
Safety Critical Java

University of York

15 November, 2011

2-22 1st hiJac Workshop

Safety Critical Java

• Background
• Introduction to SCJ
• The Expert Group
• Key components of

the Specification
• Current status

3-22 1st hiJac Workshop

Background

• Success of Java led to a wish to use it for real-time systems
• In 1999, NIST identified requirements for real-time extensions

to Java
• The Java Community Process or JCP, established in 1998,

is a formalized process that allows interested parties to get
involved in the definition of future versions and features of the
Java Platform

• The JCP involves the use of Java Specification Requests
(JSRs) that proposed specifications and technologies for
adding to the Java platform.

• JSR 1: Create a Real-Time Specification for Java

4-22 1st hiJac Workshop

Background: The RTSJ (Version 1.02)
Enhances Java in the following areas:
 memory management
 time values and clocks
 schedulable objects and scheduling
 real-time threads
 asynchronous event handling and timers
 asynchronous transfer of control
 synchronization and resource sharing
 physical and raw memory access

5-22 1st hiJac Workshop

Background: JSR 282

• Affinity
• User-defined Clock
• Happenings
• Rich AsyncEvents
• Scope Pinning
• Periodic Phasing
• Raw Memory
• Physical Memory

• Timed restart
• Timer info
• SCJ Constructors
• waitForNextRelease
• Blocking time
• CPU time reporting

6-22 1st hiJac Workshop

Introduction

• SCJ Goal – a specification for Safety Critical
Java capable of being certified under DO-
178B Level A and other safety critical
certification standards
 Certification implies a small, reduced

complexity infrastructure (i.e., JVM)
 Emphasis is on defining a minimal set of

capabilities required of safety critical
applications using Java implementations

• Based on the Real-Time Specification for Java
(JSR-1 and JSR-282)

7-22 1st hiJac Workshop

Introduction

• This effort being done as a Java Specification
Request (JSR) under the Java Community Process
 JSR-302
 As a JSR, this means that three things are being

created:
 A Safety Critical Java Specification
 A Reference Implementation
 A Technology Compatibility Kit

8-22 1st hiJac Workshop

Expert Group

• The currently active EG members are:

 James Hunt (aicas)
 Doug Locke (TOG & LC Systems

Services)
 Johan Nielsen (DDC-I)
 Kelvin Nilsen (Atego)
 Martin Schoeberl (T.U. Denmark)
 Jan Vitek (Purdue U.)
 Andy Wellings (U. of York)

• Previously active authors of the
Specification are:

 Scott Anderson (Verocel)
 Ben Brosgol (AdaCore)
 Mike Fulton (IBM)
 Thomas Henties (Siemens)

Under the JCP, specifications are created by a Specification
Lead (in this case, The Open Group) and an Expert Group.

9-22 1st hiJac Workshop

SCJ Specification

• Essentially a subset of Java and the RTSJ but
 augmented with some SCJ-specific classes that

impose a programming paradigm
 with annotations to facilitate static analysis tools

• Problem: wide range of definitions of safety
critical systems
 Single thread, single function, simple timing

constraint
 Highly complex application, multiple modes of

operations, complex timing constraints

10-22 1st hiJac Workshop

Specification Content
Compliance Levels

• Three Compliance Points (Levels 0, 1, 2)
 Level 0 essentially supports a timeline/frame-

based/cyclic executive model
 Level 1 essentially supports a highly constrained

multithread application under the control of a fixed-
priority preemptive scheduler: equivalent to
Ravenscar-Ada

 Level 2 essentially supports much more complex
multithread application under the control of a fixed-
priority preemptive scheduler

• All three Levels targeted for DO-178B Level A
certifiability but with increasing complexity & cost

11-22 1st hiJac Workshop

Specification Content
Missions and Mission Sequencers

• Application Structure

Start Mission
Initialization Halt Select

Mission
Mission

Execution
Mission
Cleanup

Mission Sequencer

 Data structures created at initialization in a shared
scoped memory area called mission memory

 Application consists of schedulable objects (SOs)
 Each SO has a private scoped memory area used for

dynamic allocation
 Application will not require heap memory, even at

startup
 A mission is managed by the infrastructure

12-22 1st hiJac Workshop

Specification Content
Compliance Levels Revisited

• Level 0 provides a cyclic executive (single thread
shared among SOs), no wait/notify
 Synchronization ignored
 No application threads – only Periodic Event Handlers

• Level 1 provides a single mission sequence with
multiple concurrent SOs, no wait/notify
 Multiple concurrent SOs use synchronized methods
 Periodic and Aperiodic Event Handlers

• Level 2 provides nested missions with additional
capability
 May have NoHeapRealtimeThreads, wait/notify on (this),

13-22 1st hiJac Workshop

Specification Content
Concurrency & Synchronization

• Synchronization
 Priority Ceiling Emulation – required
 Synchronized methods provided

 Synchronized block not permitted
 Not allowed to self-suspend in Level 1

• Schedulable Objects (SOs) – all non-heap
 PeriodicEventHander (PEH)

 Required for concurrency in Level 0, provided for Level 1
 Bound

 PeriodicEventHandler or AperiodicEventHandler (APEH)
with appropriate parameters
 Provided for Level 1 and Level 2
 Bound

 NoHeapRealtimeThread
 Permitted only in Level 2

14-22 1st hiJac Workshop

Specification Content –
Memory

• Every SO has private scoped memory
 For PEH, APEH, this memory is entered & exited

(cleaned up) each time the SO is released
 Level 2 NoHeapRealtimeThread has private

scoped memory entered & exited by run() method
• SOs can also create other private scoped

memory objects
 May not share references to it or its objects it with

other SOs

15-22 1st hiJac Workshop

SCJ Memory Structure

16-22 1st hiJac Workshop

Specification Content
Key Annotation – @SCJAllowed

• @SCJAllowed(n)
 Attached to classes, methods
 Associated class/method may be referenced by

applications at Level n or higher
 Classes/methods without @SCJAllowed not

callable by SCJ applications
 Includes Java library objects

 Checked as part of bytecode verification

17-22 1st hiJac Workshop

Specification Content
Exceptions

• Exception objects allocated
 In current memory area unless newInstance used

• Every SO has thread local space for saving
 Back trace information
 ThrowBoundaryError exception

• When ThrowBoundaryError is thrown,
(implementation-defined) back trace information
is available to application

18-22 1st hiJac Workshop

Specification Content
JNI

• No reflection
• No memory allocation in JNI (unchecked)
• Primitive types, objects and arrays can be

passed by SCJ program
• SCJ defines specific interfaces permitted and not

permitted for each Level in JNI code

19-22 1st hiJac Workshop

Specification Content
Input / Output

• Subset of Java Micro Edition functions provided
 Much simpler than file and socket I/O

• Interfaces and Classes
 Open and Close methods
 References URL named devices

 Connector
 Connection

• Also two simple text I/O classes
 Uses UTF-8
 May write only to a memory buffer if device not present

 ConsoleConnection
 SimplePrintStream

20-22 1st hiJac Workshop

Specification Content
Interaction With Devices

• Raw memory access
 Permits use of, e.g., memory-mapped I/O

• Interrupt handling
 Provides direct interrupt handling by Java event

handlers
• Signals and other asynchronous external events
 Provides interfaces for signals and happenings

21-22 1st hiJac Workshop

Specification Content
Class Libraries

• SCJ Specification lists all supported
(@SCJAllowed) interfaces and classes in
 java.io
 java.lang
 javax.microedition.io
 javax.realtime
 javax.safetycritical
 javax.safetycritical.annotate
 javax.safetycritical.io

22-22 1st hiJac Workshop

Summary

• The Expert Group completed their Early Draft Review
(EDR) under the Java Community Process
 Review comments are now being considered

• The specification is being edited into a final form
• Reference Implementation now being tested as open

source RTSJ-compliant Java executable on an RTSJ-
compliant JVM

• Technology Compatibility Kit has been created and is being
tested

• Submission to the JCP Executive Committee hoped to be
ready in mid 2012

	Safety Critical Java
	Safety Critical Java
	Background
	Background: The RTSJ (Version 1.02)
	Background: JSR 282
	Introduction
	Introduction
	Expert Group
	SCJ Specification
	Specification Content �Compliance Levels
	Specification Content �Missions and Mission Sequencers
	Specification Content �Compliance Levels Revisited
	Specification Content �Concurrency & Synchronization
	Specification Content – �Memory
	SCJ Memory Structure
	Specification Content �Key Annotation – @SCJAllowed
	Specification Content �Exceptions
	Specification Content �JNI
	Specification Content �Input / Output
	Specification Content �Interaction With Devices
	Specification Content �Class Libraries
	Summary

