Extending CRefine to Support Tactics of
Refinement

M. S . C. Filho and M. V. M. Oliveira

Universidade Federal do Rio Grande do Norte — Brazil
madielfilho@gmail.com, marcel@dimap.ufrn.br

Abstract. Circus is a formal language, which is used to specify concur-
rent systems using concepts from Z and CSP. It has a refinement calculus,
which can be used to develop software in a precise and stepwise fashion.
Each step is justified by the application of a refinement law (possibly with
the discharge of proof obligations). Sometimes, the same laws can be ap-
plied in the same manner in different developments or even in different
parts of a single development. A strategy to optimize this calculus is to
formalise this application as a refinement tactic, which can then be used
as a single transformation rule. CRefine was developed to support the
Circus refinement calculus. However, before the work presented here, it
did not provide support for refinement tactics. This paper presents a new
module in CRefine, which automates the process of defining and applying
refinement tactics that are formalised in the tactic language ArcAngelC.
Furthermore, we validate the extension by applying the new module in
a case study, which consists in a refinement strategy for verification of
SPARK Ada implementations of control systems.

Keywords: Refinement Calculus, Tactic, Tool Support, Circus.

1 Introduction

Circus [2] is a formal language which can be used to specify concurrent and reac-
tive systems. It is a combination of Z [12] and CSP [11]: the former cares about
the data aspects of sequential systems and the latter is specific to concurrent
systems and defines the concurrent behaviour of the system. Besides the spe-
cification of data and behavioural aspects of concurrent systems, Circus has a
refinement calculus. This calculus consists of repeated application of refinement
laws to an initial abstract specification to produce a concrete specification. Using
a refinement calculus, programs can be developed correctly in a stepwise fashion.
Each step is an application of a refinement law, which might be valid only under
certain conditions that need to be proved.

Sometimes, the same laws are applied in the same manner in various develop-
ments or even in different parts of a single development. A strategy to optimize
this calculus is to formalise these applications as refinement tactics, which can
then be used as single transformation rules.

The manual development using a refinement calculus is a hard and error-
prone task because it encompasses many refinement laws in mostly long and



repetitive developments. CRefine [8] was develop to support the application of
the Circus refinement calculus. It automates the management of the development
and its proof obligations, some of which are automatically proved. It is based on
Refine [9], a tool that supports Morgan’s refinement calculus [6] for sequential
programs. However, the current version of CRefine does not provide support for
the definition and use of refinement tactics.

This paper presents an extension to CRefine that consists of a new module
that allows the definition and application of refinement tactics. The tactic lan-
guage supported is ArcAngelC [10], a refinement tactic language for Circus pro-
grams that is similar to the tactic language for sequential programs ArcAngel [7].
Both tactic languages are based on the general tactic language Angel [5]. ArcAn-
gelC main difference to ArcAngel is the possibility of defining tactics that can
be applied to Circus actions, processes and programs. ArcAngel tactics can only
be applied to sequential programs. ArcAngelC has a formal semantics, which is
based on ArcAngel’s semantics, but adds some generality to support all extra
Circus structural combinators.

The next section presents the new module of CRefine that supports use of
refinement tactics. Section 3 presents the use of CRefine and its extension in a
case study. Finally, in Section 4 we make our final considerations and discuss
future work.

2 CRefine extension

CRefine was developed to support the Circus refinement calculus by automating
the management of the overall development. Its main function is to apply refi-
nement laws, sometimes with the discharge of proof obligations (hereafter called
POs). Some of the POs are discharged automatically.

CRefine GUT has a menu and three main frames [8]. The first frame displays
all the refinement steps of the development. The current result of the refinement
process is displayed in a second frame. Finally, the last frame lists all POs that
have been generated in the development and marks them as valid (automatic
proof), invalid, or unknown. POs marked as unknown need to be verified by the
user.

Using CRefine the user starts with the W TEX document that contains the abs-
tract specification and repeatedly applies refinement laws. The law application
consists of selecting the term in the development frame, and choosing an applica-
ble law in the pop-up menu list. Some law applications requires arguments that
are also given by the user. Afterwards, the law is automatically applied: CRefine
updates all frames based on the result of the application.

For optimisation purposes, we developed a module in CRefine that makes
it possible to create tactics and use them in a program development. This was
achieved by adding some new functionalities that we describe in the sequel.



2.1 Using Tactics

CRefine’s GUI was modified to allow the use of refinement tactics. The changes
include the addition of a new item to the menu, ArcAngelC, which gives access
to a tactic editor in which users can create, edit and delete tactics.

The user creates a tactic using the tactics editor. The tactics are written
in BTEX and compiled within the editor (specific WTEX commands are used
for ArcAngel’s constructs). The successful compilation results in the addition of
the tactic to CRefine; the tactic may then be used as a single transformation
rule. Using the editor, tactics may also be edited. Finally, we can also remove a
previously created tactic.

Tactic application can be achieved in the same way as for law applica-
tion: term selection followed by the tactic selection, possibly with the input
of tactic arguments. If the tactic application succeeds, all frames are updated.

2.2 CRefine’s Architecture

The extension to the original architecture of CRefine [8] did not require inte-
gration with any further external frameworks. However, new components were
added to the tool’s architecture.

In our extension, we added the module Tactics, which is responsible for
creating and applying refinement tactics. In this new module, we added an Ar-
cAngel C parser that directly follows the ArcAngelC syntax. The package Apply
provides support for tactics application. Each ArcAngel C construct was transfor-
med into a Java class that inherits (possibly indirectly) from TacticComponent,
an abstract class with a single method, apply. Most of the classes implement
this method following directly the ArcAngel C semantics [10]. The only exception
is the recursive tactic as we explain in the sequel.

For pragmatic reasons, we introduce a tactical for recursive tactics that im-
poses an upper limit of unfoldings that are performed. The tactical y , monitors
the number of iterations performed, behaves like abort if a certain threshold n
is reached. If we do not want to treat non-termination as an abnormal case, but
use it to control the behaviour of other tactics, the alternative tactical u yields
failure rather than abortion when exceeding the threshold.

The user might create his own tactics. For that, he writes the tactic using the
specific editor and compiles it. Internally, this compilation involves the parsing
and further verification like the existence of the refinement laws used and the
validity of the tactic declaration and arguments used. Finally, if the compilation
is successful, the system stores the tactic and sends a successful message to the
GUI Otherwise, an error message is shown.

The tactic application starts with the user selecting a term. The Tactic mo-
dule provides CRefine with a list of tactics that is displayed to the user along
with the laws that are applicable to the term selected. If a tactic is chosen,
the method apply of the tactic is invoked using the selected term as argument.
Each implementation of the method apply, verifies if the selected term fits the
structure expected by the tactic. For instance, the Java class that corresponds



Kd

Derivativ
X
Dife
T sd

D

Fig. 1. PID (Proportional Integral Derivative) controller and Differentiator

to the tactic tltg verifies if the selected term is a sequential composition of
either Circus actions or processes. If this is the case, the tactics #; and ¢, are
applied to each part of the sequential composition. The result is used by CRefine
to update all CRefine’s frames accordingly. If the selected term is not a sequential
composition, the tactic application fails; this is informed to the user.

The extension presented here required the implementation of 78 classes in
the presentation and data layers. The management layer was also extended with
further 84 new methods that provide support for tactic application following
CRefine’s initial architecture.

3 Case Study

Control systems are often used in safety-critical applications and their verifica-
tion has been of great interest. In [1] is presented an approach in which they
aim at proof of correctness of code, as opposed to validation of requirements or
designs. They give a semantics to discrete-time Simulink diagrams using Circus,
and propose a verification technique for parallel Ada implementations.

A simple example of a Simulink diagram is presented in Figure 1; it contains
a PID (Proportional Integral Derivative) controller, a generic control loop feed-
back mechanism that attempts to correct the error between a measured process
variable and a desired set-point by calculating and then outputting a corrective
action that can adjust the process accordingly.

Control systems present a cyclic behaviour. In [1] consider discrete-time mo-
dels, in which inputs and outputs are sampled at fixed intervals. The inputs
and outputs are represented by rounded boxes containing numbers. In this case
study, there are four inputs, E, Kp, Ki, and Kd, and one output, Y.

Typically, a block takes input signals and produces outputs according to its
characteristic function. For instance, the circle is a sum block, and boxes with a
x symbol model a product. There are libraries of blocks in Simulink, and they
can also be user-defined. Boxes enclosing names are subsystems; they denote
control systems defined in subordinated diagrams of the model.

In the Circus model of the diagram, each block is represented by a process,
and the diagram by a parallel composition of such processes. A more detailed
account of this model and the full example are given in [10]. We formalize the first



two phases: NB and BJ in [10]. In this formalisation, we split each phase of the
strategy into small steps. For instance, the phase NB is split into steps NBStepl
to NBStep8. Using CRefine, we mechanised the first phase, NB, and applied it to
all blocks of the case study. The NB phase refines each of the blocks by rewriting
their main action to a normal form. It removes the parallelism between the
actions that model the flows of execution, Flows, and the state update, StUpdt,
and promotes the local variables of the main action to state components.

The tactic NB includes 31 tactics. The overall application of the tactic has
184 refinement law applications. The result was accomplished in 7 seconds in
a Core 2 Duo machine with 4GB of RAM. The tactic application generated 76
POs; 70 were automatically discharged.

4 Conclusion

In this paper, we present an extension to CRefine, a tactic module, that al-
lows the definition and use of refinement tactics in a program development as a
single transformation rule. CRefine tactics are defined using a refinement-tactic
language for Circus programs, ArcAngelC.

The extension of CRefine has been validated using a industrial case study,
which consists in the application of a refinement strategy to verify SPARK Ada
programs with respect to Simulink diagrams using Circus. We mechanised the
first phase of this strategy, NB and applied to all components of the PID con-
troller. This case study involved 17 ArcAngel C constructs including basic tactics,
tacticals, various structural combinators, and program tactics. The remaining 22
constructs have been tested with unit tests.

Our case study was proposed by QinetiQ, and its implementation is repre-
sentative of the architectural pattern used for the development of their safety-
critical applications in avionics. The verification process adopted by QinetiQ
already uses Z and CSP independently to check different aspects of these sys-
tems, namely, functionality and scheduling, separately. Circus and the refinement
strategy that we formalise allows the verification of those aspects as part of a
single formal argument. The refinement technique was developed in conjunction
with QinetiQ. With the use of Circus, we have managed to enlarge the set of
properties and systems that can be checked, without increasing the proof bur-
den, and therefore, the costs. QinetiQ intends to use our strategy (and tools) in
the verification of some of their safety-critical systems.

Future Work. We are currently working on the mechanisation of the tactic that
corresponds to the phase BJ of the refinement strategy discussed here. This tactic
will involve over 45 tactics and dozens of law applications. The current tactic
editor accepts only ascii characters; users must type the corresponding ETEX
commands to create and edit their tactics. In a near future, we intend to provide
a Unicode editor in which users may use the non-ascii symbols of ArcAngelC,
like for instance, the structural combinators.

CRefine intends to be part of a development framework for Circus users. That
means that using CRefine, users will be able to develop executable code from an



abstract Circus specification. For that, an integration of all Circus tool initiatives
is needed. Besides CRefine, the Circus model-checker and theorem prover [4],
the Circus type-checker [13], an improved version of the Circus code generator
presented in [3], and a Circus animator currently under development will be part
of the Circus framework. This integration will provide Circus with a complete
IDE that will foster the use of Circus for software and hardware development.

Acknowledgments

Alessandro Gurgel has originally worked on CRefine and helped to solve some
issues related to the tool’s extension. Leo Freitas has provided some insights
related to the CZT. INES and CNPq partially supports the work of the Mar-
cel Oliveira: grants 573964 /2008-4, 476836,/2009-3, 560014/2010-4. The work of
Madiel is supported by CAPES.

References

1. A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. From Control Law Diagrams
to Ada via Circus. Formal Aspects of Computing, 2011. Online first.

2. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2-3):146-181, 2003.

3. A.F. Freitas and A. L. C. Cavalcanti. Automatic Translation from Circus to Java.
In FM 2006: Formal Methods, pages 115 — 130, 2006.

4. L. Freitas, A. L. C. Cavalcanti, and J. C. P. Woodcock. Taking our own medicine:
Applying the refinement calculus to state-rich refinement model checking. In 8th
International Conference on Formal Engineering Methods, ICFEM 2006.

5. A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus.

Formal Aspects of Computing, 8(4):479-489, 1996.

C. Morgan. Programming from Specifications. Prentice-Hall, 1994.

7. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAngel: a Tactic
Language for Refinement. Formal Aspects of Computing, 15(1):28-47, 2003.

8. M. V. M. Oliveira, A. C. Gurgel, and C. G. de Castro. CRefine: Support for the
Circus Refinement Calculus. In 6th IEEE International Conferences on Software
Engineering and Formal Methods, 2008.

9. M. V. M. Oliveira, M. Xavier, and A. L. C. Cavalcanti. Refine and gabriel: Support
for refinement and tactics. In Jorge R. Cuellar and Zhiming Liu, editors, 2nd IEEE
International Conference on Software Engineering and Formal Methods, pages 310—
319. IEEE Computer Society Press, Sep 2004.

10. M. V. V. Oliveira, F. Zeyda, and A. L. C. Cavalcanti. A tactic language for refi-
nement of state-rich concurrent specifications. Science of Computer Programming,
76(9):792 — 833, 2011.

11. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

12. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

13. M. A. Xavier, A. L. C. Cavalcanti, and A. C. A. Sampaio. Type Checking Circus
Specifications. In A. M. Moreira and L. Ribeiro, editors, SBMF 2006: Brazilian
Symposium on Formal Methods, pages 105 — 120, 2006.

o



