[ns1 | ns2]|| (c2 → A2)
=
c1 → (A1 ||[ns1 | ns2]|| (c2 → A2)) 2 c2 → ((c1 → A1) ||[ns1 | ns2]|| A2)

Prefix

Law C.100 (Prefix/Skip∗)

c → A = (c → Skip); A

c.e → A = (c.e → Skip); A

Law C.101 (Prefix/Sequential composition—associativity)

c → (A1; A2) = (c → A1); A2

c.e → (A1; A2) = (c.e → A1); A2

provided FV (A2) ∩ α(c) = ∅ q

Law C.102 (Prefix/Hiding∗)

(c → Skip) \ {c} = Skip

(c.e → Skip) \ {c} = Skip

Law C.103 (Prefix introduction∗)

A = (c → A) \ {| c |}

provided c /∈ usedC (A) q

207

Law C.104 (Prefix/External choice—distribution∗)

c → 2 i • gi & Ai = 2 i • gi & c → Ai

provided

í ∨ i • gi

í ∀ i , j | i 6= j • ¬ (gi ∧ gj) (guards are mutually exclusive). q

Law C.105 (Prefix/Internal choice—distribution)

c → (A1 u A2) = (c → A1) u (c → A2)

c.e → (A1 u A2) = (c.e → A1) u (c.e → A2)

Law C.106 (Prefix/Parallelism composition—distribution)

c → (A1 |[ns1 | cs | ns2]|A2) = (c → A1) |[ns1 | cs ∪ {|c|} | ns2]| (c → A2)

c.e → (A1 |[ns1 | cs | ns2]|A2) = (c.e → A1) |[ns1 | cs ∪ {|c|} | ns2]| (c.e → A2)

provided c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs q

Law C.107 (Communication/Parallelism composition—distribution)

(c!e → A1) |[ns1 | cs | ns2]| (c?x → A2(x)) = c.e → (A1 |[ns1 | cs | ns2]|A2(e))

provided

í c ∈ cs

í x /∈ FV (A2). q

Law C.108 (Input prefix/Parallelism composition—distribution∗)

c?x → (A1 |[ns1 | cs | ns2]|A2) = (c?x → A1) |[ns1 | cs | ns2]| (c?x → A2)

provided

c ∈ cs q

208 C Refinement Laws

Law C.109 (Input prefix/Parallelism composition—distribution 2∗)

c?x → (A1 |[ns1 | cs | ns2]|A2) = (c?x → A1) |[ns1 | cs | ns2]|A2

provided

í c /∈ cs

í x /∈ usedV (A2)

í initials(A2) ⊆ cs

í A2 is deterministic q

External choice

Law C.110 (External choice commutativity∗)

A1 2 A2 = A2 2 A1

Law C.111 (External choice elimination∗)

A 2 A = A

Law C.112 (External choice/Sequence—distribution)

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B

Law C.113 (External choice/Sequence—distribution 2∗)

((g1 & A1) 2 (g2 & A2)); B = ((g1 & A1); B) 2 ((g2 & A2); B)

provided g1 ⇒ ¬ g2 q

Law C.114 (External choice unit)

Stop 2 A = A

Internal Choice

Law C.115 (Sequence/Internal choice—distribution∗)

A1; (A2 u A3) = (A1; A2) u (A1; A3)

Law C.116 (Internal choice elimination∗)

A u A = A

209

Law C.117 (Internal choice elimination 2∗)

A1 u A2 vA A1

Law C.118 (Internal choice zero∗)

A u Chaos = Chaos

Law C.119 (Internal choice/Parallelism composition Distribution∗)

(A1 u A2) |[ns1 | cs | ns2]|A3

=
(A1 |[ns1 | cs | ns2]|A3) u (A2 |[ns1 | cs | ns2]|A3)

Hiding

Law C.120 (Hiding Identity∗)

A \ cs = A

provided cs ∩ usedC (A) = ∅ q

Law C.121 (Hiding combination)

(A \ cs1) \ cs2 = A \ (cs1 ∪ cs2)

Law C.122 (Hiding/External choice—distribution∗)

(A1 2 A2) \ cs = (A1 \ cs) 2 (A2 \ cs)

provided (initials(A1) ∪ initials(A2)) ∩ cs = ∅ q

Law C.123 (Hiding/External choice—distribution 2∗)

((g1 & A1) 2 (g2 & A2)) \ cs = ((g1 & A1) \ cs) 2 ((g2 & A2) \ cs)

provided ¬ (g1 ∧ g2) or (initials(A1) ∪ initials(A2)) ∩ cs = ∅ q

Law C.124 (Hiding expansion 2∗)

A \ cs = A \ cs ∪ {c}

provided c /∈ usedC (A) q

210 C Refinement Laws

Law C.125 (Hiding/Sequence—distribution∗)

(A1; A2) \ cs = (A1 \ cs); (A2 \ cs)

Law C.126 (Hiding/Chaos—distribution∗)

Chaos \ cs = Chaos

Law C.127 (Hiding/Parallelism composition—distribution∗)

(A1 |[ns1 | cs1 | ns2]|A2) \ cs2 = (A1 \ cs2) |[ns1 | cs1 | ns2]| (A2 \ cs2)

provided cs1 ∩ cs2 = ∅ q

Recursion

Law C.128 (Recursion unfold)

µX • F (X) = F (µX • F (X))

Law C.129 (Recursion—least fixed-point)

F (Y) vA Y ⇒ µX • F (X) vA Y

Law C.130 (Recursion Refinement∗)

µX • F1(X) vA µX • F2(X)

provided F1 vA F2 q

Law C.131 (Recursion—divergence introduction∗)

(µX • (c → X)) \ {c} = (µX • (c.e → X)) \ {c} = Chaos

Sequence

Law C.132 (Sequence unit)

(A)Skip; A
(B)A = A; Skip

Law C.133 (Sequence zero)

Stop; A = Stop

211

Law C.134 (Sequence zero 2∗)

Chaos; A = Chaos

Chaos

Law C.135 (Chaos Refinement∗)

Chaos vA A

Variable Blocks

Law C.136 (Variable block introduction∗)

A = var x : T • A

provided x /∈ FV (A) q

Law C.137 (Variable block/Sequence—extension∗)

A1; (var x : T • A2); A3 = (var x : T • A1; A2; A3)

provided x /∈ FV (A1) ∪ FV (A3) q

Law C.138 (Variable block/Parallelism composition—extension∗)

(var x : T • A1) |[ns1 | cs | ns2]|A2

=
(var x : T • A1 |[ns1 ∪ {x} | cs | ns2]|A2)

provided x /∈ FV (A2) ∪ ns1 ∪ ns2 q

Law C.139 (Variable Substitution∗)

A(x) = var y • y : [y ′ = x]; A(y)

provided y is not free in A q

212 C Refinement Laws

Alternation

Law C.140 (Alternation Introduction∗)

w : [pre, post] vA if []igi → w : [gi ∧ pre, post] fi

provided pre ⇒ ∨
i gi q

Law C.141 (Alternation/Guarded Actions—interchange∗)

if g1 → A1[] g2 → A2 fi = g1 & A1 2 g2 & A2

provided

í g1 ∨ g2

í g1 ⇒ ¬ g2 q

Substitution

Law C.142 (Substitution introduction∗)

A = A[old1, ..., oldn := new1, ...,newn]

provided {old1, ..., oldn} ∩ FV (A) = ∅ q

Law C.143 (Substitution expansion∗)

F (A[old1, . . . , oldn := new1, . . . ,newn]) = F (A)[old1, . . . , oldn := new1, . . . ,newn]

provided {old1, . . . , oldn} ∩ FV (F ()) = ∅ q

Law C.144 (Substitution combination∗)

A[old1, . . . , oldn := mid1, . . . ,midn][mid1, . . . ,midn := new1, . . . ,newn]
=
A[old1, . . . , oldn := new1, . . . ,newn]

provided {mid1, . . . ,midn} ∩ FV (A) = ∅ q

213

Law C.145 (Substitution combination 2∗)

A[old1, ..., oldn := new1, . . . ,newn][oldn+1, ..., oldm := newn+1, ...,newm]
=
A[old1, ..., oldm := new1, ...,newm]

provided {new1, ...,newn} ∩ {oldn+1, ..., oldm} = ∅ q

Process Refinement

Law C.146 (Process splitting)

Let qd and rd stand for the declarations of the processes Q and R, determined by
Q .State, Q .PPar , and Q .Act , and R.State, R.PPar , and R.Act , respectively, and pd
stand for the process declaration.

process P =̂ begin state State =̂ Q .State ∧ R.State
Q .PPar ∧Ξ R.State
R.PPar ∧Ξ Q .State
• F (Q .Act ,R.Act)

end

Then

pd = (qd rd process P =̂ F (Q ,R))

provided Q .PPar and R.PPar are disjoint with respect to R.State and Q .State. q

214 C Refinement Laws

Law C.147 (Process Splitting 2∗)

process G =̂ begin
LState =̂ [id : Range; comps | predl]
state GState =̂

[f : Range → LState | ∀ j : Range • (f j).id = j ∧ predg(j)]
L.schemaj ∧Ξ GState
L.actionk ∧Ξ GState

Promotion
∆LState; ∆GState; id? : Range

θLState = f id? ∧ f ′ = f ⊕ {id? 7→ θLState ′}

G .schemaj =̂ ∀ id? : Range • L.schemaj ∧ Promotion
G .actionk =̂

|[cs]| i : Range • |[α (f i)]| • (promote2 L.actionk) [id , id? := i , i]
• G .action end

=
process L =̂ (id : Range • begin state LState =̂ [comps | predl]

L.schemaj L.actionk

• L.action end)
process G =̂ |[cs]| id : Range • L(id)

Appendix D

Refinement of Mutually Recursive
Actions

In this appendix we present the motivation for the syntactic sugar for mutually recursive
actions, used to improve the presentation of refinements and processes. The proof of the
theorem used in the refinement of such actions is also presented here.

A Simple Example Consider the following mutually recursive action definitions S , Sl ,
and Sr .

{
S = µX ,Y • F (X ,Y)
F (X ,Y) = [a → SExp1;X 2 b → Y , c → SExp2;Y 2 d → X]

{
Sl = µX ,Y • Fl (X ,Y)
Fl (X ,Y) = [a → X 2 b → Y , c → Y 2 d → X]

{
Sr = µX ,Y • Fr (X ,Y)
Fr (X ,Y) = [a → SExp1;X 2 b → Y , c → SExp2;Y 2 d → X]

Now, suppose we want to prove that

S vV [(Sl .1 ‖ Sr .1), (Sl .2 ‖ Sr .2)]

In order to illustrate the motivation for simplifying the notation of vectorial refinement,
we present the proof of the vectorial refinement presented above. First, we apply the
definition of S , Sl and Sr .

S vV [(Sl .1 ‖ Sr .1), (Sl .2 ‖ Sr .2)]
=̂ [Definitions of S ,Sl , and Sr]

µX ,Y • F (X ,Y) vV
[

(µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1,
(µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2

]

Next, we may use a vectorial version of the recursion least fixed-point law.

216 D Refinement of Mutually Recursive Actions

⇐ [Vectorial version of law C.129 (recursion least fixed-point)]

F

(
(µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1,
(µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2

)

vV[
(µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1,
(µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2

]

So, we conclude that, to prove the initial refinement, we can prove the refinement above.
We start the proof of this refinement by applying the definition of F .

F

(
(µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1,
(µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2

)

=̂ [Definition of F]

(
a → SExp1;((µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1)
2 b → ((µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2)

)
,

(
c → SExp2;((µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2)
2 d → ((µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1)

)

Next, we distribute the schema over the parallelism as follows.

= [C .76,C .73]

(
a → ((µX ,Y • Fl (X ,Y)).1 ‖ (SExp1;(µX ,Y • Fr (X ,Y)).1))
2 b → ((µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2)

)
,

(
c → ((µX ,Y • Fl (X ,Y)).2 ‖ (SExp2;(µX ,Y • Fr (X ,Y)).2))
2 d → ((µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1)

)

Then, as the channels a, b, c, and d are in the synchronisation channel set, we may apply
the distribution of prefix over parallelism law.

= [C .106]

(
(a → (µX ,Y • Fl (X ,Y)).1) ‖ (a → SExp1;(µX ,Y • Fr (X ,Y)).1)
2 (b → (µX ,Y • Fl (X ,Y)).2) ‖ (b → (µX ,Y • Fr (X ,Y)).2)

)
,

(
(c → (µX ,Y • Fl (X ,Y)).2) ‖ (c → SExp2;(µX ,Y • Fr (X ,Y)).2)
2 (d → (µX ,Y • Fl (X ,Y)).1) ‖ (d → (µX ,Y • Fr (X ,Y)).1)

)

Next, we apply the exchange of parallelism and external choice law. This application is

217

valid since the initials of all actions are in the synchronisation channel set.

= [C .85]

(
a → (µX ,Y • Fl (X ,Y)).1
2 b → (µX ,Y • Fl (X ,Y)).2

)

‖(
a → SExp1;(µX ,Y • Fr (X ,Y)).1
2 b → (µX ,Y • Fr (X ,Y)).2

)

,

(
c → (µX ,Y • Fl (X ,Y)).2
2 d → (µX ,Y • Fl (X ,Y)).1)

)

‖(
c → SExp2;(µX ,Y • Fr (X ,Y)).2
2 d → (µX ,Y • Fr (X ,Y)).1

)

The definition of array allows us to extend the action above as follows.

=̂ [A = [A,B].1,B = [A,B].2]

(
a → (µX ,Y • Fl (X ,Y)).1
2 b → (µX ,Y • Fl (X ,Y)).2

)
,

(
c → (µX ,Y • Fl (X ,Y)).2
2 d → (µX ,Y • Fl (X ,Y)).1

)

.1

‖

(
a → SExp1;(µX ,Y • Fr (X ,Y)).1
2 b → (µX ,Y • Fr (X ,Y)).2

)
,

(
c → SExp2;(µX ,Y • Fr (X ,Y)).2
2 d → (µX ,Y • Fr (X ,Y)).1

)

.1

,

(
a → (µX ,Y • Fl (X ,Y)).1
2 b → (µX ,Y • Fl (X ,Y)).2

)
,

(
c → (µX ,Y • Fl (X ,Y)).2
2 d → (µX ,Y • Fl (X ,Y)).1

)

.2

‖

(
a → SExp1;(µX ,Y • Fr (X ,Y)).1
2 b → (µX ,Y • Fr (X ,Y)).2,

)
,

(
c → SExp2;(µX ,Y • Fr (X ,Y)).2
2 d → (µX ,Y • Fr (X ,Y)).1

)

.2

Finally, using a vectorial version of the recursion unfolding law, we conclude our proof.

= [Vectorial version of law C.128 (Recursion Unfolding)][
(µX ,Y • Fl (X ,Y)).1 ‖ (µX ,Y • Fr (X ,Y)).1,
(µX ,Y • Fl (X ,Y)).2 ‖ (µX ,Y • Fr (X ,Y)).2

]

q

218 D Refinement of Mutually Recursive Actions

Simplification The system and refinement that we have just proved above are quite
simply presented and understood. However, it may be the case that the system has quite
a complicated presentation in the above notation. Our case study is a good example of
such a system. For this reason, we have adopted a notation for the presentation of all
mutually recursive systems and of refinements on these systems in a more concise way.

First, let us generalise the syntactic sugar for the definitions of mutually recursive
systems: every mutually recursive system of the form

{
S =̂ µX0, . . . ,Xn • F (X0, . . . ,Xn)
F (X0, . . . ,Xn) =̂ [F0(X0, . . . ,Xn), . . . ,Fn(X0, . . . ,Xn)]

can be presented using the following syntax.

SS =̂ [N0, . . . ,Nn]

For each index i in 0 . . n, the action Ni is defined as Ni =̂ Gi , where Gi is defined
as its corresponding Fi(X0, . . . ,Xn), but replacing all the occurrences of the variables
X0, . . . ,Xn by the corresponding N0, . . . ,Nn . Furthermore, the names Ni are fresh.

Gi = Fi [N0, . . . ,Nn/X0, . . . ,Xn]

In our example, we use this to get the following syntactic sugaring SS of the process S .

SS =̂ [N0,N1]

N0 =̂ G0 where G0 = a → SExp1;N0 2 b → N1

N1 =̂ G1 where G1 = c → SExp2;N1 2 d → N0

We may also apply the strategy to get the syntactic sugaring SlS of the process Sl .

SlS =̂ [Nl1 ,Nl2]

Nl1 =̂ Gl1 where Gl1 = a → Nl1 2 b → Nl2

Nl2 =̂ Gl2 where Gl2 = c → Nl2 2 d → Nl1

In a similar way, we also apply the strategy to get the syntactic sugaring SrS of the process
Sr .

SrS =̂ [Nr1 ,Nr2]

Nr1 =̂ Gr1 where Gr1 = a → SExp1;Nr1 2 b → Nr2

Nr2 =̂ Gr2 where Gr2 = c → SExp2;Nr2 2 d → Nr1

Now, we present the syntactic sugaring for proving refinements of these systems. We
want to prove a refinement of the following form, where Y0, . . . ,Yn are actions.

S vV [Y0, . . . ,Yn]

To prove this property, we can apply the vectorial version of the recursion-least fixed-point

219

Law (C .129) as follows.

[Vectorial version of law C.129 (Recursion-Least Fixed Point)]

⇐ F (Y0, . . . ,Yn) vV [Y0, . . . ,Yn]

Applying the definition of F we get the following proof obligation.

= [F0(Y0, . . . ,Yn), . . . ,Fn(Y0, . . . ,Yn)] vV [Y0, . . . ,Yn] [Definition of F]

The previous proof obligation can then be transformed as follows.

Fi(Y0, . . . ,Yn) vA Yi

= Fi [Y0, . . . ,Yn/X0, . . . ,Xn] vA Yi [Function Invocation]

= Fi [N0, . . . ,Nn/X0, . . . ,Xn][Y0, . . . ,Yn/N0, . . . ,Nn] vA Yi

[Renaming Composition]

= Gi [Y0, . . . ,Yn/N0, . . . ,Nn] vA Yi [Definition of Gi]

We have then the following proof obligation.

[G0[Y0, . . . ,Yn/N0, . . . ,Nn], . . . ,Gn [Y0, . . . ,Yn/N0, . . . ,Nn]] vV [Y0, . . . ,Yn]

Finally, by the definition of vectorial refinement (Definition 5.1), this refinement is valid
if the refinement holds for each corresponding element in both vectors. This justifies
our syntactic sugaring for proving refinements on mutually recursive systems, which is
summarised in the theorem below.

Theorem D.1 (Refinement on Mutually Recursive Actions) For a given vector
of actions SS defined in the form SS =̂ [N0, . . . ,Nn], where Ni =̂ Fi(N0, . . . ,Nn):

SS vA [Y0, . . . ,Yn] ⇐

F0[Y0, . . . ,Yn/N0, . . . ,Nn] vA Y0,
. . . ,
Fn [Y0, . . . ,Yn/N0, . . . ,Nn] vA Yn

In order to prove that a vector of actions SS as defined above is refined by a vector of
actions [Y0, . . . ,Yn], it is enough to show that, for each action Ni in SS , we can prove
that its definition Fi , if we replace N0, . . . ,Nn with Y0, . . . ,Yn in Fi , is refined by Yi . q

Back to the Simple Example The refinement we need to prove is the following.

SS vV [(SlS .1 ‖ SrS .1), (SlS .2 ‖ SrS .2)]

By the definition of SlS and SrS , it can be rewritten as SS vV [Nl1 ‖ Nr1 ,Nl2 ‖ Nr2]. Our
refinement strategy, however, gives us the following proving obligations for this refinement.

SS vV [Nl1 ‖ Nr1 ,Nl2 ‖ Nr2]
⇐ [TheoremD .1]
[1]G0[Nl1 ‖ Nr1 ,Nl2 ‖ Nr2/N0,N1] vA Nl1 ‖ Nr1

and
[2]G1[Nl1 ‖ Nr1 ,Nl2 ‖ Nr2/N0,N1] vA Nl2 ‖ Nr2

These proofs, however, can now be proved separately. We prove the refinement of G0.

220 D Refinement of Mutually Recursive Actions

This proof starts by applying the definition of G0 and the substitution.

[1]
G0[Nl1 ‖ Nr1 ,Nl2 ‖ Nr2/N0,N1] vA Nl1 ‖ Nr1

= [Definition of G0]
(a → SExp1;N0 2 b → N1)[Nl1 ‖ Nr1 ,Nl2 ‖ Nr2/N0,N1]
= [Definition of Substitution]
a → SExp1;(Nl1 ‖ Nr1) 2 b → (Nl2 ‖ Nr2)

Next, we distribute the schemas over the parallelism as follows.

= [C .73]
a → (Nl1 ‖ (SExp1;Nr1)) 2 b → (Nl2 ‖ Nr2)

Then, as channels a and b are in the synchronisation channel set, we may apply the
distribution of prefix over parallelism law.

= [C .106]
((a → Nl1) ‖ (a → SExp1;Nr1)) 2 ((b → Nl2) ‖ (b → Nr2))

Since the initial events of all the actions involved are in the synchronisation channel set,
we may apply the exchange of parallelism and external choice law.

= [C .85]
(a → Nl1 2 b → Nl2) ‖ (a → SExp1;Nr1 2 b → Nr2)

By definition, we conclude our proof.

= [Definition of Nl1 and Nr1]
Nl1 ‖ Nr1

The second proof obligation ([2]) can be proved in a very similar way. q

Glossary

−, 32
Ab

c , 33
#, 103, 137
n , 147
vA, 71
≤, 32
¹, 72
∧Ξ, 44
let in , 147
vP , 71
vV , 114
∗, 21
+, 22
t .n, 50

AlarmStage, 102
α, 10
AreaId , 102
ArrayDim, 152
ArrayDimSync, 146
ASM, 2

B, 185
BaseCase, 148

C1, 45
C2, 45
C3, 45
Cases, 138
CCS, 2
ChanUseSubst , 161
Circus, 3, 21
CJType, 152
composable, 48
CSP, 2
CSP1, 34

CSP2, 34
CSP3, 34

DeclAxDefCls, 145
DeclCs, 138
DeclLcCopies, 138
∆, 7
δ, 36, 132, 134
DFV , 10
doC , 35
−C, 51
C, 50

ExIC , 138
ExtChans, 142

FaultId , 102
¹, 37
fst , 148
∀, 51
FV , 10

GenericInst , 152

H1, 55
H2, 56
head , 75
HidCC , 135
homogeneous, 48

I, 187
ICAtt , 137
ILcCopies, 139
inα, 28
initials, 81
½, 48
InstActions, 141

222 GLOSSARY

InstArray , 152
InstArraySync, 147
InstProcs, 145
∼, 57
ι, 133, 134

J , 34
JCSP, 129
JExp, 133
JType, 133

λ, 134, 136
LampId , 102
last , 36, 148
LcCopiesArgs, 138

Max , 148
MergeVars, 139
Min, 148
Mode, 102
MSyncDCSubst , 161

ν, 133, 134

ω, 134, 158
one, 62
OnOff , 102
outα, 28
⊕, 50

P1.Act , 71
P1.State, 71
ParArgs, 135
ParDecl , 134
7→, 47

R1, 32
R2, 32
R3, 32
RAISE, 3
R, 32
(| |), 63
RenVars, 139
replace, 153
RSL, 174
RunRec, 140

SC , 146
Schema ′, 7
snd , 36, 148
set comprehension, 49
StateDecl , 135
SwitchMode, 102
Sync, 35
SystemState, 102

tail , 148
τ , 133, 134
TCOZ, 170
θ, 9
trd , 148
two, 62
TypeInstSync, 148

UDFV , 10
usedC , 81
usedV , 79
UTP, 3, 27

ς, 134, 146
VDM, 2
VisCArgs, 135
VisCDecl , 135

wrtV , 79

Ξ, 9

ZoneId , 102
ZRC, 2

Bibliography

[1] ProofPower. At http://www.lemma-one.com/ProofPower/index/index.html.

[2] PVS. At http://pvs.csl.sri.com/index.shtml.

[3] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[4] J.-R. Abrial. B#: toward a synthesis between Z and B. In D. Bert, J. P. Bowen,
S. King, and M. Waldén, editors, ZB, volume 3582 of LNCS, pages 168–177.
Springer-Verlag, 2003.

[5] D. Atiya. Verification of Concurrent Safety-critical Systems: The Compliance No-
tation Approach. PhD thesis, University of York, Department of Computer Science,
York, 2005.

[6] D. Atiya, S. King, and J. C. P. Woodcock. A Circus semantics for Ravenscar
protected objects. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FM 2003: 12th
international FME Symposium, volume 2805 of LNCS, Pisa, 2003. Springer-Verlag.

[7] B-Core. B-Core’s Website, 2002. http://www.b-core.com.

[8] R. J. R. Back. On The Correctness of Refinement Steps in Program Development.
PhD thesis, Department of Computer Science, University of Helsinki, 1978. Report
A-1978-4.

[9] R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25:593–624, 1988.

[10] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized
control. In PODC ’83: second annual ACM symposium on principles of distributed
computing, pages 131–142, New York, USA, 1983. ACM Press.

[11] R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms. Science of
Computer Programming, 13(2–3):133–180, 1990.

[12] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of
interfaces. In Model Checking Software: 8th International SPIN Workshop, pages
103–122, Toronto, Canada, 2001.

224 BIBLIOGRAPHY

[13] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL a tool
suite for automatic verification of real-time systems. In Proceedings of the DI-
MACS/SYCON workshop on Hybrid systems III : verification and control, pages
232–243, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

[14] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.

[15] P. H. M. Borba, A. C. A. Sampaio, A. L. C. Cavalcanti, and M.L. Cornélio. Algebraic
reasoning for object-oriented programming. Science of Computer Programming,
52:53–100, 2004.

[16] P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A refinement algebra
for object-oriented programming. In L. Cardelli, editor, ECOOP 2003: European
Conference on Object-oriented Programming 2003, volume 2743 of LNCS, pages
457–482. Springer-Verlag, 2003.

[17] E. Börger and R. F. Stärk. Abstract State Machines–A Method for High-Level
System Design and Analysis. Springer-Verlag, 2003.

[18] M. J. Butler. An approach to the design of distributed systems with B AMN. In
ZUM ’97: Proceedings of the 10th International Conference of Z Users on The Z
Formal Specification Notation, pages 223–241, London, 1997. Springer-Verlag.

[19] M. J. Butler. csp2B: a practical approach to combining CSP and B. Formal Aspects
of Computing, 12(3):182–198, 2000.

[20] M. J. Butler and M. Waldén. Distributed System Development in B. Technical
Report TUCS-TR-53, 1996.

[21] D. Carrington, D. Duke, R. Duke, P. King, G. A. Rose, and G. Smith. Object-Z:
an object-oriented extension to Z. Formal Description Techniques, II (FORTE’89),
pages 281–296, 1990.

[22] A. L. C. Cavalcanti. A Refinement Calculus for Z. PhD thesis, Oxford University
Computing Laboratory, Oxford, 1997. Technical Monograph TM-PRG-123, ISBN
00902928-97-X.

[23] A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. Control law diagrams in Circus.
In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods
Symposium, volume 3582 of LNCS, pages 253–268. Springer-Verlag, 2005.

[24] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. Unifying classes and
processes. Journal of Software and Systems Modeling, 4(3):277–296, 2005.

[25] A. L. C. Cavalcanti and A. C. A. Sampaio. From CSP-OZ to Java with processes. In
8th Asia-Pacific Software Engineering Conference (APSEC 2001), 2001. Submitted.

BIBLIOGRAPHY 225

[26] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Refinement of
actions in Circus. In Proceedings of REFINE’2002, Electronic Notes in Theoretical
Computer Science, 2002. Invited Paper.

[27] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

[28] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes
and Processes. Software and System Modelling, 4(3):277–296, 2005.

[29] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A refinement calculus for Z.
Formal Aspects of Computing, 10(3):267–289, 1999.

[30] A. L. C. Cavalcanti and J. C. P. Woodcock. A weakest precondition semantics for
Circus. In Proceedings of Communicating Processing Architectures 2002. Concurrent
Systems Engineering, IOS Press, 2002.

[31] A. L. C. Cavalcanti and J. C. P. Woodcock. A tutorial introduction to CSP in
Unifying Theories of Programming. In Proceedings of the Pernambuco Summer
School on Software Engineering: Refinement 2004, 2004.

[32] A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic nondeterminism and Uni-
fying Theories of Programming. Technical Report 13-04, Computing Laboratory,
University of Kent, June 2004.

[33] A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic nondeterminism and Unifying
Theories of Programming . In J. Derrick and E. Boiten, editors, REFINE 2005,
volume 137 of Eletronic Notes in Theoretical Computer Science. Elsevier, 2005.

[34] J. Davies and S. Schneider. A Brief History of Timed CSP. In MFPS ’92: Selected
papers of the meeting on Mathematical foundations of programming semantics, pages
243–271, Amsterdam, 1995. Elsevier Science Publishers B. V.

[35] J. Derrick and G. Smith. Structural refinement in Object-Z/CSP. In W. Grieskamp,
T. Stanten, and B. Stoddart, editors, Integrated Formal Methods (IFM 2000), vol-
ume 1945 of LNCS, pages 194–213. Springer, November 2000.

[36] E. W. Dijkstra. Notes on Structured Programming, chapter 1, pages 1–82. Academic
Press, 1972.

[37] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[38] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1989.

[39] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), volume 2, pages 423–438. Chapman & Hall, 1997.

226 BIBLIOGRAPHY

[40] C. Fischer. How to combine Z with a process algebra. In J. Bowen, A. Fett, and
M. Hinchey, editors, ZUM ’98: Proceedings of the 11th International Conference
of Z Users on The Z Formal Specification Notation, pages 5–23. Springer-Verlag,
1998.

[41] C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, Fachbereich Informatik, Universität Oldenburg, 2000.

[42] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Proceed-
ings of Symposia in Applied Mathematics, volume 19 of Mathematical Aspects of
Computer Science, pages 19–32. American Mathematical Society, 1967.

[43] Formal Systems (Europe) Ltd. FDR: User Manual and Tutorial, version 2.82, 2005.

[44] A. Freitas. From Circus to Java: Implementation and Verification of a Translation
Strategy. Master’s thesis, Department of Computer Science, The University of York,
2005. Submitted.

[45] L. Freitas. Model-checking Circus. PhD thesis, Department of Computer Science,
The University of York, 2005. Submitted.

[46] A. Galloway. Integrated Formal Methods with Richer Methodological Profiles for the
Development of Multi-perspective Systems. PhD thesis, School of Computing and
Mathematics, University of Teeside, 1996.

[47] A. Galloway and B. Stoddart. An operational semantics for ZCCS. In ICFEM
’97: Proceedings of the 1st International Conference on Formal Engineering Meth-
ods, page 272, Washington, DC, USA, 1997. IEEE Computer Society.

[48] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF . volume 78 of LNCS.
Springer-Verlag, 1979.

[49] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

[50] The RAISE Language Group. The RAISE Specification Language. Prentice-Hall,
1992.

[51] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating Java
threads. In W. P. Andrè Bakkers, editor, Proceedings of WoTUG-20: Parallel
Programming and Java, pages 48–76, 1997.

[52] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[53] C. A. R. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of programming. Communi-
cations of the ACM, 30(8):672–686, 1987.

BIBLIOGRAPHY 227

[54] C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

[55] J. Hoenicke and E.-R. Olderog. Combining specification techniques for processes,
data and time. In M. J. Butler, L. Petre, and K. Sere, editors, IFM 2002: Integrated
Formal Methods, Third International Conference, volume 2335 of LNCS, pages
245–266. Springer, May 2002.

[56] H. Jifeng, C. A. R. Hoare, and J. W. Sanders. Data Refinement Refined. In G. Goos
and H. Hartmants, editors, ESOP’86 European Symposium on Programming, vol-
ume 213 of LNCS, pages 187–196, March 1986.

[57] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-
tional, 2nd edition, 1990.

[58] G. Jones and M. Goldsmith. Programming in occam 2. Prentice-Hall, 1988.

[59] L. Lai and J. W. Sanders. A refinement calculus for communicating processes with
state. In Gerard O’Regan and Sharon Flynn, editors, 1st Irish Workshop on Formal
Methods, Workshops in Computing. BCS, July 1997.

[60] B. P. Mahony and J. S. Dong. Blending object-Z and timed CSP: an introduction to
TCOZ. In The 20th International Conference on Software Engineering (ICSE’98),
pages 95–104. IEEE Computer Society Press, 1998.

[61] B. P. Mahony and J. S. Dong. Deep semantic links of TCSP and object-Z: TCOZ
approach. Formal Aspects of Computing, 13(2):142–160, 2002.

[62] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[63] C. Morgan. Programming from Specifications. Prentice-Hall, 1994.

[64] C. Morgan and P. H. B. Gardiner. Data refinement by calculation. Acta Informatica,
27(6):481–503, 1990.

[65] J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming
Calculus. Science of Computer Programming, 9(3):287–306, 1987.

[66] A. C. Mota and A. C. A. Sampaio. Model-checking CSP-Z. In E. Astesiano,
editor, Proceedings of FASE’98, Held as Part of the ETAPS’98: European Joint
Conference on Theory and Practice of Software, volume 1382 of LNCS, pages 205–
220. Springer, March 1998.

[67] G. Nuka and J. C. P. Woodcock. Mechanising the alphabetised relational calculus.
In WMF2003: 6th Braziliam Workshop on Formal Methods, volume 95, pages 209–
225, Campina Grande, Brazil, October 2004.

[68] G. Nuka and J. C. P. Woodcock. Mechanising a unifying theory. In First Interna-
tional Symposium on Unifying Theories of Programming, LNCS. Springer-Verlag,
2006. To Appear.

228 BIBLIOGRAPHY

[69] E. R. Olderog. Towards a design calculus for communicating programs. In
J. C. M. Baeten and J. F. Groote, editor, CONCUR’91: Proc. of the 2nd In-
ternational Conference on Concurrency Theory, pages 61–77. Springer, Berlin, Hei-
delberg, 1991.

[70] M. V. M. Oliveira. ArcAngel: a Tactic Language for Refinement and its Tool Sup-
port . Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco,
Pernambuco, Brazil, 2002. At http://www.ufpe.br/sib/.

[71] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Cir-
cus – Additional Material, 2006. At http://www.cs.york.ac.uk/circus/refinement-
calculus/oliveira-phd/.

[72] M. V. M. Oliveira and A. L. C. Cavalcanti. Tactics of refinement . In 14th Brazilian
Symposium on Software Engineering, pages 117–132, 2000.

[73] M. V. M. Oliveira and A. L. C. Cavalcanti. From Circus to JCSP. In J. Davies et
al., editor, Sixth International Conference on Formal Engineering Methods, volume
3308 of LNCS, pages 320–340. Springer-Verlag, November 2004.

[74] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAngel: a Tactic
Language for Refinement. Formal Aspects of Computing, 15(1):28–47, 2003.

[75] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining industrial
scale systems in Circus. In Ian East, Jeremy Martin, Peter Welch, David Duce, and
Mark Green, editors, Communicating Process Architectures, volume 62 of Concur-
rent Systems Engineering Series, pages 281–309. IOS Press, 2004.

[76] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Formal development
of industrial-scale systems. Innovations in Systems and Software Engineering—A
NASA Journal, 1(2):125–146, 2005.

[77] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying theo-
ries in ProofPower-Z. In First International Symposium on Unifying Theories of
Programming, LNCS. Springer-Verlag, 2006. To Appear.

[78] C. Pahl. Towards an action refinement calculus for abstract state machines. In
Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, International Workshop
on Abstract State Machines, pages 326–340. Springer-Verlag, March 2000.

[79] S. C. Qin, J. S. Dong, and W. N. Chin. A semantic foundation of TCOZ in Unifying
Theories of Programming. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME
2003: Formal Methods, volume 2805 of LNCS, pages 321–340. Springer-Verlag,
September 2003.

[80] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

BIBLIOGRAPHY 229

[81] A. W. Roscoe and C. A. R. Hoare. The Laws of Occam Programming. Technical
Report PRG-53, Computing Laboratory, Oxford University, 1986.

[82] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through Deter-
minism. In D. Gollmann, editor, ESORICS 94, volume 1214 of LNCS, pages 33–54.
Springer-Verlag, 1994.

[83] M. Saaltink. The Z/EVES System. In J. P. Bowen, M. G. Hinchey, and D. Till,
editors, ZUM’97: The Z Formal Specification Notation, volume 1212 of LNCS,
pages 72–85, Reading, April 1997. Springer-Verlag.

[84] A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in Circus.
In L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal Methods—Getting IT
Right, volume 2391 of LNCS, pages 451–470. Springer-Verlag, 2002.

[85] S. Schneider and H. Treharne. Communicating B machines. In ZB ’02: Proceedings
of the 2nd International Conference of B and Z Users on Formal Specification and
Development in Z and B, pages 416–435. Springer-Verlag, 2002.

[86] A. Sherif and H. Jifeng. Towards a time model for Circus. In C. George and H. Miao,
editors, Formal Methods and Software Engineering: 4th International Conference
on Formal Engineering Methods, ICFEM 2002, volume 2495 of LNCS, pages 613–
624. Springer-Verlag, June 2002.

[87] G. Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems specified in Object-Z and CSP. In J. Fitzgerald, C. B. Jones,
and P. Lucas, editors, Proceedings of FME’97, volume 1313 of LNCS, pages 62–81.
Springer-Verlag, 1997.

[88] G. Smith. The Object-Z specification language. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

[89] G. Smith and J. Derrick. Refinement and verification of concurrent systems specified
in Object-Z and CSP. In M. Hinchey and Shaoying Liu, editors, ICFEM’97: First
IEEE International Conference on Formal Engineering Methods, pages 293–302.
IEEE Computer Society, November 1997.

[90] G. Smith and J. Derrick. Specification, refinement and verification of concurrent
systems—an integration of Object-Z and CSP. Formal Methods in Systems Design,
18:249–284, May 2001.

[91] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

[92] B. Stoddart. An Introduction to the Event Calculus. In Jonathan P. Bowen,
Michael G. Hinchey, and David Till, editors, ZUM ’97: The Z Formal Specifica-
tion Notation, 10th International Conference of Z Users, volume 1212 of LNCS,
pages 10–34, Reading, April 1997. Springer.

230 BIBLIOGRAPHY

[93] K. Taguchi and K. Araki. The state-based CCS semantics for concurrent Z spec-
ification. In M. Hinchey and Shaoying Liu, editors, International Conference on
Formal Engineering Methods, pages 283–292. IEEE, 1997.

[94] X. Tang and J. C. P. Woodcock. Towards mobile processes in Unifying Theories. In
Jorge R. Cuellar and Zhiming Liu, editors, 2nd IEEE International Conference on
Software Engineering and Formal Methods, pages 310–319. IEEE Computer Society
Press, September 2004.

[95] H. Treharne and S. Schneider. Using a process algebra to control B operations. In
K. Araki, A. Galloway, and K. Taguchi, editors, Proceedings of the 1st International
Conference on Integrated Formal Methods, pages 437–456. Springer, June 1999.

[96] H. Treharne and S. Schneider. How to drive a B machine. In ZB ’00: Proceedings
of the First International Conference of B and Z Users on Formal Specification and
Development in Z and B, pages 188–208, London, 2000. Springer-Verlag.

[97] K. R. Wagner, M. Nielsen, K. Havelund, and C. George. The RAISE Language,
Method and Tools. In VDM ’88 VDM—The Way Ahead, pages 376–405, 1988.

[98] P. H. Welch. Process oriented design for Java: concurrency for all. In H. R. Arab-
nia, editor, Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2000), volume 1, pages 51–57.
CSREA Press, June 2000.

[99] P. H. Welch, G. S. Stiles, G. H. Hilderink, and A. P. Bakkers. CSP for Java: multi-
threading for all. In B. M. Cook, editor, Architectures, Languages and Techniques
for Concurrent Systems, volume 57 of Concurrent Systems Engineering Series. IOS
Press, April 1999.

[100] N. Wirth. Program development by stepwise refinement. Communications of the
ACM, 14(4):221–227, 1971.

[101] J. C. P. Woodcock. Using Circus for Safety-Critical Applications. In VI Brazilian
Workshop on Formal Methods, pages 1–15, Campina Grande, Brazil, 12th–14st
October 2003.

[102] J. C. P. Woodcock and A. L. C. Cavalcanti. A concurrent language for refinement.
In A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish Workshop in Formal
Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July 2001.

[103] J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refinement lan-
guage. Technical report, Oxford University Computing Laboratory, Wolfson Build-
ing, Parks Road, Oxford OX1 3QD UK, July 2001.

[104] J. C. P. Woodcock and A. L. C. Cavalcanti. The steam boiler in a unified theory of
Z and CSP. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001).
IEEE Press, 2001.

BIBLIOGRAPHY 231

[105] J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of Circus. In D. Bert, J. P.
Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specification and
Development in Z and B, volume 2272 of LNCS, pages 184–203. Springer-Verlag,
2002.

[106] J. C. P. Woodcock, A. L. C. Cavalcanti, and L. Freitas. Operational semantics
for model-checking Circus. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors,
FM 2005: Formal Methods, volume 3582 of LNCS, pages 237–252. Springer-Verlag,
2005.

[107] J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

[108] J. C. P. Woodcock, J. Davies, and C. Bolton. Abstract Data Types and Processes. In
A. W. Roscoe J. Davies and J. C. P. Woodcock, editors, Millennial Perspectives in
Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium in Honour
of Sir Tony Hoare, pages 391–405. Palgrave, 2000.

[109] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276, 1991.

In memoriam
My dear uncle Herbert Lêda

P 22/07/1954 - > 21/10/2005

