Verification with Automated Reasoning

Simon Foster

Monday 6th March, 2017

INTO-CPS

http://into-cps.au.dk/
Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming
Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming
What is automated reasoning?

- natural language can have ambiguities and imprecision
- **formal logic**: a branch of mathematics that explores construction of propositions, theorems, and proofs
What is automated reasoning?

- natural language can have ambiguities and imprecision
- **formal logic**: a branch of mathematics that explores construction of propositions, theorems, and proofs

\[
time \in \{23:30 \ldots 04:00\} \Rightarrow \text{dark}
\]

\[
\forall x : \mathbb{N} \cdot \exists y : \mathbb{N} \cdot y > x
\]

\[
\forall x, y : \mathbb{Q} \cdot x < y \Rightarrow (\exists z : \mathbb{Q} \cdot x < z \land z < y)
\]
What is automated reasoning?

- natural language can have ambiguities and imprecision
- **formal logic**: a branch of mathematics that explores construction of propositions, theorems, and proofs

\[
time \in \{23:30 \ldots 04:00\} \Rightarrow \text{dark}
\]

\[
\forall x : \mathbb{N} \bullet \exists y : \mathbb{N} \bullet y > x
\]

\[
\forall x, y : \mathbb{Q} \bullet x < y \Rightarrow (\exists z : \mathbb{Q} \bullet x < z \land z < y)
\]

- allow to precisely form properties, as in Z and Circus
- prove (or falsify) properties using formal **deduction rules**
- **theorem provers** allow to (partially) automate this process
- apply to formally verify models and programs
Why theorem proving?

- model checkers like FDR4 struggle with data structures and infinite state systems
- it is thus difficult to model check Circus
- state explosion problem – limit on the number of states
Why theorem proving?

- model checkers like FDR4 struggle with data structures and infinite state systems
- it is thus difficult to model check Circus
- state explosion problem – limit on the number of states
- theorem provers allow to tackle problems symbolically
- no explicit representation of the state
- e.g. “the current state has $x > 5$ and $x < 10$”
- complementary to model checking: not quite “push button”
Cyber-Physical Systems (CPSs)

- current “hot topic” in computer science research
- combine discrete computation (cyber-) with physical world
- interact with environment using sensors and actuators
- a controller makes decisions about behaviour
- can communicate with other systems via a network
- e.g. automated driverless cars
- INTO-CPS explores modelling and verification of CPS
Agricultural Robot

- example: Robotti agricultural robot (http://agrointelli.com/)
Agricultural Robot

- example: Robotti agricultural robot (http://agrointelli.com/)

- immersive simulation and design space exploration
Agricultural Robot

- example: Robotti agricultural robot (http://agrointelli.com/)

- integrated and automated farming processes
Verifying CPSs

- such systems are complex to model and verify
- controller specified using a discrete notation like Circus
- environment modelled by differential equations
- very large state-space
- complex reasoning about real-numbers (\mathbb{R})
- not simply infinite state, but uncountably infinite
- theorem proving thus an essential verification technique
Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming
Formal Proof

- **conjecture**: under some assumptions, a formula is true
- e.g. “assuming $x > 0$ then x is a natural number”
- proof shows how to derive conclusion from assumptions
- by application of existing **theorems** and **deduction rules**
- analogy with function mapping inputs to outputs
- turns a conjecture into a **theorem** (or **lemma**)
- theorem provers and proof assistants aid us in this process
Automated Theorem Provers

∀x. ∃y. P(x, y)

Conjecture

ATP

Yes + Proof
No + Counterexample
Nothing (runs forever)
Automated Theorem Provers

- can also use **SMT solvers** to prove arithmetic theorems etc.
- usually limited to **first-order logic**
- e.g. in general cannot handle **induction**
- induction required for proofs about **failures-divergences**
- thus we also need **Interactive Theorem Proving**
Isabelle/HOL

- an interactive theorem prover for Higher Order Logic (HOL)
- HOL = a functional specification language
- similarities to both Z and Haskell
- supports data structures, recursive functions, relations etc.
- allows readable proofs in “natural deduction” style
- large online library of formalised mathematics
- support for verified code generation
- verification tools for Circus in progress

Proof in Isabelle

- an Isabelle proof is a script that acts on a **proof state**

```
Conjecture (goal) → Proof State → proof tactic → Proof State → proof tactic → Proof State → proof tactic(s) → No subgoals!
```

- “divide and conquer” approach to proof
- uses **proof tactics** to subdivide and eliminate **proof goals**
Proof in Isabelle

- an Isabelle proof is a script that acts on a proof state

- “divide and conquer” approach to proof
- uses proof tactics to subdivide and eliminate proof goals
 - simp – perform equational simplification (1 + 2 ⇝ 3)
 - blast and auto – automated deduction
 - sledgehammer – call external ATPs to find a proof
 - nitpick – try to find a counterexample
Proof in Isabelle

▶ an Isabelle proof is a script that acts on a proof state

▶ “divide and conquer” approach to proof
▶ uses proof tactics to subdivide and eliminate proof goals
 ▶ simp – perform equational simplification \((1 + 2 \leadsto 3)\)
 ▶ blast and auto – automated deduction
 ▶ sledgehammer – call external ATPs to find a proof
 ▶ nitpick – try to find a counterexample

▶ proof as a game where the winning condition is QED
An aside

Proof War

QED or DIE!

Tobias Nipkow. Teaching Semantics with a Proof Assistant
Demo 1: Isabelle proof goals

```isabelle

theorem ex1: "(1::int) + 2 = 3"
  by simp

theorem ex2:
  assumes "P ∧ R" "P → Q"
  shows "Q"
  using assms by simp

theorem ex3: "∀ x::nat. ∃y. y > x"
  oops

theorem ex4: "∃ x::nat. ∀y. y > x"
  oops
```

Demo 2: Isabelle functions and theorems

```isabelle
datatype 'a seq = Nil | Cons 'a "'a seq"

fun length :: "'a seq ⇒ nat" ("#" [999] 999) where
"#(Nil) = 0" |
"#(Cons x xs) = #xs + 1"

fun append :: "'a seq ⇒ 'a seq ⇒ 'a seq" (infixr @ 65) where
"Nil @ xs = xs" |
"(Cons x xs) @ ys = Cons x (xs @ ys)"

theorem length_append: "#(xs @ ys) = #xs + #ys"
proof (induct xs)
  case Nil
  then show ?case by simp
next
  case (Cons x1 xs)
  then show ?case by simp
qed
```
Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming
Programs-as-predicates and the UTP

- how do we apply tools like Isabelle to program verification?
Programs-as-predicates and the UTP

- how do we apply tools like Isabelle to program verification?
- **UTP**: encode programs as logical predicates
- allows to combine specifications and programs (as in Z)
Programs-as-predicates and the UTP

- how do we apply tools like Isabelle to program verification?
- **UTP**: encode programs as logical predicates
- allows to combine specifications and programs (as in Z)

\[
x := v \triangleq x' = v \land y' = y
\]

\[
P ; Q \triangleq \exists x_0 \cdot P[x_0/x'] \land Q[x_0/x]
\]

\[
P \triangleleft b \triangleright Q \triangleq (b \land P) \lor (\neg b \land Q)
\]

while \(b \) **do** \(P \) \(\triangleq \mu X \cdot ((P ; X) \triangleleft b \triangleright II) \)
Programs-as-predicates and the UTP

- how do we apply tools like Isabelle to program verification?
- **UTP**: encode programs as logical predicates
- allows to combine specifications and programs (as in Z)

\[
x := v \triangleq x' = v \land y' = y
\]

\[
P ; Q \triangleq \exists x_0 \cdot P[x_0/x'] \land Q[x_0/x]
\]

\[
P \ll b \gg Q \triangleq (b \land P) \lor (\neg b \land Q)
\]

while b **do** $P \triangleq \mu X \cdot ((P ; X) \ll b \gg II)$

- encoding programs in this way allows us to verify them
- program refinement: $Spec \sqsubseteq Impl \iff (\forall v \cdot Impl \Rightarrow Spec)$
- Isabelle/UTP – automated reasoning for UTP
type_synonym book = string

alphabet library =
 books :: "book set"
 loans :: "book set"

abbreviation "Books ≡ {'War and Peace',
 'Pride and Prejudice',
 'Les Miserables'}"

definition InitLibrary :: "library prog" where
[upred_defs]: "InitLibrary = true ⊨ books, loans := «Books», {}_u"

definition InitLibraryAlt :: "library prog" where
[upred_defs]: "InitLibraryAlt = true ⊨ (books' =_u «Books» ∧ loans' =_u {})_u"

lemma InitLibrary_alt_same: "InitLibrary = InitLibraryAlt"
 by (fast_rel_auto)

definition LibraryInvariant :: "library upred" where
[upred_defs]: "LibraryInvariant = (loans ⊆_u books)"

definition BorrowBook :: "book ⇒ library prog" where
[upred_defs]: "BorrowBook(b) = (b ∉_u loans ∧ «b» ∈_u books) ⊨ loans := loans ∪_u {«b»}_u"
Demo 4: CSP in Isabelle

```isabelle
lemma ExtChoice_comm:
  "P ⟦ Q = Q ⟦ P"
  by (unfold extChoice_def, simp add: insert commute)

lemma ExtChoice_idem:
  "P is CSP ⟹ P ⟦ P = P"
  by (unfold extChoice_def, simp add: ExtChoice_single)

lemma ExtChoice_assoc:
  assumes "P is CSP" "Q is CSP" "R is CSP"
  shows "P ⟦ Q ⟦ R = P ⟦ (Q ⟦ R)"

proof -
  have "P ⟦ Q ⟦ R = R_s(pre_R(P) ⟦ cmt_R(P)) ⟦ R_s(pre_R(Q) ⟦ cmt_R(Q)) ⟦ R_s(pre_R(R) ⟦ cmt_R(R))"
    by (simp add: SRD_reactive_design_alt assms(1) assms(2) assms(3))
  also have "... =
    R_s (((pre_R P ∧ pre_R Q) ∧ pre_R R) ⟦
      (((cmt_R P ∧ cmt_R Q) ∧ $tr' = u $tr ∧ $wait' ▷ (cmt_R P ∨ cmt_R Q) ∧ cmt_R R)
      ∧ $tr' = u $tr ∧ $wait' ▷
      ((cmt_R P ∧ cmt_R Q) ∧ $tr' = u $tr ∧ $wait' ▷ (cmt_R P ∨ cmt_R Q) ∨ cmt_R R)))"
    by (simp add: extChoice_rdes unrest)
  also have "... =
```
Formal Semantics

- **failures-divergences** is a particular “semantic model”
- but it is just one of many theories of concurrency
- what about other models of concurrency? (e.g. **mobility**)
- **object-orientation**?
- **real-time systems**?
- **hybrid systems and differential equations**?
- and all combinations of the above?
- multi-paradigm languages are **semantically heterogeneous**
Unifying Theories of Programming

- treat all the different theories as building blocks
- isolate them and study their fundamental laws
- construct foundations for heterogeneous languages
- **CyPhyCircus** – Circus + support for differential equations
- will enable formal modelling of examples like Robotti
Conclusion

- theorem proving is an essential verification technique
- can be used to verify infinite state systems
- requires more input from the user
- however automation is improving all the time
- goal of the UTP is to formalise core computational theories
- Isabelle/UTP – mechanised programming laws
- we are applying it to verifying Cyber-Physical Systems
Interested?

- **Isabelle/UTP**: https://github.com/isabelle-utp/utp-main
- **Projects:**
 - Integrating Theorem Proving and Computer Algebra Systems ([simonf.isabelle-cas](https://github.com/simonf/isabelle-cas))
 - Mechanising the refinement calculus in Isabelle/UTP ([simonf.refine-calc](https://github.com/simonf/refine-calc))
 - Automatic Translation from CSPm into Isabelle/UTP ([zeyda.01](https://github.com/zeyda/translate-cspm-to-utp))
 - Compositional analysis of interacting state machines for robotic applications ([ahm504.02](https://github.com/ahm504/compositional-analysis))
 - Formal refinement for a state-rich process algebra in Isabelle/HOL ([ahm504.03](https://github.com/ahm504/formal-refinement))
 - Refinement support for a state-rich process algebra in Eclipse ([ahm504.04](https://github.com/ahm504/refinement-support))