
Tool Support for the Circus Refinement Calculus

A. C. Gurgel, C. G. de Castro and M. V. M. Oliveira

Departamento de Informática e Matemática Aplicada, UFRN, Brazil

Circus [1] specifications combine both data and behavioural aspects of con-
current systems using a combination of CSP [3], Z [9], and Dijkstra’s command
language. Its associated refinement theory and calculus [5] distinguishes itself
from other such combinations. Using the Circus refinement calculus, we can
correctly construct programs in a stepwise fashion [4]. Each step is justified
by the application of a refinement law, possibly with the discharge of proof
obligations (hereafter called POs). Hence, using Circus we are able to calculate
concrete (usually distributed) specifications from abstract (usually centralised)
specifications. The manual application of the refinement calculus, however, is an
error-prone and hard task.

We present CRefine1, a tool that supports the use of the Circus refinement
calculus2. Its interface is similar to Refine’s [8], a tool that supports Morgan’s
refinement calculus [4]; it is based on an early prototype that was presented
in [10]. We have, however, considerably changed and extended CRefine’s proto-
type. First, we updated the Circus parser used which fixes a couple of bugs of its
earlier version. We have also added facilities to manage developments: undoing
and redoing refinement steps, saving and opening developments is now avail-
able. Furthermore, some GUI facilities like pretty-printing, filtering applicable
laws according to the selected program, classification of laws, adding comments
to the development, and printing the development were also included. Finally,
the discharge of some proof obligations is now automatically done by CRefine.

CRefine provides support to apply the refinement laws and to manage the
overall development. Its interface is composed by a menu and three main
frames: refinement, proof obligations, and code. The refinement frame shows all
the steps of the refinement process. This includes law applications and retriev-
ing the current status of an action or process (collection). The proof obligations
frame lists the POs that were generated by the law applications, indicates their
current state (i.e. checked valid or invalid, or unchecked), and associates each
one of them to the law application that originated it in the refinement frame.
Currently, some proof obligations are automatically checked valid or invalid. In
our experience, these amount to over 60% of the proof obligations. The remain-
ing proof obligations need to be verified by the user. Finally, the code frame
exhibits the overall Circus specification that has been calculate so far.

CRefine provides two display formats for formulas: LATEX and Unicode (pretty-
printing). We intend to use this tool in teaching the Circus refinement calculus to
under-graduates. Unfortunately, most of them are not familiar with LATEX; in or-
der to make CRefine accessible to them, we have also provided a pretty-printing.

1 Available at http://www.cs.york.ac.uk/circus
2 This work is financially supported by CNPq: grant 551210/2005-2



This pretty-printing is also a success among researchers, since it unconditionally
makes the presentation of the development more user-friendly.

The starting point of a development in CRefine is a LATEX file that contains
the abstract specification of the system to be refined. Starting from this specifi-
cation, the application of refinement laws is as follows: first, we select the part
of the Circus program that we want to refine by clicking on its lines (multiple
lines can be selected by clicking on the first and last line of the term); then, we
select the law we want to apply; finally, after the input of any arguments that
may be required by the law, the application is automatically done. This updates
the refinement frame, the proof obligations frame, and the code frame.

Law applications can be done in two ways. First, a right-click on the selected
term shows a pop-up menu that lists only those laws that can be applied to the
selected term. In this case, their effective application is done by selecting them
in this list. Second, we can select the law from a list in the main menu that
contains all the refinement laws. If the law can be applied to the term, the apply
button is enabled and we can apply the law by clicking on it. When needed, an
argument window is shown to the user before the application of the law. In this
window, users may either type the argument in a LATEX format, or use a symbol
keyboard. The user may see the details of a refinement law by selecting it in the
list of the main menu and then right-clicking on its name.

Using CRefine’s development management users may (when applicable)
undo and redo development steps. That means different development paths dur-
ing a development may be tried, possibly in a search for a more efficient im-
plementation. Developments may also be saved in order to be continued latter;
CRefine’s developments are saved in XML format. Users may document the de-
velopment by adding, editing, and viewing comments to each term or law ap-
plication in the refinement window. Finally, CRefine automatically generates a
LATEX file that documents the main elements of the development: original spec-
ification, refinement, POs, comments and the concrete specification. The user
can choose which elements should be included in the final document.

CRefine’s architecture is strongly based on the architecture proposed for
Circus tools in [2]. It extends an ongoing effort of the Community Z Tools
(CZT), which provides a set of tools for the Z specification language. In re-
cent years, many Circus collaborators have made extension on the CZT project
to provide tools that support Circus like a parser, a type-checker, a refinement
model-checker, a theorem-proving module, and pretty-printers.

The cost of developments may still be reduced. Frequently used strategies
of refinement are reflected in sequences of laws that are applied over and over
again. Identifying these strategies, documenting them as tactics, and using them
in program developments as single transformation rules brings a profit in effort.
In [6], we present a refinement-tactic language called ArcAngelC , which can be
used to formalise tactics of refinement just like in [7]. Allowing users to define
and use tactics as simple refinement laws within CRefine is our next step.

The vast majority of the refinement laws from [5], which have been used
in a reasonable number of case studies, are included in CRefine. This give us



confidence that the current set of laws is appropriate for useful applications. We
are aware, however, that it is not complete [5]. We intend to provide a parser
of refinement laws in the style of CZT. Using this parser, the laws could be
dynamically loaded; no recompilation would be needed.

Another interesting piece of future work is the automatic discharge of the
remaining POs, which can be predicates or action/processes transformations.
For this, we need to integrate CRefine with a theorem-prover to check predicate
POs and to allow multiple developments within CRefine to check POs that are
action/processes transformations. For instance, users will be able to prove that
A1 is refined by A2 by deriving A2 from A1 in a new development.

Finally, the infra-structure provided by tactics of refinement and multiple
developments can be used to allow users to make sub-developments within larger
developments. This would considerably modularise future developments.

CRefine can be a useful tool in the development of state-rich reactive systems.
Our initial intention was to develop an educational tool and use it in teaching
formal methods. However, during the implementation and tests, we noticed that
it may as well be useful in the development of industrial-scale systems. Empirical
verifications in a near future will verify this statement. For instance, we are
currently developing case studies that are related to the oil industry.

References

1. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

2. L. J. S. Freitas, J. C. P. Woodcock, and A. L. C. Cavalcanti. An Architecture for
Circus Tools. In A. C. V. Melo and A. Moreira, editors, Proceedings of the Brazilian

Symposium on Formal Methods, pages 6 – 21, 2007.
3. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
4. C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
5. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using

Circus. PhD thesis, Department of Computer Science, University of York, 2005.
YCST-2006/02.

6. M. V. M. Oliveira. ArcAngelC. Technical report, Departamento de Informática
e Matemática Aplicada - Universidade Federal do Rio Grande do Norte, Natal,
Brazil, February 2007.

7. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAngel: a Tactic
Language for Refinement. Formal Aspects of Computing, 15(1):28–47, 2003.

8. M. V. M. Oliveira, M. Xavier, and A. L. C. Cavalcanti. Refine and Gabriel: Support
for Refinement and Tactics. In Jorge R. Cuellar and Zhiming Liu, editors, 2nd IEEE

International Conference on Software Engineering and Formal Methods, pages 310–
319. IEEE Computer Society Press, Sep 2004.

9. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

10. M. A. Xavier, A. L. C. Cavalcanti, and A. C. A. Sampaio. Type Checking Circus

Specifications. In A. M. Moreira and L. Ribeiro, editors, SBMF 2006: Brazilian

Symposium on Formal Methods, pages 105 – 120, 2006.


