
Towards a Time Model for CircusCircusCircusCircusCircusCircusCircusCircusCircus

Adnan Sherif and He Jifeng
∗

The United Nations University,
International Institute for Software Technology,

Casa Silva Mendes, Est. do Engenheiro Trigo No. 4,
P.O Box 3058, Macau

Tel.:+853 - 712.930, Fax: +853 - 712.940
ams@iist.unu.edu, hjf@iist.unu.edu

Abstract. In this work we propose a time model for Circus. The model
is an extension to the model proposed by the unifying theories of pro-
gramming and used by Circus. We take a subset of Circus and study
its semantics in the new model. We create an abstraction function that
maps the timed model to the original model. The main objective of this
mapping is to create a relation between the two models. This allows the
exploration of some properties of the timed semantics in the untimed
model. We study a toy example to illustrate the use of this mapping.

1 Introduction

Real time systems have always been a strong candidate for formal develop-
ment methods. This fact rises due to the complexity and, usually, critical nature
of these systems. The development of formal specification languages, and the
adaptation of existing languages with time expressing capacity, was and still is
a challenging task. Many languages such as DC [1], and RTL [4] are based on
temporal logic and are powerful for expressing timed functionalities. Timed CSP
[8] is an extension to the well known CSP [9]. Reed and Roscoe have developed
several semantic models for the language [8].

Lately the combination of different languages and techniques have been
adapted to obtain formalisms that can be used in a wider range of applications.
Circus is a combination of CSP and Z [12]; it includes specification statements
found in Morgan’s refinement calculus [7] and Dijkstra’s language of guarded
commands [2]. Circus has a well-defined syntax and a formal semantics [15,13]
based on the unified theories of programming [3]. Case studies using the language
are explored in [14] to show its power of expression. A development method for
Circus using refinement is described in [10].

This paper aims to provide a model which is enriched with time in a con-
servative manner to the untimed Circus . We add some time operators to the
language as well. A mapping between the two models is created with the objec-
tive of studying the properties of timed programs in the untimed model.
∗
On leave from East China Normal University, Shanghai. The work is partly sup-
ported by research grant 02104 of MoE P. R. of China

C. George and H. Miao (Eds.): ICFEM 2002, LNCS 2495, pp. 613–624, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

614 Adnan Sherif and He Jifeng

To define this model we adopt a simple language (CT ∗). CT ∗is a subset of
Circus. For simplicity, we only consider actions, guarded commands and assign-
ment from the original language. The fact that we are using a subset of the
original language has no effect over the model, as the other constructs of the
language are abstractions and declarations that have little effect over the model.

In the next section we give an informal introduction to the syntax and se-
mantics of the language CT ∗. In Section 3, we present the semantic model and
give the formal semantics of CT ∗. A relation between the timed model and the
original model is explored in Section 4. We study a simple example and explore
some properties in Section 5, and conclude in Section 6 with a discussion on
future work.

2 CT ∗: Informal Description

A CT ∗program is formed by actions, commands and channel communication
events. Figure 1 presents the BNF description of the syntax of CT ∗.

Action ::=Skip | Stop | Chaos | Wait t
| CommunicationAction | b & Action
| Action; Action | Action ✷ Action | Action � Action
| Action |[CS]| Action | Action \ CS | Command

| Action
t
� Action | µ N • Action

Communication::=N CParameter∗

CParameter ::=?N | ! e | . e

Command ::=N+ := e | Action ✁ b ✄ Action

Fig. 1. CT ∗ syntax

In the syntax above, e stands for any expression, t stands for a positive integer
time expression, N any valid name, N+ a list of names and CS stands for a set
of channel names.

A CT ∗program is formed from one single action. An action can be a basic
action, or a combination of one or more actions.

Skip, is a basic action that terminates immediately. Stop represents an ab-
normal termination which simply puts a program in an ever waiting state. Chaos
is the worst action, nothing can be said about its behavior.

The action (Wait t) will be held for an amount of time determined by
the positive integer expression t before terminating normally. Guarded actions
(b & Action) are proceeded by a predicate which has to be true for the action to
take place; otherwise the guarded action cannot be executed and the resulting
behavior is similar to the action Stop.

Towards a Time Model for Circus 615

An internal choice (Action � Action) selects one of the two actions in a non-
deterministic manner, whereas the external choice (Action ✷ Action) waits for
any of the two actions to interact with the environment. The first action that
shows an interaction with the environment (either by synchronizing on an event
or terminating) is the resulting action.

The sequential composition of two actions (Action; Action) will result in a
new action that will behave as the first action followed immediately by the second
action.

An action can be prefixed with a communication event (input or output)
which will take place before the action starts. The action waits for the other
actions that need to synchronize on the channel before the communication can
take place. The parallel composition of two actions (Action|[CS]|Action) involves a
set (CS) containing the events they need to synchronize on. A hiding operation
also takes a set of events (CS). The set is to be excluded from the resulting
observation; hidden events can no longer be seen by other actions.

The timeout construct (Action �t Action) takes a positive integer value as the
length of the timeout. The timeout operator acts as a time guarded choice. If
the first action performs an observable event or terminates before the specified
time elapses, it is chosen. Otherwise, the first action will be suspended and the
only possible observations are those produced by the second action.

Assignment is a command; it simply assigns a value to a variable in the
current state. If the variable already exists its value will be overwritten, otherwise
it will be added to the current state and assigned the given value. The conditional
command (Action ✁ b ✄ Action) associates two actions with a boolean expression
b. If the expression evaluates to true then the first action is chosen, otherwise
the second action is chosen.

3 The Semantic Model

The first question that had to be answered is: what model of time we would
like to have, discrete time or continuous time? On one hand the second seems
to be more appropriate for it is powerful to express time in both forms, and
for the nature of time in the real world to be continuous. On the other hand,
it cannot be implemented by a computer system. Unlike a continuous model, a
discrete model is implementable, and therefore the untimed refinement rules can
be extended in a more natural way. Following the main objective of making the
model conservative we make a choice for the discrete model.

Similar approaches such as those in [6] and [5] use Extended Duration Calcu-
lus (EDC) to add continuous time to the language semantics. Both works, show
clearly the elegance and powerful expression capacity of the EDC formulas. But
both approaches make it clear that the new model cannot be easily related to
the original untimed model. Proving properties in the new model is a laborious
task.

A reactive system behavior can be studied with two observations. The initial
observation shows the state of the environment before the program starts, and

616 Adnan Sherif and He Jifeng

the second observations shows the state of the environment at the moment the
program reaches a stable state. A stable state is either a termination state or
a none termination state in which the program has no interaction with the
environment [3]. The final observation registers the interaction of the program
with the environment during and at the point of observation. This observation
is registered in the form of a sequence of events that show the order in which
the events occurred, and a set of refusals which indicate the events the program
can refuse at the observation point.

In our approach we continue with the same pair of observations, at the initial
and end of the program. But we enrich the observations on the interaction with
environment, by adding time information. The interaction with the environment
is recorded as a sequence of tuples, each element of the sequence denoting the
observations over a single time unit. The first component of the tuple is a se-
quence of events which occurred during the time unit. The second component is
the set of refused events at the end of the time unit.

The following is a formal description of the observation variables used by our
model.

ok , ok ′ are boolean variables. When ok is true, it states that the program started
and ok ′ indicates that the program is in a stable state.

ok , ok ′ : Boolean

wait ,wait ′ boolean variables. When wait is true the program starts in an inter-
mediate state. When wait ′ is true the program has not terminated; when it
is false, it indicates a final observation.

wait ,wait ′ : Boolean

state, state ′ A mapping from variable names to values. This mapping associates
each user variable in the program to a value.

state, state ′ : N → Value

The dashed variable represents the state of the program variables at the final
observation.

tr , tr ′ A sequence of observations on the program interaction with its environ-
ment. tr records the observations that occurred before the program starts,
and tr ′ records the final observation. Each element of the sequence represents
an observation over one time unit. Each observation element is composed of
a tuple, where the first element of the tuple is the sequence of events that
occurred during the time unit, and the second one is the associated set of
refusals at the end of the same time unit.

tr , tr ′ : seq(seqEvent × PEvent)

The type Event represents all the possible events of a program. We also
define a relation between two timed traces. We define a relation Expands as
follows

Expands(tr , tr ′) =̂ (Front(tr) � tr ′) ∧ (first(Last(tr)) � first(tr ′(# tr)))

Towards a Time Model for Circus 617

Given two timed traces, we state that the second expands the first if the
initial part of the first timed trace is a subsequence of the second timed
trace, and the untimed traces registered at the last time unit of the first
timed trace is a subsequence of the traces registered at the same time in the
second timed trace.

trace ′ A sequence of events that occurred since the last observation. In this
observation we are interested in recording only the events without time.

trace ′ : seqEvent
trace ′ = Flat(tr ′)− Flat(tr)

where
Flat : seq(seqEvent × PEvent) → seqEvent

Flat(<>) = <>

Flat(< (el , ref) > �S) = el � Flat(S)

A single observation is given by the combination of the above variables. We
will define our programs as predicates over the observation variables. We define
a condition R that needs to be satisfied by all observations.

R(P) =̂ P ∧ Expands(tr , tr ′)

The condition states that for all valid observations the final values of the timed
trace (tr ′) are always an expansion of the initial timed traces (tr). We use the
term [[P]]time to stand for the timed semantic of a program P

3.1 Basic Actions

The semantics of the action Skip is given as a program that can only termi-
nate normally, without consuming any time. It also has no interaction with the
environment.

[[Skip]]time =̂ (ok ′ ∧ ¬wait ′ ∧ tr ′ = tr ∧ state ′ = state) (1)

On the other hand the semantics of the action Stop is given as a predicate that
waits for ever. Notice that Stop permits time to pass, but it does not interact
with the environment (trace ′ =<>).

[[Stop]]time =̂ (ok ′ ∧ wait ′ ∧ trace ′ =<>) (2)

The action Chaos is given as the predicate true. Chaos is the worst action and
nothing can be said about it except that it also needs to satisfy the condition R.

[[Chaos]]time =̂ R(true) (3)

The assignment assigns a value to a variable in the current state. If the variable
does not exist it will be added, otherwise its value will be overwritten. The
assignment operation is instantaneous and does not consume time.

[[x := e]]time =̂ (ok ′ ∧ ¬wait ′ ∧ tr ′ = tr ∧ state ′ = state ⊕ {x �→ e}) (4)

618 Adnan Sherif and He Jifeng

Wait: The only possible behavior for this action is to wait for the specified
number of time units to pass before terminating immediately.

[[Wait d]]time =̂((ok
′ ∧ wait ′ ∧ (#tr ′ −#tr) < d) ∨

(ok ′ ∧ ¬wait ′ ∧ (#tr ′ −#tr) = d)) ∧
(trace ′ =<>)

(5)

Communication: An action can engage in a communication if all the other
actions involved in the same communication are ready to do so. We model this
with the help of two predicates. wait com(c) models the waiting state of an
action to communicate on channel c. The only possible observation is that the
communication channel cannot appear in the refusal set during the observation
period. term com(m) represents the act of the communication itself. It states
clearly that the communication does not take any time (#tr ′ = #tr), but the
event appears in the traces of the observation.

wait com(c) =̂ok ′ ∧ wait ′ ∧ possible(tr , tr ′, c) ∧ trace ′ =<>

term com(m) =̂ok ′ ∧ ¬wait ′ ∧ trace ′ =< m >∧ #tr ′ = #tr

Where, possible(tr , tr ′, c) returns true if the channel c is not contained in the
refusal set of all the observations recorded from tr to tr ′. The following is a
definition of the function

possible(tr , tr ′, c) =̂ ∀ i : #tr ..#tr ′ • c �∈ second(tr ′(i))

The semantics of the output communication is given bellow. The definition de-
scribes two states for the communication semantics. The first is that the com-
munication observation is in a waiting state. The second describes the case of
a communication waiting for a time period before terminating with the event
registered in the traces.

[[c!e]]time =̂wait com(c) ∨
(wait com(c) ◦ (term com(c.e) ∧ state ′ = state))

(6)

We use (◦) to stand for observation concatenation. It is defined as follows
A ◦ B =̂ ∃ ō • A(v̄ , ō) ∧ B(ō, v̄ ′)

Where v̄ , v̄ ′ represent the vector of observation variables. We use the term
A(v̄ , v̄ ′) to denote the predicate that satisfies the vector of observation vari-
ables v̄ as input and the vector v̄ ′ as output. The concatenation states that
there exists a vector of observation variables ō such that this vector is the out-
put of the first predicate and satisfies the input of the second predicate. The
concatenation operator satisfies the following properties

(A ∨ B) ◦ C =(A ◦ C) ∨ (B ◦ C)
(A ◦ B) ◦ C =A ◦ (B ◦ C)

We can define the input operation in a similar manner. The main difference is
that when the communication takes place, the value transmitted on the channel
is assigned to the variable used in the input command.
[[c?x]]time =̂wait com(c) ∨

(wait com(c) ◦ (term com(c.e) ∧ state ′ = state ⊕ [x �→ e]))
(7)

Towards a Time Model for Circus 619

The semantics of the communication prefix can be given with the help of the
sequential composition. The action comm is either an input or output operation.

[[commAction]]time =̂ [[comm; Action]]time (8)

Conditional Choice:We use the conditional choice operator exactly as defined
in the unifying theories of programming [3].

3.2 Sequential Composition

The sequential composition has three possible states. The first shows that if the
first action diverges then so does the sequential composition. The second state
shows that the initial action is in a waiting state and therefore the following
action can not start. The alternative behavior would be for the first action to
terminate and the second to start immediately after.

[[A; B]]time =̂([[A]]time [false/ok
′]) ∨

([[A]]time ∧ wait ′) ∨
(([[A]]time [true, false/ok

′,wait ′]) ◦ [[B]]time)
(9)

3.3 Guarded Action

A guarded action has a predicate p which needs to be satisfied before the action
can take place. If the predicate is false the only possible behavior of the resulting
action is to wait for ever. But if the predicate evaluates to true then the result
will be any possible behavior of the guarded action.

[[p & A]]time =̂ ([[A]]time ✁ p ✄ [[Stop]]time) (10)

3.4 External Choice

The external choice between two actions is determined by the environment. The
composed system will behave as either one of the two actions which ever reacts
first to the environment. This can be expressed as two possible behaviors, either
the system is in a waiting state and only internal behavior can take place or
the system reacts to the environment after waiting for an external event which
satisfies either one of the component actions or both, and in this case the choice
is non-deterministic.

[[A ✷ B]]time =̂([[A]]time ∧ [[B]]time ∧ wait ′ ∧ trace ′ =<>) ∨
(([[A]]time ∧ [[B]]time ∧ ok ′ ∧ wait ′ ∧ state ′ = state ∧
trace ′ =<>) ∨ [[Skip]]time) ◦ (([[A]]time ∨ [[B]]time) ∧
(¬wait ′ ∨ (¬(tr � tr ′) ∧ trace ′ �=<>)))

(11)

The internal choice is specified just as in [3].

620 Adnan Sherif and He Jifeng

3.5 Recursion

To define recursion we need to define an ordering operator. An action A is as
good as action B in the sense that it will meet all the operations and satisfy all
the specifications satisfied by B. This relation is denoted by A � B .

A � B =̂ [[[A]]time ⇒ [[B]]time] (12)

An action A is equal to an action B if
A = B =̂ A � B ∧ B � A (13)

We notice that the set of observations in our model form a complete lattice with
respect to the relation �, having [[Chaos]]time as its bottom element, � as the
greatest lower bound. So we can define the semantics of recursion as the weakest
fixed point [3].

µX • F (X) =̂ � {X | X ⇒ F (X)} (14)

3.6 Timeout

The Timeout operator takes a time value and combines two actions such that,
the first action should react to the environment within the given time period
or the second action will take place. We can model this with the help of the
external choice.

[[A
d
� B]]time =̂ [[(A ✷ (Wait d ; intB)) \ {int}]]time

(15)

The event int is taken to be an event that is not used by A and B or another
event can be used. The main objective of adding this event is to trigger the
external choice and force it to select the second option. It can only do the first
option if the action A engages in a communication or terminates before the wait
period d elapses. The event int is hidden from the rest of the environment.

For details of the semantic of the other operators of the language and the
properties please refer to [11].

4 Linking CircusCircusCircus Models

Our proposed model is different from other approaches, we are interested in
adding time information to the semantics of the language, but we will also like to
preserve the untimed semantics of our programs in the time model. To show the
relation between the two models we create a function L that given a set of timed
observations related to a CT ∗ program P , the function returns the equivalent
observation in the original model without time information. This function is
defined as follows

L([[P]]time) =̂∃ obs • [[P]]time ∧ trace ′ = Flat(tr ′)− Flat(tr) ∧
ref ′ = second(Last(tr ′))

(16)

The function L maps the timed semantics of a program P to the untimed se-
mantics of the Circus program. This is done by applying the Flat function to

Towards a Time Model for Circus 621

the timed traces to obtain the original model traces. A projection on the second
element of the last entry in tr ′, results in the refusal set of the original model.

We also introduce a function R as an inverse function for L. This function
takes as input a set of untimed observations and adds arbitrary time information.

R([[P]]) =̂
∨

{[[Q]]time | L([[Q]]time) � [[P]]} (17)

We observe that the functions L and R form a Galois connection [3]. If we apply
the mapping R to the result of applying the mapping L to a timed specification
S , we will get a larger set of observation. The time information contained in S
is lost and the result is a weaker specification.

S � R(L(S))

This permits us to explore some properties of the timed language. Let us consider
the following theorem.

Theorem 1. A specification S is time insensitive if it satisfies the following
equation R(L(S)) = S (18)

The above theorem states that by applying the conjunction of the mapping
functions to a specification S we obtain the same specification. Then the time
information in the original specification is irrelevant to the behavior of the sys-
tem. An example of such case is the action Skip. By applying the function L
to the semantics of the constructs of CT ∗ we can obtain the equivalent Circus
semantics.

L([[x := e]]time) = [[x := e]] (19)
L([[Skip]]time) = [[Skip]] (20)
L([[Stop]]time) = [[Stop]] (21)

L([[Chaos]]time) = [[Chaos]] (22)
L([[comm]]time) = [[comm]] (23)
L([[Wait d]]time) = [[Stop]] ∨ [[Skip]] (24)

L([[A ✁ b ✄ B]]time) � L([[A]]time) ✁ b ✄ L([[B]]time) (25)
L([[p& A]]time) � p& L([[A]]time) (26)
L([[A � B]]time) � L([[A]]time) � L([[B]]time) (27)
L([[A ✷ B]]time) � L([[A]]time) ✷ L([[B]]time) (28)
L([[A; B]]time) � L([[A]]time); L([[B]]time) (29)

L([[A |[cs]| B]]time) � L([[A]]time) |[cs]| L([[B]]time) (30)
L([[A\cs]]time) � L([[A]]time)\cs (31)

L([[µX • A(X)]]time) � µX ′ • L([[A]]time)(X
′) (32)

L([[A
d
� B]]time) = L([[(A ✷ (Wait d ; intB))\{int}]]time) (33)

The relation between the models will permit us to explore properties of pro-
grams expressed in the untimed model. The parts of the program which are not

622 Adnan Sherif and He Jifeng

time sensitive can be identified and explored in the untimed model. For programs
with time information some properties can still be investigated in the untimed
model. In the next section we explore this topic in more detail with the aid of
an example.

5 Example

A one place buffer, takes as input a value from the input channel, stores this
value in a local internal variable and then offers to communicate the same value
on the output channel. The buffer has a main safety requirement. The buffer
can not lose data, i.e. it should not allow the data to be over written by new
input before an output is issued. The simple buffer is given in the following CT ∗

actions
Buffer =̂ in?xBuffer<x>

Buffer<x> =̂ out !xBuffer

To add some timing constraints we state that the input and output operations
have a duration of 3 time units. We will add a waiting state at the end of each
operation. The communication does not consume time. We can change the buffer
example as follows

TBuffer =̂ in?xWait 3; TBuffer<x>

TBuffer<x> =̂ out !xWait 3; TBuffer

The safety property of the buffer can be specified by a function on traces. The
function states that, the projection of the trace over the event out should be
shorter or equal to the projection of the same trace over the event in. It also
states that the projection of the front of the trace over the event in is shorter
or equal to the projection of the same trace on the event out .

S (trace) =̂Front(trace) � {in} ≤ trace � {out} ∧
trace � {out} ≤ trace � {in}

We would like to check if our timed buffer still meets the safety requirement.
Because the specification uses the untimed traces to state the property, we can
use our mapping function L to obtain the time abstract version of the buffer,
and then check if the abstract version of satisfies the specification. We define a
relation satT to state that a timed program P satisfies an untimed specification
S that only uses the traces.

P satT S =̂ L(P) ⇒ S

We need to prove that L([[TBuffer]]time) ⇒ S

Where
L([[TBuffer]]time)

�
[[in?x (Stop � Skip); out?x (Stop � Skip)]]; L(TBuffer)

Towards a Time Model for Circus 623

Because the program is a guarded recursive action. We can use the following

F (X) � S iff F (S) � S

and
([[in?x (Stop � Skip); out?x (Stop � Skip)]]; S) � S
implies
L(TBuffer) � S

From the semantic definition of communication and the definition of sequential
composition

[[in?x (Stop � Skip); out?x (Stop � Skip)]]; S ⇒(trace =<>) ∨
(trace =< in >) ∨
(trace < in out > �t ′′ ∧
S (t ′′)

Therefore
L([[TBuffer]]time) satT S

Notice that the abstraction function L when applied to Wait d , substitutes
the wait command with non-deterministic choice between skip and stop. This
actually introduces the deadlock state into the program. Therefore deadlock free
property can not be explored with this abstraction function. A more suitable ab-
straction would be, to substituteWait d with a Skip. We are currently exploring
this type of abstractions.

6 Conclusions

In this paper we presented a model for adding time to Circus . The new model
is an extension to the original untimed model. We also show that the semantics
of a program that has no time information is the same in both models. We
have created a mapping from one model to the other, this mapping forms a
Galois connection between the two models. Therefore we explored the possibility
of reasoning on some properties of the system in one model, given a program
semantics in the other model.

As future work, we are studying other mappings and the possible properties
to be explored by these mappings. Therefore different mappings to the untimed
model can be used according to the type of property to be explored. Circus has
a semantic model implemented in Z, we are also interested in extending this
semantics model in Z with time, we would like to use a tool such as ZEVES to
study the model. We are also interested in rewriting the case studies of the steam
boiler presented by Jim Woodcock and Ana Cavalcanti in [14]. The validation
of the refinement laws introduced in [10] in the timed model is in our scope as
well.

624 Adnan Sherif and He Jifeng

The model we presented uses discrete time. Requirements for control sys-
tems are usually expressed in continuous time. A mapping between the contin-
uous time models and our implementation model is an interesting aspect to be
explored. This mapping can be used to validate the timing requirements.

References

1. Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A Calculus of Duration. Information
Processing Letters., 40:269–276, 1991.

2. E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Communications of the ACM, 18(8), 1975.

3. C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice-Hall
Series in Computer Science, 1998.

4. F. Jahanian, A. K. Mok, and D. A. Stuart. Formal specification of real-time
systems. Technical Report TR-88-25, Department of Computer Science, University
of Texas at Austin, June 1988.

5. He Jifeng and Victor Verbovskiy. Integrating CSP and DC. R 248, International
Institute for Software Technology, The United Nation University, P.O. Box 3058,
Macau, January 2002.

6. Li Li and He Jifeng. A Denotational Semantics of Timed RSL using Duration Cal-
culus. R 168, International Institute for Software Technology, The United Nation
University, P.O. Box 3058 Macau, July 1999.

7. C. Morgan. Programming from Specifications. Series in Computer Science.
Prentice-Hall International, 2nd edition, 1994.

8. G. M. Reed and A. W. Roscoe. A timed model for communicating sequential
processes. In Proceedings of ICALP ’86, volume 226. Lecture Notes in Computer
Science, 1986.

9. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional, 1998.

10. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in Circus.
To appear in proceedings of FME2002, 2002.

11. Adnan Sherif and He Jifeng. Towards a Time Model for Circus. R 257, International
Institute for Software Technology, The United Nation University, P.O. Box 3058,
Macau, July 2002.

12. M. Spivey. The Z Notation. Prentice-Hall International, 2nd edition, 1992.
13. J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refinement

language. Technical report, Oxford University Computing Laboratory, Wolfson
Building, Parks Road, Oxford OX1 3QD, UK, July 2001.

14. J. C. P. Woodcock and A. L. C. Cavalcanti. The steam boiler in a unified theory of
Z and CSP. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001),
2001.

15. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus - a Concurrent
Language for Refinement. In ZB 2002: Formal Specification and Development in
Z and B, volume 2272 of LNCS. Springer, January 2002.

	1 Introduction
	2 CT*: Informal Description
	3 The Semantic Model
	3.1 Basic Actions
	3.2 Sequential Composition
	3.3 Guarded Action
	3.4 External Choice
	3.5 Recursion
	3.6 Timeout

	4 Linking Circus Models
	5 Example
	6 Conclusions
	References

