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Abstract

Circus specifications combine both data and behavioural
aspects of concurrent systems using a combination of CSP,
Z, and Dijkstra’s command language. Its associated re-
finement theory and calculus distinguishes itself from other
such combinations. Recently, toolsfor Circus like a parser, a
type-checker, a model-checker, and a translator to Java have
been developed. Nevertheless, tool support for the Circus
refinement calculus has only been prototyped. In this pa-
per, we present CRefine, a tool that can be used throughout
the refinement of concurrent systems in a calculational ap-
proach. Its functionalities are described using a simple case
study. Furthermore, we also describe CRefine’s architec-
ture and its integration to the CZT framework.

1. Introduction

Languages like Z [25], VDM-SL [21], and B [1], use a
model-based approach to specification, based on mathemat-
ical objects from set theory. Although possible, modelling
behavioural aspects such as choice, sequence, parallelism,
and others, using these languages, is difficult and needs to be
done in anfimplicit fashion. On the other hand, process alge-
bras like CSP [10] and CCS [13] provide constructs that can
be used to describe the behaviour of the system. However,
they do not support a concise and elegant way to describe
complex data aspects.

Many attempts to join these two kinds of formalism have
been made. Combinations of Z with CCS [23], Z with
CSP [22], and Object-Z with CSP [4] are some examples.
The lack of support for refinement of state-rich reactive sys-
tems in a calculational style as that presented in [14, 7] has
motivated the creation of Circus [18]. The semantics of
Circus has already been mechanised [19]; it is based on the
Unifying Theories of Programming [11].

In Circus, systems are characterised as processes, which
group constructs that describe data and control behaviour; Z
is used to define most of the data aspects, and CSP is used to
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define behaviour. Besides, the language provides support for
formal stepwise development of concurrent programs [15].
The availability of a refinement calculus provides us with
the possibility of correctly constructing programs in a step-
wise fashion. Hence, using Circus we are able to calculate
concrete (usually distributed) specifications from abstract
(usually centralised) specifications. Each step is justified by
the application of a refinement law (possibly with the dis-
charge of proof obligations). Together, the refinement laws
provide us with a framework for the construction process.
This derives from the fact that only valid laws can be applied
at a certain time.

The manual application of the refinement calculus, how-
ever, is an error-prone and hard task; two well-known prob-
lems are the application of laws to large programs and
the management of the proof obligations. In this paper,
we present CRefine, a tool that supports the use of the
Circus refinement calculus. Tt is freely available from
http://www.cs.york.ac.uk/circus. Our initial
intention is to use this tool to teach Circus and its refine-
ment calculus.

CRefine was implemented in Java. Its user interface
and architecture are similar to those of Refine [20], a tool
that supports Morgan’s refinement calculus [14] for sequen-
tial programs. Our tool is based on an early prototype [26]
that was built to check the applicability of the Circus type
checker. Nevertheless, we have considerably changed and
extended this prototype. First, we have changed the Cir-
cus parser to a newer version that fixes a couple of bugs
of its earlier version. This new parser is strongly based on
the CZT framework [12], an initiative that started in 2002
that is geared towards providing extensible tool support for
Standard Z in Java. By using this new parser, we are able to
adapt CRefine to the architecture proposed for Circus tools
in [6]. Furthermore, we are also able to extend the CZT
Rules package, which provides classes for transforming and
proving Z specifications, to Circus. This extended package
is currently the gear used to transform Circus specifications
in CRefine; this paper describes this process.

Besides changing CRefine internally, we also added new



facilities to manage developments: undoing and redoing re-
finement steps, saving and opening developments is now
available. Furthermore, some GUI facilities like pretty-
printing, filtering applicable laws according to the selected
program, classification of laws, adding comments to the de-
velopment, and printing the development were also included.
In CRefine’s current version, the discharge of some proof
obligations is done automatically. The remaining proof obli-
gations need to be manually discharged by the user, who can
annotate them with the result of the proof within CRefine.
All these facilities are described in this paper.

In the next section we present Circus and its refinement
calculus. Section B describes CRefine’s functionalities us-
ing a case study, its architecture and integration with the
CZT. We draw some conclusions and discuss future work in
Section 4.

2. Circus and its Refinement Calculus

Circusis alanguage thatis suitable for the specification of
concurrent and reactive systems; it has a theory of refinement
associated to it. Its objective is to give a sound basis for
the development of concurrent and distributed system in a
calculational style like that of Morgan [14].

Circus programs are formed by a sequence of paragraphs,
which can either be a Z paragraph, a declaration of channels,
a channel set declaration, or a process declaration. In this
section, we illustrate the main constructs of Circus using
the specification of a simple chronometer (Figure 1). Both
its components are initialised with zero; it can increment its
time and poutput the current time.

All the channels must be declared; we give their names
and the types of the values they can communicate. If a chan-
nel is used only for synchronisation, its declaration contains
only its name. For example, in Figure 1, the stateless process
Clock rrepeatedly communicates through channel zick.

The declaration of a process is composed by its name and
specification. A process may be explicitly defined or de-
fined in terms of other processes (compound). An explicit
process definition contains a sequence of process paragraphs
and a distinguished nameless main action, which defines
its behaviour. We use Z to define the state. For instance,
AState describes the state of the process Chrono that rep-
resents a chronometer: it contains the current second and
minute stored in the chronometer.

Process paragraphs include Z paragraphs and declara-
tions of [(parametrised) actions. An action can be a schema,
a guarded command, an invocation to another action, or a
combination of these constructs using CSP operators.

The |primitive action Skip does not communicate any
value or changes the state: it terminates immediately. The
action Stop deadlocks, and Chaos diverges; the only guar-
antee lin both cases is that the state invariant is maintained.

RANGE ==0..59
channel tick, time
channel out : RANGE x RANGE

process Chrono =
begin state ASiate == [sec, min: RANGE]
Alnit == [AState’ | sec’ = min’ A min’ = 0]
IncSec == [ AAState | sec’ = (sec + 1)mod 60
A min' = min]
IncMin == [ AAState | min’ = (min + 1)mod 60
A sec’ = sec]
Run = (tick — IncSec; ((sec = 0) & IncMin)
O ((sec # 0) & Skip)))
O (time — out !(min, sec) — Skip)
e (Alnit; (u X o (Run; X)))
end
process Clock = begin ey X e tick — X end
process TChrono = (Chrono |[{ tick [}] Clock) \ { tick [}

Figure 1. Abstract Chronometer

The prefixing operator is standard, but a guard construc-
tion is also available.

p&e?z = A

For instance, if the condition p is frue, the action above
inputs a value through channel ¢ and assigns it to x, and
then behaves like A, which has the variable x in scope. If,
however, p is false, the action blocks.

The CSP operators of sequence, external and internal
choice, parallelism, interleaving, hiding may also be used to
compose actions. Communications and recursive definitions
are also available. Chrono has arecursive behaviour: afterits
initialisation, it recursively behaves like action Run, which
represents the execution of a cycle of the chronometer. If
it receives the indication that a second has passed, it incre-
ments the seconds and, if the seconds were set back to zero,
it increments the minutes. However, if Chrono is asked to
output its current time, it does so via channel out.

Seconds are incremented by one in the IncSec operation;
however, every sixty seconds the seconds are set to zero,
since the chronometer will start counting another minute.
The Z operation IncMin increments the minutes. For sim-
plicity, we consider that our chronometer counts only sec-
onds and minutes. As for the seconds, the chronometer’s
minutes value resets every sixty minutes.

The parallelism and interleaving operators are different
from those of CSP. We must declare a synchronisation chan-
nel set (in parallelism) and, to avoid conflicts, two sets that
partition the variables in scope: state components, and input
and local variables.

Ay |[ns | cs | ns ]| As,

In the action above, the actions Ay and A synchronise on



the channels in the set ¢s. Both A; and A, have access to
the initial ivalues of all variables in ns; and ns», but A; may
modify jonly the values of the variables in nsy, and A», the
values of the variables in ns>.

References to parametrised actions need to be instanti-
ated. Actions may also be defined using assignment, guarded
alternation, or variable blocks. Finally, in the interest of sup-
porting a calculational approach to development, an action
can be a Morgan’s specification statement [14].

The CSP operators of sequence, external and internal
choice, parallelism, interleaving, and hiding may also be
used to compose processes. Furthermore, the renaming
Poldc : newcreplaces all the references to channels oldc
by the corresponding channels in newc, which are implicitly
declared. Parametrised processes may also be instantiated.

The process TChrono is the parallel composition of
Chronometer and Clock. They synchronise on channel
tick, which is hidden from the environment: iterations with
TChrono can only be made through time and out. Some
other operators are available in Circus, but are omitted here
for conciseness.

2.1. Refinement in Circus

In [15], we describe a refinement strategy for Circus.
From an abstract centralised specification, the strategy yields
a distributed implementation. It is an interactive strategy, in
which each iteration decomposes one process. An iteration
typically includes three steps: a simulation that replaces the
state components of the single abstract process with the com-
ponents of all the distributed processes to be derived; action
refinement that partitions the concrete state and actions in
such a way that actions from one partition access only its
components; and a process refinement that transforms the
partitions in individual processes.

In the development of the chronometer, we distribute the
minutes and seconds in two different processes: Seconds and
Minutes. The former is responsible for the communication
with the environment and for the seconds, and the latter is
responsible for the minutes (Figure 2). They communicate
via three internal channels: Seconds indicates to Minutes that
it must increment its minutes via inc. It may also request the
current minutes via minsReq; the answer is given via ans.
The set of channels Sync groups these internal channels.

The refinement of the chronometer can be accomplished
in a single refinement iteration. Since we do not intend to
change the representation of minutes and seconds, this iter-
ation involves no data refinement. In the action refinement,
we split the IChrono’s state into two partitions: one that con-
tains the seconds and the other one that contains the minutes.
The intention is to split the actions of process Chrono into
two partitions as well: one interacts with the environment
and contains the seconds, and the other one contains the

channel inc, minsReg
channel ans : RANGE
chanset Sync = { inc, minsReq,ans |}
process Seconds =
begin state SecSt = [ sec : RANGE]
SecInit = [ SecSt' | sec’ = 0]
IncSec = [ASecSt; ZMinSt
| sec" = (sec + 1) mod 60]
RunSec = tick — IncSec; (sec = 0) & inc — Skip
0 (sec # 0) & Skip
0 time — minsReq — ans?mins —
out!(mins, sec) — Skip
o SecInit;(;t X ® RunSec; X))
end
process Minutes =
begin state MinSt = [min: RANGE
MinInit = [ MinSt' | min' = 0]
IncMin = [ AMinSt; =SecSt
| min’ = (min + 1) mod 60]
RunMin = inc — IneMin
0 minsReq — ans!min — Skip
o MiniInit; (1 X  RunMin, X)
end
process Chrono = Minutes || Sync]| Seconds \ Sync

Figure 2. Concrete Chronometer

minutes.

First, we introduce the paragraphs that belong to each
individual partition into Chrono. The resulting process con-
tains all the paragraphs of Chrono, Seconds and Minutes.
One group of paragraphs accesses only sec, which is ini-
tialised to zero. Seconds are incremented using /ncSec. The
action RunSec represents a cycle in Seconds. If it receives
the indication that a second has passed, it increments the sec-
onds and, if the seconds were set back to zero, it indicates
to the Minutes using inc. However, if it is asked to output
the time, it asks the Minutes the number of minutes, receives
the answer, and outputs the time via out. The other group
of paragraphs accesses only min, which is also initialised to
zero. Minutes are incremented using IncMin. The action
RunMin represents a cycle in Minutes. If it receives a re-
quest to increment the minutes, it does so. However, if the
number of minutes is requested via minsRegq, it outputs the
value of min in ans.

The next refinement steps are achieved using the Z
schema calculus [25] and the copy rule; they yield the decla-
ration below as the new state declaration for process Chrono.

state State = SecSt A MinSt

Next, we need to transform the main action of the Chrono
into a parallel composition of the behaviour of each partition;
this transformation is summarised in Figure 3. For concise-
ness, in the remaining of this section we represent the par-
allel composition operator as parallel bars; hence, omitting



the declaration of the state partitions and the synchronisation
channel set.

Alnit;(u X o Run; X)

= MinlInit; SecInit}(u X e Run; X) [Law A.1]
Ca [Law A.2]
Minlnit] Seclnit]

((t X @ RunSec; X) || (1t X ® RunMin; X)) \ Sync

= [Laws A.3 and A.4]

MinlInit; SecInit;
(X ® RunSec; X) || (1 X ® RunMin; X)
\ Sync
= [Law A.5)]

(SecInit; (p X  RunSec; X))
|| (MinInit; (u X e RunMin; X))

\ Sync

Figure 3. Proof of Refinement

The process of refining actions consists of repeatedly ap-
plying refinement laws until we reach the desired concrete
action. As an example, we have the Law A.1 presented in
Appendix A that splits an initialisation operation into a se-
quence. This law applies to a schema S which operates over
a state composed bf two disjoint partitions S7” and S>”. The
updates of S on the state are expressed as a conjunction of two
predicates P; and P>, whose free-variables are components
of §1” and S2”, respectively. It transforms the given schema
into a sequence of two schemas; each of them corresponds
to the original operation on one of the state partitions.

The initialisation Alnit meets all the provisos of the
Law A.1. Hence, using the copy-rule and this law, we
may transform it into a sequence of two different initiali-
sations: Minlnit and Seclnit. For conciseness, we omit all
proof obligations and informally justify the refinement steps.

Next, we use tthe least fixed-point law (A.2) to split the
recursion into a parallel composition of two recursions that
correspond to the behaviour of the Seconds and Minutes, re-
spectively; this lis justified by Lemma 2.1, which is stronger
that the law proviso. Next, since schema expressions use no
channels, we may expand the hiding. Finally, the schemas
change only variables declared in one of the partitions of the
parallel composition, and the variables they write to are not
used by the other side of the composition. For this reason,
we may move each of them to one of the sides of the com-
position. This concludes the proof of the action refinement.
However, we are still left with the proof of the Lemma 2.1;
it can be found elsewhere [15].

Lemma 2.1

((r X @ RunSec; X) || (# X ® RunMin; X)) \ Sync

Ca

Run; ((t X @ RunSec; X) || (1 X ® RunMin; X))\ Sync

Informally, we start from the left-hand side, unfolding the
first recursion. Afterwards, we distribute the recursion
through each of the choices that are in the recursion body.
Then, we combine the second recursive program in parallel
with each of the branches of the first recursion. The strategy
is to show that each of these branches can be transformed
into a branch of Run followed by the left-hand side itself.
This yields a program which coincides with the body of the
recursion on the right-hand side, except that in place of the
recursive call we have the left-hand side itself. The distri-
bution laws and the definition of action Run concludes this
proof.

We are left with the concrete main action: both partitions
initialise their state components and execute their cycles re-
cursively. They synchronise on Sync that is hidden from the
environment.

After this action refinement, we are allowed to remove the
paragraphs of the original Chrono since they are no longer
referenced within this process. Finally, we have a process
with a state partitioned into two: one is concerned with the
seconds and the other one is concerned with the minutes.
Each partition has its own set of paragraphs, which are dis-
joint, since no action in one changes a state component in
the other. The main action of the refined process is defined
in terms of the parallel composition of actions from both
partitions. The final step of our refinement uses the process
refinement Law A.6 in order to rewrite the process Chrono in
terms of two independent processes, Seconds and Minutes,
as presented in Figure 2.

Using a tool like CRefine, we can mechanise the whole
development of the chronometer presented here. It is the
subject of the next section.

3. CRefine

CRefine automatises the application of the Circus re-
finement calculus: it supports the application of refinement
laws to Circus specifications and the management of the
development. In Section 3.1 we describe CRefine’s func-
tionalities and illustrate them using the example presented
in Section 2.1. Due to space limitations, we are not able to
describe all these functionalities in details; they can be found
in the tool distribution on the web. Finally, CRefine’s in-
ternal structure and its integration with the CZT framework
is described in Section 3.2.

3.1. Using CRefine

CRefine’s GUI is composed by a main menu and three
main frames: refinement, proof obligations, and code; they
are illustrated in Fig. 4. The refinement frame shows all the
steps of the development. This includes law applications and
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Figure 4. CRefine User Interface

retrieving the current status of an action or process (collec-
tion). The proof obligations frame lists the proof obligations
that are generated by law applications, indicates their cur-
rent state (i.e. checked valid or invalid, or unchecked), and
associates each proof obligation to the law application that
originated it in the refinement frame. Currently, some proof
obligations are automatically verified. In our experience,
these amount to over 65% of them. The remaining ones
need to be verified by the user; the result can be registered in
CRefine. Finally, the code frame exhibits the whole speci-
fication that has been calculate so far.

CRefine provides two display formats for formu-
las: IATEX and Unicode (pretty-printing). Our main ob-
jective is to use this tool in teaching the Circus refinement
calculus to under-graduates and, unfortunately, most of them
are not familiar with I4ATgX. Hence, a pretty-printing makes
CRefine accessible to them. This pretty-printing is also a
success among researchers, since it unconditionally makes
the presentation of the development more user-friendly.

In CRefine, a development starts by loading a IATEX
document that contains the abstract specification of the sys-
tem. This can be achieved by clicking on the new button
and selecting the finput file. Thereafter, the application of re-
finement laws is as follows: first, we select the Circus term
that we want to refine. A pre-formatting allows us to select
terms on a per line basis by clicking on its lines (multiple
lines can be selected by holding ct r1 and clicking on the
first and last line of the term). Next, we select the law we
want to apply. Finally, after the input of any arguments that
may be required by the law, the application is automatically
done. This updates the refinement frame, the proof obliga-
tions frame (if needed), and the code frame.

Law selection and application can be achieved in two
ways. First, a right-click on the selected term shows a pop-
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Figure 5. Applying a Refinement Law

up menu that lists only those laws that can be applied to the
selected term. In this case, their effective application is done
by selecting them in this list. Second, we can select the law
from a list in the main menu that contains all the refinement
laws. If the law can be applied to the term, the apply button
is enabled and can be pushed to effectively apply the law.
In Figure 5, we have a snapshot of the development of our
example within CRefine in which point we intend to split
the global State into a conjunction of the two individual
states SecSt and MinSt (the screenshots that follows zoom
on items that are discussed in the text). Among the laws
we can apply to the definition of AState (the selected term),
we have the Schema Decomposition law. A click on the
Schema Decomposition item applies this law to the selected
term. An argument window may be displayed during law
applications. Using it, the user inputs the arguments needed.
If the Unicode format is being used, the user can use the
virtual symbol keyboard provided (Figure 6) to input Circus
symbols in the argument window. The user can also check
the details of any refinement law.

In our example, we give the name of the component of
the first schema, sec, as argument; the law application yields
the following conjunction.

Each law application has an identifier that associates the
term to which the law was applied with the final result of
this application. The Schema Decomposition has no proof
obligations. Hence, the proof obligations frame remains un-
changed. Nevertheless, the code window is changed: the
definition of the AState is now the conjunction described be-
fore as we can see in Figure 7. For the sake of conciseness,
we have illustrated just some points of the whole develop-
ment of our example within CRefine, which amounts to
over 1000 lines and can be found within the distribution of
the tool.

Using CRefine, one cannot apply refinement laws to
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the same term twice. For instance, after the application of
Schema Decomposition, we have changed the whole body of
Chrono (part between begin and end). Hence, its selection
disables the apply law item. Law applications to individ-
ual paragraphs and actions of process Chrono, however, is
still possible without collecting the code; only those terms
that have been changed, like the whole process, need to be
collected before further law applications to them.

Some refinement law applications are justified by proof
obligations; they are displayed in the proof obligation frame.
CRefine keeps the relation of each proof obligation to the
refinement step that generated it. For instance, in Figure 8,
CRefine is relating a proof obligation to the corresponding
application of Law A.1 during the development of our ex-
ample. In this case, CRefine has managed to automatically
prove the proof obligation; this indicated with a green ¢ to
the left of the proof obligation.

Using CRefine’s development management, users may
undo and redo development steps. That means different de-
velopment paths during a development may be tried, pos-
sibly in a kearch for a more efficient implementation. De-
velopments may also be saved (XML file) and opened later.
Users may document the development by adding, editing,
and viewing comments to each term or law application in the
refinement lwindow. Finally, CRefine generates I4TgX files
that document the chosen elements of developments: orig-
inal specification, refinement, proof obligations, comments
and the concrete specification.

3.2. CRefine’s Architecture

CRefine is designed towards an integration with the Cir-
cus tools presented in [6]. In Figure 9, we present a simpli-
fied view of the components that are part of CRefine and the
interaction between some of them and the CZT components
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Figure 8. Proof Obligations

described in [6]. As we describe in the sequel, some of them
are yet to be implemented; their names are in italic font.

CRefine’s GUI controls the whole interaction with the
user: it receives interactive commands, sends these com-
mands to the External Manager (EM), and updates the frames
accordingly. Tt interacts with the Circus printer developed
by us in order to update the frames using the display format
chosen by the user. Although the CZT already provides a
pretty-printer for Circus, we needed to develop our own. In
CRefine, users need to click on the lines of a term in order
to select it; hence, the choice of the points of a Circus speci-
fication in which a line break is inserted by the pretty-printer
has a direct impact in the type of terms that can be selected
by the user. In the existing Circus pretty-printer, line breaks
do not play such a major role, as in CRefine.

The EM connects to the GUI and the Internal Man-



ager (IM). It is responsible for controlling the relations be-
tween the lines in the development frame and the correspond-
ing term. Furthermore, it relates the proof obligation to the
law application in the development. Finally, it also inter-
acts with the document generator to create a IATEX file that
documents the development.

The IM stores the status of the tool, the refinement laws
that are loaded during CRefine’s start-up using the Laws
Factory, and manages the overall development. The status of
CRefine contains the current Abstract Syntax Tree (AST),
two stacks of ASTs for undoing and redoing, and the in-
formation needed to save the development: a list of steps
of execution (actions done by the user like law applications
and comments insertion). In the beginning of a new de-
velopment, the IM interacts with the Circus Specification
Processing Module (SPM) in order to transform a IATEX
specification into an AST. Currently, we are not using the
Type Checker, which is being validated. In a near future,
this type checker will be included in the SPM: the AST that
will be given by the SPM to CRefine will contain some
type annotations (denoted by AST+ in Figure 9). The IM
also interacts with the SPM in order to parse arguments that
are given by the user. Furthermore, it is responsible for fil-
tering (using the Circus Rules module) the laws that can be
applied to the selected term in the GUI. Finally, the appli-
cation bof the refinement laws is done through an interaction
between the IM and Circus Rules, which actually applies
the refinement law.
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Figure 9. Integration of CRefine and the CZT

The current proof obligations manager (PO Manager) au-
tomatically discharge some proof obligations. In a near fu-
ture, we lintend to integrate this module with the Theorem
Proving Module (TPM) of the CZT. For this, we will need
a translator that will transform the proof obligation into a
IATEX question (IATEX-Q) to be sent to the TPM. The PO
manager will analyse the IATEX answers (IATgX-A) returned
by the TPM. Besides integrating with the TPM, the PO man-
ager will also need to be internally integrated with the de-
velopments manager. This will allow the mechanical proof
of proof obligations like the Lemma 2.1, which we needed
to prove in order to validate the development of our example
in Section 2.1.

Each module presented in Figure 9 has a precise role in the

overall development. In Figure 10, we present a simplified
sequence diagram that describes a law application. In this
diagram, we replace method signatures by the task name.
We can split a law application in four stages: selecting a
term, finding applicable laws, selecting a law, and applying
it (possibly inputting arguments).
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Figure 10. Diagram - applying a Refinement
Law

For every line selection in the development window, the
GUI request to the EM to return the term that corresponds to
the selected lines. Having selected a term, every right click in
the development window will update the list of laws that are
applicable to the selected term. First, the GUI requests the
list of applicable laws to the EM. This request is propagated
to the IM, who uses the Unifier of the Circus Rules in order
to return only those laws that unify with the received term.
This list of laws is given to the GUI and exhibited to the user.

The selection of the term and of the law results in a law
application. It is propagated from the GUI to the IM who
sends the original term and the law to the Circus Rules that
checks if the application requires arguments. If no argu-
ments are required, the application takes part. Otherwise,
the Circus rules sends to the EM (via the IM) a list of for-
mal arguments. For each one of them, the EM interacts
with the GUI in order to receive a string that corresponds to
the real argument. It is given to the SPM (via the IM) that
parses it and returns a term. Next, the IM maps names to
terms (bindings) and sends a list of bindings to the Circus



rules that is now able to apply the law. The Circus rules
unifies the law with the original term (Unifier), builds a new
term and proof obligations (Builder), and updates the AST
accordingly (Updater). The answer that is returned to the
IM contains, among other information, the new term and a
list of proof obligations. This is used by the IM to update
its own AST. Next, the IM uses the prover to verify each
proof obligation: if the prover can handle the proof obliga-
tion, the result is either false or true; otherwise, the proof
obligation remains unverified. This concludes the task of
the IM that returns the law answer to the EM. Finally, the
EM updates all the frames. Every update in the GUI inter-
acts with the Circus printer: the GUI sends the term to the
printer and receives the corresponding string in the current
display format.

4. Conclusions

In this paper, we presented CRefine, a tool that supports
stepwise development of state-rich concurrent systems based
on the Circus refinement calculus. It extends an earlier pro-
totype by adding new features like new interface components
and development management facilities. Using CRefine,
we considerably reduce the amount of effort spent in the ap-
plication of the Circus refinement calculus: tasks like law
applications and proof obligation generations are automated
by the tool.

The design of CRefine was driven by our intention to
integrate CRefine with existing Circus tools like its parser,
type-checker and theorem prover, which are part of the
CZT: we have already achieved its integration with the parser
and an integration with the type-checker is under way. We
have extended the CZT rules package in order to apply re-
finement laws as rules transformations. We believe that, with
this paper, we provide useful information to tool builders in
how a refinement process can be managed in a GUI as well
as a template for refinement tools internal architecture.

Several existing tools provide support for the use of the re-
finement calculus and tactics. Some [8, 3] use languages like
Prolog for defining tactics and, in this case, the user needs to
learn complex languages to achieve his goals. In [9] a goal-
oriented approach is adopted: refining consists of proving
that the final program implements the initial specification.
The Proxac system [24] does not define any language for
tactic definition. It is the support provided for refinement of
state-rich reactive systems in a calculational style that makes
CRefine a novelty.

Frequently used refinement strategies are reflected in se-
quences of laws applications. Identifying these strategies,
documenting them as tactics, and using them as single trans-
formation rules brings a profit in effort. In [16], we present
a tactic language, ArcAngelC that can be used to formalise
tactics of refinement just like in [17]. Allowing users to de-

fine and use tactics within CRefine will reduce the amount
of effort needed during developments.

The majority of the refinement laws from [15], which
have been used in a reasonable number of case studies, are
in CRefine. This gives us confidence that the current set
of laws is appropriate for useful applications, but not com-
plete [15]. In order to facilitate extensions to the set of laws,
we intend to provide a parser of refinement laws in the style
of CZT. Using this parser, the laws could be dynamically
loaded:; no recompilation would be needed.

The automatic discharge of the proof obligations that are
predicates or action transformations (i.e Lemma 2.1) is also
in our Agenda. The former requires the integration of CRe-
fine with a more elaborated theorem-prover and the latter re-
quires the possibility of multiple developments within CRe-
fine to discharge proof obligations that are action transfor-
mations.

Finally, the infra-structure provided by tactics of refine-
ment and multiple developments can be used to allow users
to make sub-developments within larger developments just
like the window inference transformational style of [2]. This
would considerably modularise future developments.

Using Circus, we are able to make a stepwise develop-
ment in a single framework from a specification to an im-
plementation. Nevertheless, we still need to translate this
Circus implementation into a practical programming lan-
guage because the final product of a program development
is an executable program. An automatic translator has al-
ready been provided [5] and will be integrated to CRefine
allowing a complete development within our tool.

CRefine can be a useful tool in the development of state-
rich reactive systems. Initially, we intended to develop an
educational tool and use it in teaching formal methods. How-
ever, during the project, we noticed that it may be useful in
the development of real systems. So far, the tool has been
used only by members of our research group on a small
number of case studies. In the near future, we intend to use
CRefine in our formal methods course. Besides, we are cur-
rently working on a number of case studies that are related
to the oil industry.
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A. Refinement Laws

The side conditions of some of the refinement laws in-
volve meta-functions such as a, DFV, usedC, usedV, and



wrtV. The function a determines the set of components of
a given schema; for a given predicate p, the function DFV
yields the dashed free variables of p; the function usedC re-
turns a set of all channels mentioned in an action; the function
usedV gives the set of used variables (read, but not written);
finally, the function wrtV gives the set of variables that are
written by a given action.

Law A.1 (Initialisation/Sequence-introduction)
[S1: S5 | Pr APy =[S{| Pl [S3] Pa]
provided

< a(S))Na(S)=10

< DFV(CS;) C a(S])
C al(ss,)

& DFV(CS:) C a(S.

Law A.2 (Recursion-least fixed-point)
F(Y)C4 Y= puXeF(X)Ch Y

Law A.3 (Hiding Identity)
A\es=A
provided

@ esNusedC(A) =10

Law A.4 (Hiding/Sequence-distribution)
(A;; A) \es = (A \ es); (A2 \ es)

Law A.5 (Schemas/Parallelism-distribution)
SExp; (A |[ns1 | es | ns2 ] A2)

(SExzp; Ay)|[ns | cs | ns2 ] A2
provided

@ wrtV(SEaxp) C ns
@ wrtV (SExp) NusedV (A2) = 0

Law A.6 (Process splitting)

Let gd and rd stand for the declarations of the pro-
cesses () and R, determined by ().State, ().PPar,
and Q.Act, and R.State, R.PPar, and R.Act, re-
spectively, and pd stand for the process declaration.

process P =
begin
state State = ().State A R.State
().PPar Az R.State
R.PPar A= Q.State
o F'((Q).Act, R. Act)
end

then
pd = (gqd rd process P = F(Q,R))
provided

< Q.PPar and R.PPar are disjoint with respect
to R.State and ().State
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