
A Formal Model for the SCJ Level 2 Paradigm

Matt Luckcuck

Department of Computer Science, University of York,
York, YO10 5GH, UK

ml881@york.ac.uk

1 Introduction

Safety-Critical Java (SCJ) [12] is the product of an international effort to pro-
vide a Java-based language for applications that must be certified using the
avionics standard ED-12C/DO-178C [4] at Level A, which defines software that
would prevent continuous safe flight and landing in the event of failure. To
aid certification, SCJ is organised into three compliance levels that ascend in
complexity from Level 0 to Level 2.

The SCJ standard does not cover verification techniques. Verification has
been addressed and results obtained for Level 1, but not Level 2. We focus on
providing verification for SCJ Level 2 programs. SCJ Level 2 has received little
attention from practitioners and researchers, even its intended uses are unclear
from the standard, and in [14] we present the first examination of the uses of
its features and present example applications for Level 2.

The SCJ API ensures a hierarchical program structure and supports several
real-time execution abstractions. SCJ programs are centred around missions,
which each contain several real-time tasks that perform a particular function.
Uniquely for SCJ, a Level 2 program may have many concurrent missions, which
allows Level 2 programs to adopt more complex structures than those at the
other two compliance levels. Tasks from any active mission may preempt each
other, based on their priorities; there is no assumption that tasks from a partic-
ular mission have precedence. Level 2 tasks may use all four SCJ execution pat-
terns: periodic, aperiodic, run-once after a time offset, and run-to-completion.
Finally, Level 2 programs may use the familiar Java suspension features.

Our work makes three contributions to the state of the art on verification
of SCJ Level 2 programs. Firstly, we model the SCJ Level 2 paradigm using
the state-rich process algebra Circus [15]. Our model can be used to identify
potential errors in the programs that it represents. Circus combines Z [10] for
modelling state, CSP [7] for modelling behaviour, and Morgan’s refinement cal-
culus [9]. A Circus program is organised around processes, which may have a
state component to hold variables and actions to perform behaviours. Com-
munication between processes is achieved via CSP channels. Our model uses
features from other members of the Circus family. OhCircus [2] introduces a

1



notion of object orientation and inheritance, and we use features from Circus
Time [13] to specify time budgets and deadlines.

We provide a mechanised translation strategy that enables the automatic
transformation of SCJ Level 2 source code into faithful Circus models. As a
secondary objective, we also provide a strategy for translating our models back
into SCJ programs.

Our second contribution rests on our model capturing the API separately
from the program-specific behaviour. Because of this separation we can show
that the SCJ API does not introduce undesirable behaviour, such as deadlock
or livelock, under the circumstances that we capture.

There is a body of previous work involving Circus and SCJ, including a model
of SCJ Level 1 [16] – upon which our work is based. A refinement strategy [3]
has been devised to transform abstract specifications into concrete specifica-
tions that capture the SCJ paradigm. This refinement strategy facilitates the
development of SCJ programs that are correct by construction.

Our final contribution is that our model provides the refinement strategy [3]
with a target for models of SCJ Level 2. While this refinement strategy is out
of scope for our work, our model enables it to consider Level 2 programs.

Previous approaches to ensuring the safety of SCJ programs include using
annotations to provide run-time checks [11] or to specify checkable program con-
straints [6]. RSJ [8] is a tool that explores all possible schedulings of the threads
within an SCJ program to check for scheduling-dependent errors. However, none
of these techniques are specifically aimed at Level 2.

ABS [1] is an executable specification language that has similar capabilities
to Circus. Both ABS and Circus have an object-oriented model that is similar to
Java’s and capture concurrency. However, Circus contains a notion of refinement
that ABS does not. Refinement is important for our third contribution.

In the next section we describe our model of SCJ and what analysis it fa-
cilities. Finally, in Section 3 we summarise our research and contributions, and
describe the further work needed to complete this research.

2 Model and Translation

We capture the paradigm of SCJ Level 2, agnostically of its implementation in
Java, using two components. The framework model captures the behaviour of
the API classes of SCJ and is reused for each program. Conversely, each program
is represented by an application model that captures its particular behaviour.

The framework and application models both contain a process for each of
the SCJ API classes. The framework processes control the program flow and
hand off to their application counterparts wherever the program runs application
code, including where API methods are overridden.

We capture Java exceptions but only when they indicate a misuse of the
SCJ paradigm, never when they indicate a purely Java problem (such as a null

parameter). If the program uses locking or suspension, then we capture this in
extra elements added to the framework model.

The translation strategy that we are developing contains formal rules that
build the specification of a given program. Our work provides the first formal
semantics of SCJ Level 2. As there is nothing else formal to compare our

2



semantics to, we can not consider its soundness, but it will be validated using
tools and case studies.

A Circus model checker is in development; in the mean time we translate
our Circus model into CSP to validate our specifications using FDR3 [5]. We
animate its behaviour and compare it to that described in the SCJ standard.
We model check it to identify properties (such as deadlock, livelock, and non-
termination) that represent program errors and SCJ-specific problems, such as
Java exceptions that indicate a misuse of the SCJ paradigm. This also gives
us confidence that our model of the SCJ infrastructure is correct and helps to
verify the SCJ API itself, because we model it separately.

Our approach is limited to capturing the behaviour of SCJ programs. We
do not capture use of resources, in particular memory usage. Further, while we
capture time for the purposes of deadline detection, our models cannot be used
to calculate the worst-case execution time of a program.

We have used FDR3 to show that our model of the SCJ infrastructure is free
from program errors, meaning that if our specification of a program exhibits
these errors, then they must arise from the application model. Further, we have
translated several small example applications into our model, by hand, to show
that our model can capture the SCJ Level 2 paradigm. Using FDR3 we have
proved that these examples do no throw exceptions, are free from deadlock and
livelock, and that they terminate.

3 Summary and Further Work

In summary, we model the paradigm of SCJ Level 2 as a combination of a
framework model, that captures the SCJ API, and an application model, that
captures the behaviour of the program being modelled. Our model of SCJ
Level 2 contributes to both top-down development of correct SCJ programs, as
a target for the refinement strategy presented in [3], and to bottom-up develop-
ment of correct SCJ programs, as a tool for the identification of program errors.
Further, it can be used to verify the SCJ API because we capture it separately
in our model.

Our framework model and the skeleton processes for the application model
are both complete. We have modelled several small example programs, to show
that we can capture the common features of the SCJ Level 2 paradigm, and
shown that these examples do not exhibit any undesirable properties.

The remaining work is to formalise the translation of a program into our
model. Translation will then be automated using a tool that will take SCJ
programs as an input and output Circus models. We envisage minor restrictions
on the form of the SCJ programs, similar to those presented in [16]; for example,
each SCJ class should be in its own file. Automatic translation not only validates
our model, but also enables the verification of SCJ Level 2 programs, by allowing
a simple translation to our model to enable model checking. More work on
analysing our model is needed and the basic properties we can already prove
will be augmented by properties that capture SCJ exceptions that indicate a
misuse of the paradigm and application-specific properties.

3



Acknowledgements

This work is funded by the hiJaC project, backed by the EPSRC grant EP/H017461/1.
We would like to thank Ana Cavalcanti, Andy Wellings, Frank Zeyda, Alan
Burns, and Thomas Gibson-Robinson.

References

[1] Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of Executable Software
Models. In: Formal Methods for Executable Software Models, pp. 1–25.
Springer (2014)

[2] Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying Classes and Pro-
cesses. Software & Systems Modeling 4(3), 277–296 (2005), http:

//dx.doi.org/10.1007/s10270-005-0085-2

[3] Cavalcanti, A., Wellings, A., Woodcock, J., Wei, K., Zeyda, F.: Safety-
Critical Java in Circus. In: Proceedings of the 9th International Workshop
on Java Technologies for Real-Time and Embedded Systems. pp. 20–29.
JTRES ’11, ACM, New York, NY, USA (2011), http://doi.acm.org/10.
1145/2043910.2043915

[4] EUROCAE and RTCA: Software Considerations in Airborne Systems and
Equipment Certification. Norm ED-12C, EUROCAE (2012)

[5] Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: Failures
Divergences Refinement (FDR) Version 3 (2013), https://www.cs.ox.ac.
uk/projects/fdr/

[6] Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, a Speci-
fication Language for SCJ with Support for WCET Specification. In: Pro-
ceedings of the 8th International Workshop on Java Technologies for Real-
Time and Embedded Systems. pp. 155–163. JTRES ’10, ACM, New York,
NY, USA (2010), http://doi.acm.org/10.1145/1850771.1850793

[7] Hoare, C.A.R.: Communicating Sequential Processes. http://www.

usingcsp.com/cspbook.pdf (2004)

[8] Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive Test-
ing of Safety-Critical Java. In: Proceedings of the 8th International Work-
shop on Java Technologies for Real-Time and Embedded Systems. pp. 164–
174. JTRES ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/
10.1145/1850771.1850794

[9] Morgan, C.: Programming from Specifications. Prentice-Hall, Inc. (1990)

[10] Spivey, J.M.: The Z Notation: A Reference Manual. International Series
in Computer Science (1992)

[11] Tang, D., Plsek, A., Vitek, J.: Static Checking of Safety Critical Java
Annotations. In: Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems. pp. 148–154. ACM,
Prague, Czech Republic (2010)

4

http://dx.doi.org/10.1007/s10270-005-0085-2
http://dx.doi.org/10.1007/s10270-005-0085-2
http://doi.acm.org/10.1145/2043910.2043915
http://doi.acm.org/10.1145/2043910.2043915
https://www.cs.ox.ac.uk/projects/fdr/
https://www.cs.ox.ac.uk/projects/fdr/
http://doi.acm.org/10.1145/1850771.1850793
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://doi.acm.org/10.1145/1850771.1850794
http://doi.acm.org/10.1145/1850771.1850794


[12] The Open Group: Safety-Critical Java Technology Specification. Tech. rep.,
The Open Group (27 December 2014)

[13] Wei, K., Woodcock, J., Cavalcanti, A.: New Circus Time. University of
York, Tech. Rep., February (2012)

[14] Wellings, A., Luckcuck, M., Cavalcanti, A.: Safety-Critical Java Level 2:
Motivations, Example Applications and Issues. In: Proceedings of the 11th
International Workshop on Java Technologies for Real-time and Embedded
Systems. pp. 48–57. JTRES ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2512989.2512991

[15] Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002:Formal Speci-
fication and Development in Z and B, Lecture Notes in Computer Science,
vol. 2272, pp. 184–203. Springer Berlin Heidelberg (2002)

[16] Zeyda, F., Lalkhumsanga, L., Cavalcanti, A., Wellings, A.: Cir-
cus Models for Safety-Critical Java Programs. The Computer Journal
(2013), http://comjnl.oxfordjournals.org/content/early/2013/07/

02/comjnl.bxt060.abstract

5

http://doi.acm.org/10.1145/2512989.2512991
http://doi.acm.org/10.1145/2512989.2512991
http://comjnl.oxfordjournals.org/content/early/2013/07/02/comjnl.bxt060.abstract
http://comjnl.oxfordjournals.org/content/early/2013/07/02/comjnl.bxt060.abstract

	Introduction
	Model and Translation
	Summary and Further Work

