
AirCraft Program Report

Matt Luckcuck

Department of Computer Science,
University of York, UK

ml881@york.ac.uk

4th February 2016

Contents

1 Introduction 2

2 Program Script 3
2.1 ACSafelet . 3
2.2 MainMissionSequencer . 4
2.3 MainMission . 5
2.4 Schedulables of MainMission . 7

2.4.1 ACModeChanger . 7
2.4.2 EnvironmentMonitor . 8
2.4.3 ControlHandler . 9
2.4.4 FlightSensorsMonitor . 10
2.4.5 CommunicationsHandler . 11

2.5 TakeOffMission . 12
2.6 Schedulables of TakeOffMission . 14

2.6.1 TakeOffMonitor . 14
2.6.2 TakeOffFailureHandler . 15
2.6.3 LandingGearHandlerTakeOff . 16

2.7 CruiseMission . 17
2.8 Schedulables of CruiseMission . 19

2.8.1 NavigationMonitor . 19
2.8.2 BeginLandingHandler . 20

2.9 LandMission . 21
2.10 Schedulables of LandMission . 23

2.10.1 GroundDistanceMonitor . 23
2.10.2 LandingGearHandlerLand . 24
2.10.3 InstrumentLandingSystemMonitor . 25
2.10.4 SafeLandingHandler . 26

1

1 Introduction

The AirCraft application represents the control software of a simplified aircraft control system, which operates in
three modes: take off, cruising, or landing. AirCraft is structurally complicated; making use of Level 2’s unique
(in SCJ) ability to nest mission sequencers inside missions, which is used to handle the modes of operation.
AirCraft is an extended version of an example found in [1].

Figure 1 shows an object diagram of the AirCraft. The program is controlled by the safelet ACSafelet, which
starts the top-level mission sequencer MainMissionSequencer. The mission sequencer starts the MainMission,
which starts four schedulables and a mission sequencer (ACModeChanger). The four schedulables will operate
throughout all modes of operation. The ACModeChanger starts each of the missions that encapsulate the modes
of operation: TakeOffMission, CruiseMission, and LandMission. Each of these missions starts its own
schedulables that operate throughout that mode only.

GroundDistanceMonitor : PEH

InstumentLandingSystemMonitor : PEH

SafeLandingHandler : APEH

LandingGearHandler : APEH

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<instantiate>> <<instantiate>><<instantiate>>

<<instantiate>>
<<instantiate>>

FlatBuffer : Safelet

MainMissionSequencer : MissionSequencer

MainMission : Mission

CommsHandler : APEH

FlightSensors : PEHEnvMonitor : PEH

ControlHandler : APEH

ACModeChanger : MissionSequencer

LandMission : MissionCruiseMission : MissionTakeOffMission : Mission

TakeOffMonitor : PEH

LandingGearHandler : PEH

TakeOffFailureHandler : APEH

NavigationHandler : PEH

BeginLandingMonitor: APEH

<<instantiate>>

Schedulables Key
PEH = PeriodicEventHandler
APEH = AperiodicEventHandler

Figure 1: Object Diagram of the AirCraft application

When the AirCraft application begins, the schedulables in the MainMission begin executing – including
the ACModeChanger, which controls three missions that represent the aircraft’s modes of operation. Each of
the missions controlled by the ACModeChanger is requested to terminate, by one of its schedulables, when it’s
mode of operation is over. Initially the ACModeChanger loads the TakeOffMission. When it terminates, the
ACModeChanger loads the next mission. Once the LandMission terminates the aircraft has landed, so the
program terminates.

The AirCraft application uses the unique feature of Level 2, nested mission sequencers. This feature produces
the most obvious hierarchical difference from Level 1 programs. Modes of operation can be captured at Level 1,
but Level 2 allows schedulables that run throughout all the modes without interruption. Section 2 presents the
full script of the AirCraft program.

2

2 Program Script

2.1 ACSafelet

1 public class ACSafelet implements Sa f e l e t<Mission>{
2
3 public MissionSequencer<Mission> getSequencer () {
4 StorageParameters storageParameters = new StorageParameters (150 ∗ 1000 ,
5 new long [] { Const .HANDLER STACK SIZE } ,
6 Const .PRIVATEMEMDEFAULT − 25 ∗ 1000 ,
7 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
8 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
9

10 return new MainMissionSequencer (new Pr io r i tyParameter s (5) ,
11 storageParameters) ;
12 }
13
14 public long immortalMemorySize () {
15 return Const .IMMORTALMEMDEFAULT;
16 }
17
18 public void i n i t i a l i z eA p p l i c a t i o n () {
19 }
20 }

3

2.2 MainMissionSequencer

1 public class MainMissionSequencer extends MissionSequencer<Mission>{
2
3 private boolean re turnedMiss ion ;
4
5 public MainMissionSequencer (Pr io r i tyParameter s p r i o r i t y ,
6 StorageParameters s t o rage) {
7 super (p r i o r i t y , s t o rage) ;
8 re turnedMiss ion = fa l se ;
9 }

10
11 protected Miss ion getNextMiss ion () {
12
13 i f (! r e turnedMiss ion) {
14 returnedMiss ion = true ;
15 return new MainMission () ;
16 } else {
17 return null ;
18 }
19 }
20 }

4

2.3 MainMission

1 public class MainMission extends Miss ion {
2 /∗∗
3 ∗ The read tha t the sensors w i l l g e t when the a i r c r a f t i s on the ground
4 ∗/
5 f ina l double ALTITUDE READING ONGROUND = 0 . 0 ;
6
7 private double cab inPres sure ;
8 private double emergencyOxygen ;
9 private double fue lRemaining ;

10
11 private double a l t i t u d e ;
12 private double a i rSpeed ;
13 private double heading ;
14
15 public double getAirSpeed () {
16 return a i rSpeed ;
17 }
18
19 public double ge tA l t i tude () {
20 return a l t i t u d e ;
21 }
22
23 public double getCabinPressure () {
24 return cab inPres sure ;
25 }
26
27 public double getEmergencyOxygen () {
28 return emergencyOxygen ;
29 }
30
31 public double getFuelRemaining () {
32 return fue lRemaining ;
33 }
34
35 public double getHeading () {
36 return heading ;
37 }
38
39 protected void i n i t i a l i z e () {
40 StorageParameters storageParameters = new StorageParameters (150 ∗ 1000 ,
41 new long [] { Const .HANDLER STACK SIZE } ,
42 Const .PRIVATEMEMDEFAULT − 25 ∗ 1000 ,
43 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
44 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
45
46 StorageParameters s torageParameter sSchedu lab le = new StorageParameters (
47 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
48 new long [] { Const .HANDLER STACK SIZE } ,
49 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
50 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
51 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
52
53 ACModeChanger aCModeChanger = new ACModeChanger(new Pr io r i tyParameter s (
54 5) , storageParameters , this) ;
55
56 aCModeChanger . r e g i s t e r () ;
57
58 EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
59 new Pr io r i tyParameter s (5) , new Per iod icParameters (
60 new RelativeTime (10 , 0) , null) ,
61 storageParametersSchedulab le , ”Environment Monitor” , this) ;
62
63 environmentMonitor . r e g i s t e r () ;
64
65 ControlHandler contro lHand le r = new ControlHandler (
66 new Pr io r i tyParameter s (5) , new AperiodicParameters (new RelativeTime (10 , 0) , null) ,
67 storageParametersSchedulab le , ”Control Handler ”) ;
68
69 contro lHand le r . r e g i s t e r () ;
70
71 Fl ightSensorsMoni tor f l ightSensMon = new Fl ightSensorsMoni tor (
72 new Pr io r i tyParameter s (5) , new Per iod icParameters (

5

73 new RelativeTime (10 , 0) , null) ,
74 storageParametersSchedulab le , ” F l i gh t Sensors Monitor” , this) ;
75
76 f l ightSensMon . r e g i s t e r () ;
77
78 CommunicationsHandler commsHandler = new CommunicationsHandler (
79 new Pr io r i tyParameter s (5) , new AperiodicParameters () ,
80 storageParametersSchedulab le , ”Communications Handler ”) ;
81
82 commsHandler . r e g i s t e r () ;
83
84 Aper iod icS imulator contro lS im
85 = new Aper iod icS imulator (
86 new Pr io r i tyParameter s (5) ,
87 new Per iod icParameters (new RelativeTime (10 , 0) , null) ,
88 storageParametersSchedulab le ,
89 contro lHand le r) ;
90
91 contro lS im . r e g i s t e r () ;
92
93 }
94
95 public long missionMemorySize () {
96 return Const .MISSION MEM DEFAULT;
97 }
98
99 public void setAirSpeed (double a i rSpeed) {

100 this . a i rSpeed = airSpeed ;
101 }
102
103 public void s e tA l t i t ud e (double a l t i t u d e) {
104 this . a l t i t u d e = a l t i t u d e ;
105 }
106
107 public void se tCabinPressure (double cab inPres sure) {
108 this . cab inPres sure = cab inPres sure ;
109 }
110
111 public void setEmergencyOxygen (double emergencyOxygen) {
112 this . emergencyOxygen = emergencyOxygen ;
113 }
114
115 public void setFuelRemaining (double fue lRemaining) {
116 this . fue lRemaining = fuelRemaining ;
117 }
118
119 public void setHeading (double heading) {
120 this . heading = heading ;
121 }
122 }

6

2.4 Schedulables of MainMission

2.4.1 ACModeChanger

1 public class ACModeChanger extends MissionSequencer<Mission>{
2
3 private MainMission c on t r o l l i n gM i s s i o n ;
4 private int modesLeft = 3 ;
5
6 public ACModeChanger(Pr io r i tyParameter s p r i o r i t y ,
7 StorageParameters s torage , MainMission c on t r o l l i n gM i s s i o n) {
8 super (p r i o r i t y , s t o rage) ;
9 this . c o n t r o l l i n gM i s s i o n = con t r o l l i n gM i s s i o n ;

10 }
11
12 public ACModeChanger(Pr io r i tyParameter s p r i o r i t y , StorageParameters s t o rage) {
13 super (p r i o r i t y , s t o rage) ;
14 }
15
16 protected Miss ion getNextMiss ion () {
17 i f (modesLeft == 3) {
18 modesLeft−−;
19 return new TakeOffMission (c on t r o l l i n gM i s s i o n) ;
20 } else i f (modesLeft == 2) {
21 modesLeft−−;
22 return new CruiseMiss ion (c on t r o l l i n gM i s s i o n) ;
23 } else i f (modesLeft == 1) {
24 modesLeft−−;
25 return new LandMission (c on t r o l l i n gM i s s i o n) ;
26 } else {
27 return null ;
28 }
29 }
30 }

7

2.4.2 EnvironmentMonitor

1 public class EnvironmentMonitor extends PeriodicEventHandler {
2
3 MainMission c on t r o l l i n gM i s s i o n ;
4
5 public EnvironmentMonitor (Pr io r i tyParameter s p r i o r i t y ,
6 Per iod icParameters pe r i od i c ,
7 StorageParameters s torage ,
8 S t r ing name ,
9 MainMission mainMission) {

10 super (p r i o r i t y , p e r i od i c , s t o rage) ;
11 c on t r o l l i n gM i s s i o n = mainMission ;
12 }
13
14 public void handleAsyncEvent () {
15 System . out . p r i n t l n (”Checking Environment”) ;
16
17 // read cabin pressure from sensors
18 c on t r o l l i n gM i s s i o n . se tCabinPressure (0) ;
19
20 // read emergency Oxygen Leve l s
21 c on t r o l l i n gM i s s i o n . setEmergencyOxygen (0) ;
22
23 // read remaining f u e l
24 c on t r o l l i n gM i s s i o n . setFuelRemaining (0) ;
25 }
26 }

8

2.4.3 ControlHandler

1 public class ControlHandler extends AperiodicEventHandler {
2
3 public ControlHandler (Pr io r i tyParamete r s p r i o r i t y ,
4 Aper iodicParameters r e l e a s e , StorageParameters s torage , S t r ing name) {
5 super (p r i o r i t y , r e l e a s e , s torage , name) ;
6 }
7
8 public void handleAsyncEvent () {
9 System . out . p r i n t l n (”Handling Contro l s ”) ;

10 }
11 }

9

2.4.4 FlightSensorsMonitor

1 public class Fl ightSensorsMoni tor extends PeriodicEventHandler {
2
3 MainMission c on t r o l l i n gM i s s i o n ;
4
5 public Fl ightSensorsMoni tor (Pr io r i tyParamete r s p r i o r i t y ,
6 Per iod icParameters pe r i od i c , StorageParameters s torage ,
7 S t r ing name , MainMission mainMission) {
8 super (p r i o r i t y , p e r i od i c , s t o rage) ;
9 c on t r o l l i n gM i s s i o n = mainMission ;

10 }
11
12 public void handleAsyncEvent () {
13
14 System . out . p r i n t l n (”Checking F l i gh t Sensors ”) ;
15
16 // read a i r speed
17 c on t r o l l i n gM i s s i o n . setAirSpeed (0) ;
18 // read a l t i t u d e
19 c on t r o l l i n gM i s s i o n . s e tA l t i t ud e (0) ;
20 // read heading
21 c on t r o l l i n gM i s s i o n . setHeading (0) ;
22 }
23 }

10

2.4.5 CommunicationsHandler

1 public class CommunicationsHandler extends AperiodicEventHandler {
2
3 public CommunicationsHandler (Pr io r i tyParamete r s p r i o r i t y ,
4 Aper iodicParameters r e l e a s e , StorageParameters s torage , S t r ing name) {
5 super (p r i o r i t y , r e l e a s e , s torage , name) ;
6 }
7
8 public void handleAsyncEvent () {
9 System . out . p r i n t l n (”Handling Comms”) ;

10 }
11 }

11

2.5 TakeOffMission

1 public class MainMission extends Miss ion {
2 /∗∗
3 ∗ The read tha t the sensors w i l l g e t when the a i r c r a f t i s on the ground
4 ∗/
5 f ina l double ALTITUDE READING ONGROUND = 0 . 0 ;
6
7 private double cab inPres sure ;
8 private double emergencyOxygen ;
9 private double fue lRemaining ;

10
11 private double a l t i t u d e ;
12 private double a i rSpeed ;
13 private double heading ;
14
15 public double getAirSpeed () {
16 return a i rSpeed ;
17 }
18
19 public double ge tA l t i tude () {
20 return a l t i t u d e ;
21 }
22
23 public double getCabinPressure () {
24 return cab inPres sure ;
25 }
26
27 public double getEmergencyOxygen () {
28 return emergencyOxygen ;
29 }
30
31 public double getFuelRemaining () {
32 return fue lRemaining ;
33 }
34
35 public double getHeading () {
36 return heading ;
37 }
38
39 protected void i n i t i a l i z e () {
40 StorageParameters storageParameters = new StorageParameters (150 ∗ 1000 ,
41 new long [] { Const .HANDLER STACK SIZE } ,
42 Const .PRIVATEMEMDEFAULT − 25 ∗ 1000 ,
43 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
44 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
45
46 StorageParameters s torageParameter sSchedu lab le = new StorageParameters (
47 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
48 new long [] { Const .HANDLER STACK SIZE } ,
49 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
50 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
51 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
52
53 ACModeChanger aCModeChanger = new ACModeChanger(new Pr io r i tyParameter s (
54 5) , storageParameters , this) ;
55
56 aCModeChanger . r e g i s t e r () ;
57
58 EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
59 new Pr io r i tyParameter s (5) , new Per iod icParameters (
60 new RelativeTime (10 , 0) , null) ,
61 storageParametersSchedulab le , ”Environment Monitor” , this) ;
62
63 environmentMonitor . r e g i s t e r () ;
64
65 ControlHandler contro lHand le r = new ControlHandler (
66 new Pr io r i tyParameter s (5) , new AperiodicParameters (new RelativeTime (10 , 0) , null) ,
67 storageParametersSchedulab le , ”Control Handler ”) ;
68
69 contro lHand le r . r e g i s t e r () ;
70
71 Fl ightSensorsMoni tor f l ightSensMon = new Fl ightSensorsMoni tor (
72 new Pr io r i tyParameter s (5) , new Per iod icParameters (

12

73 new RelativeTime (10 , 0) , null) ,
74 storageParametersSchedulab le , ” F l i gh t Sensors Monitor” , this) ;
75
76 f l ightSensMon . r e g i s t e r () ;
77
78 CommunicationsHandler commsHandler = new CommunicationsHandler (
79 new Pr io r i tyParameter s (5) , new AperiodicParameters () ,
80 storageParametersSchedulab le , ”Communications Handler ”) ;
81
82 commsHandler . r e g i s t e r () ;
83
84 Aper iod icS imulator contro lS im
85 = new Aper iod icS imulator (
86 new Pr io r i tyParameter s (5) ,
87 new Per iod icParameters (new RelativeTime (10 , 0) , null) ,
88 storageParametersSchedulab le ,
89 contro lHand le r) ;
90
91 contro lS im . r e g i s t e r () ;
92
93 }
94
95 public long missionMemorySize () {
96 return Const .MISSION MEM DEFAULT;
97 }
98
99 public void setAirSpeed (double a i rSpeed) {

100 this . a i rSpeed = airSpeed ;
101 }
102
103 public void s e tA l t i t ud e (double a l t i t u d e) {
104 this . a l t i t u d e = a l t i t u d e ;
105 }
106
107 public void se tCabinPressure (double cab inPres sure) {
108 this . cab inPres sure = cab inPres sure ;
109 }
110
111 public void setEmergencyOxygen (double emergencyOxygen) {
112 this . emergencyOxygen = emergencyOxygen ;
113 }
114
115 public void setFuelRemaining (double fue lRemaining) {
116 this . fue lRemaining = fuelRemaining ;
117 }
118
119 public void setHeading (double heading) {
120 this . heading = heading ;
121 }
122 }

13

2.6 Schedulables of TakeOffMission

2.6.1 TakeOffMonitor

1 public class TakeOffMonitor extends PeriodicEventHandler {
2
3 private f ina l MainMission mainMission ;
4 private f ina l TakeOffMission takeo f fM i s s i on ;
5
6 private double takeOf fA l t i tude ;
7 private AperiodicEventHandler landingGearHandler ;
8
9 public TakeOffMonitor (Pr io r i tyParameter s p r i o r i t y ,

10 Per iod icParameters pe r i od i c , StorageParameters s torage ,
11 MainMission mainMission , TakeOffMission takeOffMiss ion , double takeOf fAl t i tude ,
12 AperiodicEventHandler landingGearHandler) {
13 super (p r i o r i t y , p e r i od i c , s t o rage) ;
14 this . mainMission = mainMission ;
15 this . t ak eo f fM i s s i on = takeOf fMiss ion ;
16 this . t akeOf fA l t i tude = takeOf fA l t i tude ;
17 this . landingGearHandler = landingGearHandler ;
18 }
19
20 public void handleAsyncEvent () {
21 System . out . p r i n t l n (”Reading Al t i tude ”) ;
22 double a l t i t u d e = mainMission . g e tA l t i tude () ;
23
24 i f (a l t i t u d e > takeOf fA l t i tude) {
25 System . out . p r i n t l n (”Take Off Complete”) ;
26 landingGearHandler . r e l e a s e () ;
27 t akeo f fM i s s i on . requestTerminat ion () ;
28 }
29 }
30 }

14

2.6.2 TakeOffFailureHandler

1 public class TakeOffFai lureHandler extends AperiodicEventHandler {
2
3 private f ina l MainMission mainMission ;
4 private f ina l TakeOffMission takeo f fM i s s i on ;
5 private double th r e sho ld ;
6
7 public TakeOffFai lureHandler (Pr io r i tyParamete r s p r i o r i t y ,
8 Aper iodicParameters r e l e a s e , StorageParameters s torage ,
9 S t r ing name , MainMission mainMission , TakeOffMission takeo f fMi s s i on , Double th r e sho ld) {

10 super (p r i o r i t y , r e l e a s e , s torage , name) ;
11 this . t ak eo f fM i s s i on = takeo f fM i s s i on ;
12 this . mainMission = mainMission ;
13 this . t h r e sho ld = thre sho ld ;
14 }
15
16 public void handleAsyncEvent () {
17
18 double currentSpeed = mainMission . getAirSpeed () ;
19
20 // in both cases t h i s f a i l u r e shou ld be f l a g g e d somewhere
21 i f (currentSpeed < th r e sho ld) {
22 System . out . p r i n t l n (” Fa i l u r e : Aborting ”) ;
23 t akeo f fM i s s i on . abort () ;
24 t akeo f fM i s s i on . requestTerminat ion () ;
25 } else {
26 System . out . p r i n t l n (” Fa i l u r e : Continue and Land”) ;
27 }
28 }
29 }

15

2.6.3 LandingGearHandlerTakeOff

1 public class LandingGearHandlerTakeOff extends AperiodicEventHandler {
2
3 private f ina l TakeOffMission miss ion ;
4
5 public LandingGearHandlerTakeOff (Pr io r i tyParamete r s p r i o r i t y ,
6 Aper iodicParameters r e l e a s e , StorageParameters s torage ,
7 S t r ing name , TakeOffMission miss ion) {
8 super (p r i o r i t y , r e l e a s e , s torage , name) ;
9 this . mis s ion = miss ion ;

10 }
11
12 public void handleAsyncEvent () {
13
14 System . out . p r i n t l n (”Deploying Landing Gear”) ;
15
16 boolean landingGearIsDeployed = miss ion . isLandingGearDeployed () ;
17
18 i f (landingGearIsDeployed) {
19 miss ion . stowLandingGear () ;
20 } else {
21 miss ion . deployLandingGear () ;
22 }
23 }
24 }

16

2.7 CruiseMission

1 public class MainMission extends Miss ion {
2 /∗∗
3 ∗ The read tha t the sensors w i l l g e t when the a i r c r a f t i s on the ground
4 ∗/
5 f ina l double ALTITUDE READING ONGROUND = 0 . 0 ;
6
7 private double cab inPres sure ;
8 private double emergencyOxygen ;
9 private double fue lRemaining ;

10
11 private double a l t i t u d e ;
12 private double a i rSpeed ;
13 private double heading ;
14
15 public double getAirSpeed () {
16 return a i rSpeed ;
17 }
18
19 public double ge tA l t i tude () {
20 return a l t i t u d e ;
21 }
22
23 public double getCabinPressure () {
24 return cab inPres sure ;
25 }
26
27 public double getEmergencyOxygen () {
28 return emergencyOxygen ;
29 }
30
31 public double getFuelRemaining () {
32 return fue lRemaining ;
33 }
34
35 public double getHeading () {
36 return heading ;
37 }
38
39 protected void i n i t i a l i z e () {
40 StorageParameters storageParameters = new StorageParameters (150 ∗ 1000 ,
41 new long [] { Const .HANDLER STACK SIZE } ,
42 Const .PRIVATEMEMDEFAULT − 25 ∗ 1000 ,
43 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
44 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
45
46 StorageParameters s torageParameter sSchedu lab le = new StorageParameters (
47 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
48 new long [] { Const .HANDLER STACK SIZE } ,
49 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
50 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
51 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
52
53 ACModeChanger aCModeChanger = new ACModeChanger(new Pr io r i tyParameter s (
54 5) , storageParameters , this) ;
55
56 aCModeChanger . r e g i s t e r () ;
57
58 EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
59 new Pr io r i tyParameter s (5) , new Per iod icParameters (
60 new RelativeTime (10 , 0) , null) ,
61 storageParametersSchedulab le , ”Environment Monitor” , this) ;
62
63 environmentMonitor . r e g i s t e r () ;
64
65 ControlHandler contro lHand le r = new ControlHandler (
66 new Pr io r i tyParameter s (5) , new AperiodicParameters (new RelativeTime (10 , 0) , null) ,
67 storageParametersSchedulab le , ”Control Handler ”) ;
68
69 contro lHand le r . r e g i s t e r () ;
70
71 Fl ightSensorsMoni tor f l ightSensMon = new Fl ightSensorsMoni tor (
72 new Pr io r i tyParameter s (5) , new Per iod icParameters (

17

73 new RelativeTime (10 , 0) , null) ,
74 storageParametersSchedulab le , ” F l i gh t Sensors Monitor” , this) ;
75
76 f l ightSensMon . r e g i s t e r () ;
77
78 CommunicationsHandler commsHandler = new CommunicationsHandler (
79 new Pr io r i tyParameter s (5) , new AperiodicParameters () ,
80 storageParametersSchedulab le , ”Communications Handler ”) ;
81
82 commsHandler . r e g i s t e r () ;
83
84 Aper iod icS imulator contro lS im
85 = new Aper iod icS imulator (
86 new Pr io r i tyParameter s (5) ,
87 new Per iod icParameters (new RelativeTime (10 , 0) , null) ,
88 storageParametersSchedulab le ,
89 contro lHand le r) ;
90
91 contro lS im . r e g i s t e r () ;
92
93 }
94
95 public long missionMemorySize () {
96 return Const .MISSION MEM DEFAULT;
97 }
98
99 public void setAirSpeed (double a i rSpeed) {

100 this . a i rSpeed = airSpeed ;
101 }
102
103 public void s e tA l t i t ud e (double a l t i t u d e) {
104 this . a l t i t u d e = a l t i t u d e ;
105 }
106
107 public void se tCabinPressure (double cab inPres sure) {
108 this . cab inPres sure = cab inPres sure ;
109 }
110
111 public void setEmergencyOxygen (double emergencyOxygen) {
112 this . emergencyOxygen = emergencyOxygen ;
113 }
114
115 public void setFuelRemaining (double fue lRemaining) {
116 this . fue lRemaining = fuelRemaining ;
117 }
118
119 public void setHeading (double heading) {
120 this . heading = heading ;
121 }
122 }

18

2.8 Schedulables of CruiseMission

2.8.1 NavigationMonitor

1 public class NavigationMonitor extends PeriodicEventHandler {
2
3 private f ina l MainMission mainMission ;
4
5 public NavigationMonitor (Pr io r i tyParameter s p r i o r i t y ,
6 Per iod icParameters pe r i od i c , StorageParameters s torage ,
7 S t r ing name , MainMission mainMission) {
8 super (p r i o r i t y , p e r i od i c , s t o rage) ;
9 this . mainMission = mainMission ;

10 }
11
12 public void handleAsyncEvent () {
13 // read and check the se v a r i a b l e s
14 double heading = mainMission . getHeading () ;
15 double a i rSpeed = mainMission . getAirSpeed () ;
16 double a l t i t u d e = mainMission . g e tA l t i tude () ;
17
18 // Obvious ly t h i s would then check the v a r i a b l e s again expec ted va lue s
19 }
20 }

19

2.8.2 BeginLandingHandler

1 public class BeginLandingHandler extends AperiodicEventHandler {
2
3 private Miss ion c on t r o l l i n gM i s s i o n ;
4
5 public BeginLandingHandler (Pr io r i tyParamete r s p r i o r i t y ,
6 Aper iodicParameters r e l e a s e , StorageParameters s torage ,
7 S t r ing name , Miss ion c on t r o l l i n gM i s s i o n) {
8 super (p r i o r i t y , r e l e a s e , s torage , name) ;
9 this . c o n t r o l l i n gM i s s i o n = con t r o l l i n gM i s s i o n ;

10 }
11
12 public void handleAsyncEvent () {
13 System . out . p r i n t l n (”Begin Landing”) ;
14 c on t r o l l i n gM i s s i o n . requestTerminat ion () ;
15 }
16 }

20

2.9 LandMission

1 public class MainMission extends Miss ion {
2 /∗∗
3 ∗ The read tha t the sensors w i l l g e t when the a i r c r a f t i s on the ground
4 ∗/
5 f ina l double ALTITUDE READING ONGROUND = 0 . 0 ;
6
7 private double cab inPres sure ;
8 private double emergencyOxygen ;
9 private double fue lRemaining ;

10
11 private double a l t i t u d e ;
12 private double a i rSpeed ;
13 private double heading ;
14
15 public double getAirSpeed () {
16 return a i rSpeed ;
17 }
18
19 public double ge tA l t i tude () {
20 return a l t i t u d e ;
21 }
22
23 public double getCabinPressure () {
24 return cab inPres sure ;
25 }
26
27 public double getEmergencyOxygen () {
28 return emergencyOxygen ;
29 }
30
31 public double getFuelRemaining () {
32 return fue lRemaining ;
33 }
34
35 public double getHeading () {
36 return heading ;
37 }
38
39 protected void i n i t i a l i z e () {
40 StorageParameters storageParameters = new StorageParameters (150 ∗ 1000 ,
41 new long [] { Const .HANDLER STACK SIZE } ,
42 Const .PRIVATEMEMDEFAULT − 25 ∗ 1000 ,
43 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
44 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
45
46 StorageParameters s torageParameter sSchedu lab le = new StorageParameters (
47 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
48 new long [] { Const .HANDLER STACK SIZE } ,
49 Const .PRIVATEMEMDEFAULT − 30 ∗ 1000 ,
50 Const .IMMORTALMEMDEFAULT − 50 ∗ 1000 ,
51 Const .MISSION MEM DEFAULT − 100 ∗ 1000) ;
52
53 ACModeChanger aCModeChanger = new ACModeChanger(new Pr io r i tyParameter s (
54 5) , storageParameters , this) ;
55
56 aCModeChanger . r e g i s t e r () ;
57
58 EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
59 new Pr io r i tyParameter s (5) , new Per iod icParameters (
60 new RelativeTime (10 , 0) , null) ,
61 storageParametersSchedulab le , ”Environment Monitor” , this) ;
62
63 environmentMonitor . r e g i s t e r () ;
64
65 ControlHandler contro lHand le r = new ControlHandler (
66 new Pr io r i tyParameter s (5) , new AperiodicParameters (new RelativeTime (10 , 0) , null) ,
67 storageParametersSchedulab le , ”Control Handler ”) ;
68
69 contro lHand le r . r e g i s t e r () ;
70
71 Fl ightSensorsMoni tor f l ightSensMon = new Fl ightSensorsMoni tor (
72 new Pr io r i tyParameter s (5) , new Per iod icParameters (

21

73 new RelativeTime (10 , 0) , null) ,
74 storageParametersSchedulab le , ” F l i gh t Sensors Monitor” , this) ;
75
76 f l ightSensMon . r e g i s t e r () ;
77
78 CommunicationsHandler commsHandler = new CommunicationsHandler (
79 new Pr io r i tyParameter s (5) , new AperiodicParameters () ,
80 storageParametersSchedulab le , ”Communications Handler ”) ;
81
82 commsHandler . r e g i s t e r () ;
83
84 Aper iod icS imulator contro lS im
85 = new Aper iod icS imulator (
86 new Pr io r i tyParameter s (5) ,
87 new Per iod icParameters (new RelativeTime (10 , 0) , null) ,
88 storageParametersSchedulab le ,
89 contro lHand le r) ;
90
91 contro lS im . r e g i s t e r () ;
92
93 }
94
95 public long missionMemorySize () {
96 return Const .MISSION MEM DEFAULT;
97 }
98
99 public void setAirSpeed (double a i rSpeed) {

100 this . a i rSpeed = airSpeed ;
101 }
102
103 public void s e tA l t i t ud e (double a l t i t u d e) {
104 this . a l t i t u d e = a l t i t u d e ;
105 }
106
107 public void se tCabinPressure (double cab inPres sure) {
108 this . cab inPres sure = cab inPres sure ;
109 }
110
111 public void setEmergencyOxygen (double emergencyOxygen) {
112 this . emergencyOxygen = emergencyOxygen ;
113 }
114
115 public void setFuelRemaining (double fue lRemaining) {
116 this . fue lRemaining = fuelRemaining ;
117 }
118
119 public void setHeading (double heading) {
120 this . heading = heading ;
121 }
122 }

22

2.10 Schedulables of LandMission

2.10.1 GroundDistanceMonitor

1 public class GroundDistanceMonitor extends PeriodicEventHandler {
2
3 private f ina l MainMission mainMission ;
4 private f ina l double readingOnGround ;
5
6 public GroundDistanceMonitor (Pr io r i tyParameter s p r i o r i t y ,
7 Per iod icParameters pe r i od i c , StorageParameters s torage ,
8 MainMission mainMission) {
9 super (p r i o r i t y , p e r i od i c , s t o rage) ;

10
11 this . mainMission = mainMission ;
12 this . readingOnGround = mainMission .ALTITUDE READING ONGROUND;
13 }
14
15 public void handleAsyncEvent () {
16
17 System . out . p r i n t l n (”Checking Ground Distance ”) ;
18 // read t h i s va lue from sensors
19 double d i s t ance = mainMission . g e tA l t i tude () ;
20
21 i f (d i s t ance == readingOnGround) {
22
23 System . out . p r i n t l n (” A i r c r a f t Landed , Terminating Miss ion ”) ;
24 mainMission . requestTerminat ion () ;
25 }
26 }
27 }

23

2.10.2 LandingGearHandlerLand

1 public class LandingGearHandlerLand extends AperiodicEventHandler {
2
3 private f ina l LandMission miss ion ;
4
5 public LandingGearHandlerLand (Pr io r i tyParameter s p r i o r i t y ,
6 Aper iodicParameters r e l e a s e , StorageParameters s torage ,
7 S t r ing name , LandMission miss ion) {
8 super (p r i o r i t y , r e l e a s e , s torage , name) ;
9 this . mis s ion = miss ion ;

10 }
11
12 public void handleAsyncEvent () {
13
14 System . out . p r i n t l n (”Deploying Landing Gear”) ;
15
16 boolean landingGearIsDeployed = miss ion . isLandingGearDeployed () ;
17
18 i f (landingGearIsDeployed) {
19 miss ion . stowLandingGear () ;
20 } else {
21 miss ion . deployLandingGear () ;
22 }
23 }
24 }

24

2.10.3 InstrumentLandingSystemMonitor

1 public class InstrumentLandingSystemMonitor extends PeriodicEventHandler {
2
3 private f ina l LandMission miss ion ;
4
5 public InstrumentLandingSystemMonitor (Pr io r i tyParameter s p r i o r i t y ,
6 Per iod icParameters pe r i od i c , StorageParameters s torage ,
7 S t r ing name , LandMission miss ion) {
8 super (p r i o r i t y , p e r i od i c , s t o rage) ;
9 this . mis s ion = miss ion ;

10 }
11
12 public void handleAsyncEvent () {
13 System . out . p r i n t l n (”Checking ILS”) ;
14 }
15 }

25

2.10.4 SafeLandingHandler

1 public class SafeLandingHandler extends AperiodicEventHandler {
2
3 private f ina l MainMission mainMission ;
4 private double th r e sho ld ;
5
6 public SafeLandingHandler (Pr io r i tyParameter s p r i o r i t y ,
7 Aper iodicParameters r e l e a s e , StorageParameters s torage ,
8 S t r ing name , MainMission mainMission , Double th r e sho ld) {
9 super (p r i o r i t y , r e l e a s e , s torage , name) ;

10 this . mainMission = mainMission ;
11 this . t h r e sho ld = thre sho ld ;
12 }
13
14 public void handleAsyncEvent () {
15
16 double a l t i t u d e = mainMission . g e tA l t i tude () ;
17
18 // in both cases t h i s f a i l u r e shou ld be f l a g g e d somewhere
19 i f (a l t i t u d e < th r e sho ld) {
20 System . out . p r i n t l n (” Fa i l u r e : Pu l l Up”) ;
21 // Also perform some recovery ac t ion here , maybe a new mode
22 } else {
23 System . out . p r i n t l n (” Fa i l u r e : Continue With Landing”) ;
24 }
25 }
26 }

References

[1] Andy Wellings, Matt Luckcuck, and Ana Cavalcanti. Safety-critical java level 2: motivations, example
applications and issues. In Proceedings of the 11th International Workshop on Java Technologies for Real-
time and Embedded Systems, JTRES ’13, pages 48–57, New York, NY, USA, 9 October 2013. ACM.

26

	Introduction
	Program Script
	ACSafelet
	MainMissionSequencer
	MainMission
	Schedulables of MainMission
	ACModeChanger
	EnvironmentMonitor
	ControlHandler
	FlightSensorsMonitor
	CommunicationsHandler

	TakeOffMission
	Schedulables of TakeOffMission
	TakeOffMonitor
	TakeOffFailureHandler
	LandingGearHandlerTakeOff

	CruiseMission
	Schedulables of CruiseMission
	NavigationMonitor
	BeginLandingHandler

	LandMission
	Schedulables of LandMission
	GroundDistanceMonitor
	LandingGearHandlerLand
	InstrumentLandingSystemMonitor
	SafeLandingHandler

