
hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

.

.
UTP Semantics for Safety-Critical Java

University of York

hiJaC Workshop

15 November 2011

1 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Outline

.
. .1 Unifying Theories of Programming

.
. .2 SCJ-Circus

.
. .3 UTP SCJ Memory Model

.
. .4 COMPASS

.
. .5 Conclusions

2 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Outline

.
. .1 Unifying Theories of Programming

.
. .2 SCJ-Circus

.
. .3 UTP SCJ Memory Model

.
. .4 COMPASS

.
. .5 Conclusions

3 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP

Unifying Theories of Programming
Verified Software Initiative
who put the “T” in “VSTTE”?

Verified Software: Theories, Tools, and Experiments

C. A. R. Hoare, He Jifeng: Unifying Theories of
Programming, Prentice-Hall, 1998
long-term research agenda in a nutshell:

researchers have proposed programming theories
practitioners have proposed pragmatic programming paradigms
how do we understand the relationship between all of these?

for history, see
Eric C. R. Hehner: Retrospective and Prospective for Unifying
Theories of Programming, UTP 2006: 1–17

UTP gives three principal ways to study relationships
...1 by computational paradigm
...2 by level of abstraction
...3 by method of presentation

4 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

1. Computational Paradigms

programming languages are numbered in the thousands

general-purpose languages

C++, Java, Python, Perl, . . .
Peter Landin: The Next 700 Programming Languages

domain-specific programming languages

HTML, Logo, Verilog and VHDL, Mathematica, SQL, regular
expressions, YACC grammars, EMF, . . .

group them together by computational paradigm

structured, object-oriented, functional, logical, . . .

identify common concepts

deal separately with additions and variations

two fundamental scientific principles used in UTP
...1 simplicity of presentation
...2 separation of concerns

5 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

2. Abstraction

orthogonal to classification by paradigm

individual paradigm treated at different levels of abstraction
...1 highest: requirements capture and analysis
...2 high: architectural description, from requirements to solution
...3 intermediate: component definition, contracts for interfaces
...4 low: programming language, full behavioural description
...5 lowest: platform specific, technology of implementation

UTP offers ways of linking these elvels

refinement calculi translate between levels

guarantee of correctness from requirements to code

6 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

3. Presentation

classify by the method of presentation of language definition

three scientific methods
...1 denotational semantics

each syntactic phrase is given a mathematical denotation
specification is just a set of denotations
simple correctness criterion

...2 algebraic semantics

no direct meaning for the language
equalities between different programs with the same meaning
most useful for engineers

...3 operational semantics

programs defined by how they execute
abstract mathematical machine
guide for compilation, debugging, testing, . . .

comprehensive account of programming theory needs all three

7 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP

UTP uses all three ways of classifying programming theories

example: process algebras ACP, CCS, and CSP

first description at the most abstract level

no regard to practical implementation programming language

study how different presentations affect the language

algebraic: for ACP
operational: for CCS
denotational: for CSP

study differences

study mutual embeddings

derive each by mathematical definition, calculation, and proof

8 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP Research Agenda

ultimate goal:

cover all the interesting paradigms of computing
declarative and procedural, hardware and software.

theoretical foundation for software engineering

study the variety of existing programming languages

identify the major components of programming languages

select theories for new, perhaps special-purpose languages

the theory supermarket

shop for exactly those features you need

you can be confident that the theories plug-and-play

UTP Theory
= Alphabet + Signature + Healthiness Conditions

9 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP Example: Alphabet

alphabet: the set of observational variables

example: simple theory to model the behaviour of a gas with
regard to varying temperature and pressure

Boyle’s law
“for a fixed amount of an ideal gas kept at a fixed
temperature k , p (pressure) and V (volume) are inversely
proportional (while one doubles, the other halves)”

alphabet: three mathematical variables: k , p, and V

model observations correspond to real-world observations

the model-based agenda:

the variables k , p, and V are shared with the real world

we must specify the alphabet for every predicate we use

suppose P is a predicate, then α(P) is its alphabet

10 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP Example: Signature

syntax used to denote objects of the theory

requirement: constant temperature

to animate Boyle’s law we need two operations:
...1 change the pressure
...2 change the volume

this is the signature

11 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP Example: Healthiness Conditions

healthiness conditions:

a way of determining membership of a theory

we are interested only in gases that obey Boyle’s law

this states that p ∗V = k must be invariant

healthiness determines the correct states of the system

we need both static and dynamic invariants

p ∗V = k is a static invariant: it applies to a state

but we also we require k to be constant

start in the state (k , p,V ), where p ∗V = k

transit to the state (k ′, p ′,V ′), where p′ ∗V ′ = k ′

we must have that k ′ = k

this is a dynamic invariant: it applies to a relation

12 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Healthiness Conditions I

some healthiness conditions can be defined using functions

suppose α(ϕ) = {p,V , k}
define B(ϕ) = (∃ k • ϕ) ∧ (k = p ∗V )

regardless of whether ϕ is healthy or not, B(ϕ) certainly is

example:

ϕ = (p = 10) ∧ (V = 5) ∧ (k = 100)

B(ϕ)= (∃ k • ϕ) ∧ (k = p ∗V )
= (∃ k • (p = 10) ∧ (V = 5) ∧ (k = 100)) ∧ (k = p ∗V )
= (p = 10) ∧ (V = 5) ∧ (k = p ∗V )
= (p = 10) ∧ (V = 5) ∧ (k = 50)

notice that B(B(ϕ)) = B(ϕ)

idempotence: taking the medicine twice leaves you healthy

this give us a simple test for healthiness: ϕ = B(ϕ)

fixed point of idempotent function

13 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Healthiness Conditions II

an unhealthy observation:

ϕ = (p = 10) ∧ (V = 5) ∧ (k = 100)

another observation: pressure is between 10 and 20Pa

ψ = (p ∈ 10 . . 20) ∧ (V = 5)

fact: ϕ⇒ ψ

another fact: B(ϕ) ⇒ B(ψ)

this means that B is monotonic

the best heathiness conditions are

monotonic idempotent functions

very important mathematical properties

complete lattices, Galois connections

14 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Outline

.
. .1 Unifying Theories of Programming

.
. .2 SCJ-Circus

.
. .3 UTP SCJ Memory Model

.
. .4 COMPASS

.
. .5 Conclusions

15 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

SCJ-Circus

built from the following items in the theory shopping-cart:
...1 Circus designs: nondeterministic imperative programming with
specification statements (based on Z)

...2 Circus reactive processes: concurrency, communication, and
shared variables (based on CSP)

...3 OhCircus: OO, with encapsulation, classes, and inheritance

...4 CircusTime: discrete real-time

...5 the SCJ memory model

the UTP agenda is far from complete:

some of these theories need to be brought to maturity
some need to be linked together using Galois connections

16 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Outline

.
. .1 Unifying Theories of Programming

.
. .2 SCJ-Circus

.
. .3 UTP SCJ Memory Model

.
. .4 COMPASS

.
. .5 Conclusions

17 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Application structure

MissionSequencerStart

Mission
Selection

Mission
Initialisation

Mission
Execution

Mision
Cleanup

Halt

18 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Scoped memory area

I t l MImmortal Memory

Per Mission Memory (a Scoped Memory Area)

X X

X

X

X X

X

Per

Release

Scoped

Per

Release

Scoped

Per

Release

Scoped

XPer

Release

Scoped
ASEH

1

Memory Memory

ASEH3

Memory

Temporary

Private

Memory

Temporary

ASEH2

Private

Scoped

Memory

Private

Scoped

Memory

ASEH4Valid

object

referencesKey:

Thread Stacks

(one per ASEH and one each

ASEH1

an illegal

reference
X

y
for the mission sequencer and

main program)

I t l MImmortal Memory

Per Mission Memory (a Scoped Memory Area)

X X

X

X

X X

X

Per

Release

Scoped

Per

Release

Scoped

Per

Release

Scoped

XPer

Release

Scoped
ASEH

1

Memory Memory

ASEH3

Memory

Temporary

Private

Memory

Temporary

ASEH2

Private

Scoped

Memory

Private

Scoped

Memory

ASEH4Valid

object

referencesKey:

Thread Stacks

(one per ASEH and one each

ASEH1

an illegal

reference
X

y
for the mission sequencer and

main program)

I t l MImmortal Memory

Per Mission Memory (a Scoped Memory Area)

X X

X

X

X X

X

Per

Release

Scoped

Per

Release

Scoped

Per

Release

Scoped

XPer

Release

Scoped
ASEH

1

Memory Memory

ASEH3

Memory

Temporary

Private

Memory

Temporary

ASEH2

Private

Scoped

Memory

Private

Scoped

Memory

ASEH4Valid

object

referencesKey:

Thread Stacks

(one per ASEH and one each

ASEH1

an illegal

reference
X

y
for the mission sequencer and

main program)

I t l MImmortal Memory

Per Mission Memory (a Scoped Memory Area)

X X

X

X

X X

X

Per

Release

Scoped

Per

Release

Scoped

Per

Release

Scoped

XPer

Release

Scoped
ASEH

1

Memory Memory

ASEH3

Memory

Temporary

Private

Memory

Temporary

ASEH2

Private

Scoped

Memory

Private

Scoped

Memory

ASEH4Valid

object

referencesKey:

Thread Stacks

(one per ASEH and one each

ASEH1

an illegal

reference
X

y
for the mission sequencer and

main program)

.. SCJ Memory Areas

19 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

SCJ Memory Model

newest Circus theory
main goal: support disciplined dynamic memory management
safety-critical systems usually forbid dynamic memory

manual techniques are error-prone (e.g., malloc in C)
automated garbage collection (Java) too complex to certify

SCJ takes a different approach:
replace Java’s garbage-collected heap-memory model by
memory divided into scoped memories and immortal memory

many, possibly nested, scoped-memory areas,
single immortal memory
rules used to determine legitimacy of reference assignment
avoid dangling references
rule violation is a runtime exception
careful SCJ programmer must think where to create objects
balance runtime exception-freedom against memory efficiency
automated techniques needed to assist

20 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

SCJ Memory Model

UTP model validates rules for static analysis techniques

ensures absence of null references and illegal-assignment errors

mission starts in initialisation phase

objects may be allocated in mission or immortal memory

no dynamic creation of ASEHs

initialisation followed by execution phase

ASEHs are started

initial ASEH memory area is scoped

entered when ASEH is released
exited when it completes

all the area’s objects are collected on exit

no sharing with other ASEHs

ASEH may enter into nested private memory areas

21 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

UTP SCJ Memory Model

built from a theory of object references

linked to a structural model of memory areas

pointers and hierarchical addressing created by data types
with recursive records
three observational variables:

...1 A: set of hierarchical addresses
describes all the legal addresses that could be constructed
all non-empty sequences of labels

...2 V : partial function from addresses to values
maps addresses of primitive (non-object) attributes to values
A \ domV describes acceptable addresses that yield objects
(non-primitive values)

...3 S : equivalence relation on addresses
relates addresses that share a common location

twelve healthiness conditions

for example, A is prefix closed

if a.b.c is a valid address, then so is a.b, etc
22 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Healthiness conditions

...1 objects only ever added to immortal memory

...2 all the references in the program stack are resident in the
immortal memory

...3 all the references in the immortal memory are resident in the
immortal memory

...4 all the references in the sequencer stack are resident in either
the immortal or the mission memory

...5 all the references in the mission memory are resident in either
the immortal or the mission memory

...6 the immortal, mission, per-release, and temporary private
memory areas are all mutually disjoint

23 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Outline

.
. .1 Unifying Theories of Programming

.
. .2 SCJ-Circus

.
. .3 UTP SCJ Memory Model

.
. .4 COMPASS

.
. .5 Conclusions

24 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

COMPASS

Comprehensive Modelling for Advanced Systems of Systems

EU FP7 project: October 2011 – September 2014

Newcastle, York, Aarhus, UFPE, Bremen, Atego, Insiel, B&O
advance Systems-of-Systems (SoS) Engineering

...1 develop the first formal modelling language specifically for SoS

...2 provide advanced model-based methods and tools

...3 evaluate using benchmarks and industrial case studies
accident response
audio/video/home-automation ecosystem

...4 link to industrial architectural description frameworks

...5 build tools for model-checking, proof, and simulation

...6 develop an open platform to integrate existing and new tools

help to plan and roadmap the EU’s future research agenda
COMPASS Modelling Language (CML) is UTP-based

VDM, Circus, CircusTime, OhCircus, Circus-DF,
TravellingCircus
tools based on Overture, FDR2, Isabelle/HOL, Z3

25 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Outline

.
. .1 Unifying Theories of Programming

.
. .2 SCJ-Circus

.
. .3 UTP SCJ Memory Model

.
. .4 COMPASS

.
. .5 Conclusions

26 / 27



hiJaC

Unifying Theories of Programming SCJ-Circus UTP SCJ Memory Model COMPASS Conclusions

Conclusions and future work

first formalisation of the SCJ memory model

proof that SCJ is memory safe

formalisation essential for reasoning by refinement

Future work

connections to other theories

further extensions to Circus

refinement laws and strategies

27 / 27


	Unifying Theories of Programming
	SCJ-Circus
	UTP SCJ Memory Model
	COMPASS
	Conclusions

