
hiJaC

Circus Time and SCJ

Department of Computer Science
University of York

15 November, 2011

Circus Time and SCJ 1/1

hiJaCMotivation

Programming real-time systems using a high-level language is
notoriously difficult because time response depends on many facts
in a low level such as complier, OS, hardware and so on.

One of solutions is to use (hard) deadlines, which state enforced
timing requirements.

Hayes et al introduced a deadline command to the
safety-critical SPARK programming language.

Failure to meet such a deadline results in infeasibility.

Apart from some usual time operators from Timed CSP, Circus
Time provides a deadline operator.

Circus Time and SCJ 2/1

hiJaCSummary of Circus Time

A discrete-time model

Semantics is based on UTP

An extension to Circus and original Circus Time (Sherif and
He)

A brand-new deadline operator and an infeasible process
(Miracle)

Reactive-design semantics to each process

A number of algebraic laws

Circus Time and SCJ 3/1

hiJaCObservation in Circus Time

Observational variables:

ok,ok’: boolean

wait,wait’: boolean

tr,tr’:seq+(seq Event)

ref,ref’:seq+(PEvent)

state, state’:N 7→ value

For example,

tr ′ = 〈〈a〉, 〈b, c〉, 〈d〉, 〈e, f 〉, ...〉
ref ′ = 〈r1, r2, r3, r4,〉

Circus Time and SCJ 4/1

hiJaCTime operators in Circus Time

Wait d : wait for d time units

Wait d1..d2: non-deterministic wait

P .{d} Q: if no observable event in P happens within d , Q
will take place

P I d : P must terminate within d

P J d : observable events in P must happen within d

c .e@t → P: t records the amount of time which has elapsed
between the start and the occurrence of c.e

(Wait 2 ; (a → P)) I 5 or (a → b → Skip) J 5

Circus Time and SCJ 5/1

hiJaCRefinement Strategy

P I d

v
P1 I d1 ; P2 I d2

provided P v P1 ; P2 ∧ d = d1 + d2

Circus Time and SCJ 6/1

hiJaCRefinement Strategy

P I d

v
P1 I d1 ; P2 I d2

provided P v P1 ; P2 ∧ d = d1 + d2

Circus Time and SCJ 6/1

hiJaCConclusion and Future work

We have developed a new version of Circus Time to describe
timing behaviour of SCJ programs.

New reactive-design semantics has been developed as well.

The behaviour of Miracle with other operators has been fully
explored, so as to generate a right operational semantics.

Future work:

Mechanisation of the semantics of Circus Time in a theorem
prover.

Collapsing parallelism

Refinement laws

Circus Time and SCJ 7/1

