AirCraft Program Report
Matt Luckcuck

Department of Computer Science,
University of York, UK

ml881@york.ac.uk
4th February 2016

Contents
1 Introductionl 2
2 Program Script| 3
3
4
5
7
7
8
9
10
11
12
14
14
15
16
17
19
[2.8.1 NawvigationMonitor| L L 19
[2.8.2 BeginLandingHandler| 20
2.9 TandMissionl oo 21
[2.10 Schedulables of LandMissionl 23
2.10.1 GroundDistanceMonitor]o oo 23
[2.10.2 LandingGearHandlerLand| o o 24
[2.10.3 InstrumentLandingSystemMonitor| oo o000 25
.10.4 SafcLandingHandler] 26

1 Introduction

The AirCraft application represents the control software of a simplified aircraft control system, which operates in
three modes: take off, cruising, or landing. AirCraft is structurally complicated; making use of Level 2’s unique
(in SCJ) ability to nest mission sequencers inside missions, which is used to handle the modes of operation.
AirCraft is an extended version of an example found in [IJ.

Figure[I]shows an object diagram of the AirCraft. The program is controlled by the safelet ACSafelet, which
starts the top-level mission sequencer MainMissionSequencer. The mission sequencer starts the MainMission,
which starts four schedulables and a mission sequencer (ACModeChanger). The four schedulables will operate
throughout all modes of operation. The ACModeChanger starts each of the missions that encapsulate the modes
of operation: TakeOffMission, CruiseMission, and LandMission. Each of these missions starts its own
schedulables that operate throughout that mode only.

[FlatBuffer : Safelet]

Schedulables Key i<<instantiate>>
PEH = PeriodicEventHandler 11
APEH = AperiodicEventHandler [MainMissionSequencer : MissionSequencer
i<<instantiate>>
[MainMission : Mission]
i<<instantiate>>

¢ v
[EnvMonitor : PEH| [FlightSensors : PEH |

[ControlHandler : APEH] [CommsHandler : APEH]

| ACModeChanger : MissionSequencer |

i<<instantiate>> i ',l<<i'nstantiat.e>>. ; <<instantiate>>
TakeOffMission : Mission] [CruiseMission : Mission| [LandMission : Mission|
|<<i.nstantiate>> é<<in?tantilate>> <<instantiate>>}
TR t’)ffM For TPEH [NavigationHandler : PEH] [GroundDistanceMonitor : PEH]
ake onitor : : : e
. [BeginLandingMonitor: APEH | [LandingGearHandler : APEH |
_|Land|ng.GearHandIer : PEH] [SafeLandingHandler : APEH |
[TakeOffFailureHandler : APEH| [InstumentLandingSystemMonitor : PEH|

Figure 1: Object Diagram of the AirCraft application

When the AirCraft application begins, the schedulables in the MainMission begin executing — including
the ACModeChanger, which controls three missions that represent the aircraft’s modes of operation. Each of
the missions controlled by the ACModeChanger is requested to terminate, by one of its schedulables, when it’s
mode of operation is over. Initially the ACModeChanger loads the TakeOffMission. When it terminates, the
ACModeChanger loads the next mission. Once the LandMission terminates the aircraft has landed, so the
program terminates.

The AirCraft application uses the unique feature of Level 2, nested mission sequencers. This feature produces
the most obvious hierarchical difference from Level 1 programs. Modes of operation can be captured at Level 1,
but Level 2 allows schedulables that run throughout all the modes without interruption. Section [2] presents the
full script of the AirCraft program.

0~ O Otk WK~

2 Program Script
2.1 ACSafelet

public class ACSafelet implements Safelet <Mission>{

public MissionSequencer<Mission> getSequencer () {
StorageParameters storageParameters = new StorageParameters(150 * 1000,
new long[] { Const.HANDLER STACKSIZE },
Const .PRIVATEMEM_DEFAULT — 25 % 1000,
Const .IMMORTAL MEM DEFAULT — 50 * 1000,
Const . MISSION.MEM_DEFAULT — 100 * 1000);

return new MainMissionSequencer (new PriorityParameters(5),
storageParameters) ;

}

public long immortalMemorySize () {
return Const .IMMORTAL MEM DEFAULT
}

public void initializeApplication (){
}
}

2.2 MainMissionSequencer

© 00~ Utk W+~

public class MainMissionSequencer extends MissionSequencer <Mission >{
private boolean returnedMission;

public MainMissionSequencer (PriorityParameters priority ,
StorageParameters storage){
super (priority , storage);
returnedMission = false;

}

protected Mission getNextMission (){

if (!returnedMission){

returnedMission = true;
return new MainMission () ;
} else{

return null;

© 00~ O Ut WK

2.3 MainMission

public class MainMission extends Mission{
VAT
* The read that the sensors will get when the aircraft is on the ground
*/
final double ALTITUDE READING.ON.GROUND = 0.0;

private double cabinPressure;
private double emergencyOxygen;
private double fuelRemaining;

private double altitude;
private double airSpeed;
private double heading;

public double getAirSpeed () {
return airSpeed;
}

public double getAltitude (){
return altitude;
}

public double getCabinPressure (){
return cabinPressure;
}

public double getEmergencyOxygen (){
return emergencyOxygen;
}

public double getFuelRemaining () {
return fuelRemaining;
}

public double getHeading () {
return heading;
}

protected void initialize (){
StorageParameters storageParameters = new StorageParameters(150 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 25 x 1000,
Const .IMMORTALMEM DEFAULT — 50 % 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

StorageParameters storageParametersSchedulable = new StorageParameters (
Const .PRIVATEMEM DEFAULT — 30 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 30 = 1000,
Const .IMMORTAL MEM DEFAULT — 50 * 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

ACModeChanger aCModeChanger = new ACModeChanger (new PriorityParameters (
5), storageParameters, this);

aCModeChanger. register () ;
EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
new PriorityParameters(5), new PeriodicParameters(
new RelativeTime (10, 0), null),

storageParametersSchedulable , ”Environment Monitor” , this);

environmentMonitor. register () ;

ControlHandler controlHandler = new ControlHandler (
new PriorityParameters(5), new AperiodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable , ” Control Handler”);

controlHandler . register () ;

FlightSensorsMonitor flightSensMon = new FlightSensorsMonitor (
new PriorityParameters(5), new PeriodicParameters(

112
113
114
115
116
117
118
119
120
121
122

}

new RelativeTime (10, 0), null),
storageParametersSchedulable , ”Flight Sensors Monitor”, this);

flightSensMon . register () ;

Com

municationsHandler commsHandler = new CommunicationsHandler (
new PriorityParameters(5), new AperiodicParameters (),
storageParametersSchedulable , ” Communications Handler”);

commsHandler. register () ;

AperiodicSimulator controlSim

cont

}

public
retu
}

public

}

public

}

public

}

public

}

public

}

public

}

this .

this.

this.

this.

this .

this.

new AperiodicSimulator (

new PriorityParameters (5),

new PeriodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable ,

controlHandler);

rolSim.register ();

long missionMemorySize () {
rn Const . MISSION.MEM_DEFAULT;

void setAirSpeed (double airSpeed){
airSpeed = airSpeed;

void setAltitude (double altitude){
altitude = altitude;

void setCabinPressure(double cabinPressure){
cabinPressure = cabinPressure;

void setEmergencyOxygen(double emergencyOxygen) {
emergencyOxygen = emergencyOxygen ;

void setFuelRemaining (double fuelRemaining){
fuelRemaining = fuelRemaining;

void setHeading(double heading){
heading = heading;

2.4 Schedulables of MainMission

2.4.1 ACModeChanger

1| public class ACModeChanger extends MissionSequencer<Mission >{
2

3 private MainMission controllingMission;

4 private int modesLeft = 3;

5

6 public ACModeChanger(PriorityParameters priority ,

7 StorageParameters storage, MainMission controllingMission){
8 super (priority , storage);

9 this.controllingMission = controllingMission;

10 }

11

12 public ACModeChanger(PriorityParameters priority , StorageParameters storage){
13 super (priority , storage);

14

15

16 protected Mission getNextMission (){

17 if (modesLeft = 3) {

18 modesLeft ——;

19 return new TakeOffMission(controllingMission);

20 } else if (modesLeft = 2){

21 modesLeft ——;

22 return new CruiseMission (controllingMission);

23 } else if (modesLeft =— 1){

24 modesLeft ——;

25 return new LandMission(controllingMission);

26 } else{

27 return null;

28 }

29 }

30| }

© 00~ Utk W+~

2.4.2 EnvironmentMonitor

public class EnvironmentMonitor extends PeriodicEventHandler {

MainMission controllingMission

public EnvironmentMonitor (PriorityParameters priority ,
PeriodicParameters periodic ,
StorageParameters storage ,
String name,
MainMission mainMission) {
super (priority , periodic, storage);
controllingMission = mainMission;

}

public void handleAsyncEvent () {
System.out. println (” Checking Environment”);

// read cabin pressure from sensors
controllingMission.setCabinPressure (0);

// read emergency Ozygen Levels
controllingMission .setEmergencyOxygen (0) ;

// read remaining fuel
controllingMission .setFuelRemaining (0) ;

—

= O © 0 ~JO0 Ok WK -

2.4.3 ControlHandler

public class ControlHandler extends AperiodicEventHandler{

public ControlHandler (PriorityParameters priority ,
AperiodicParameters release, StorageParameters storage,
super (priority , release, storage, name);

public void handleAsyncEvent (){
System.out. println (” Handling Controls”);
}
}

String name) {

© 00~ Utk W+~

2.4.4 FlightSensorsMonitor

public class FlightSensorsMonitor extends PeriodicEventHandler {
MainMission controllingMission

public FlightSensorsMonitor (PriorityParameters priority ,
PeriodicParameters periodic, StorageParameters storage,
String name, MainMission mainMission){

super (priority , periodic, storage);
controllingMission = mainMission;

}

public void handleAsyncEvent () {
System.out. println (” Checking Flight Sensors”);

// read air speed
controllingMission .setAirSpeed (0);
// read altitude
controllingMission.setAltitude (0);
// read heading

controllingMission .setHeading (0) ;

10

—

= O © 0 ~JO0 Ok WK -

2.4.5 CommunicationsHandler

public class CommunicationsHandler extends AperiodicEventHandler{

public CommunicationsHandler (PriorityParameters priority ,
AperiodicParameters release, StorageParameters storage, String name){
super (priority , release, storage, name);

public void handleAsyncEvent (){
System.out. println (” Handling Comms”) ;
}
}

11

© 00~ O Ut WK

2.5 TakeOffMission

public class MainMission extends Mission{
VAT
* The read that the sensors will get when the aircraft is on the ground
*/
final double ALTITUDE READING.ON.GROUND = 0.0;

private double cabinPressure;
private double emergencyOxygen;
private double fuelRemaining;

private double altitude;
private double airSpeed;
private double heading;

public double getAirSpeed () {
return airSpeed;
}

public double getAltitude (){
return altitude;
}

public double getCabinPressure (){
return cabinPressure;
}

public double getEmergencyOxygen (){
return emergencyOxygen;
}

public double getFuelRemaining () {
return fuelRemaining;
}

public double getHeading () {
return heading;
}

protected void initialize (){
StorageParameters storageParameters = new StorageParameters(150 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 25 x 1000,
Const .IMMORTALMEM DEFAULT — 50 % 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

StorageParameters storageParametersSchedulable = new StorageParameters (
Const .PRIVATEMEM DEFAULT — 30 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 30 = 1000,
Const .IMMORTAL MEM DEFAULT — 50 * 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

ACModeChanger aCModeChanger = new ACModeChanger (new PriorityParameters (
5), storageParameters, this);

aCModeChanger. register () ;
EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
new PriorityParameters(5), new PeriodicParameters(
new RelativeTime (10, 0), null),

storageParametersSchedulable , ”Environment Monitor” , this);

environmentMonitor. register () ;

ControlHandler controlHandler = new ControlHandler (
new PriorityParameters(5), new AperiodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable , ” Control Handler”);

controlHandler . register () ;

FlightSensorsMonitor flightSensMon = new FlightSensorsMonitor (
new PriorityParameters(5), new PeriodicParameters(

12

112
113
114
115
116
117
118
119
120
121
122

}

new RelativeTime (10, 0), null),
storageParametersSchedulable , ”Flight Sensors Monitor”, this);

flightSensMon . register () ;

Com

municationsHandler commsHandler = new CommunicationsHandler (
new PriorityParameters(5), new AperiodicParameters (),
storageParametersSchedulable , ” Communications Handler”);

commsHandler. register () ;

AperiodicSimulator controlSim

cont

}

public
retu
}

public

}

public

}

public

}

public

}

public

}

public

}

this .

this.

this.

this.

this .

this.

new AperiodicSimulator (

new PriorityParameters (5),

new PeriodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable ,

controlHandler);

rolSim.register ();

long missionMemorySize () {
rn Const . MISSION.MEM_DEFAULT;

void setAirSpeed (double airSpeed){
airSpeed = airSpeed;

void setAltitude (double altitude){
altitude = altitude;

void setCabinPressure(double cabinPressure){
cabinPressure = cabinPressure;

void setEmergencyOxygen(double emergencyOxygen) {
emergencyOxygen = emergencyOxygen ;

void setFuelRemaining (double fuelRemaining){
fuelRemaining = fuelRemaining;

void setHeading(double heading){
heading = heading;

13

0~ O Uk WN

2.6 Schedulables of TakeOffMission

2.6.1 TakeOffMonitor

public class TakeOffMonitor extends PeriodicEventHandler{

private final MainMission mainMission ;
private final TakeOffMission takeoffMission;

private double takeOffAltitude;
private AperiodicEventHandler landingGearHandler;

public TakeOffMonitor (PriorityParameters priority ,
PeriodicParameters periodic, StorageParameters storage,
MainMission mainMission, TakeOffMission takeOffMission ,
AperiodicEventHandler landingGearHandler){

super (priority , periodic, storage);

this . mainMission = mainMission;
this.takeoffMission = takeOffMission;
this.takeOffAltitude = takeOffAltitude;
this.landingGearHandler = landingGearHandler;

}

public void handleAsyncEvent () {
System.out.println (”Reading Altitude”);
double altitude = mainMission. getAltitude () ;

if (altitude > takeOffAltitude){
System.out. println (” Take Off Complete”);
landingGearHandler . release () ;
takeoffMission.requestTermination () ;

}

double takeOffAltitude ,

14

2.6.2 TakeOffFailureHandler

1| public class TakeOffFailureHandler extends AperiodicEventHandler{
2

3 private final MainMission mainMission;

4 private final TakeOffMission takeoffMission;

5 private double threshold;

6

7 public TakeOffFailureHandler (PriorityParameters priority ,

8 AperiodicParameters release, StorageParameters storage,
9 String name, MainMission mainMission, TakeOffMission takeoffMission , Double threshold){
10 super (priority , release, storage, name);

11 this.takeoffMission = takeoffMission;

12 this.mainMission = mainMission;

13 this.threshold = threshold;

14 }

15

16 public void handleAsyncEvent (){

17

18 double currentSpeed = mainMission.getAirSpeed () ;

19

20 // in both cases this failure should be flagged somewhere
21 if (currentSpeed < threshold){

22 System.out. println (” Failure: Aborting”);

23 takeoffMission .abort () ;

24 takeoffMission.requestTermination () ;

25 } else{

26 System.out. println (”Failure: Continue and Land”);

27 }

28}

29| }

15

© 00~ Utk W+~

2.6.3 LandingGearHandlerTakeOff

public class LandingGearHandlerTakeOff extends AperiodicEventHandler{

}

private final TakeOffMission mission;

public LandingGearHandlerTakeOff(PriorityParameters priority ,
AperiodicParameters release, StorageParameters storage,
String name, TakeOffMission mission){

super (priority , release, storage, name);
this.mission = mission;

}

public void handleAsyncEvent () {
System.out. println (” Deploying Landing Gear”);
boolean landingGearIsDeployed = mission.isLandingGearDeployed () ;
if (landingGearIsDeployed){
mission.stowLandingGear () ;

} else{
mission . deployLandingGear () ;
}

}

16

© 00~ O Ut WK

2.7 CruiseMission

public class MainMission extends Mission{
VAT
* The read that the sensors will get when the aircraft is on the ground
*/
final double ALTITUDE READING.ON.GROUND = 0.0;

private double cabinPressure;
private double emergencyOxygen;
private double fuelRemaining;

private double altitude;
private double airSpeed;
private double heading;

public double getAirSpeed () {
return airSpeed;
}

public double getAltitude (){
return altitude;
}

public double getCabinPressure (){
return cabinPressure;
}

public double getEmergencyOxygen (){
return emergencyOxygen;
}

public double getFuelRemaining () {
return fuelRemaining;
}

public double getHeading () {
return heading;
}

protected void initialize (){
StorageParameters storageParameters = new StorageParameters(150 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 25 x 1000,
Const .IMMORTALMEM DEFAULT — 50 % 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

StorageParameters storageParametersSchedulable = new StorageParameters (
Const .PRIVATEMEM DEFAULT — 30 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 30 = 1000,
Const .IMMORTAL MEM DEFAULT — 50 * 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

ACModeChanger aCModeChanger = new ACModeChanger (new PriorityParameters (
5), storageParameters, this);

aCModeChanger. register () ;
EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
new PriorityParameters(5), new PeriodicParameters(
new RelativeTime (10, 0), null),

storageParametersSchedulable , ”Environment Monitor” , this);

environmentMonitor. register () ;

ControlHandler controlHandler = new ControlHandler (
new PriorityParameters(5), new AperiodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable , ” Control Handler”);

controlHandler . register () ;

FlightSensorsMonitor flightSensMon = new FlightSensorsMonitor (
new PriorityParameters(5), new PeriodicParameters(

17

112
113
114
115
116
117
118
119
120
121
122

}

new RelativeTime (10, 0), null),
storageParametersSchedulable , ”Flight Sensors Monitor”, this);

flightSensMon . register () ;

Com

municationsHandler commsHandler = new CommunicationsHandler (
new PriorityParameters(5), new AperiodicParameters (),
storageParametersSchedulable , ” Communications Handler”);

commsHandler. register () ;

AperiodicSimulator controlSim

cont

}

public
retu
}

public

}

public

}

public

}

public

}

public

}

public

}

this .

this.

this.

this.

this .

this.

new AperiodicSimulator (

new PriorityParameters (5),

new PeriodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable ,

controlHandler);

rolSim.register ();

long missionMemorySize () {
rn Const . MISSION.MEM_DEFAULT;

void setAirSpeed (double airSpeed){
airSpeed = airSpeed;

void setAltitude (double altitude){
altitude = altitude;

void setCabinPressure(double cabinPressure){
cabinPressure = cabinPressure;

void setEmergencyOxygen(double emergencyOxygen) {
emergencyOxygen = emergencyOxygen ;

void setFuelRemaining (double fuelRemaining){
fuelRemaining = fuelRemaining;

void setHeading(double heading){
heading = heading;

18

0~ O Uk WN

2.8 Schedulables of CruiseMission

2.8.1 NavigationMonitor

public class NavigationMonitor extends PeriodicEventHandler{
private final MainMission mainMission;

public NavigationMonitor (PriorityParameters priority ,
PeriodicParameters periodic, StorageParameters storage,
String name, MainMission mainMission) {

super (priority , periodic, storage);
this.mainMission = mainMission;

}

public void handleAsyncEvent (){
// read and check these variables
double heading = mainMission.getHeading () ;
double airSpeed = mainMission.getAirSpeed (
double altitude = mainMission.getAltitude (

)i
)

)

// Obviously this would then check the variables again ezpected

values

19

© 00~ Utk W+~

2.8.2 BeginLandingHandler

public class BeginLandingHandler extends AperiodicEventHandler{
private Mission controllingMission;

public BeginLandingHandler (PriorityParameters priority ,
AperiodicParameters release, StorageParameters storage,
String name, Mission controllingMission){

super (priority , release, storage, name);
this.controllingMission = controllingMission;

}

public void handleAsyncEvent () {
System.out. println (”Begin Landing”);
controllingMission.requestTermination () ;
}
}

20

© 00~ O Ut WK

2.9 LandMission

public class MainMission extends Mission{
VAT
* The read that the sensors will get when the aircraft is on the ground
*/
final double ALTITUDE READING.ON.GROUND = 0.0;

private double cabinPressure;
private double emergencyOxygen;
private double fuelRemaining;

private double altitude;
private double airSpeed;
private double heading;

public double getAirSpeed () {
return airSpeed;
}

public double getAltitude (){
return altitude;
}

public double getCabinPressure (){
return cabinPressure;
}

public double getEmergencyOxygen (){
return emergencyOxygen;
}

public double getFuelRemaining () {
return fuelRemaining;
}

public double getHeading () {
return heading;
}

protected void initialize (){
StorageParameters storageParameters = new StorageParameters(150 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 25 x 1000,
Const .IMMORTALMEM DEFAULT — 50 % 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

StorageParameters storageParametersSchedulable = new StorageParameters (
Const .PRIVATEMEM DEFAULT — 30 x 1000,
new long|[] { Const.HANDLERSTACKSIZE },
Const .PRIVATEMEM DEFAULT — 30 = 1000,
Const .IMMORTAL MEM DEFAULT — 50 * 1000,
Const . MISSION.MEM_DEFAULT — 100 % 1000);

ACModeChanger aCModeChanger = new ACModeChanger (new PriorityParameters (
5), storageParameters, this);

aCModeChanger. register () ;
EnvironmentMonitor environmentMonitor = new EnvironmentMonitor (
new PriorityParameters(5), new PeriodicParameters(
new RelativeTime (10, 0), null),

storageParametersSchedulable , ”Environment Monitor” , this);

environmentMonitor. register () ;

ControlHandler controlHandler = new ControlHandler (
new PriorityParameters(5), new AperiodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable , ” Control Handler”);

controlHandler . register () ;

FlightSensorsMonitor flightSensMon = new FlightSensorsMonitor (
new PriorityParameters(5), new PeriodicParameters(

21

112
113
114
115
116
117
118
119
120
121
122

}

new RelativeTime (10, 0), null),
storageParametersSchedulable , ”Flight Sensors Monitor”, this);

flightSensMon . register () ;

Com

municationsHandler commsHandler = new CommunicationsHandler (
new PriorityParameters(5), new AperiodicParameters (),
storageParametersSchedulable , ” Communications Handler”);

commsHandler. register () ;

AperiodicSimulator controlSim

cont

}

public
retu
}

public

}

public

}

public

}

public

}

public

}

public

}

this .

this.

this.

this.

this .

this.

new AperiodicSimulator (

new PriorityParameters (5),

new PeriodicParameters(new RelativeTime (10, 0), null),
storageParametersSchedulable ,

controlHandler);

rolSim.register ();

long missionMemorySize () {
rn Const . MISSION.MEM_DEFAULT;

void setAirSpeed (double airSpeed){
airSpeed = airSpeed;

void setAltitude (double altitude){
altitude = altitude;

void setCabinPressure(double cabinPressure){
cabinPressure = cabinPressure;

void setEmergencyOxygen(double emergencyOxygen) {
emergencyOxygen = emergencyOxygen ;

void setFuelRemaining (double fuelRemaining){
fuelRemaining = fuelRemaining;

void setHeading(double heading){
heading = heading;

22

0~ O Uk WN

2.10 Schedulables of LandMission

2.10.1 GroundDistanceMonitor

public class GroundDistanceMonitor extends PeriodicEventHandler {

private final MainMission mainMission;
private final double readingOnGround;

public GroundDistanceMonitor (PriorityParameters priority ,
PeriodicParameters periodic, StorageParameters storage,
MainMission mainMission) {

super (priority , periodic, storage);

this . mainMission = mainMission;
this.readingOnGround = mainMission . ALTITUDE READING.ON_.GROUND;
}

public void handleAsyncEvent () {

System.out.println (” Checking Ground Distance”);
// read this walue from sensors
double distance = mainMission.getAltitude () ;

if (distance = readingOnGround){

System.out. println (” Aircraft Landed, Terminating Mission”);
mainMission.requestTermination () ;
}
}

23

© 00~ Utk W+~

2.10.2 LandingGearHandlerLand

public class LandingGearHandlerLand extends AperiodicEventHandler {

}

private final LandMission mission;

public LandingGearHandlerLand (PriorityParameters priority ,
AperiodicParameters release, StorageParameters storage,
String name, LandMission mission){

super (priority , release, storage, name);
this.mission = mission;

}

public void handleAsyncEvent () {

System.out. println (” Deploying Landing Gear”);

boolean landingGearIsDeployed = mission.isLandingGearDeployed () ;

if (landingGearIsDeployed){
mission.stowLandingGear () ;
} else{
mission . deployLandingGear () ;
}

}

24

© 00~ Utk W+~

2.10.3 InstrumentLandingSystemMonitor

public class InstrumentLandingSystemMonitor extends PeriodicEventHandler{
private final LandMission mission;

public InstrumentLandingSystemMonitor (PriorityParameters priority ,
PeriodicParameters periodic, StorageParameters storage,
String name, LandMission mission){
super (priority , periodic, storage);
this.mission = mission;

}

public void handleAsyncEvent () {
System.out. println (” Checking ILS”);

}
}

25

© 00~ Utk W+~

2.10.4 SafeLandingHandler

public class SafeLandingHandler extends AperiodicEventHandler {

private final MainMission mainMission;
private double threshold;

public SafeLandingHandler (PriorityParameters priority ,

}

AperiodicParameters release, StorageParameters storage,
String name, MainMission mainMission, Double threshold){
super (priority , release, storage, name);
this . mainMission = mainMission;
this.threshold = threshold;

public void handleAsyncEvent () {

double altitude = mainMission.getAltitude () ;

// in both cases this failure should be flagged somewhere
if (altitude < threshold){

System.out. println (” Failure: Pull Up”);
// Also perform some recovery action here, maybe a new mode
} else{
System.out. println (”Failure: Continue With Landing”);
}
}
}
References

[1] Andy Wellings, Matt Luckcuck, and Ana Cavalcanti. Safety-critical java level 2: motivations, example

applications and issues. In Proceedings of the 11th International Workshop on Java Technologies for Real-
time and Embedded Systems, JTRES 13, pages 48-57, New York, NY, USA, 9 October 2013. ACM.

26

	Introduction
	Program Script
	ACSafelet
	MainMissionSequencer
	MainMission
	Schedulables of MainMission
	ACModeChanger
	EnvironmentMonitor
	ControlHandler
	FlightSensorsMonitor
	CommunicationsHandler

	TakeOffMission
	Schedulables of TakeOffMission
	TakeOffMonitor
	TakeOffFailureHandler
	LandingGearHandlerTakeOff

	CruiseMission
	Schedulables of CruiseMission
	NavigationMonitor
	BeginLandingHandler

	LandMission
	Schedulables of LandMission
	GroundDistanceMonitor
	LandingGearHandlerLand
	InstrumentLandingSystemMonitor
	SafeLandingHandler

