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Abstract. Hoare and He’s unifying theories of programming (UTP) is a
model of alphabetised relations expressed as predicates, which supports de-
velopment in several programming paradigms. The aim is the unification of
languages and techniques, so that we can benefit from results in different con-
texts. In this paper, we investigate the integration of angelic nondeterminism
in the UTP; we propose the unification of a model of binary multirelations,
which sis isomorphic to the monotonic predicate transformers model and
can express angelic and demonic nondeterminism.
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1 Introduction

Angelic nondeterminism is a specification and programming concept that is typi-
cally available in unified languages of refinement calculi [18, 4], and in concurrent
constraint programming languages [15]. In program development techniques, it is
reflected in choice constructs in which the choice is not arbitrary, but made to guar-
antee success, if possible. In programming languages, it is reflected in the use of
backtracking in exhaustive searches. The work in [16] explores angelic nondeter-
minism in a language for definition of tactics of proofs.

In contrast, demonic nondeterminism is related to an arbitrary choice construct
that provides no guarantees; success is still a possibility, but it does not influence
the choice. Demonic choice is commonly used to model abstraction and information
hiding; in this case, choice is used in a specification to explicitly indicate options
that are left open to the programmer.

In [11], Gardiner and Morgan identify angelic choice with the least upper bound
in the lattice of monotonic predicate transformers. In [19], they use this construct
to define logical constants, which are pervasive in refinement techniques, and are
sometimes named logical, auxiliary, or angelic variables. The logical constants play a
fundamental rôle in the formalisation of data refinement of recursive programs, and,
more importantly, they are used in calculational simulation rules for specification
statements and guarded commands.

In [18] Morgan proposes an algebraic approach to refinement. In that work,
logical constants are at the heart of the formalisation of initial variables, which are
used in specification statements: they appear in postconditions to refer to values
of variables before the execution of the program. Logical constants are also central
to the stepwise calculational development of sequences and loops.

Back and von Wright’s work on refinement [4] has also explored the use of an-
gelic nondeterminism. They have extensively studied the set of monotonic predicate
transformers as a lattice with the refinement ordering. They have identified inter-
esting sublattices, in which choice can be either angelic or demonic, and a complete



base language, which can describe any monotonic predicate transformer [1, 2]. More
recently, they have suggested the use of angelic nondeterminism to model user in-
teractions with a system, and game-like situations.

Morgan’s refinement calculus has been adapted to handle Z specifications; the
resulting calculus is called ZRC [7]. It is incorporated in Circus [21], a combination
of Z and CSP that supports refinement of state-rich, reactive programs. The design
of Circus follows the trend to combine notations; it has been successfully applied
in case studies, and has a refinement technique that supports decomposition of the
state and behaviour of centralised systems [5].

Departing from standard work in refinement calculi, the semantics of Circus is
based on Hoare and He’s unifying theories of programming (UTP) [14, 22]. This is
a predicate-based relational model for programming that links constructs in several
programming paradigms: imperative, concurrent, logical, and others. By providing
a framework for the study of state and reactive aspects of a program, the UTP has
proved to be very adequate as a basis for the Circus model, and for several of its
extensions. Nevertheless, logical constants and, more generally, angelic nondeter-
minism are not considered. Since we adopt Morgan’s calculational refinement style,
we have pursued the possibility of modelling angelic nondeterminism in the UTP.

Angelic nondeterminism has been extensively studied using weakest precondition
semantics. There are results on the relationship between relational and predicate
transformer models in which relations are sets of pairs of states and predicates are
sets of states [12, 6]. These results establish that the UTP relational model cannot
capture angelic and demonic nondeterminism.

In this paper, firstly, we consider a set-based relational model for the UTP.
Secondly, we propose a predicate transformer model; conjunctive predicate trans-
formers correspond to the set-based relations, and therefore to UTP relations. These
models clarify some aspects of the UTP, and provide guidance on the use of the
model of binary multirelations introduced in [20] for the UTP. Based on this model,
we propose a UTP theory for angelic nondeterminism.

In the next section, we present an overview of the unifying theories of pro-
gramming. In Section 3, we consider a set-based relational model and a predicate
transformer model for the UTP. In Section 4 we enrich the UTP with a theory to
cope with angelic and demonic nondeterminism. Finally, in Section 5 we present
our conclusions and directions for future work.

2 Unifying theories of programming

The objective of Hoare and He’s unifying theories of programming is to study and
compare programming paradigms. The main concern is with program development;
using the framework of the UTP, it should be possible to take advantage of different
techniques and approaches whenever convenient.

In the general theory of relations of the UTP, a relation is a pair (αP ,P), where
αP is a set of names of observational variables, and P is a predicate. The set of
variables is the alphabet of the relation; it contains both the set inαP of undashed
names of the observational variables, and the set outαP of dashed names. The free
variables of P must be contained in αP .

Each observational variable records information relevant to characterise the be-
haviour of a program. For example, program variables are observational variables;
the model of an assignment x := e, if the program variables are x , y, and z , is as
follows. The undecorated name of a variable refers to its value before the execution
of the program, and the dashed name refers to its value in a subsequent observation.

x := e =̂ (x ′ = e ∧ y ′ = y ∧ z ′ = z )

The alphabet is { x , y, z , x ′, y ′, z ′ }. The assignment sets the final value of x , which
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is represented by x ′, to e; all the other variables are unchanged.
The program II =̂ (v ′ = v) skips: it does not change the observational variables

v . We write v ′ = v as an abbreviation for a conjunction of equalities that state that
the final value of each variable is equal to its initial value.

A sequence P ; Q is defined simply as relational composition, if, for each dashed
variable in the alphabet of P , the undashed variable is in the alphabet of Q . The
set inα′Q is obtained by dashing all variables in αQ .

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) provided outαP = inα′Q = { v ′ }

The notation P(v ′) emphasises that P may have free occurrences of observational
variables v ′; the later reference to P(v0) refers to the predicate obtained by substi-
tuting v0 for the free occurrences of v ′ in P . Similarly, for Q(v) and Q(v0).

The nondeterministic choice P u Q =̂ P ∨ Q of relations P and Q with the
same alphabet is demonic. It behaves like either P or Q .

The set of relations with a particular alphabet is a complete lattice, with order
⇐; this is the refinement ordering in this setting. More formally, the program de-
noted by P is refined by that denoted by Q when [Q ⇒ P ]. As a matter of fact,
P and Q can be either programs (assignments, sequence, choices, and others) or
any relation used to specify a program; they are all relations. The square brackets
denote universal quantification over all the alphabet.

In contrast with the other operators, the least upper bound u S of a set S

of relations is defined algebraically: [P ⇐ uS ] =̂ ([P ⇐ X ] for all X in S ). The
bottom of this lattice is the program ⊥ =̂ true, which is called abort. Incidentally,
the top element is false; it is written > and called miracle.

Recursion is modelled using least fixed points. If F (X ) is a relation, in which X

is used as a recursion variable, the recursive program is written µ X • F (X ). This
is the least fixed point of the function F .

Hoare and He point out what they regard an infelicity. The recursive program
µX • X is supposed to model an infinite loop; it is equivalent to ⊥ or true.
Nonetheless, the sequence (µX • X ) ; x ′ = 3 is equivalent to x ′ = 3, even though
it should not be possible to recover from a program that does not terminate.

The solution proposed by Hoare and He is the introduction of an extra boolean
observational variable ok to record termination. If ok has value true, it means that
the program has started; if ok ′ has value true, then the program has terminated.
In this new theory, relations take the form of designs P ` Q .

(P ` Q) =̂ (ok ∧ P) ⇒ (ok ′ ∧ Q)

The predicates P and Q are the program’s pre and postcondition. If the design has
started and P holds, then it terminates and establishes Q .

In this new theory, assignment and skip are redefined. Below, y and y ′ stand for
the observational variables other than x and x ′.

x := e =̂ true ` x ′ = e ∧ y ′ = y II =̂ true ` v ′ = v

The new definitions use designs to take ok and ok ′ into account.
Four healthiness conditions on relations R are regarded of interest in the theory

of designs; they are summarised in Table 1. Healthiness condition H1 states that any
restrictions on the behaviour of R only need to hold if it has started. The second
healthiness condition states that R cannot require non-termination: if it holds when
ok ′ is false, then it also holds when ok ′ is true. Together, H1 and H2 characterise
the designs: a predicate is H1 and H2 if and only if it is a design.

The healthiness conditions H3 and H4 are expressed as equations between pro-
gramming constructs. Results presented in [14] clarify that H3 designs can be ex-
pressed using preconditions that do not refer to dashed observational variables, and
that H4 designs model feasible or implementable programs.
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H1 R = (ok ⇒ R) No predictions before startup

H2 [R[false/ok ′] ⇒ R[true/ok ′]] Non-termination is not required

H3 R = R ; II Preconditions do not use dashes

H4 R ; true = true Feasibility

Table 1. UTP Healthiness conditions

Designs form a UTP theory that is characterised by an alphabet that includes
ok and ok ′, and by the healthiness conditions H1 and H2. For reactive programs,
for instance, we have a theory of relations whose alphabets include six other obser-
vational variables, and that satisfy two other healthiness conditions. Alphabets and
healthiness conditions are the basis to compare and combine different theories. Later
on, we present a theory for angelic (and demonic) nondeterminism; beforehand, we
study set-based models for the UTP.

3 Set-based models

In this section, we consider two set-based models for the UTP: relations, charac-
terised by sets of pairs, and predicates transformers, with predicates characterised
by sets. These models further clarify the role of healthiness conditions and the inter-
nalized model of nontermination based on ok and ok ′. Most importantly, however,
they provide guidance in the definition of a UTP theory based on binary multirela-
tions. It is this theory that can capture both angelic and demonic nondeterminism.

3.1 Relations

The set-based relational model is that of sets of pairs of states. A state associates
names (of observational variables) to their values. The set SA of all states on an
alphabet A contains the records with a component for each variable in A. Each
such state is an observation of the behaviour of a program. A relation, like a UTP
predicate, is a pair (αR,R), where αR is the alphabet, and R is a relation between
the elements of SinαR and SoutαR. Such a relation models a program by associating
an observation of an initial state with an observation of a possible final state.

The model for abort is the universal relation: P Sinα×Soutα; when the predicate
P (or relation R) is not relevant, instead of writing inαP (or inαR) and outαP (or
outαR), we simply write inα and outα. Partiality models miracles. If a state is not
in the domain of the relation, then it is miraculous at that state: it can achieve any
required result. In particular, the model of miracle is the empty relation.

It is not difficult to see that the first general predicate-based theory of the UTP
is isomorphic to this set-based model. A simple proof is presented in [8]; it is based
on the functions p2sb and sb2p.

Definition 1.

p2sb.(αP ,P) =̂ (αP , { s : SinαP ; s ′ : SoutαP | P [s , s ′/inαP , outαP ] })

sb2p.(αR,R) =̂ (αR, ∃ s : SinαR, s
′ : SoutαR • (s , s ′) ∈ R ∧

(
∧

x : inαR • x = s .x ) ∧ (
∧

x : outαR • x = s ′.x ))

The first, p2sb, transforms a UTP relation into a set-based relation; the second, sb2p
is its inverse: it transforms a set-based relation into a UTP relation. Both p2sb and
sb2p do not change the alphabet of the relations. A similar set-based relational
model is used by Hoare and He when they discuss denotational semantics.
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SBH1 ∀ s, s ′ | s.ok = false • (s, s ′) ∈ R

SBH2 ∀ s, s ′ | (s, s ′) ∈ R ∧ s ′.ok ′ = false • (s, s ′ ⊕ {ok ′ 7→ true}) ∈ R

SBH3 ∀ s | (∃ s ′ • s ′.ok ′ = false ∧ (s, s ′) ∈ R) • ∀ s ′ • (s, s ′) ∈ R

Table 2. Set-based healthiness conditions

The set-based relation defined by p2sb for a predicative relation P is formed
by pairs of states s and s ′ such that P holds when the observational variables take
the values associated to them by s and s ′. The predicate P [s/A] is obtained by
replacing x with s .x , for all x in A.

The predicate defined by sb2p for a relation R is an existential quantification
over pairs of states s and s ′ in R. For each pair, a conjunction of equalities requires
that each observational variable takes the value in the corresponding initial or final
state. Since alphabets are finite, the conjunction is finite.

Standard work on relational semantics [13] singles out a special state to indicate
non-termination; this is not the case in our model. If an initial state is associated
with all possible final states, then we cannot say whether the final state is sim-
ply arbitrary or we have a possibility of non-termination. In standard relational
semantics, the model for abort that we presented above is actually the model for a
program that always terminates, but whose final state is arbitrary.

The isomorphism confirms that the general UTP model is not able to capture
non-termination. Hoare and He pointed out a paradox in the fact that, if the al-
phabet is { x , x ′ }, then (µX • X ); x := 3 is equivalent to x := 3. This is not
really a paradox: the bottom of the lattice ⊥ is not an aborting program, but the
program that terminates and gives an arbitrary value to x . If, in sequence, we assign
3 to x , then the arbitrariness is irrelevant. Their model is sensible, for terminating
programs. (Their attempt to solve the supposed paradox by giving a strongest fixed
point semantics to recursion was always doomed to fail.)

For designs, the alphabet includes ok and ok ′; therefore, these variables are also
part of the alphabet of the corresponding set-based relations. In Table 2, we present
healthiness conditions; we omit the obvious types of s and s ′.

The healthiness condition SBH1 requires that all states s for which s .ok is false
are in the domain of R, and are related to all possible final states. This means that
a state in which the program has not started is not miraculous and leads to no
controlled behaviour. In relations that are SBH2-healthy, if a state s is related to a
state s ′ for which s ′.ok ′ is false, then s is also related to s ′ ⊕ {ok ′ 7→ true}. This
is the same state as s ′, except that the value of ok ′ is true. This means that if it
is possible not to terminate from s , it is also possible to terminate. Its behaviour,
however, may not be completely arbitrary: it is not required that R relates s to all
possible final states; this is what is required by SBH3.

The theorem below, proved in [8], establishes that H1, H2, and H3 correspond
to SBH1, SBH2, and SBH3.

Theorem 1. For every UTP relation (αP ,P) that satisfies H1, p2sb.(αP ,P) sat-

isfies SBH1. Conversely, for every set-based relation (αR,R) that satisfies SBH1,

sb2p.(αR,R) satisfies H1. The same holds for H2 and SBH2, and for H3 and SBH3.

We believe that it is not difficult to observe that SBH3 relations are necessarily
SBH2. If the initial state s is related to all possible final states, then it is also
related to s ′ ⊕ {ok ′ 7→ true}. This rather obvious result seems to be not so clear
in the predicate setting. It means that, at least for the purpose of the study of
total correctness of sequential programs, Hoare and He did not need to consider
four healthiness conditions, but only three of them: H1, H3, and H4. It turns out,
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however, that non-H3 designs are important for the modelling of more sophisticated
programming paradigms like CSP, for instance.

The healthiness condition H4 requires feasibility. It is not relevant for us, as
miracles are an important part of Morgan’s refinement calculus and ZRC.

3.2 Predicate transformers

In the model of predicate transformers, we regard predicates as sets of states. The
model is composed of pairs (αPT ,PT ), where αPT is the alphabet of the trans-
former, and PT is a total monotonic function from PSoutαPT to PSinαPT . A pro-
gram is modelled by its weakest precondition transformer [9].

Isomorphisms between predicate transformers and set-based relational models
have already been studied [12]. The isomorphism that we propose here is similar
to that in [6]. We define functions sb2pt and pt2sb; the first transforms a set-
based relation into a weakest precondition, and the second transforms a weakest
precondition back into a set-based relation. For simplicity, we ignore alphabets,
which, strictly speaking, should be maintained by both functions.

Definition 2. sb2pt .R.ψ =̂ dom(R −B ψ)

pt2sb.PT = { s : SinαPT ; s ′ : SoutαPT | s ∈ PT .{ s ′ } }

In the definition of sb2pt , ψ is a postcondition, or rather, a set of states, which
is given as argument to the transformer sb2pt .R. The relation R −B ψ models all
executions of R that do not lead to a final state that satisfies ψ; the operator
−B is range subtraction. In dom(R −B ψ), we have all initial states in which it is

possible not to achieve ψ. The complement contains all initial states in which we are
guaranteed to reach a final state that satisfies ψ: the required weakest precondition.

The relation pt2sb.PT associates an initial state s to a final state s ′ if s is not
in the weakest precondition that guarantees that PT does not establish s ′. Since it
is not guaranteed that PT will not establish s ′, then it is possible that it will. The
possibility is captured in the relation.

Since the general set-based relations can only model terminating programs, we
cannot expect an isomorphism between them and the whole set of predicate trans-
formers. In fact, we prove that they are isomorphic to the set of universally con-
junctive predicate transformers PT : those that satisfy the property below.

PT .(
⋂

{ i • ψi }) =
⋂

{ i • PT .ψi } (1)

An important and well-known consequence of this isomorphism is that UTP rela-
tions cannot model angelic nondeterminism. Since we have an isomorphism between
UTP relations and set-based relations, and another between set-based relations and
universally conjunctive predicate transformers, then UTP relations are isomorphic
to universally conjunctive predicate transformers.

As already said, the angelic choice in which we are interested is the least upper
bound of the lattice of monotonic predicate transformers. Joins in the lattice of
universally conjunctive predicate transformers are not preserved in the lattice of
monotonic predicate transformers [3]. We need a relational model isomorphic to the
monotonic predicate transformers.

We investigate, next, the set of predicate transformers that correspond to UTP
designs. In this case, ok is in the alphabet of the states in a precondition, and
ok ′ is in the alphabet of the states in a postcondition. Table 3 gives healthiness
conditions over such predicate transformers PT . The first healthiness condition,
PTH1 requires that the weakest precondition for PT to establish any ψ is included
in the set of initial states s for which s .ok is true. In other words, in order to
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PTH1 PT .ψ ⊆ { s : SinαPT | s.ok = true } provided ψ 6= SoutαPT

PTH3 PT .ψ = PT .{ s ′ : ψ | s ′.ok ′ = true } provided ψ 6= SoutαPT

Table 3. Predicate transformers healthiness conditions

guarantee a postcondition, PT must start. The only exception is the postcondition
SoutαPT , which imposes no restrictions whatsoever.

The healthiness condition PTH3 states that, in calculating PT .ψ, we can ignore
all the states s ′ in ψ for which s ′.ok ′ is false. In other words, even if we have s ′ and
s ′ ⊕ {ok ′ 7→ true} in ψ, so that termination is not required, if PT can guarantee
s ′ or s ′ ⊕ {ok ′ 7→ true}, then it can guarantee s ′ ⊕ {ok ′ 7→ true}. Consequently,
predicate transformers do not capture information related to the possibility of non-
termination. Again, the postcondition SoutαPT is an exception.

As expected, PTH1 and PTH3 correspond to H1 and H3 [8]. They restrict the
behaviour of the predicate transformers for postconditions different from SoutαPT .
This particular postcondition, however, is of special interest.

Universally conjunctive predicate transformers can only model terminating pro-
grams; this is because, if (1) holds for the empty set, then PT .Soutα = Sinα. In
words, for the postcondition that does not impose any restrictions, any initial state
should be satisfactory. Nevertheless, the postcondition that does not impose any
restriction still requires termination. Therefore, it is required that the program al-
ways terminates. In the context of predicate transformers that involve states on ok

and ok ′, however, the postcondition Soutα does not require termination: it accepts
any final state s ′, even those for which s ′.ok ′ = false. Similarly, the precondition
Sinα does not even require the program to start.

Therefore, the universal conjunctivity of the predicate transformers correspond-
ing to designs does not imply that only terminating programs can be modelled.
Unfortunately, conjunctivity is still an issue: the predicate transformers that are
PTH1 and PTH3 healthy are conjunctive. As a consequence, they cannot model an-
gelic nondeterminism. We need a model isomorphic to monotonic, not necessarily
conjunctive, predicate transformers. This is pursued in the next section.

When we consider H3-healthy designs, we get a model isomorphic to standard
weakest preconditions; in [8] we present an isomorphism between the predicate
transformers above and those on postconditions and preconditions that do not refer
to ok and ok ′. In [10], different healthiness conditions that lead to a theory of general
correctness are proposed.

4 Binary Multirelations

A relational model isomorphic to monotonic predicate transformers is presented
in [20]; in that work, the relations are called binary multirelations. In our setting,
we define a binary multirelation as a pair (αBM ,BM ), where αBM is an alphabet,
and BM is a relation between SinαBM and postconditions: elements of P SoutαBM .
Intuitively, BM captures the behaviour of a program by associating each initial
state with all the postconditions that the program can angelically choose to satisfy.

If a postcondition ψ can be satisfied, so can all postconditions weaker than ψ.
Therefore, we have the following healthiness condition.

BMH ∀ s , ψ1, ψ2 | (s , ψ1) ∈ BM ∧ ψ1 ⊆ ψ2 • (s , ψ2) ∈ BM

The model for abort, for example, is the empty relation; miracle relates each initial
state with every subset of Soutα; it is the universal relation. The binary multirelation
for an assignment x := e relates every initial state s with every set that includes
[s ]′⊕{x ′ 7→ e}. This is a final state in which the value for each variable v ′ of outα is
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s .v , except for x ′, whose value is e. If executed in s, the assignment x := e reaches a
final state that satisfies the postcondition { [s ]′ ⊕{x ′ 7→ e} }, and any other weaker
postcondition represented by one of its supersets.

The binary multirelation that models the angelic choice x := 0 t x := 1 is
{ s , ψ | {(x ′ 7→ 0)} ⊆ ψ ∨ {(x ′ 7→ 1)} ⊆ ψ }. It associates to each initial state s

the postconditions that include (x ′ 7→ 0) or (x ′ 7→ 1). We use (x ′ 7→ v) to denote
a record with a single component named x ′ whose value is v . This is because the
angel can ensure the final value of x to be either 0 or 1, as required. For the demonic
choice, x := 0u x := 1, the range of the binary multirelation includes the supersets
of { (x ′ 7→ 0), (x ′ 7→ 1) }. In this case, the demon is in control: the final value of x is
arbitrarily chosen to be 0 or 1.

For x := 0 u (x := 1 t x := 2), which involves a demonic and an angelic choice,
the model is { s , ψ | {(x ′ 7→ 0), (x ′ 7→ 1)} ⊆ ψ ∨ {(x ′ 7→ 0), (x ′ 7→ 2)} ⊆ ψ }. If
either 0 or 1 is an acceptable final value for x , then the angel can help. Similarly,
if 0 and 2 are acceptable, we are guaranteed success. Nevertheless, 1 or 2 only
cannot be guaranteed; of course, a requirement for 0, 1, or 2 is successful, and
indeed the postcondition { (x ′ 7→ 0), (x ′ 7→ 1), (x ′ 7→ 2) } is a superset of both
{ (x ′ 7→ 0), (x ′ 7→ 1) } and { (x ′ 7→ 0), (x ′ 7→ 2) } and therefore is included in the
range of the binary multirelation.

Here, we consider the isomorphism between binary multirelations and predicate
transformers characterised by the functions below.

Definition 3. bm2pt .BM .ψ = { s | (s , ψ) ∈ BM }

pt2bm.PT = { (s , ψ) | s ∈ PT .ψ }

The function bm2pt converts a binary multirelation to a weakest precondition: we
have that bm2pt .BM is guaranteed to establish a postcondition ψ in all initial states
s associated to ψ in BM ; in these states BM will angelically choose to establish ψ if
required. Conversely, the multirelation pt2bm.PT associates an initial state s with
all the postconditions that PT is guaranteed to establish from s .

This isomorphism is simpler than that presented in [20], which constructs the
binary multirelation corresponding to a predicate transformer using prime filter rep-
resentations of states. Our proof that bm2pt and pt2bm characterise an isomorphism
between predicate transformers and binary multirelations is very simple.

Theorem 2. pt2bm.(bm2pt .BM ) = BM

Proof.

pt2bm.(bm2pt .BM ) [definition of pt2bm]

= { (s , ψ) | s ∈ bm2pt .BM .ψ } [definition of bm2pt ]

= { (s , ψ) | s ∈ { s | (s , ψ) ∈ BM } } [property of set comprehension]

= { (s , ψ) | (s , ψ) ∈ BM } [property of sets]

= BM 2

Theorem 3. bm2pt .(pt2bm.PT ) = PT

Proof.

bm2pt .(pt2bm.BM ).ψ [definition of bm2pt ]

= { s | (s , ψ) ∈ pt2bm.PT } [definition of pt2bm]

= { s | (s , ψ) ∈ { (s , ψ) | s ∈ PT .ψ } } [property of set comprehension]

= { s | s ∈ PT .ψ } [property of sets]

= PT .ψ 2

The following two theorems establish that monotonic predicate transformers cor-
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binary
multirelations

predicate
transformers

Set-based
relations

UTP
predicates

pt2bm sb2pt p2sb

Fig. 1. Models and isomorphisms

respond to BMH-healthy multirelations. They conclude our argument; we have a
model isomorphic to monotonic predicate transformers.

Theorem 4. For a BMH-healthy binary relation BM , bm2pt .BM is monotonic.

Proof. Let ψ1 and ψ2 be such that ψ1 ⊆ ψ2.

bm2pt .BM .ψ1 [definition of bm2pt ]

= { s | (s , ψ1) ∈ BM } [BM is healthy and ψ1 ⊆ ψ2]

⊆ { s | (s , ψ2) ∈ BM } [definition of bm2pt ]

= bm2pt .BM .ψ2 2

Theorem 5. For a monotonic PT, the binary multirelation pt2bm.PT is BMH-

healthy.

Proof. Let ψ1 and ψ2 be such that ψ1 ⊆ ψ2.

(s , ψ1) ∈ pt2bm.PT [definition of pt2bm]

= (s , ψ1) ∈ { (s , ψ) | s ∈ PT .ψ } [property of set comprehension]

= s ∈ PT .ψ1 [PT is monotonic and ψ1 ⊆ ψ2]

⇒ s ∈ PT .ψ2 [property of set comprehension]

= (s , ψ2) ∈ { (s , ψ) | s ∈ PT .ψ } [definition of pt2bm]

= (s , ψ2) ∈ pt2bm.PT 2

What we need now is a way of expressing multirelations as alphabetised predicates.

4.1 Predicative theory

The key point to define a UTP theory based on binary multirelations is the choice
of alphabet. We propose a view of a binary multirelations as a relation between
a state on an alphabet inα and a state on { dc′ }. The value of dc′ is the set of
demonic choices available to the program: a set of states on an alphabet outα. For
example, in a theory of designs in which we can handle angelic nondeterminism, the
alphabet is { v , ok , dc′ }, where v stands for the list of program variables. In dc′,
the states are records that give values to the variables v ′ and ok ′.

Figure 1 summarises the isomorphisms we have defined so far. We are looking
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sb2ppt2sbbm2pt

binary
multirelations

predicate
transformers

Set-based
relations

UTP
predicates

pt2bm sb2pt p2sb

pt2r

bm2sb

sb2bm

Fig. 2. Extra isomorphism

for a way of representing binary multirelations as UTP predicates. We cannot use
pt2sb in the transformation because it cannot handle non-conjunctive predicate
transformers. Instead, we define an isomorphism between binary multirelations and
set-based relations with alphabet inα ∪ { dc′ }. It is based on the functions below.

Definition 4.

bm2sb.BM = { s : Sinα; s ′ : S{dc′} | (s , s ′.dc′) ∈ BM }
sb2bm.DCR = { s : Sinα; ss : P Soutα | (s , (dc′ 7→ ss)) ∈ DCR }

Using bm2sb, we get a standard set-based relation in which the sets in the range of
the original binary multirelation are wrapped in records with a single component
dc′; the function sb2bm unwraps these records. The proof that bm2sb and sb2sm
establish an isomorphism is trivial.

Since predicate transformers are the standard setting for the study of angelic
nondeterminism, we actually aim at expressing predicate transformers as UTP pred-
icates using pt2bm, bm2sb, and sb2p. In our calculations, we name the composition
of pt2bm and bm2sb as pt2r =̂ bm2sb ◦ pt2bm. The next theorem is useful.

Theorem 6. pt2r .PT = { s : Sinα; s ′ : S{dc′} | s ∈ PT .(s ′.dc′) }

For conciseness, we omit its simple proof. Figure 2 shows the additional isomorphism
and function that we use in the sequel.

For example, the predicate transformer abort maps all postconditions to the
empty set: it can never guarantee anything. In the UTP, it corresponds to false.

Theorem 7. sb2p.(pt2r .abort) = false.

Proof.

sb2p.(pt2r .abort) [definition of pt2r ]

= sb2p.{ s , s ′ | s ∈ abort .(s ′.dc′) } [definition of abort ]

= sb2p.∅ [definition of sb2p]

= ∃ s , s ′ • (s , s ′) ∈ ∅ ∧ (
∧

x : inα • x = s .x ) ∧ dc′ = s ′.dc′ [property of sets]

= false 2

Therefore, partiality models abortion. The miraculous program is true.
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4.2 Healthiness condition

In the UTP, the healthiness condition for binary multirelations is as follows.

PBMH P ; dc ⊆ dc′ = P

This requires that, if, after executing P , we execute a program that enlarges dc′,
then the result could have been obtained by P itself. A healthy P characterises dc′

not by defining a particular value for it, but the smallest set of elements it should
include. All the supersets should be allowed.

Healthy binary multirelations correspond to PBMH-healthy predicates.

Theorem 8. If BM is BMH-healthy, then sb2p.(bm2sb.BM )is PBMH-healthy.

Proof.

sb2p.(bm2sb.BM ); dc ⊆ dc′ [definition of bm2sb]

= sb2p.{ s : Sinα; s ′ : S{dc′} | (s , s ′.dc′) ∈ BM }; dc ⊆ dc′ [definition of sb2p]

= (∃ s , s ′ •
(s , s ′) ∈ { s : Sinα; s ′ : S{dc′} | (s , s ′.dc′) ∈ BM } ∧
(
∧

x : inαR • x = s .x ) ∧ s ′.dc′ = dc′);
dc ⊆ dc′

[property of set comprehension]

= (∃ s , s ′ • (s , s ′.dc′) ∈ BM ∧ (
∧

x : inα • x = s .x ) ∧ s ′.dc′ = dc′);
dc ⊆ dc′

[definition of sequential composition]

= ∃ s , s ′, dc0 •
(s , s ′.dc′) ∈ BM ∧ (

∧
x : inα • x = s .x ) ∧ s ′.dc′ = dc0 ∧ dc0 ⊆ dc′

[predicate calculus]

= ∃ s , s ′ • (s , s ′.dc′) ∈ BM ∧ (
∧

x : inα • x = s .x ) ∧ s ′.dc′ ⊆ dc′

[BM is BMH-healthy and predicate calculus]

= ∃ s , s ′ • (s , dc′) ∈ BM ∧ (
∧

x : inα • x = s .x ) ∧ s ′.dc′ = dc′

[predicate calculus]

= ∃ s , s ′ • (s , s ′.dc′) ∈ BM ∧ (
∧

x : inα • x = s .x ) ∧ s ′.dc′ = dc′

[property of sets]

= ∃ s , s ′ •
(s , s ′) ∈ { s : Sinα; s ′ : S{dc′} | (s , s ′.dc′) ∈ BM } ∧
(
∧

x : inα • x = s .x ) ∧ s ′.dc′ = dc′

[definitions of sb2p and bm2sb]

= sb2p.(bm2sb.BM ) 2

Theorem 9. If P is a PBMH-healthy predicate, then sb2bm.(p2sb.P) is BMH-

healthy.

Proof. Let ψ1 and ψ2 be such that ψ1 ⊆ ψ2.

(s , ψ1) ∈ sb2bm.(p2sb.P) [definition of p2sb]

= (s , ψ1) ∈ sb2bm.{ s , s ′ | P [s , s ′/inα, dc′] } [definition of sb2bm]
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= (s , ψ1) ∈ { s : Sinα; ss : PS{dc′} | (s , (dc′ 7→ ss)) ∈ { s , s ′ | P [s , s ′/inα, dc′] }}

[property of sets]

= (s , (dc′ 7→ ψ1)) ∈ { s , s ′ | P [s , s ′/inα, dc′] } [property of sets]

= P [s , ψ1/inα, dc
′] [P is PBMH-healthy]

= (P ; dc ⊆ dc′)[s , ψ1/inα, dc
′] [substitution]

= P [s/inα]; dc ⊆ ψ1 [definition of sequential composition]

= ∃ dc0 • P [s , dc0/inα, dc
′] ∧ dc0 ⊆ ψ1 [ψ1 ⊆ ψ2]

⇒ ∃ dc0 • P [s , dc0/inα, dc
′] ∧ dc0 ⊆ ψ2

[definition of sequential composition, and substitution]

= (P ; dc ⊆ dc′)[s , ψ2/inα, dc
′] [P is PBMH-healthy]

= P [s , ψ2/inα, dc
′] [definitions of p2sb and sb2bm]

= (s , ψ2) ∈ sb2bm.(p2sb.P) 2

It is pleasing that the healthiness condition can be cast in a quite simple way, and
also in terms of the fixpoint of the idempotent PHBM(X ) = X ; dc ⊆ dc′. This is
important for the approach to linking theories encouraged by the UTP.

4.3 Refinement

The refinement relation is implication in the reverse direction from that adopted
in the UTP. Still, it is just implication, and, more importantly, it corresponds to
refinement in the predicate transformer model.

As usual, we define predicate transformer refinement as follows.

Definition 5. PT1 vPT PT2 =̂ ∀ψ • PT1.ψ ⊂ PT2.ψ

For healthy binary multirelations, we have the following definition.

Definition 6. BM1 vBM BM2 =̂ BM1 ⊆ BM2

The next theorem establishes that these orders are compatible.

Theorem 10. BM1 vBM BM2 if, and only if, bm2pt .BM1 vPT bm2pt .BM2.

Proof.

bm2pt .BM1 vPT bm2pt .BM2 [definition of vPT ]

= ∀ψ • bm2pt .BM1.ψ ⊆ bm2pt .BM2.ψ [definition of bm2pt ]

= ∀ψ • { s | (s , ψ) ∈ BM1} ⊆ { s | (s , ψ) ∈ BM2} [property of sets]

= ∀ψ, s • (s , ψ) ∈ BM1 ⇒ (s , ψ) ∈ BM2 [property of sets]

= BM1 vBM BM2 2

Finally, we define angelic refinement in the UTP theory.

Definition 7. P vA Q =̂ [P ⇒ Q ]

The correspondence between this refinement relation and that for binary multire-
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lations is established below.

Theorem 11. P vA Q if, and only if, sb2bm.(p2sb.P) vBM sb2bm(p2sb.Q).

Proof.

sb2bm.(p2sb.P) vBM sb2bm(p2sb.Q) [definition of vBM ]

= sb2bm.(p2sb.P) ⊂ sb2bm(p2sb.Q) [property of sets]

= ∀ s , ψ • (s , ψ) ∈ sb2bm.(p2sb.P) ⇒ (s , ψ) ∈ sb2bm.(p2sb.Q)

[definition of sb2bm]

= ∀ s , ψ • (s , dc′ 7→ ψ) ∈ p2sb.P ⇒ (s , dc′ 7→ ψ) ∈ p2sb.Q [definition of p2sb]

= ∀ s , ψ • P [s , ψ/inα, dc′] ⇒ Q [s , ψ/inα, dc′] [predicate calculus]

= ∀ x : inα, dc′ • P ⇒ Q [the alphabet is inα ∪ {dc′}]

= [P ⇒ Q ] 2

The pre-order proposed in [20] for binary multirelations becomes a partial order
in the restricted setting of healthy binary multirelations. Also, it collapses to set
inclusion, which is the order we adopt here.

4.4 Operators

Angelic choice P t Q is characterised by disjunction. The program P t Q gives all
the guarantees that can be provided by choosing P , together with those that arise
from the possibility of choosing Q .

Theorem 12. sb2p.(pt2r .(P t Q)) = sb2p.(pt2r .P) ∨ sb2p.(prt2.Q)

Proof.

sb2p.(pt2r .(P t Q)) [Theorem 6]

= sb2p.{ s , s ′ | s ∈ (P t Q).(s ′.dc′) } [predicate transformer semantics of t]

= sb2p.{ s , s ′ | s ∈ P .(s ′.dc′) ∪Q .(s ′.dc′) } [definition of sb2p]

= ∃ s , s ′ • s ∈ P .(s ′.dc′) ∪ Q .(s ′.dc′) ∧ (
∧

x : inαR • x = s .x ) ∧ s ′.dc′ = dc′

[property of sets and predicate calculus]

= (∃ s , s ′ • s ∈ P .(s ′.dc′) ∧ (
∧

x : inαR • x = s .x ) ∧ s ′.dc′ = dc′) ∨
(∃ s , s ′ • s ∈ Q .(s ′.dc′) ∧ (

∧
x : inαR • x = s .x ) ∧ s ′.dc′ = dc′)

[definitions of pt2r and sb2p]

= sb2p.(pt2r .P) ∨ sb2p.(pt2r .Q) 2

Demonic choice is captured by conjunction; a postcondition is guaranteed by P uQ
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only if both P and Q can guarantee it, so that the arbitrary choice is not a problem.

Theorem 13. sb2p.(pt2r .(P u Q)) = sb2p.(pt2r .P) ∧ sb2p.(prt2.Q)

Proof.

sb2p.(pt2r .(P u Q)) [Theorem 6]

= sb2p.{ s , s ′ | s ∈ (P u Q).(s ′.dc′) } [predicate transformer semantics of u]

= sb2p.{ s , s ′ | s ∈ P .(s ′.dc′) ∩Q .(s ′.dc′) } [definition of sb2p]

= ∃ s , s ′ • s ∈ P .(s ′.dc′) ∩ Q .(s ′.dc′) ∧ (
∧

x : inαR • x = s .x ) ∧ s ′.dc′ = dc′

[property of sets and predicate calculus]

= (θx : inα • x 7→ x ) ∈ P .dc′ ∩ Q .dc′ [property of sets]

= (θx : inα • x 7→ x ) ∈ P .dc′ ∧ (θx : inα • x 7→ x ) ∈ Q .dc′

[property of sets and predicate calculus]

(∃ s , s ′ • s ∈ P .(s ′.dc′) ∧ (
∧

x : inαR • x = s .x ) ∧ s ′.dc′ = dc′) ∧
(∃ s , s ′ • s ∈ Q .(s ′.dc′) ∧ (

∧
x : inαR • x = s .x ) ∧ s ′.dc′ = dc′)

[definitions of pt2r and sb2p]

= sb2p.(pt2r .P) ∧ sb2p.(pt2r .Q) 2

In this proof, we use the notation (θx : A • x 7→ v) to describe the record that
associates each name x in the alphabet A to the corresponding value v . Above, the
value is that of the variable x itself; we have a predicate on the variables x and dc′.

Sequential composition cannot correspond to relational composition. It uses the
operator ∗ to lift Q to a predicate on dc and dc′. It is inspired on the UTP treatment
of logic programming, and is defined as follows.

Q∗ =̂ µX • true C dc = ∅ B var s • s ′ ∈ dc;
(v := s .v ; Q) t (dc := dc \ { s }; X )

end

Sequential composition is P ; Q∗: after the execution of P , Q∗ recursively selects a
state in dc′ and executes Q . The program P C c B Q is a conditional: it executes
P if c holds, else it executes Q . A variable s is declared to hold a state in dc. The
observational variables are initialised as in s before Q is executed. The demonic
choice of all the outcomes of the executions of Q is the result of the sequence.

It is unavoidable that the definitions of some operators are more complicated
than those in the original UTP model. It is part of the philosophy of the UTP to
study constructs and concepts in isolation: we have provided a theory for angelic
nondeterminism which can be incorporated to the other theories as needed. We
have also established that we do need a more elaborate relational model to capture
angelic nondeterminism.

5 Conclusions

The central objective of Hoare and He’s UTP is to formalise different programming
paradigms within a common semantic framework, so that they may be directly
compared and new compound programming languages and refinement calculi may
be developed. This ambitious research programme has only just been started. An
important question to ask is: what are the theoretical limits to this investigation?
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Angelic nondeterminism is a valuable concept: it plays an important rôle in
refinement calculi, and it is used as an abstraction in search-based and constraint-
oriented programming, hiding details of how particular strategies are implemented.
The main contribution of this paper is a predicative account of binary multirelations
that allows the unification of angelic nondeterminism into the UTP.

We describe the UTP predicative theory of alphabetised relations and the theory
of designs, where it is possible to observe the start and termination of a program.
Designs enable reasoning about total correctness, and a set-based model of relations
brings this fact sharply into focus. We show that there is an isomorphism between
our set-based relations and universally conjunctive predicate transformers. This
establishes a connection with an existing result: conjunctive predicate transformers
cannot capture angelic nondeterminism.

A relational model that can capture both angelic and demonic nondeterminism
is presented in [20]. We cast that model in the UTP predicative style, including a
healthiness condition and the refinement relation. This allows its use in an integrated
framework that covers, for instance, concurrency and higher-order programming.
We are going to use this model to extend the existing semantics of our combined
formalism [21], and prove refinement laws.

In [4], Back and von Wright present another relational model isomorphic to
predicate transformers; it is actually a functional model called choice semantics.
In that work, a program P is a function from initial states s to the set of post-
conditions that can be satisfied when P is executed in s . The choice semantics is,
of course, isomorphic to binary multirelations. Since in the predicative style of the
UTP relations are defined punctually, it was more convenient to base our work on
binary multirelations rather than on choice semantics.

The work in [16] presents a functional semantics for a tactic language which
includes angelic nondeterminism. The semantics of angelic choice is a list that con-
tains all the options available to the angel; demonic nondeterminism is not included.
In [17], the set-based model of binary relations is used to support angelic and de-
monic nondeterminism in a calculus for functional programs. They adopt two re-
finement relations, one of which is the same as ours.

Both [20] and [17] present operations that model, for example, angelic nonde-
terminism and sequence. Our contribution is to cast these operations at the level
of UTP predicates, where they can be integrated into more powerful theories of
programming.
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