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Abstract

Safety-critical systems are systems in which a failure can cause damage to
property, even loss of human life. Such systems are required by law to be
certified, e. g. to DO-178B Level A. Production of certification evidence is
costly and time-consuming, hence the whole project lifecycle is carefully
planned. Languages for developing such systems are minimalistic with
specific support. For example, Ada 2005 together with the Ravenscar
profile have been used widely in industry.

The Safety-Critical Java (SCJ) Specification has recently emerged as an
attempt to make Java more suitable for the development of safety-critical
systems. SCJ has a Scoped Memory model and support for fixed-priority
preemptive scheduling and is defined as a subset of predictable, analys-
able Java subset called the Real-Time Specification for Java (RTS]). Scoped
Memory is memory not subject to garbage collection and is a popular
topic of research.

However, there exist only a limited number of use cases illustrating com-
mon use of concurrency mechanisms in SCJ. The language mainly focuses
on event handling as its support for periodic and aperiodic activities.

This project explores several concurrency techniques in SCJ. We develop
them using the departmental Reference Implementation together with
the public draft of the SCJ Specification. Our results allow us to draw
conclusions about SCJ as a concurrency programming paradigm from
the perspective of a developer new to the area of safety-critical systems.
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1 Introduction

1.1 Motivation

Concurrent programming allows multiple processes to execute in parallel
and cooperate towards achieving a common goal. However, this type
of programming is harder than traditional sequential programming -
Bloch [1, §9] advises to always try and use a library that can save the
programmer from doing low-level multithreaded programming. This
is good advice because concurrency can lead to undesirable behaviour
such as deadlock and corrupted data. In extreme circumstances, these
problems can cause the system to be unable to progress further or to
produce wrong results.

Safety-critical systems must be highly reliable and respond to input
stimuli within a finite period of time. Such systems must be engineered
so that the problems of concurrency never arise and the system designers
need to provide evidence of that to a certification body.

Languages used for the development of safety-critical systems are usu-
ally small subsets that provide fine-grain control over the finished product
to enable such certification. The Ada 2005 programming language, to-
gether with the Ravenscar profile, have been proven to be certifiable and
have been used widely in industry to develop such systems.

Java is a novel programming language. Since its release in 1995, it has
received widespread attention from the community of Internet businesses.
The language is familiar, easy to use, object-oriented and robust. The
use of inheritance and polymorphism provided programmers with the
power to design applications that model the real-world. Since then, Java
has spread into almost every niche in the IT industry.

Attempts have been made to extend Java into the real-time and em-
bedded systems domains. Although Java has many advantages over
its competitors, it does have some serious drawbacks with regards to
the development of real-time and embedded systems, namely unpre-
dictable garbage collection and its ‘stop-the-world” paradigm [2]. This
unpredictable blocking can cause concurrent processes to fail to respond
within their deadline. This has led to the development of the Real-Time
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Specification for Java (RTS]). The RTS]J, although suitable for the develop-
ment of soft and hard real-time systems, is too complex and big to make
certifiability tractable.

This has led to a further restriction of the language and its run-time
capabilities called Safety Critical Java (SCJ). The language specification is
fairly recent and there only exist a limited number of use cases illustrating
its use for concurrent programming.

1.2 Objectives

The aims of this project are summarised as follows:

Identify classical problems in concurrent and real-time program-
ming.

Develop and test programs that solve these problems in SC]J.

Evaluate the programs and the adequate ability of SCJ as a language
and programming paradigm.

Generalize the conclusions in relation to further work in SCJ.

1.3 Report structure

The report is organised as follows:

10

Chapter 2 — Gives background information on Java concurrency,
RTSJ and its Scoped Memory Model, and SCJ.

Chapter 3 — Shows related work done in the field of SCJ.

Chapter 4 — Presents our choice of concurrency mechanisms that
we develop in SCJ along with design decisions.

Chapter 5 — Includes the discussion of our implementations of the
designed concurrency examples in SCJ. Takes into consideration
any issues presented by the Reference Implementation.

Chapter 6 — Tests the programs with regards to their concurrency
aspects.



1.4 Ethical statement

¢ Chapter 7 — Draws attention to the evaluation of our work. It
also presents our review on the ability of SCJ to provide sufficient
concurrent programming mechanisms.

¢ Chapter 8 — Concludes our work and discusses future work.

1.4 Ethical statement

I declare that throughout this project I have maintained highest of ethical
and moral standards as prescribed by the IET Rules of Conduct of which
I 'am a member.

I declare the work presented to be my own, unless explicitly referenced
using the departmental guidelines.

None of my work required human volunteers to participate, hence
there are no implications regarding their welfare.

All software used to produce this work was properly licenced and
runnable on the departmental machines.

I acknowledge that parts of this work, be it code or results, may con-
tribute or be partly used for the development of some sort of component
relevant to safety-critical systems, whose integrity has implications to
human and property welfare.

11



2 Literature Review

This chapter focuses on providing the reader with enough background
information to understand the rest of this report. The main topics in-
cluded are Java’s concurrency, Real-Time Specification for Java and its
Scoped Memory paradigm, the Safety Critical Java Specification.

2.1 Java

Since its release in 1995, Java has gained popularity unrivalled by any
other programming language. Java is a simple, interpreted, object-
oriented language whose syntax and semantics contributed to its spread
from the telecommunications industry to a wide spectrum of application
tields. The main advantages are as follows [3]:
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simple, robust, object-oriented — objects are the first-class citizens
of Java; the object-oriented paradigm allows programmers to model
real world systems in an intuitive way. Java’s syntax is similar to
C++, also a popular OO language.

interpreted and portable —Java source code is compiled to bytecode,
an intermediate version of the code that can execute in any JVM
(Java Virtual Environment); this allows the programmer to abstract
away from low-level architecture concerns.

fault tolerant —the language allows for the insertion of code that
handles the rise of exceptional circumstances during the program
execution.

dynamic —classes are loaded only when actually needed by the
program, and new classes can be linked dynamically during execu-
tion.

multithreaded — incorporates the notion of a Thread as a concur-
rent activity in a program.
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* implicit memory management — Memory is handled by the JVM
Garbage collector that recycles unused objects. It alleviates the
burden of worrying about allocating and deallocating memory
when creating/destroying objects.

2.1.1 Concurrency in Java

Concurrency is a technique for specifying a set of processes that are to be
executed in parallel. It allows for a higher CPU utilization and also for
structuring the software in a more readable, reliable and maintainable
fashion. However, concurrency implies synchronisation and communic-
ation between some (or all) parallel processes (threads of execution). If
such cooperations are not properly regulated (either by the language or
by the programmer), several problems can arise that are not exhibited in
ordinary sequential programs including:

¢ deadlock — no processes can make further progress in their execu-
tion.

* interference — the interleaving of two processes causes a shared
object to be in an inconsistent state.

e starvation — a process is continuously denied a resource as a result
of the execution of another.

Concurrent programming is more difficult than single-threaded program-
ming. For a further discussion see Bloch [1, §9].

Java incorporates the notion of concurrency in two ways. First, threads
of execution are represented by the Thread class. Second, different
threads can synchronize their use of a shared object by accessing the
object’s monitor using the synchronized keyword.

Threads

In Java, there are two ways of creating a thread. First, you can create
a class that extends the java.lang.Thread class and overwrite the
run () method. Then, you can create an instance of that class and start the
thread by calling the start () method. The second way is to implement
the java.lang.Runnable interface and to pass that implementation to
the constructor of a java.lang.Thread object. Either way, the thread
is not started until the start () method is called.

13
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Threads also have a state. When a thread is created, it enters the
NEW state. When it is actually started by the application, it becomes
RUNNABLE and is put on the Runnable queue. The Runnable queue
is a queue of threads that can be ran by the Scheduler. When a thread
is picked by the Scheduler, it starts to execute. During execution, the
thread can self-suspend and become WAITING, or request a resource by
entering a monitor becoming BLOCKED.

A thread can terminate in several ways:
¢ it finishes the execution of its run () method; or

¢ destroy() is called without giving the thread a chance to cleanup
(deprecated since Java 1.5); or

¢ stop() is called but this time the thread has the chance to cleanup
before termination. This allows the release of any locks currently
being held and the execution of any finally blocks. This method
of thread termination is inherently unsafe because locks are being
preempted making it possible for shared data protected by said
locks to become corrupt. Therefore, the stop () method has also
been deprecated.

Threads can also have priorities associated with them. The Scheduler
can preempt the currently executing thread, place it back on the Runnable
queue and pick the highest priority thread to start execution. However, a
JVM may use priorities merely as a guide on how and when to schedule
threads. There is no guarantee that the highest priority runnable thread
is always the one that is executing. This can be a problem, for example,
in real-time systems.

The Scheduler determines which thread to run next and for how
long it should run. To ensure no thread is starved, a reasonable JVM
implementation will try to make the choice fair. However, well-written
multithreaded programs should not depend on the policy implemented
by the scheduler — all possible interleavings of concurrent activities
should lead to correct program execution. Bloch [1, §9] warns that if not
so, the program will be neither robust nor portable as thread priorities
vary widely between operating systems on which the JVM is dependant.

Common concurrency mechanisms involving threads are covered in
Burns and Wellings [4, §9], Wellings [5, §5].

14
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Monitors

The monitor construct allows shared data to be accessed by multiple
concurrent processes under mutual exclusion. In Java, an object’s lock
is used when a thread tries to execute a synchronized block or method.
If the lock is already held by some other thread, the calling thread is
blocked until the lock becomes available again. As long as all access to
the shared resource is via a monitor using the synchronized keyword,
then the resource will always be in a consistent state. However true, this
does not tell the whole story.

Not only does synchronization prevent an object being observed in an
inconsistent state, but it also makes sure the object transfers from one
consistent state to another in a sequential manner [1, §9]. Every thread
that executes a synchronized block or method will see the effects of all
previous synchronized blocks or methods, if any. Furthermore, Bloch [1,
Item 48] gives further advice on the use of monitors - as little work as
possible should be done inside synchronized regions and Thread.wait()
must never be called outside a loop due to spurious JVM wakeups.

2.1.2 Summary

This chapter has introduced the basic Java concurrency model. The main
points were the Thread class for representing concurrent activities and
the notion of a monitor for communication and synchronization between
threads. The RTSJ and SCJ adopt those main features, so it is important
for us to be familiar with their use.

15
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2.2 Real-time systems and RTSJ

Real-time systems are information processing systems that respond to in-
puts within a specified amount of time [6]. Their correctness depends not
only on their output but also on the time that output was produced. The
languages used to program such systems must incorporate several facilit-
ies including representation of time, specification of periodic, aperiodic
and sporadic activities, and control over input and output jitter.

Real-time systems are often embedded and as such are made to exhibit
reliability and safety. When failure can cause damage to property or
endanger the well-being of its users, the system is called safety critical.

Java has been a major success as a programming platform for the
development of large-scale, complex systems in a variety of application
areas. However, the general concurrency model and low support for
real-time facilities have made it impossible to extend its applicability
to the real-time and embedded systems domain. This has led to the
development of the Real-Time Specification for Java (RTSJ). It enhances the
development and analysis of real-time systems.

2.2.1 RTSJ Memory Management

Java has an implicit memory management model. The run-time system
creates objects on the heap, and manages their finalization through a
garbage collector, which may execute either when it detects that there is
little to none free heap space available or incrementally. The existence of
garbage collection may have a negative impact on analyzing the timing
properties of the system (Wellings [5, p. 1]). Therefore, for hard real-time
systems, the vagaries of garbage collection must be avoided.

RTS]J introduces a new type of memory called Scoped Memory ([5, §8]).
A scoped memory area is where objects with a well-defined life-span
are created. Scoped memory is logically outside the heap, hence not
subject to garbage collection. Scoped memory can be entered explicitly
by threads of control and such threads can allocate objects within the
memory area. More than one thread can enter the same scoped memory
and a thread can enter multiple nested memory areas. When a scoped
memory area is no longer used, i. e. all threads of control have exited the
area, all objects resident in it are finalized and the memory can be reused
by the JVM.

Scoped memory comes in two flavours. The first is called LTMemory
and requires the allocation time to be linear with respect to the size of

16
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the objects being created. The second, called VTMemory, does not have
such a requirement and allocation can occur in variable time (variable
time memory). Allocation in VTMemory is expected to be faster but less
predictable than allocation in LTMemory.

A typical example of Scoped Memory use is a top-level loop that
repeatedly invokes a sequential piece of code. This is the cyclic execution
approach and a general pattern for scoped memory use in this case is
presented in Pizlo et al. [7]:

while ( true ) {
// read some sensor data
// compute next action
// output commands to actuators

Listing 2.1: Cyclic execution

If the loop body allocates objects, then the response time of each iteration
will vary depending on the amount of interference it gets from the
garbage collector. Therefore, it is useful to use a scoped memory area for
such objects that is created and recycled at each iteration.

Listing 2.2 shows the use of Scoped Memory for the cyclic executive.

memory = new LTMemory ( initSize, maxSize );
loopLogic = new Runnable(){

void run() {

// read some sensor data

// compute next action

// output commands to actuators

}
5

while ( true ) memory.enter( loopLogic );

Listing 2.2: Scoped Cyclic execution

This does several things. First, it defines a linear time memory area of
initial size initSize that has the capacity to store upto maxSize data.
Next, it extracts the logic of the original loop body into an object that
implements the Runnable interface. At each iteration of the while loop,
it makes a call to the RTS] method ScopedMemory.enter (Runnable
logic). It associates the current thread of execution with the scoped
memory area, enters into that area, executes the run () method of the
passed logic parameter, and finally exits the scoped memory area thus

17
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Stored In Reference Reference Reference
to Heap  to Immortal to Scoped
Heap Permit  Permit Forbid
Immortal Permit Permit Forbid
Scoped Permit  Permit Permit if from
same or outer scope
Local variable Permit Permit Permit

Table 2.1: RTS] Assignment rules [5, p. 145]

forcing the JVM to deallocate any objects created during the execution of
the run () method.

RTS]J introduces an extra flavour of Scoped Memory called Immortal
memory; it is for objects that are never finalized throughout the execution
of the program. It is anticipated that objects will usually be allocated
here at the initialization phase of a program, hence whether allocation is
linear in relation to object size becomes a less relevant concern.

Assignments between different types of memory can be problematic.
Since objects in Scoped Memory have a defined lifetime, a reference to
such an object that lives in another memory area (e. g. Heap Memory or
Immortal Memory) will become dangling after the object is reclaimed. To
avoid this problem, RTSJ defines assignment rules (Table 2.1) They must
be enforced at run-time, otherwise the safety of the Java program would
be compromised. However, the compiler can also perform some static
analysis to help the programmer in deciding if a particular assignment is
possible or not.

Portals

Consider the situation when cooperating schedulable objects have no
other relationship between themselves except for using a common scoped
memory. If they are to use share objects between themselves and cooper-
ate, they must obtain a reference to such objects. Due to the assignment
rules, such a reference can be held only in a scope that is the same or
more deeply nested.

Portals, introduced by the RTS]J, are a novel way of dealing with this
situation. Each Memory Area has associated methods setPortal (Object
o) and getPortal () that can save and obtain a reference to an object
allocated in the specific memory area. The lifetime of the reference is the

18
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lifetime of all other objects in the scoped memory — for as long as there
are active objects in it. After all schedulable objects have existed the area,
the portal reference is reclaimed as well. One can create a dummy thread
to keep the memory area alive if the two schedulable objects enter and
leave at different times. This is the Wedge Thread pattern [y, §3.5].

2.2.2 Events and Event Handlers

It may not always be appropriate to use threads (Ousterhout [8], van
Renesse [9]) because either there are many external objects with simple
non-blocking control algorithms or the external objects are tightly coupled
and their control is difficult in terms of synchronization and communica-
tion.

RTS]J extends the notion of a concurrent activity by supporting event
handlers — stateless, short-lived objects whose execution is triggered
by the occurrence of some event. Threads and event handlers come
under the umbrella term Schedulable Object. Each Schedulable object
has associated release requirements (when it should become runnable),
memory requirements (e. g. the rate of object allocation) and scheduling
requirements (at what priority level it should execute). An event can
be associated with many handlers and vice versa. When events are
triggered, they are placed on a queue (which is ordered in some way,
e. g. by Priorities, Deadlines, FIFO, etc). Events are processed from the
queue by server threads. When a thread picks an event, it executes its
attached handlers. The advantages of this model are better scalability,
resource usage and performance. However, it can be difficult to have
event handlers with tight deadlines. Events compete for a limited number
of server threads and a higher importance handler may have to wait for a
server thread to be freed up by a potentially long-lived lower importance
handler.

2.2.3 Summary

This chapter has introduced RTSJ and its main differences with Java with
regards to memory management and concurrency support. In designing
SCJ programs, it is important to understand the differences between
threads and event handlers and when one is preferred over the other as
SC]J level 1 only allows periodic/aperiodic event handlers. Programmers
new to the language may need to pay extra attention to these differences
in order to develop correct, clear and maintainable applications. Fur-

19
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thermore, the Scoped Memory model and the restrictions it imposes are
central to Real-Time Java and Safety-Critical Java and is considered one
of the major differences with Standard Java.

20
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2.3 Safety Critical Java

This section presents the Safety-Critical Java Specification and the reasons
that led to its development.

2.3.1 Safety-critical systems and SCJ

As already mentioned in section 2.2, safety-critical systems are systems
in which an incorrect response or a wrongly timed response can cause
harm to property or to human well-being. Such systems are required
to follow rigorous development, validation and certification phases and
must obtain such certification by law, e. g. the US Aviation certification
DO-178B [10]. The production of evidence for such certification is expens-
ive and time-consuming, hence the development and validation of the
system and evidence of its properties are carefully planned and designed.
The produced software is minimal with respect to its specification, e.
g. no recursion is used and memory is carefully controlled to avoid
out-of-memory conditions.

To bring Java closer to the area of safety-critical systems, the JSR-302
has developed the Safety Critical Java (SCJ) Specification [11]. It is based
on the RTSJ vi.1 and addresses the areas of memory management and
concurrency of RTS], among others. SCJ attempts to bring together
the advantages of software development with Java, namely increased
software productivity, modularity and readability, together with the high
reliability observed in safety-critical applications.

The SCJ specification makes several constraints on the RTSJ, namely

* the usage of dynamic memory allocation — to mitigate out-of-
memory conditions and simplify memory analysis during produc-
tion of certification evidence.

¢ S(CJ software will execute correctly on an RTSJ-compliant platform.

¢ defines new classes, which are designed to be implementable using
RTS]J facilities, and redefines RTS]J classes and facilities that are too
complex or confusing.

* defines annotations to enable off-line analysis of memory manage-
ment thus proving the absence of specific run-time errors.

¢ omits and modifies some standard Java capabilities:

— dynamic class loading is not required

21
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— finalizers are not required
— the heap is not allowed
- self-suspension of any type is not allowed

— the procedure for starting an applications differs from other
Java platforms

— Priority Ceiling Emulation is required, also called Immediate
Ceiling Priority Protocol (ICPP) in Scheduling theory ([6, §11]).
Priority Inheritance, an inferior protocol, is not required.

* a JVM does not need to be used; the application can be instead
compiled directly to object code

Concepts unique to the SCJ Specification such as a mission and com-
pliance levels are considered in turn.

22
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2.3.2 The Mission lifecycle

An SCJ application consists of one or more Mission objects executed
in sequence. Each Mission is an independent computational unit that
consists of several Schedulable objects which communicate via shared
objects residing in the Mission memory. It has an initialization, execution
and cleanup phases:

Select Mission Mission Mission
Mission Initialization Execution Cleanup

I

Figure 2.1: The Mission lifecycle

Each mission has an associated MissionMemory where all the mission
objects are allocated during the initialization phase. When initialization
is complete, the execution phase is entered. During execution, no new
objects will usually be allocated, however this may not always be the case
(See section 2.4.1). When a Schedulable object is released, it enters its
own private scoped memory area that is not shared. The execution fin-
ishes when all Schedulable objects have finished executing. The cleanup
phase allows for any resources to be reclaimed. After that, either a
new mission is picked or the application halts under the command of a
MissionSequencer.

2.3.3 SCJ Programming Model

Safety-critical software varies greatly in terms of complexity and require-
ments. The SCJ Specification defines 3 compliance levels that allow the
developers to tailor the capabilities of the SCJ platform. The defini-
tion of each level includes the types of schedulable objects allowed, the
synchronization capabilities of the infrastructure and other capabilities.
Level o adopts the cyclic executive model. Only Periodic Event Hand-
lers (PEHSs) are allowed. Each has a period, priority and a relative start
time. The Mission computation consists of a strict ordering of their
releases that is repeated throughout the lifecycle of the mission. Syn-
chronization can be safely ignored as the PEHs execute in sequence. The
methods Object .wait () and Object.notify () are not available.

23
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Level 1 consists only of PEHs and Aperiodic Event Handlers (APEHSs)
that execute concurrently under the control of a fixed-priority pree-
mptive scheduler. Access to shared objects in MissionMemory and
ImmortalMemory should be synchronized in order to maintain their
integrity. The methods Object.wait () and Object.notify () are
not available.

Level 2 may have nested missions executing concurrently with the
initial mission. PEHs, APEHs and NoHeapRealtimeThreads are allowed.
Each nested mission has its own mission memory. ObJject .wait () and
Object.notify () are allowed.

Event Handlers provide their release logic by overriding the handleEvent ()
method. They all are subclasses of the RTS] BoundAsyncEventHandler
class, meaning that the mapping between event handlers and server
threads that execute them is a 1-to-1 static mapping. Wellings and Kim
[12] provide a further insight into why event handling was adopted as
the main focus of SCJ levels o and 1.

Sporadic Event Handlers are not supported at any level as monitor-
ing of inter-arrival times has been deemed infeasible for safety-critical
certification.

2.3.4 Concurrency and Scheduling in SCJ

The main aim of the SCJ concurrency model is to facilitate schedulability
analysis of safety-critical applications and to ease the development of
small and efficient SCJ applications. Furthermore, the model aims to
support the transition from sequential to concurrent safety critical sys-
tems. Level o provides that support while Level 1 and Level 2 have more
dynamic and flexible scheduling and concurrency models.

The Priority Ceiling protocol ICPP has emerged as a preferred protocol
for access to shared resources on single processor systems. It has an effi-
cient implementation and can guarantee that the application is deadlock
free. SCJ only supports ICPP. The ceiling of an object can be set using the
static methods in the javax.safetycritical.Services class.

The following apply at all compliance levels:

* Sporadic release parameters are not supported.

¢ Priority Ceiling is mandatory compared to RTS], where it is op-
tional.

¢ the number of processors available shall be fixed.

24
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¢ synchronized blocks are not supported.

* nested calls to synchronized methods are allowed; the ceiling pri-
ority associated with a nested synchronized method call must be
greater than or equal to the ceiling priority associated with the
outer call.

* synchronized code is not allowed to self-suspend while holding a
monitor lock; requesting a lock (via the synchronized method) is
not considered self-suspension.

Specific level restrictions:

* Levelo
— the handlers are executed non preemptively;

— no synchronization is required. However, it is recommended
in order to facilitate portability of code between levels;

— no deadline miss detection facility

e [evel 1

— preemptive FP Scheduling with at least 28 priority levels (hard-
ware and software) under Priority Ceiling Emulation.

— Deadline miss detection shall be supported; the miss shall be
signalled no earlier than the deadline of the associated event
handler.

e [evel 2

— Multiprocessor environment is supported; the processors are
split into AffinitySets

— Calls to the Object.wait () and Object .notify () meth-
ods are allowed. However, calling Object .wait from nested
synchronization code is illegal.

In its public draft, the SCJ Specification still had the RTSJ concept of
a Portal. However, these have fallen out of favour and are no longer
included in the proceeding drafts. The reason given is that Portals require
run-time support to check the allocation context of both the portal and
the caller. Furthermore, since Portals are associated with every Scoped
Memory, this introduces an extra overhead depending on the number
of private memory areas used in the application. Sharing objects in an
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SCJ application is more easily done by directly passing references to
constructors during the mission initialization phase. Such references
would be legal because the schedulable objects themselves live in Mission
Memory. For these reasons, we do not use portals in our work although
we could have.

Due to the hierarchical nature of memory areas in the SCJ, Rios et al.
[13] have shown it is possible to entirely remove the need for exposing
references to memory areas to the SCJ application developer. This reduces
the complexity of the implementation, and this approach is welcomed
from our perspective as new SCJ programmers. For a further discussion
of this work, see subsection 2.4.1.

However, this means that we are no longer writing code compliant
with the public SCJ Specification draft. Our implementation will have to
be split — one version adhering to the public draft and being supported
by the departmental Reference Implementation, and another that is more
lightweight due to the more recent SCJ Specification draft.

The SCJ Reference Implementation available at the department is also
a work in progress. It has several differences with the public SCJ Spe-
cification which we have to be aware of when trying to implement our
work:

* The mechanism for creating events and their handlers — the ori-
ginal SCJ draft creates an event from a default constructor and
passes a reference to the constructor of the event handlers. In our
RI, this is the other way around — an event needs a reference to
a handler, and the handler constructor is a default parameter-less
one.

* not all Level 1 classes are supported, e. g. AsyncLongEvent which
allows the passing of a primitive long value from event generator
to event handler.

* Priority Ceiling Emulation is not supported

These all have to be taken into account during the Implementation and
Testing phases.
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2.4 Related Work

Given the limited number of examples in SCJ, it is worth exploring
other SCJ work as it may influence our design and implementation. The
related work is also useful for guiding us on other issues regarding SCJ
programming.

2.4.1 SCJ Memory Patterns

Rios et al. [13] present several patterns of memory usage in SCJ. The
paper evaluates the expressiveness of the Scoped Memory model used
by SCJ. The main focus is on how to pass arguments and return objects
between memory areas. Their approach consists of moving data between
scopes through mission memory compared to mechanisms such as the
Memory Tunnel pattern that are very unlikely to pass any certification
such as DO-178B. We proceed with presenting the patterns that we found
useful in our work.

The Loop Pattern

This pattern is concerned with the situation when during a single handler
execution, a continuous block of work has to be done, e. g. by a for loop,
and each of the individual cycles can benefit from temporary allocation
of results. The SCJ supports this by allowing entering into a nested scope
via the enterPrivateMemory () method.

class MyHandler extends PeriodicEventHandler {
public void handleEvent() {
Worker w = new Worker();

for (inti = 0; i < BLOCK_SIZE; i++)
ManagedMemory.enterPrivateMemory(256, w);

Listing 2.3: The Loop patter

Two important issues are considered. One is the avoidance of illegal
references. The other is the possibility of introducing memory leaks
— when every iteration of the loop allocates objects inside Mission of
Immortal memory areas.
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Returning a Newly Allocated Object

We can improve the previous pattern by allowing upon each execution,
the worker to return a result object. However, a reference to such an
object living in an inner scope cannot be passed to an outer scope because
the inner scope is reclaimed as soon as the method returns. Therefore,
the result object needs to be allocated in the (outer) scope we plan to use
the result. Creating objects in an outer scope is possible using the SCJ

API:

* use executeInArea () — enters the referenced memory area and

any new object allocation will be done there

® use newArray () and newInstance () — allocates the new ob-

jects inside the referenced memory area. Effectively the same as
above but clearer. A drawback is that the object constructor called
always the default constructor.

In both cases a reference to a memory area is needed. These are available
using the getCurrentMemoryArea () method.

Runnable factory

Runnable objects reduce the readability of the code. One can fix this by
using a Factory whose methods return Runnable objects.

28

class MyFactory {
public Runnable readTemp(final int inputs, final ReturnObject rObj) {
return new Runnable(){
public void run() {

// do work here

// then change execution context (another runn

MemoryArea.getMemoryArea(rObj).executelnArea(

new Runnable(){ public void run() {

AuxObject auxObj = new AuxObj();
auxObj.temp = 50;
rObj.result = auxObj; }}; );

}
}

class MyHandler extends PeriodicEventHandler {

able)
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public void handleEvent() {

MyFactory fact = new MyFactory();
ReturnObijct rObj = new ReturnObject();

ManagedMemory.enterPrivateMemory(256, fact.readTemperaturs
// we can now use rObj.result

2(5, rObj));

Listing 2.4: The Runnable Factory pattern

This encapsulates the passing of inputs and returning of results within the
call to the factory method. The factory method itself returns a Runnable
which does the work needed, and then enters the memory area of where
the result should be stored in and creates it. After the method returns,
the result object can be used.

This pattern increases the expressiveness of the code, but can be a bit
heavy for a new programmer to understand.

Producer/Consumer

The authors make some interesting remarks about the Producer-Consumer
style of interaction between components in control systems. They note
that such interaction may not always involve only primitive values, but
also objects. The correct management of such objects is crucial for the
integrity of the application, not only from a point of view of using shared
data, but also from a memory management perspective.

Communication between SCJ application components goes through
shared Mission and/or Immortal memory. Objects in those areas are not
reclaimed until the end of the mission/application. The authors argue
that since SCJ applications are often restricted in memory, developers
must reuse objects in those memory areas, e. g. using memory pools.
However, developers can safely predict how much memory their object al-
locations will take using the SCJ SizeEstimator class, which provides
a conservative upper bound on the size of an object based on its class
information (Section 7.3.10 of the SCJ Specification). This approach we
explore further in our work.
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Authors’ Discussion

The authors propose a number of changes to the memory API They
note that references to memory areas are not needed at all due to the
hierarchical structure of SC] memory areas. This justifies adding a
static method executeInOuter () and removing the non-static meth-
ods requiring a reference to a Managed Memory area together with
getCurrentManagedMemory () and getMemoryArea ().

This change is semantically equivalent to the old model, but is also free
from memory reference leaks and also alleviates the need for run-time
checks that the current memory area is on the current thread’s scope
stack. The change has been accepted by the SCJ committee just before
the JTRES’12 paper submission deadline, and we adopt this in our clean
implementation versions.

Furthermore, libraries used by an SCJ application may indirectly alloc-
ate temporary objects, which can cause memory leaks if used in mission
or immortal memory. Such libraries need to be modified in order to be
scope-aware. The authors note that this is an interesting topic for future
work.

Summary

The paper involves several patterns of using scoped memory, all focusing
around safe and predictable memory usage in combination with extended
expressiveness and quality of software code. The authors propose several
API changes to the current SCJ Specification, some of which were accepted
by the SCJ group and adopted in our work.
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2.4.2 CDx

Zeyda et al. [14] present a refinement of a benchmark collision detection
algorithm called CDx [15] to SCJ using Circus. Their implementation
involves several SCJ features, namely handlers control via software events,
sharing of data between handlers, and the use of control mechanisms for
synchronization between handlers. The application is a SCJ Level 1.

The algorithm itself periodically reads a frame via device access to a
radar, maps aircrafts to voxels (frame subdivisions), checks for collisions
at each voxel and reports the number of detected collisions. Each step is
represented by a handler, and control flow is regulated by events. After
each handler is complete, it fires the corresponding event that releases
the next handler in the chain. This means the handlers effectively execute
in a sequential manner, except for the four DetectorHandlers that
execute in parallel in response to a single detect event.

The control of these four concurrent handlers is of particular interest.
After each has completed its release, it calls a shared DetectorControl.notify (int
id) method, which effectively acts as a barrier. After all Detector hand-
lers have completed their release, the barrier releases the next handler in
the control chain. The fact that all 4 handlers respond to a single event
being fired simplifies their logic.

There might be an issue with wasted computation if handlers that
respond to different events need to synchronize on a barrier. This is
something we explore in our work.
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2.4.3 A Desktop 3D Printer

Strem and Schoeberl [16] highlight the need of developing SCJ use cases
in order to evaluate the expressiveness of SCJ, its simplicity and ease of
use. They develop an SCJ-based application for controlling a robot and
also provide feedback on the SCJ API from a programmer’s perspective.
The work presented focuses on coding the control of a desktop printer
capable of creating 3D objects in plastic. In a standard setup, a computer
reads a 3D drawing (e. g. made by a CAD application) and sends printing
instructions to the printer’s firmware, which interprets the instructions
and ensures the printing head is moved to the instructed coordinates
while heating and extruding the plastic (i. e. has timing requirements).

The implementation is loaded into a predictable Java processor JOP
[17] that executes bytecodes as native instructions. The firmware is
designed as an SCJ Level 1 application. The implementation resides on
an FPGA and consists of four PeriodicEventHandlers (PEHs) as shown
in Figure 2.2.

FPGA

HostController CommandParser ]

y

Interface

Board RepRapController

| EE

CommandController ]

Figure 2.2: PEH communication

e HostController — handles serial communication with the host
computer.

¢ CommandParser — polls the HostController for a command string
and parses it.
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¢ CommandController — takes valid commands from an object
pool and enqueues them.

* RepRapController — handles communication with the RepRap
hardware; sends commands; receives all necessary measurements
like temperature and end-stop signals.

During the evaluation the authors highlight the fact that storage para-
meters for each handler must be known beforehand. This can be hard to
obtain as size of objects is platform dependant. Furthermore, the use of
library code is problematic. For example, St ringBuilder automatically
expands when an append () is called and the internal buffer is full; this
allocation is hidden from the programmer and can cause illegal refer-
ences. The feasibility analysis of the application uses a utilization test to
deem all handlers schedulable. It also highlights the problems associated
with analysing the timings of unbounded loops - this is circumvented
by recording the loop counts as annotations to be used by the WCET
Analysis tool.

The paper thoroughly follows the implementation of the RepRap firm-
ware and its underlying implementation constraints. The authors test
their implementation against an optimised C solution, showing that C
has a clear advantage. The paper provides good insight into the strengths
and weaknesses of SCJ for programmers that are new to the field. These
can be summarized as follows:

* tools should be available to automate the process of WCET Analysis
and Memory Usage Analysis

¢ Libraries, frameworks and platforms need to be modified so such
tools can perform the analysis. This possibly includes the introduc-
tion of annotations along with the removal of unbounded loops

* programmers need to be careful when new objects are created and
referenced.

e programmers need to have a deeper knowledge of library code to
ensure objects are not created and referenced in an unsafe manner.

The paper also introduced the importance of using schedulability
analysis at the evaluation stage because the application must be deemed
feasible through static means.
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2.4.4 The Cardiac Pacemaker case study

Singh et al. [18] consider the full software architecture of a cardiac pace-
maker in SCJ and Ravenscar Ada. The aim is to provide a case study for
developing safety-critical applications and also to provide feedback on
the concurrency and timing models of SCJ as well as the APL

The algorithm for sensing and pacing the heart has complex control
requirements. The authors use a verified model of a pacemaker to design
the respective SCJ implementation. The implementation is a Level 1
application consisting of several missions switching between each other.
There are a number of periodic and aperiodic event handlers. The authors
note that SCJ has limited support for time-triggered programming com-
pared to Ravenscar Ada because it lacks support for a timeout facility, e.
g. a one-shot timer. Hence, the Ada solution requires very little run-time
support, but its structure is a more complex than the SC] implementation.
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This chapter introduces our set of concurrency examples in SCJ. Each is
presented in turn along with the top-level class diagram, the concurrency
mechanism involved (represented as a collaboration diagram) and our
SCJ program design. We also include our design justifications which
abide with the the restrictions of the SCJ Specification and also with
the lessons learnt from Related Work. The actual implementation of the
programs will be covered separately.

3.1 Shared Buffer

Consider the well-known Producer-Consumer problem using a shared
buffer (Figure 3.1).

Producer Buffer Consumer

get () : Data
add (Data d) : void

add( frame1 )

A

get()

add( frame2 )

- get()

el ]

A

U

Figure 3.1: The Producer-Consumer problem

The producer writes the data in the shared buffer that is read by a
consumer concurrently. Insufficient synchronization may lead to missed
data, the more extensive of which can lead to security flaws. Hence, this
can be modelled as a safety-critical use case.
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The important issues in this scenario are:

¢ how to share references to shared data — the data needs to exist
in a memory area where it can be accessed by all interested event
handlers.

— If the data is of primitive type, then it is placed on the stack so
there is no issue here.

— If the data is more complex, i. e. an Object, then it cannot be
allocated in a private memory area. Rios et al. [13] discuss mov-
ing data between scopes that goes through Mission memory *
and this is the approach we adopt. However, in section 2.4.1
it was noted that in order to avoid memory leaks, either the
application must make use of object reuse via pools or to be
able to make valid predictions on memory usage. The second
approach does not work if the application is non-terminating
or is severely constrained on memory.

* how to correctly use shared objects — correctly encapsulating
shared data is a well-known issue. Some form of locking is re-
quired to ensure the data is always in consistent state. For our
solution, we use synchronized methods for reading and writing
the data in the shared buffer.

Our SCJ design is summarized in Figure 3.2. The Producer and Con-
sumer are event handlers created during the Mission initialization phase.
The Producer is periodically released and generates the data that needs
to be shared?. The data is written in MissionMemory and is referenced
by the Buf fer (also residing in MissionMemory). The Producer then
triggers an event to release the Consumer, which accesses the data stored
in the Buffer.

The top-level collaboration diagram is shown in Figure 3.3. Note
that the event handling paradigm ensures a happens-before relationship
between the generation of the data by the Producer and its reading by
the Consumer.

' The authors also note that copying from one private memory to another private
memory, e. g. the RTS] Handoff design pattern [7, §3.6], breaks the reference assign-
ment rules.

2 The actual mechanism for generating this data is out of the scope of this project. We
envision it can involve some sort of device access depending on the actual application.
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<<interface>>
Safelet

MissionSequencer

Mission

+ setUp() : void
+ tearDown() : void
+ getSequencer(): MissionSequencer

+ getNextMission() : Mission

+ initialize() : void
+ cleanup() : void
+ missionMemorySize(): long

i i j
I CPSafelet | I CPMissionSequencer I CPMission
{ 4
l Producer | I Consumer
v
Buffer

PeriodicEventHandler

+handleEvent() : void

AperiodicEventHandler

+handleEvent() : void

+get() : Data
+add(Data d) : void

Figure 3.2: SCJ Producer-Consumer class diagram. Highlighted sections
are part of the SCJ Specification
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Figure 3.3: SCJ Producer-Consumer collaboration diagram
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3.2 Barrier

Consider a scenario where two independent entities must wait for each
other in order to progress. As a simple real-world example, take a missile
launcher that controls the firing of a missile — two independent threads
of control must communicate a fire action to a common controller. This
can be done using a barrier, as shown in Wellings [5, §8.7] (Figure 3.4).
The two entities concurrently notify the Barrier that they want to fire the

FireHandler1 FireHandler2 Barrier Launcher

+trigger(int id) : void

+isReady() : boolean +fireMissile() : void

+trigger() +trigger()

1
exllernal — trigger(1)
trigger

external ———
trigger

blocked

Ny

trigger(2)

fireMissile

blocked

Figure 3.4: Top-level Missile Launcher class diagram

missile. The Barrier then suspends each caller until both entities have
been suspended. Then the Barrier wakes them so they can proceed with
the missile launch 3

The SCJ design components are shown in Figure 3.5. It follows the
event-handling model of Level 1. The two separate handlers FireHandler1
and FireHandler2 are triggered by the occurrences of external events, e.
g. pressing a button*. During its release, each handler notifies the Barrier
that it has been triggered, but the handlers are not suspended and can be
fired again, e. g. if one of the buttons is pressed multiple times. When
the Barrier detects that both handlers have executed, the logic for firing
the missile is launched.

3However, this is not the focus of the RTS] solution; it stops at the point at which both
entities are woken up — where the launch logic resides has been left for the reader to
decide.

4Since the nature of our work does not involve specific hardware, we represent the
buttons as Periodic Event Handlers in the Implementation. This decision also supports
the testing phase where we check the outputs produced.
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Mission

+ initialize() : void
+ cleanup() : void
+ missionMemorySize(): long

I MissileMission '—o Barrier

l +trigger(int id): void
l FireHadler | +isReady() : boolean

\

AperiodicEventHandler

+handleEvent() : void

Figure 3.5: SCJ] Barrier class diagram

We note that it is not needed to include an extra handler that holds the
logic for firing the missile — each FireHandler can check if the barrier
is ready after it has sent a notification for its current release and then
proceed to reset the barrier and fire the missile. However, this adds time
to the longest path through the handler code, which has implications for
its worst-case execution time (WCET). Therefore, we chose the Barrier to
be responsible for triggering the missile launch handler.

The collaboration between the components can be seen in Figure 3.6.
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3.3 Persistent Signal

Consider a scenario where a thread of control wants to delegate some
work to another decoupled thread, e. g. to a Logger that provides asyn-
chronous output [5, §5.2] (Figure 3.7). The calling thread is not blocked

Producer Worker Signal
set() : void
write(long v) : Signal reset() : void
isSet() : boolean

write(v)

return signal
do work

set

check signal

_J I R T

return true if set

Figure 3.7: Asynchronous delegation using Persistent Signal

when it triggers the worker, but needs to check if the work has been done
later on. Upon signalling, the worker queues up the work and returns a
reference to a shared persistent signal. The original thread can proceed as
soon as the procedure returns and later check the signal to see if the work
has been completed. When the worker completes, it sets the associated
signal. Inside the worker, the output may be queued and not completed
for some time.
The components in our SCJ design are shown in Figure 3.8.

The application is a single Mission with Producer and Worker event
handlers. The Signal is shared and can be set and reset. The Producer can
pass some primitive data to the Worker instead of a String , e. g. a long
value to be shared via the AsyncLongEvent hierarchy defined the SCJ
Specification 5. We change the Worker to not return a reference to the
Persistent Signal because there is no SC] mechanism for this. Instead, we
can simply share the reference during object construction in the Mission

5A LongEvent is the same as an ordinary Event except that it carries a primitive
long value assigned when the event is released. That value can be accessed by the
handlelLongAsyncEvent (long value) method in the handler class.

42



Mission

+ initialize() : void

[]

l CPMission

3.3 Persistent Signal

Signal

+set() : void
+reset() : void
+isSet() : boolean

| Producer

Worker

PeriodicEventHandler

AperiodicLongEventHandler

+handleEvent() : void

+handleLongEvent(long v) : void

Figure 3.8: The SCJ Signal class diagram

initialization phase.

The collaboration between the components is shown in Figure 3.9.
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4 Implementation
In this section, we present our implementation for each of the use cases.

4.1 Buffer

As discussed in section 3.1, this scenario involves two event handlers, a
Producer and a Consumer, that share data via a bounded buffer. The
class components of the implementation are:

* Buffer — a shared object living in MissionMemory. It buffers
references to objects produced by the Producer handler.

* Producer — a Periodic Event Handler that creates objects in Mis-
sionMemory that are to be shared. Must first enter MissionMemory
in order to allocate a new object.

¢ Consumer — reads references to shared objects via the Buffer.

The collaboration between the components was shown in Figure 3.3.

4.1.1 Mission

The application consists of a single mission. The main body of interest is
the initialization phase of the mission:

protected void initialize() {
System.out.printin("Initializing, main_mission");

Buffer buffer = new SimpleBuffer();
Consumer consumer = new Consumer(buffer);

/+* The event consume releases Consumer. */
AperiodicEvent consume = new AperiodicEvent(consumer);
new Producer(consume, buffer);
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4 Implementation

Listing 4.1: Mission initialization

The initialize method is executed by the SCJ infrastructure within the
MissionMemory for the application. Here, the shared buffer is created,
the two handlers Consumer and Producer, and the aperiodic event that
is triggered by the Consumer when a new data item is ready. Note
that PEHs and APEHs register themselves with the Mission automat-
ically in our Reference Implementation, so we don’t need to expli-
citly call register () in our runnable version of the code'. A refer-
ence to the shared buffer is passed to both handlers, and such a ref-
erence is legally stored because the objects representing the handlers
live in MissionMemory even though they execute in their own private
ScopedMemory.

4.1.2 Buffer

The buffer implementation is very simple:

public class BoundedBuffer implements Buffer {

private int first;
private int last;
private int stored;
private int max = 5;
private Object[] data;

public BoundedBuffer() {
this.data = new Object[ this.max |;
this.first = o;
this.last = 0;
this.stored = o;

)

public synchronized void put(Object item) {
// check if buffer is not full
// Do nothing if we are already full
if ( this.stored == this.max ) return;
this.last = ( this.last + 1 ) % this.max;
this.stored++;

'The SCJ Specification requires all ManagedSchedulables to be registered explicitly.
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4.1 Buffer

this.data[last] = item;

}

public synchronized Object get() {
// check if empty
if ( this.stored == 0 ) return null;
this. first = (this.first + 1) % this.max;
this.stored——;
return this.data(first];

}

public synchronized boolean isFull() { return this.stored == this.max;

}

}

Listing 4.2: Buffer implementation

It implements the Buffer interface, which would allow us to later come
back and use a different buffer implementation if it was needed. It
provides a clear abstraction of the data model we use. The actual buffer
is a circular bounded buffer with a predefined maximum capacity. Its
methods are synchronized to ensure access under mutual exclusion. The
first and last indecies keep track of the positions of the next reference to
be read or written.

4.1.3 Producer

The Producer is a Periodic Event Handler. A reason for this is that the
SCJ infrastructure invokes the handleEvent () method based on an
internal real-time clock, compared to the mechanism for Aperiodic Event
Handlers that involves the firing of an event (either application-defined
or mapped to an external happening, which is the RTS] representation of
external events). The Producer stores references to the shared Buffer and
also to the event that is triggered when new data is produced.
The actual logic does several things (Listing 4.3).

* check if more objects can be allocated.
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4 Implementation

If it cannot, then the current release is prematurely abandoned with
a return statement 2.

¢ allocate the new object by using the static ManagedMemory.exe
The actual logic passed as a parameter has been preallocated 3, and
involves calling new and saving the reference.

* saves a reference to the new object in the shared buffer.

¢ fires the consume event to trigger the Consumer handler.

cuteInOuter ().

public void handleEvent() {
/*
+ Limit the creation of new objects
+ Avoids running out of Mission Memory
*/
if (NUM_OF_OBJECTS <= MAX_NUM_OF_OBJECTS && !buf
{
/%
+ Allocate new data object and update count
*/

this.data = ManagedMemory.executelnOuter(this._swit
NUM_OF_OBJECTS++;

/*
* Store a reference to the new object in the buffer
*/

this.buffer.put(data);

/%
+ Trigger the Consumer handler
*/

this.e.fire();

fer.isFull())

*Logically, all subsequent allocations also cannot occur because objects in Mission-
Memory are not deallocated before the end of the Mission. The SCJ Specification does
not have a mechanism for deregistering schedulable objects.

3for benefits of object reuse compared to creating temporary objects during execution
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4.1 Buffer

Listing 4.3: Producer logic in Producer.java
Note that the buffer only stores a reference to an object in Mission
Memory, which is legal according to the reference assignment rules.
4.1.4 Consumer

The Consumer is less complicated than the Producer. It only keeps a
reference to the shared buffer.

public void handleEvent() {
/*
+ Get a reference to the new object
*/
Object data = buffer.get();

/%
+ Confirm we can use the object
*/
System.out.printin(data.toString());

Listing 4.4: Consumer.java, handleEvent()

During execution, the Consumer obtains a reference to the next object to
use. This reference is safe to use for the duration of the current release
because it points to an object in MissionMemory (an outer scope) 4.

A clear advantage of this implementation approach is allowing the
developer to determine how much memory is to be used dynamically to
pass objects from one entity to another.

However, due to objects not being deallocated in Mission Memory,
there can only be a finite number of them. Developers need to ensure
this at compile-time, either by limiting the number of objects that can
be created and using that limit to estimate the memory requirements of
their program or to use a pool of preallocated objects which we already
discussed in section 2.4.1.

4there is nothing stopping the reference being stored inside the Consumer if the
developer wishes to do so.
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4 Implementation

4.2 Barrier

Our second use case involves the synchronization of two independent
event handlers using a barrier. The components involved were shown in
Figure 3.6. Each we present in turn.

4.2.1 Mission

The application consists of a single Mission. During the initialization
phase, all the events and their handlers are created and registered.

public void initialize() {

50

System.out.printin("Initializing_main,_mission");

/* The launch event triggers the Launch handler. +/
AperiodicEvent launch = new AperiodicEvent();

/*
* Create Launch AEH
* Pass a reference to the shared barrier
+ ManagedHandlers need to register themselves upon cre
*/

(new LaunchHandler(launch)).register();

/# Create a barrier for 2 handlers,
+ Triggers launch event when ready to proceed
*/

Barrier barrier = new Barrier(2, launch);

/% The fire1 and fire2 events release firetHandler and firez
AperiodicEvent fire1 = new AperiodicEvent();
AperiodicEvent fire2 = new AperiodicEvent();

/*
* Create Fire1 and Fire2 AEH
* Pass a reference to the shared barrier
+ ManagedHandlers need to register themselves upon cre
*/
(new FireHandler(fire1, barrier, 0)).register();
(new FireHandler(fire2, barrier, 1)).register();

ation

Handler. =/

ation



31
32
33
34
35
36

4.2 Barrier

/*
+ Create PEHs that generate event occurrences.
*/
(new Button(fire1, 2000, 0)).register(); //2s
(new Button(fire2, 9ooo, 9000)).register(); //9s + 9s offset

Listing 4.5: Initialization of Missile Application

Each handler gets a reference to its triggering event as a constructor
parameter because subscribing to an event is done during object creation
5

A note should be taken on the special Button objects. Realistically the
application would do some form of device access and receive external
event occurrences from the underlying infrastructure depending on its
requirements. The SCJ specification represents external events by the
Happening class hierarchy. However, if we decide to include this in
our implementation, then it would take the focus away from what this
use case is meant to present, which is the concurrency aspect of using
a barrier. Furthermore, device access and happenings are out of the
scope for our work, so we instead use Periodic Event Handlers which are
triggered by the SCJ infrastructure. This decision simplifies detection of
a 'button pressed’ event.

4.2.2 Barrier

The Barrier class controls the synchronization of the specified handlers.
The event to be fired when all the handlers have triggered the barrier
is passed as a parameter to the constructor and saved as a field. The
internal state of the barrier is represented by an array of booleans, each
corresponding to each unique handler integer id. The SCJ specification
allows collections only at Level 2, so we have to resort to arrays instead
of using for example a HashMap to store handler-flag mappings.

Each of the barrier methods are self-explanatory and include triggering
the barrier and checking if the barrier is triggered. When all the handlers
have triggered the barrier, it internally fires the associated event and
resets its state. The synchronized keyword is used to protect the object
state. The ceiling priority is set to the FireHandler priority in accordance
with the mandatory Priority Ceiling Emulation protocol.

5In the Reference Implementation, this is the other way around, the event needs a
reference to the handler instead
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4.2.3 FireHandler

The FireHandlers are responsible for responding to a button being
pressed.

public void handleEvent() {
System.out.printin("++_’fire2’_event_x+");

/*

+ If we have already triggered the barrier,
+ do not re—trigger

*/

if (barrier.isAlreadyTriggered(this.id)) return;

barrier.trigger(this.id);

Listing 4.6: FireHandler.java, handleEvent

Each handler is subscribed to its own event during Mission initialization.
When the event is fired, the handleEvent () logic first checks if it has
already triggered the barrier. If it has not, it triggers it.

This check reduces the amount of computation to be done at each
release if one of the events is fired multiple times. This does not reduce
the WCET, but it does help reduce the average case.

4.2.4 LauncherHandler

The LaunchHandler is triggered by the barrier when all fire handlers
have executed. In a real-world application, it would perform some sort
of hardware access to do the actual launching. As mentioned before, we
do not delve into that area of the SCJ specification.
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4.3 Persistent Signal

4.3 Persistent Signal

Our persistent signal use case presents a way for a handler to offset some
of its computation to another worker handler and receive feedback for
when the work is complete. This can be done using a Persistent Signal
that is state-aware.

4.3.1 Application

The application consists of a single Mission.

protected void initialize() {

System.out.printin("Initializing,_main_mission");

/*

+ Signal is an AperiodicEvent with a state

+ used for backwards propagation of information
* between the Worker and Producer

+/

PersistentSignal signal = new PersistentSignal();

/%

+ Creates Worker APEH

+ Pass a reference to the triggering event

+ ManagedHandlers need to register themselves upon creg
*/

(new Worker(signal)).register();

/*

+ Cr eater Producer PEH

+ Pass a reference to the event to be triggered
+ ManagedHandlers need to register themselves upon creg
*/

(new Producer(signal, 2000, 0)).register();

Listing 4.7: Mission initialization phase

Both the Producer and the Worker share the signal object. The Producer
triggers the Worker by firing the signal. The Worker itself will do the
computation it needs to do in its handleEvent() method and set the signal.
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4 Implementation

The Producer will then be able to check if the work has been done by
observing the state of the signal.

4.3.2 Persistent Signal

The Persistent Signal is an event with a boolean state flag. It can be either
set or reset. It follows the guidelines of clear abstraction and separation
of logic as outlined for the previous shared objects (subsection 4.1.2)
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public class PersistentSignal extends AperiodicEvent {

/*
+ Records the internal state of the signal
*/

private boolean _set;

public PersistentSignal(){
super();

/*
+ Set the ceiling priority for this shared object
*+ used by Priority Ceiling Emulation protocol
+ Worker is at max priority
*/
Services.setCeiling(this,
PriorityScheduler.instance().getMaxPr

this._set = false;

}

/>(-*
+ Resets the state of the signal
*/

public synchronized void reset()

{

this. set = false;

}

/x%
+ Sets the state of the signal

iority());
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4.3 Persistent Signal

*/
public synchronized void set() {
this. set = true;

}
/%%

+ Observes the state of the signal
+ @return true if the signal is set
*/

public synchronized boolean isSet()

{

return this._set;

}

Listing 4.8: Persistent Signal

The class extends AperiodicEvent. This allows us to have a single object
shared between both Producer and Worker. An alternative would be to
have separate objects - one AperiodicEvent instance and a separate Signal
instance that is basically a wrapper for a boolean. However, since the
logic for the signal is so small and the original RTS] case corresponds
to the event handling paradigm, we chose to first approach and extend
AperiodicEvent.

The ceiling of the object is set as the maximum of the Producer and
Worker and its methods are properly synchronized . However, priority
values are something we explore further in our Testing. Due to the nature
of the PCE protocol, unless the Producer and Worker share objects with
other handlers having higher priority, then neither of them can preempt
each other as they would inherit the ceiling priority of the signal.

The synchornized keyword is used to protect methods that access the
state of the signal. This ensures that the data is always consistent. The
monitor lock is obtain with accordance with the PCE protocol as with the
previous protected objects presented.

4.3.3 Producer

The Producer class involves periodically triggering the Worker and then
checking if the work has been completed.

public void handleEvent() {
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/* reset signal at each release +/

this._event.reset();
this._event.fire();

/+ do some computation */
System.out.printin("+_Producer_—_starting_,_computation |
for (inti = 0; i < 100; i++) i+=i;
System.out.printin("+_Producer_—_finishing _computation |

/* check if output is done */
if (this._event.isSet()) System.out.printin("+_Producer_—_out
else System.out.printin("+_Producer_—_output_not_done,_\y

"m,
);
AW
);

put_done\n");
vet");

Listing 4.9: Producer.java

The Producer implementation has placeholder work it performs between
triggering the event and checking it. This does not strictly need to be
included, but we show it for completeness. This proves helpful later in
the Testing stage. As mentioned earlier, neither handlers should preempt
each other due to Priority Ceiling Emulation. However, we see that to
not be the case when we test the output in the Testing section; it turns
out to be a problem with the Reference Implementation.

4.3.4 Worker

The Worker code seems quite short. We again cannot be sure what sort of
computation a real-world application would require, so we instead insert
a placeholder of incrementing a private counter. At the end, the shared
signal is set to let the Producer know that the work has been completed.

public void handleEvent() {
/#* do work */
this._iteration++;
System.out.printin("@_Logger_ —_output_iteration: " + this

/* Work done, set signal */
this._signal.set();
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4.3 Persistent Signal

Listing 4.10: Mission initialization phase

57



5 Testing

As example use cases, it is important that our implementations are robust
and conform to the SCJ Specification. Due to the nature of concurrency
and predictable scheduling in SCJ, the best way to test our programs is to
insert print statements and observe the output over multiple runs. Our
test results are shown in Appendix A.

5.1 Buffer

During Mission initialization, we first check the current memory area.
This should give us the name of the Mission Memory of the mission
which proves to be useful later on. To obtain this information, we use the
static javax.realtime.RealtimeThread.getCurrentMemoryArea()?,
which returns a reference to the current area we are executing in. Since
the Reference Implementation builds on top of a RTS] JVM [19], the
toString () method shows the type of the memory area is LTMemory,
which is observed in the output.

At the beginning of each handleEvent () method, we output a mes-
sage with the name of the handler. This ensures that we have registered
the appropriate handlers with the infrastructure and that they are being
triggered in accordance with event firings.

In the Producer, we check the memory area of the newly created object.
This has to be different from the private memory area as the object is
to be shared. The output shows this is the Mission Memory, which is
consistent with the way the object was allocated.

In the Consumer, we check the name of the object being obtained
through the buffer and observe that after each handler execution different
names are returned. This is consistent with the fact that we create several
different objects.

1This method is allowed at Level 1 and above.
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5.2 Barrier

This test involves tracking the program output over a number of FireHandler
executions.

As before, we add an output statement at the start of a handleEvent ()
method invocation showing that the event handlers are registered with
the SCJ infrastructure. This output also confirms that the auxiliary Button
periodic handlers are being released as they trigger the FireHandlers.

We also add output depending on whether the fire handler triggered
the barrier or not. If the barrier has already been triggered, the output
confirms this and the logic returns prematurely from the method. This
directly corresponds to the original RTSJ design involving threads that
are being suspended while waiting on the barrier.

The timing conditions are as specified at handler creation and are as
follows:

¢ FireHandler1 - executes every 2 seconds
* FireHandler2 - executes every 9 seconds with a 9 seconds offset

These ensures that the handlerl event is fired multiple times before the
first firing of handler2. The first firing of handler?2 is offset relative to
the start of the application.
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5.3 Persistent Signal

For this output, we place print statements on several positions:

e at the start of each handleEvent () method

* Producer — between the start and end of the extra dummy com-
putation performed between the firing of the signal event and the
check for the signal flag. We inserted this extra dummy computa-
tion to try and see if timing has an effect on the output.

* Worker — before we set the signal to represent the extra work being
complete.

If one can recall, the SCJ Specification makes Priority Ceiling Emulation
mandatory when using shared objects. This involves setting the ceiling
of the resource using the static Services.setCeiling (Object
o, int ceiling). However, our Reference Implementation does not
support this and defaults to the RTS] Priority Inheritance >. Therefore,
handler priorities will have an impact on the program output so we
devise several tests to explore this:

* both handlers having the same priority
¢ the Worker having a higher priority than the Producer

¢ the Producer having a higher priority than the Worker

The test results can be seen in section A.3.

In the first test, no priority changes should happen during execution.
However, there is random interleaving between the two handlers. This
has been confirmed to be a problem in the Reference Implementation —
once a release starts, it should finish. This highlights one of the challenges
with using incomplete or unverified implementations.

In the second test, the Worker always preempts the Producer. This is
consistent with the Priority Inheritance Protocol. Furthermore, it should
not happen under PCE because the ceiling of the shared object would
be set to the Producer priority, and therefore, the Worker would also be
executing at the higher priority level.

In the last test, the Producer should never get preempted by the Worker
because it is running at a higher priority. This is not observed — there is
some interference, which is again attributed to the bug in the Reference
Implementation.

*This was discovered when trying to run code that uses the setCeiling () method.
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6 Evaluation

In this chapter we evaluate our work with respect to the project objectives
outlined in section 1.2, more specifically:

¢ Evaluate our work as a software product — lines of code, bytecode
size, use of good software practices

¢ Evaluate the adequate ability of SCJ as a language and program-
ming paradigm from our experience.

6.1 Software measurements

In this section, we evaluate our work as a software end product. We
use an open-source tool called Cloc [20], which provides statistics of
application source code (Table 6.1).

Package Blanks Comments Code LOC Bytecode size
Buffer-clean 66 70 184 320
Buffer-runnable 63 75 178 316 8954B
Barrier-clean 56 72 162 290
Barrier-runnable 54 65 167 286 7823B
Signal-clean 54 53 127 234
Signal-runnable 54 47 123 224 5935B

Table 6.1: Statistics per package.

The tool separates the code into blanks, comments and code. The Lines of
Code statistic is the sum of the previous. For bytecode size, we report the
memory footprint in bytes of the executables produced by the Reference
Implementation’s SCJ compiler. None of the statistics include the code
of the Reference Implementation. This is comparable to the size of other
bytecode SCJ use cases [21, §5].
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6.2 SCJ evaluation

The SCJ language specification is publicly available under JSR-302 [11].
In this section, we provide insights into SCJ that we consider useful to
new SCJ programmers.

Documentation

The Reference Implementation available at the department is still a work
in progress. Our work has provided some feedback during the testing
phase where some problems were discovered. The lack of an official
SCJ Reference implementation is also a concern. Furthermore, the SCJ
Specification is a work in progress itself.

This highlights several points of interest. First, different versions of the
specification might not be backward compatible with each other. This
implies non-trivial complications if an application is to upgraded to a
later version of the language. An example of this is the use of Portals —
they were supported in the original public draft but later on removed.

Second, tools used for automated analysis, e. g. WCET Analysis or
Memory Safety Analysis, might also require certification [21, §7] if their
evidence is to be used for certification purposes. Such tools, and their
supporting evidence, may also change drastically if the underlying SCJ
Specification is not backward compatible.

Furthermore, the Reference Implementation used has differences with
the official SCJ specification. This has introduced different versions of
the code — one compliant with the specification and one compliant
with the implementation (subsection 2.3.4). This introduces severe code
duplication, a bad engineering practice.

Compliance levels

The SCJ Specification introduces compliance levels to support different
complexity of language features. They are supported by the SCJ] meta-
data annotations and allows for the restriction of SCJ capabilities available
to the developer, which complies with existing safety-critical engineering
practises [22, §4]. Disabling such features is useful in achieving a cheaper,
easier to develop and less complex software end product and certification
evidence.

Furthermore, the SCJ Specification is thoroughly annotated with respect
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to compliance levels, which is another useful feature of the documenta-
tion.

Memory usage

SCJ adopts the RTS] Scoped Memory model with a modification to
make it hierarchical in nature. This simplifies complexity of code and
underlying implementation (section 2.4.1). However, this paradigm is
quite different to standard Java, which is probably a concern for new
developers.

Furthermore, this memory model makes it non-trivial and complex
to use scoped memory for temporary computation. Results from the
computation need to be stored in an area where they can be used by
the computation caller, otherwise they get reclaimed by the JVM upon
exiting the temporary scoped memory.

Lastly, code modification poses a concern. Not only do the timings
of the application change as source code evolves, but so does memory
usage. This has direct impact on the memory requirements when the
application is to execute in a limited memory environment.

Event handling

SCJ Level 1 only supports asynchronous events and their handlers. This
includes periodic and aperiodic activities, but not sporadic as monitoring
of inter-arrival time is not supported. However, nowhere in our work
did we encounter the need for sporadics, so commenting on their use is
inappropriate.

Event-based programming attempts to solve some of the issues as-
sociated with threads [12, §2.2] — it involves simpler communication
and synchronization, less complexity when it comes to implementation,
shorter and more maintainable code base. However, it is not always
clear how to translate between event- and thread-based programs. For
example, some of our original concurrency mechanisms were presen-
ted in the context of threads, so we had to extract the their concurrent
nature and turn them into event-based programs. This can be difficult
for programmers new to SCJ.

Furthermore, the absence of threads relieves some of the concerns with
underlying thread management, e. g. starting and stopping. Periodic
computation is better represented using event handlers compared to
threads that make use of self-suspension (calls to Thread.sleep()).
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Scheduling

Level 1 applications use a fixed-priority preemptive scheduler with Prior-
ity Ceiling Emulation protocol.

The focus of scheduling in SCJ is predictability. Priorities are assigned
during object initialization by passing arguments to the super construct-
ors. However, PCE dictates the existence of dynamic priorities based
on shared object ceilings to avoid unbounded priority inversion and
deadlock. The implications of the protocol to scheduling are not always
obvious to new programmers. A lower priority entity may release a
higher priority one, but preemption will not happen if both share an ob-
ject. That can be seen in our testing of the persistent signal in section 5.3.

As thread priorities are only a guidance to the JVM, Java SE program-
mers will need to adjust to the use of the protocol. However, it ensures
that applications are deadlock-free which is a justifiable trade-off.

Scope-aware libraries

The use of external libraries can be problematic [13, §5.2] as they may
internally allocate temporary objects (StringBuiler ) or rely on the
use of garbage collection (java.util.Collections ). These can po-
tentially cause memory leaks or break the reference assignment rules.
This is just another issue of which SCJ programmers should be aware.

6.3 Limitations

Our work has achieved the desired level of concurrency and although
our solutions are not black-and-white, there exist some limitations.

Memory and WCET Analysis

The availability of automated tools that analyze memory usage is still a
work in progress. Dalsgaard et al. [21] develop a prototype implementa-
tion for memory analysis that is not based on SCJ annotations. However,
their library is based on the JOP implementation. We are unaware of any
similar tool for our Reference Implementation.

WCET Analysis is as equally important for an application whose timely
response is also a requirement. Tools exist that automate the process on
method level [23], allowing for fine-grained analysis of the application
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code. As above, doing this on our Reference Implementation is impossible
at present, which is another limitation for our work.

6.4 Summary

SCJ Level 1 has provided a good starting point for investigating con-
current programming for safety-critical systems in Java. It has a rich
enough API and comprehensive documentation. Its scoped memory
model is daunting at first sight, but leads to more structured abstraction
of memory than the RTS]. However, the Specification and the Reference
Implementations are still a work in progress. SCJ programmers also
have to be aware of the underlying libraries and platforms used for the
development of the application as they can be either not scope aware
and create the possibility of memory leaks or provide an API that is
different from the official public draft, which has implications for the
(re-)certification of the developed product.



7 Conclusions and Future Work

Writing concurrent programs in SCJ has provided suitable insight into
real-time and high-integrity programming with strict memory and timing
requirements while aiming to develop code compliant with good software
engineering practices. We have attempted to provide discussions on real-
world problems that are non-trivial for safety-critical systems, namely
sharing of non-primitive data, synchronization using a barrier and a
signal mechanism for communication between handlers.

We combined the best aspects of previous work done in the field with
our own ideas. Being able to provide feedback on the ability of SCJ as a
concurrent language from the point of view of a junior programmer in
the field has been extremely rewarding.

We hope our work will aspire further development into SCJ and its
concurrency uses.

Future Work

There are a number of possible areas that can be investigated as future
work:

* application of automated tools for memory and WCET analysis
— such analysis is mandatory for certification, so we hope that
technology evolution will prove useful in this aspect

¢ there can be other concurrency mechanisms that may be possible
to develop in SCJ that we lacked the time to do; a broadcast and a
transient signal seem like good candidates.

* SCJ Level 2 allows the mixing of event- and thread- based pro-
gramming. A future development might be to extend our work
to use level 2 features or even translate the implementation to a
more intuitive model that is inline with the original context of the
concurrency mechanisms we picked.
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A Test Results

A.1 Buffer test

$> scjvm main

[SafeletExecuter] Safelet started

Initializing main mission

1 MissionMemory : (LTMemory) Scoped memory # 3

#x Producer executing in (LTMemory) Scoped memory # 5
1. New Object[1] is in : (LTMemory) Scoped memory # 3
#x Consumer executing in (LTMemory) Scoped memory # 4
2. Object.toString() : java.lang.Object@8edabcc

+x Producer executing in (LTMemory) Scoped memory # 5
1. New Object[2] is in : (LTMemory) Scoped memory # 3
+x Consumer executing in (LTMemory) Scoped memory # 4
2. Object.toString() : java.lang.Object@11f492f5

++ Producer executing in (LTMemory) Scoped memory # 5
1. New Object[3] is in : (LTMemory) Scoped memory # 3
++ Consumer executing in (LTMemory) Scoped memory # 4
2. Object.toString() : java.lang.Object@1bfe187f

#+ Producer executing in (LTMemory) Scoped memory # 5
1. New Object[4] is in : (LTMemory) Scoped memory # 3
++ Consumer executing in (LTMemory) Scoped memory # 4
2 Object.toString() : java.lang.Object@65006701

#x Producer executing in (LTMemory) Scoped memory # 5
1. New Object[5] is in : (LTMemory) Scoped memory # 3
#x Consumer executing in (LTMemory) Scoped memory # 4
2. Object.toString() : java.lang.Object@6f0aed8b

70




O O] ONUl B~ W N R

W WWWWWNDNDNNNDNNDNNNNDNRRRRRARRRKA R R
U WO NMNR OOV OWON ONUTPRR WDN R OWOWOOWN VUL W N R O

A.2 Barrier test

A.2 Barrier test

$> scjvm main
[SafeletExecuter] Safelet started
Initializing main mission

=+ FireQ is executing =

0. Fire0 — triggering barrier »*

=+ Fire0 is executing =
0. Fire0 — barrier already triggered =+

=+ Fire0 is executing #*
0. FireO — barrier already triggered **

=+ Fire0 is executing #*
0. FireO — barrier already triggered **

=+ FireQ is executing =
0. Fire0 — barrier already triggered =+

=+ Fire1 is executing #*

1. Fire1 — triggering barrier =+

3. LaunchHandler — LAUNCHING MISSILE
=+ Fire0 is executing #*

0. Fire0 — triggering barrier #x

=+ Fire0 is executing #*
0. Fire0 — barrier already triggered ==
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A Test Results

A.3 Signal test

A.3.1 Normal Producer, Normal Worker;
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Norm + Norm; no clocks

$> scjvm main
[SafeletExecuter] Safelet started
Initializing main mission

1.1 Producer — starting computation

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output not done yet

2 Worker — output iteration: 1

1.1 Producer — starting computation

1.2 Producer — starting extra computation
2 Worker — output iteration: 2

1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

1.2 Producer — starting extra computation
2 Worker — output iteration: 3

1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

1.2 Producer — starting extra computation
2 Worker — output iteration: 4

1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output not done yet

2 Worker — output iteration: 5

1.1 Producer — starting computation




37

39
40

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output not done yet

2 Worker — output iteration: 6

A.3 Signal test
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A Test Results

A.3.2 Normal Producer, Higher Worker;
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$> scjvm main
[SafeletExecuter] Safelet started
Initializing main mission

1.1 Producer — starting computation

2 Worker — output iteration: 1

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 2

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 3

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 4

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 5

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 6

1.2 Producer — starting extra computation
1.3 Producer — finishing computation
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1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 7

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 8

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 9

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

1.1 Producer — starting computation

2 Worker — output iteration: 10

1.2 Producer — starting extra computation
1.3 Producer — finishing computation

1.4 Producer — output done

A.3 Signal test

A.3.3 Max Producer, Normal Worker;

The Producer is set to Max priority, Worker is set to Normal priority.

[SafeletExecuter] Safelet started
Initializing main mission

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 1

1.1 Producer — starting computation
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1.2 Producer — starting extra computation
2 Worker — output iteration: 2
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 3
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 4
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 5

1.3 Producer — finishing computation

1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 6
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 7
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 8
1.3 Producer — finishing computation
1.4 Producer — output not done yet




1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 9
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 10
1.3 Producer — finishing computation
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 11

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 12

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
2 Worker — output iteration: 13
1.4 Producer — output not done yet

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 14

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation

A.3 Signal test
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1.4 Producer — output not done yet
2 Worker — output iteration: 15

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 16

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 177

1.1 Producer — starting computation

1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet

2 Worker — output iteration: 18

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 19

1.1 Producer — starting computation
1.2 Producer — starting extra computation
1.3 Producer — finishing computation
1.4 Producer — output not done yet
2 Worker — output iteration: 20

1.1 Producer — starting computation
1.2 Producer — starting extra computation
2 Worker — output iteration: 21
1.3 Producer — finishing computation
1.4 Producer — output not done yet
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B Compiling and running the programs

First, you need to obtain the runnable version of the code which you
want to run. All the source is contained in the src folder.

To compile and run, you will need to have the JamaicaVM available.
This is already installed on the departmental machines.

> cd src
> ../../ri_rtsjBased_j4.fix/bin/nscjavac main.java

This should compile without problems using the supplied Reference
Implementation version, the application is stared by doing:

> ../../ri_rtsjBased_j4.fix/bin/nscjvm main

If you want to recompile, you simply remove the class files and repeat
the process above
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