Safety Critical Java

University of York

15 November, 2011

Safety Critical Java

« Background
 Introduction to SCJ
* The Expert Group

« Key components of
the Specification

* Current status

1st hiJac Workshop 2-22

hiJaC

Success of Java led to a wish to use it for real-time systems

In 1999, NIST identified requirements for real-time extensions
to Java

The Java Community Process or JCP, established in 1998,
Is a formalized process that allows interested parties to get
Involved in the definition of future versions and features of the
Java Platform

The JCP involves the use of Java Specification Requests
(JSRs) that proposed specifications and technologies for
adding to the Java platform.

JSR 1: Create a Real-Time Specification for Java

hiJaC
Background: The RTSJ (Version 1.02)

Enhances Java in the following areas:
= memory management
= time values and clocks
= schedulable objects and scheduling
= real-time threads
= asynchronous event handling and timers
= asynchronous transfer of control
= synchronization and resource sharing
= physical and raw memory access

hiJaC
Background: JSR 282

 Affinity « Timed restart

« User-defined Clock ¢ Timer info

* Happenings « SCJ Constructors

* Rich AsyncEvents « waltForNextRelease

« Scope Pinning « Blocking time

» Periodic Phasing CPU time reporting
 Raw Memory

* Physical Memory

hiJaC

« SCJ Goal — a specification for Safety Critical
Java capable of being certified under DO-
178B Level A and other safety critical
certification standards

= Certification implies a small, reduced
complexity infrastructure (i.e., JVM)

= Emphasis is on defining a minimal set of
capabilities required of safety critical
applications using Java implementations

- Based on the Real-Time Specification for Java
(JSR-1 and JSR-282)

hiJaC

Introduction

« This effort being done as a Java Specification
Request (JSR) under the Java Community Process
= JSR-302
= As a JSR, this means that three things are being
created:
= A Safety Critical Java Specification
= A Reference Implementation
= A Technology Compatibility Kit

hiJaC
Expert Group

Under the JCP, specifications are created by a Specification
Lead (in this case, The Open Group) and an Expert Group.

« The currently active EG members are: < Previously active authors of the
Specification are:
= James Hunt (aicas)

= Doug Locke (TOG & LC Systems
Services)

= Johan Nielsen (DDC-I)

= Kelvin Nilsen (Atego)

= Martin Schoeberl (T.U. Denmark)
= Jan Vitek (Purdue U.)

= Andy Wellings (U. of York)

Scott Anderson (Verocel)
Ben Brosgol (AdaCore)
Mike Fulton (IBM)

Thomas Henties (Siemens)

hiJaC

« Essentially a subset of Java and the RTSJ but

= augmented with some SCJ-specific classes that
Impose a programming paradigm

= with annotations to faclilitate static analysis tools

* Problem: wide range of definitions of safety
critical systems

= Single thread, single function, simple timing
constraint

= Highly complex application, multiple modes of
operations, complex timing constraints

Specification Content hl_]aC
Compliance Levels

* Three Compliance Points (Levels 0O, 1, 2)

= Level 0 essentially supports a timeline/frame-
based/cyclic executive model

= Level 1 essentially supports a highly constrained
multithread application under the control of a fixed-
priority preemptive scheduler: equivalent to
Ravenscar-Ada

= Level 2 essentially supports much more complex
multithread application under the control of a fixed-
priority preemptive scheduler

« All three Levels targeted for DO-178B Level A
certifiability but with increasing complexity & cost

Specification Content

Missions and Mission Sequencers

« Application Structure

Mission Sequencer

hiJaC

N S_ele_ct N _I\/_IlS_Slon_ N
Mission Initialization

Mission
Execution

—>

Mission
Cleanup

L

<« Data structures created at initialization in a shared
scoped memory area called mission memory

« Application consists of schedulable objects (SOs)
- Each SO has a private scoped memory area used for

dynamic allocation

« Application will not require heap memory, even at

startup

= A mission Is managed by the infrastructure

Specification Content hiJaC
Compliance Levels Revisited

« Level O provides a cyclic executive (single thread
shared among SOs), no wait/notify
= Synchronization ignored
= No application threads — only Periodic Event Handlers
« Level 1 provides a single mission sequence with
multiple concurrent SOs, no wait/notify

= Multiple concurrent SOs use synchronized methods
= Periodic and Aperiodic Event Handlers

« Level 2 provides nested missions with additional
capabllity
= May have NoHeapRealtimeThreads, wait/notify on (this),

Specification Content hiJaC
Concurrency & Synchronization

¢ Synchronization
= Priority Ceiling Emulation — required
= Synchronized methods provided

= Synchronized block not permitted
= Not allowed to self-suspend in Level 1

« Schedulable Objects (SOs) — all non-heap
= PeriodicEventHander (PEH)
= Required for concurrency in Level 0, provided for Level 1
= Bound

= PeriodicEventHandler or AperiodicEventHandler (APEH)
with appropriate parameters

= Provided for Level 1 and Level 2
= Bound

= NoHeapRealtimeThread
= Permitted only in Level 2

hiJaC

« Every SO has private scoped memory

= For PEH, APEH, this memory is entered & exited
(cleaned up) each time the SO is released

= Level 2 NoHeapRealtimeThread has private
scoped memory entered & exited by run() method

« SOs can also create other private scoped
memory objects

= May not share references to it or its objects it with
other SOs

SCJ Memory Structure

Thread Stacks

L\

ASEHL

{one per ASEH and one each
for the mission sequencer and

main program)

1st hiJac Workshop

Key:

@

Per X Per
Release Release
Scoped Scoped
Memonry Memory
ASEH3

valid ASEH4
—_—> object

references
—x—> an illegal

reference

15-22

Specification Content hiJaC
Key Annotation — @SCJAllowed

« @SCJAllowed(n)
= Attached to classes, methods

= Associated class/method may be referenced by
applications at Level n or higher

= Classes/methods without @ SCJAllowed not
callable by SCJ applications

* Includes Java library objects
= Checked as part of bytecode verification

Specification Content hl_]aC
Exceptions

« EXception objects allocated

= |[n current memory area unless newlnstance used
« Every SO has thread local space for saving

= Back trace information

= ThrowBoundaryError exception

 When ThrowBoundaryError is thrown,
(implementation-defined) back trace information
IS avallable to application

Specification Content hl_]aC
JNI

No reflection
No memory allocation in JNI (unchecked)

Primitive types, objects and arrays can be
passed by SCJ program

SCJ defines specific interfaces permitted and not
permitted for each Level in JNI code

Specification Content hl_]aC
Input / Output

« Subset of Java Micro Edition functions provided
= Much simpler than file and socket 1/O
* Interfaces and Classes

= Open and Close methods
= References URL named devices

= Connector
= Connection
« Also two simple text I/O classes

= Uses UTF-8
= May write only to a memory buffer if device not present

= ConsoleConnection
= SimplePrintStream

Specification Content hiJaC
Interaction With Devices

 Raw memory access
= Permits use of, e.g., memory-mapped I/O
¢ Interrupt handling

= Provides direct interrupt handling by Java event
handlers

« Signals and other asynchronous external events
= Provides interfaces for signals and happenings

Specification Content hl_]aC
Class Libraries

« SCJ Specification lists all supported
(@SCJAllowed) interfaces and classes In

= java.lo

= java.lang

= javax.microedition.io
= Javax.realtime

= Javax.safetycritica
= javax.safetycritical.annotate
= Javax.safetycritical.io

hiJaC

The Expert Group completed their Early Draft Review
(EDR) under the Java Community Process

= Review comments are now being considered
The specification is being edited into a final form

Reference Implementation now being tested as open
source RTSJ-compliant Java executable on an RTSJ-
compliant JVM

Technology Compatibility Kit has been created and is being
tested

Submission to the JCP Executive Committee hoped to be
ready in mid 2012

	Safety Critical Java
	Safety Critical Java
	Background
	Background: The RTSJ (Version 1.02)
	Background: JSR 282
	Introduction
	Introduction
	Expert Group
	SCJ Specification
	Specification Content �Compliance Levels
	Specification Content �Missions and Mission Sequencers
	Specification Content �Compliance Levels Revisited
	Specification Content �Concurrency & Synchronization
	Specification Content – �Memory
	SCJ Memory Structure
	Specification Content �Key Annotation – @SCJAllowed
	Specification Content �Exceptions
	Specification Content �JNI
	Specification Content �Input / Output
	Specification Content �Interaction With Devices
	Specification Content �Class Libraries
	Summary

