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Autonomous and mobile robots are becoming ubiquitous. From domestic robotic vacuum
cleaners to driverless cars, such robots interact with their environment and humans, leading
to potential safety hazards. We propose a three-pronged solution to the problem of safety of
mobile and autonomous robots: (1) domain-specific modelling with a formal underpinning;
(2) automatic generation of sound simulations; and (3) verification based on model checking
and theorem proving. Here, we report on a UML-like notation called RoboChart, designed
specifically for modelling autonomous and mobile robots, and including timed and proba-
bilistic primitives. We discuss a denotational semantics for a core subset of RoboChart, an
approach for the development of sound simulations, and an implementation of RoboChart

and its formal semantics as an Eclipse plugin supported by the CSP model checker FDR.

This report is a reference manual for the RoboChart notation. It describes the syntax of
RoboChart and its extensions, as well as the well-formedness conditions and semantics of
the language constructs. Additionally, usage of the language is discussed via a application

programming interface (API), simulation support and a number of examples.
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CHAPTER 1

Introduction

The current practice of programming mobile and autonomous robots does not reflect the
modern outlook of their applications. Such practice is often based on standard state machines,
without formal semantics, to describe the robot controller only, with time and probabilistic
properties discussed in natural language. In the design stage, the state machine guides the

development of a simulation, but no rigorous connection between them is established.

In this report, we present a state-machine based notation, called RoboChart, for the specifica-
tion and design of robotic systems. Besides state machines, RoboChart includes elements to
organise specifications, fostering reuse and taming complexity. These extra constructs embed
the notions of robotic platforms and their controllers; communication between controllers
can be synchronous or asynchronous. The state-machine notation is fully specified, including
an action language and constructs to specify timing and probabilistic properties. Operations
used in a state machine can be taken from a domain-specific API or defined by other state
machines; communication between state machines inside a controller is synchronous. Opera-

tions can be given pre and postconditions.

The time primitives of RoboChart allow time budgets and deadlines to be specified for opera-
tions and events directly as part of a state machine. Constraints can be specified in association
with the relative-time elapsed since the occurrence of events or the entering of states. Our

time primitives are inspired by constructs of timed automata [2]] and Timed CSP [25]].

RoboChart also includes probabilistic transitions suggested for UML state machines in [15]],
with a semantics based on Markov Decision Processes. Probabilistic state machines are used
in many robotic applications, such as adaptive foraging and swarming behaviour [[18]]. Prob-
ability in [[15] is defined over actions, and the resulting state machines can be analysed using
PRISM, a well-established model checker for probabilistic automata [[17]).

UML [20] state machines are popular. RoboChart, however, is customised to make it suitable

for verification and automatic generation of simulations.



In this paper, we formalise the semantics of the core constructs of RoboChart using CSP [23]].
Importantly, CSP is a front end for a mathematical model that supports model-checking and
theorem proving, namely, Hoare and He’s Unifying Theories of Programming [14] (UTP).
Use of CSP enables model checking with FDR [[I1]]. On the other hand, the underlying
UTP model makes our core semantics adequate for extension to deal with time [28] and
probability [31]].

RoboChart and its semantics can also be used for the generation of sound simulations that can
shed light on the actual behaviours of the robots within various configurations and environ-
ment. We describe a general architecture for simulations that can be automatically generated

from RoboChart models.

Finally, we describe RoboTool, which provides support for modelling using the RoboChart
graphical notation (and its optional textual counterpart), and for verification. Specifically, it
provides a code generator that produces CSP specifications defined by the RoboChart seman-
tics for use with FDR.

Chapter 2 describes RoboChart models, and Chapter 3 defines the well-formedness condition
of RoboChart models. Chapter 4 presents their semantics in CSP. Chapter 5 describes the API
available for modelling robotic and Chapter 6 describes our simulation approach. Chapter 7
presents a number of models specified in RoboChart. Finally, Chapter 8 concludes with a

summary of the results and future work.



CHAPTER 2

Syntax

2.1 Introduction

In this section, we first describe the core features of a RoboChart model (Section 2.1.1). To
illustrate the concepts, we present the model of a robot for chemical detection based on that
in [13]]['} In our example, the robot employs a random walk and, upon detection of a chemical
source, it turns on a light and drops a flag. Sections and describe the features
to define time and probabilistic properties. Finally, Section describes the RoboChart

metamodel.

2.1.1 RoboChart diagrams

A robotic system is specified in RoboChart by a module, where a robotic platform is con-
nected to one or more controllers. A robotic platform is characterised by variables, events,
and operations representing in-built facilities of the hardware. For our example, the mod-
ule ChemicalDetector is shown in Figure where we have a robotic platform Rover and
controllers Detect AndFlagC and LightC.

Rover declares a number of events via named boxes on its border. The events lightOn and
lightOff are used to request that the in-built light is turned on or off. The events | and r
represent two sensors, one to the left and one to the right. They allow the rover to detect
whether there is a wall on either side. The event alarm represents an in-built sensor for the

position of a chemical source.

The operation move(v,s) declared in Rover takes a Vector v as parameter; it moves the rover in
the direction defined by v with the speed s. In RoboChart, we can define given types (uninter-
preted sets), record types, and other structured types. The primitive types include numbers

and strings.

"http://tinyurl.com/hdaws7o
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ChemicalDetector

Rover

0 move(v: Vector, speed: real): void ‘ ref LightsController
0 LoadFlag(): void . lighton| | Jion
O ReleaseFlag(): void | |

lightoff__ |*|__|loff

activate

alarm )

H — async
left found "ef DetectAndFlagC right

flagged

Figure 2.1: Chemical Detector

The definitions of move and Vector are part of the RoboChart APIL. This AP is a collection of
types, events, and operations organised in packages by function (moving, sensing, and so on),
and, for each function, by the kind of equipment that performs it. The move(v,s) operation is
in the package for moving using wheels. The definition of move(v,s) is a simple state machine

that declares a precondition: s > 0.

The operations LoadFlag() and ReleaseFlag(), on the other hand, are very specific to the
particular robotic platform used in this example. They are not part of our API, but are
declared and not further defined, since they represent basic functionality provided by the

hardware.

The Rover behaviour is defined by two controllers DetectAndFlagC and LightC defined in
other diagrams. DetectAndFlagC requires events left, right, found and flagged, shown as
bordered boxes. This controller interacts with Rover and LightC through these events, which

11



«¢ lightController

mnE}_Dmﬁ £3lights Ionrj—{jlon

r

Rescued

i m en.try send lon
activate[}{] — exit send loff

[sinceEntry(Rescued)==5]

Figure 2.2: Light Controller

are associated with 1, r, and alarm of Rover, and activate of LightC, as indicated by the arrows.
The directions of the arrows indicate the flow of information. For instance, when the Rover
finds a chemical, it sends an alarm to DetectAndFlagC. LightC similarly requires events lon,

loff and activate, used to communicate with the Rover and DetectAndFlagC.

Communication with the robotic platform is synchronous, but communication between the
controllers can be synchronous or asynchronous. In our example, the communication be-
tween DetectAndFlagC and LightC is asynchronous, as indicated by the label async on the

arrow that connects their events.

A controller is specified by one or more parallel state machines. In their definitions, vari-
ables, events, and operations may be local or global. Required interfaces identify the outer
definitions that can be used. Communication between states machines that define a controller
is always synchronous, since parallelism at this level is used for convenience of modelling,
rather than to indicate concrete designs. In our example, the controllers do not communicate

synchronously.

The definition of LightC is shown in Figure it consists of a single state-machine that
is initially idle, and upon receipt of an event activate, iterates between two states every five
seconds, sending the events lon and loff to the robotic platform to switch a light on and off.
The diagram for DetectAndFlagC is shown in Figure[2.3] It requires an interface DF_I whose
definition is omitted. It declares the operations move, LoadFlag, and ReleaseFlag. In the
module ChemicalDetector, where DetectAndFlagC is used, this requirement is satisfied by

the robotic platform Rover.

DetectAndFlagC contains three state-machines: DetectAndFlag to specify its behaviour, and
DropFlag() and RandomWalk() to specify operations. The event found of this controller
corresponds to the event f of DetectAndFlag; flagged to done in DropFlag(); and left and

12



¢ DetectAndFlagC
®DF_I
&2 DetectAndFlag
X position: Vector
Xreached: boolean Flag
entry DropFlag()
[reached]
Detect
—Lr]
/reached = false Searching f?position Approach /reached = true
during RandomWalk() entry move(position, 5)
0 DropFlag): void O ref RandomWalk): void
@®DF.I o /loadFlag() . /Releaseflag() =' /send done @
done left right
— V_L
gl (]
found flagged left right

Figure 2.3: Detect and Flag Controller

right to the events of the same name in RandomWalk(). The definition of RandomWalk() is
global, since this is an operation relevant for many applications. So, DetectAndFlagC contains

a reference to this state machine, which we present in Section

RoboChart state machines are standard, but restricted and with a well defined semantics.
They can have composed states, junctions, and entry, during, exit, and transition actions
defined using a well defined action language. Features of UML state machines [[19] deemed
not essential for robotics are not included, resulting in a streamlined semantics. Figure

illustrates our notation.

The state-machine DetectAndFlag models the robot roaming behaviour. Two local variables
store the position where the chemical is detected and whether that position has been reached.
The transition into the initial composed state Detect and its initial state Searching sets reached
to false. Its during action is a call to RandomWalk(); this causes the robot to search indefi-
nitely. If the event f, communicating the position of a chemical source, is raised, the machine
moves to the state Approach. Its entry action move moves the robot towards the detected
source. Once this operation finishes, the machine transitions to its final state, when the vari-
able reached is set to true. This enables the transition from the state Detect to Flag, whose
entry action is the operation DropFlag(). The state machine that defines it, also in Figure

has just junctions. The transitions defines that the operations LoadFlag and ReleaseFlag are

13



used to select and release a flag next to the chemical source. When DropFlag completes, in

DetectAndFlag, the transition from Flag to Detect is taken and the robot restarts the search.

2.1.2 Time primitives

RoboChart operations take zero time, and enabled transitions take place as soon as they can
be triggered. So, time constraints need to be explicitly defined. The time budget t for an
operation call can be specified by sequentially composing it with the primitive wait(t), that
waits for t time units. A deadline of d time units for a statement S is specified by S <{d}.

Deadlines can also be set on events.

Clocks provide a way to associate the instant in time #7T in which a transition is triggered with
subsequent conditions on this instant. The primitive since(T) yields the time elapsed since
the most recent time instant #7T. A similar primitive sinceEntry(s) yields the time elapsed
since entering state s. Finally, the transition primitive e@t records the time elapsed between

the moment the event e is available and when the transition it guards is triggered.

To illustrate the time primitives we extend DetectAndFlag. In this version, shown in Fig-
ure the additional states Charging, MovingToBase and Error model a robot that can
charge its battery on a base station, whose location is fixed by a constant base. The robot
can perform different actions depending on how much charge is available, as recorded by the
variable battery. We assume that the robot cannot measure this quantity directly, but instead
can estimate battery drain using time and an estimate of how much charge is consumed over

time.

The state-machine starts at a junction, with outgoing transitions guarded by conditions on the
variable battery: if battery is lower than the charge required to reach the base, as estimated by
the operation PowerTo (omitted here), then the state-machine transitions to the state Error,
otherwise it transitions to MovingToBase. In Error, the event error is sent (to LightC), which
turns on the light to indicate that there is a problem. When the robot reaches the base, the
state machine transitions to Charging, whose entry action models the charging activity: the
primitive wait(10) models the fact that it takes 10 time units to charge the battery to its full
capacity of 1000 mAh.

Once the battery is charged, a transition leads to the state Searching. There are now two
possibilities: either the robot finds a chemical source, as signalled by the event {, or, if it takes

more than 10 time units, then the walk is interrupted and another attempt is made to return

14



48 DetectAndFlag

X pasition:Vector; w:time; battery:nat; reached:boolean

TChase:Vector
oT
E] Flag [reached] error[]
entry DropFlag() <{5}

Detect

Cgreached = true

Approach [battery> PowerTo(position)] g [battery< =PowerTo(position)]

/reached = false

[battery< PowerTo(base)] Error
entry send error

entry move(position, 5)

f7position @w/battery = Discharge(battery, w) [since(T)> = 10)/battery = Discharge(battery, 10)

Searching
during RandomWalk()

T 4T [battery> =PowerTo(base)]
Charging MovingToBase
entry wait (10); battery = 1000 entry move(base, 5)

Figure 2.4: Timed Chemical Detector

to the base. The transition to the initial junction updates the estimated battery charge using
the operation Discharge (whose definition is omitted here). To constrain the time allowed for
the random walk, we associate with the incoming transition to Searching a timed instant #T,
which is related to a modelling clock T. The transition from Searching to the initial junction

is guarded by a condition on the time primitive since(T).

In case the robot finds a chemical source during the walk, signalled by f, we record in the
variable w the amount of time elapsed since f was available, in this case immediately upon
entering Searching, and its occurrence. This is used by Discharge to calculate a new estimate
for the battery charge based on the time w. Moreover, the transition to Approach is guarded
by a condition that requires that there is enough battery charge to reach the position, as
estimated by PowerTo, otherwise the robot attempts to move back to the base. Finally, when
the robot finishes approaching the chemical source, it transitions to the state Flag, where there
is a deadline imposed on the operation DropFlag to terminate within 5 time units, so that the

robot can quickly leave the place.

2.1.3 Probability primitives

RoboChart has just a single additional construct to cope with modelling of probabilistic be-
haviour, taken from [[15]]. It is the P-node: a junction, inscribed with the letter P, and a number

of outgoing transitions. Each outgoing transition is labelled with an expression p{e} that de-
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O RandomWalk(): void

® RandomWalkl

Xs: States
Xa: Actions
Xr: boolean [rl/update(s, a, true) LookLeft [not rl/update(s, a, false)

left
left.On left.Off
right )
-luukRith -LockRighlz
e — e —
right.On/s = WB right Off/s = WL rightOn/s = WR right Off/s = NW
Action
piM(s, BF)}/a = BF; r = WheelC(BF) g piM(s, BB)}/a = BB; r = WheelC(BB)
piM(s, FF)}/a = FF; r = WheelC(FF) piM(s, FB)}/a = FB; r = WheelC(FB)
HEX

Figure 2.5: Random walk State-machine

notes a probability, together with an optional action. The probabilities for the outgoing edges

must sum to 1.0.

In Figure we describe the operation RandomWalk(). This state machine has a local vari-
able s, which can take values WB, to indicate that there is a wall on both sides (that is, the
rover is facing a corner), WL, if there is just a wall to the left, WR, for a wall to the right, or
NW, if there is no adjacent wall. Another variable a takes as values actions corresponding to
actuation of the rover’s driving wheels: forwards or backwards. FF takes the rover forward;
FB turns right; BF turns left; and BB reverses. Finally, the variable M is a matrix: M[s,a]

shows the probability of the action a occurring in the scenario s.

The transition into the initial state LookLeft initializes M to give probability of 1 to all
actions in all scenarios using init(). The omitted operation init() is in the required interface
RandomWalkI, which also includes two other operations. WheelC(a) controls the wheels to
take the input action a and has a boolean result that indicates whether the action completes
without hitting anything or not. Finally, update(s,a,b) updates M to record that in scenario s
the action a is good or bad, as indicated by the boolean b. If a is good, then its probability in s
is increased, at the expense of the other actions. If it was bad, then its probability is decreased,
at the benefit of the others. The precise changes in probabilities can be varied to produce

different behaviours.

In LookLeft, the rover decides how to move based on the events left and right of the wall

sensors. These events are used to record the position of the walls in s. The action that follows
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El MachineContainer|

[0..*] machines
1 stateMachine
= pame : EString

|0.*] interfaces [0.*] typesl [0.*] mbmsl [0.*] modules. [0.*] controllersl

E interface l { H Type ] [Q Roboticplaﬂorm] | H module | [ H controller ] [ H controllerDef ]

] [ )| ( ) = name : EString ( = ) )
J ]

Figure 2.6: Metamodel of RoboChart models

depends on the history of successful actions recorded in M. The probabilistic choice defined
by the P-node selects an action a with probability M[s,a] and executes it using WheelC. The
fact that alternatives in the probabilistic choice sum to 1.0 is enforced through a row invariant
in M. Once WheelC finishes, a transition out of the state Action back to LookLeft is taken,

when the matrix M is updated using the operation update.

2.2 RoboChart metamodel

As illustrated above, RoboChart models are structured using elements shown in the meta-
model in Figure namely, modules, robotic platforms, controllers, state machines, inter-
faces, and types. Modules give a complete account of a robotic system. They define robotic
platforms or include references to platforms defined elsewhere to indicate the robots avail-
able. Modules associate their robotic platforms with particular controllers and state machines
to specify the behaviours of the robots. State machines can be directly associated to robotic
platforms, but, when the behaviour is complex and is specified by multiple (potentially inter-

acting) state machines, controllers can be used.

A module comprises a number of module nodes, which can be controllers, robotic platforms
and state-machines, and connections between the nodes that establish the relationship be-

tween platforms and their specified behaviours.

A controller encapsulates state machines that can communicate with each other and the ex-

ternal environment through synchronous events. In this way, simpler behaviours can be co-
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E ModulecConnection 10.*] connections E Module
t‘ bidirection : EBoolean = false = name : EString

[0.1] to [0.1] from

10.] nodes

E ModuleNode

[ El controller } [El RobmlcPIaﬂDrm] { H statemachine ]
L J L J ( J

Figure 2.7: Metamodel of RoboChart modules

H Namedelement
= name : EString

x
: F [0.*] variableList ;

H variableList | 5 BasicContext | H Event
= madifier : EString | ] [0.*] events
[0.*] operations -|—
[0.*] vars

| E operation | ‘
= isVoid : EBoolean = false

| H Interface | 5 context |
| ]

H wvariable = body : EString

= pame : EString
= modifier : EString

10.*] pinterfaces
[0.*] rinterfaces

Figure 2.8: Metamodel of RoboChart constructs

ordinated to model a complex controller. Robotic platforms, controllers and state machines

share features such as variables, operations, events, and provided and required interfaces.

The metamodel of RoboChart state machines is similar to that of UML state machines. Fea-
tures that have been removed are parallel regions, history junctions, and interlevel transitions.
Whilst the state machines are designed with sequential controllers (which may be in paral-
lel with other controllers) in mind, there is space for parallelism in the execution of during
actions (see Section [4.1). When state machines are used to specify the implementation of

operations, they declare an operation signature, and may also specify pre and postconditions.

Expressions and statements include time primitives, such as wait. Triggers (for state transi-
tions) include probability as well as time recording and deadline primitives (for example, #T).
In addition, the metamodel for state machines includes P-nodes. These are simple variations

of the usual metamodel.
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[ H st ] 10..1] action B Action
| |

Figure 2.9: Metamodel of RoboChart state machines

2.3 Complete Metamodel: Core Language

Our core notation is a state-machine based language with specific components that provide

for sequential behaviours and parallelism in a restricted manner. Essentially, state-machines

are intended to specify sequential behaviours, whilst parallelism is modelled by controllers.

The top-level components of a RoboChart specification is a module, which represents a single

robot recording assumptions about the hardware as well as the controlling software.

2.3.1 Robotic Platforms

@D A robotic platform is characterised by variables, events, and operations representing

in-built facilities of the hardware. It represents the observables interactions between

the robot, its environment and controller.

class RoboticPlatform extends ModuleNode;

class RoboticPlatformDef extends NamedElement,Context,RoboticPlatform;

class RoboticPlatformRef extends NamedElement,RoboticPlatform {
RoboticPlatformDef [7];

property ref
}
abstract class NamedElement {

attribute name : Stringl[?];
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}

abstract class BasicContext {
property variableList : VariableList[*|1] { ordered composes };
property operations : Operation[*|1] { ordered composes };
property events : Event[*|1] { ordered composes };

}

abstract class Context extends BasicContext {
property pIlnterfaces : Interface[*|1] { ordered tunique };

property rlnterfaces : Interface[*|1] { ordered !unique };

Interfaces

D An interface encapsulates events and variables declarations as well as operation signa-
tures. Interfaces are used to record information about the assumptions a component makes,

and what assumptions can be made about a component.
class Interface extends NamedElement,BasicContext;

Variables

An variable can be declared in interfaces, robotic platforms, controllers and state-
machines. Variable declarations in interfaces are used to validate a model with respect to
assumptions about definition and usage of variables in the context of a module (composition
of controllers and robotic platforms). Variables declared in controllers and robotic platforms
are shared among its associated elements (state-machines and controllers, respectively), but
are ultimately only used by state-machines. State-machines can themselves declare variables

that are local to the state-machine. Variables are typed and may declare an initial value.

class VariableList {

attribute modifier : Stringl[?];

property vars : Variable[#|1] { ordered composes 1};
+
class Variable extends NamedExpression {

attribute name : String[?];

property type : Typel[?] { composes };
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property initial : Expression[?] { composes };

attribute modifier : String[?] { derived transient volatile };

Constants

l l A constant is similar to a variable except that its value cannot be changed. Besides its
usage as a meaningful name or abbreviation for otherwise complex or meaningless values, it

can also be used without a concrete value to indicate a loose values that is fixed but unspecified.
Variable with modifier == ’con’

Inputs

=P | An input variable can be used in state-machines to model the interactions from the

h . . . o . . .

environment to the state-machine via a stream of data instead of explicit events. While this
feature is available in the abstract syntax of the language it is not strictly necessary because it
can be easily replaced by events that carry types. It will however become relevant as hybrid

state-machines are taken into consideration.
Variable with modifier == ’in’

Outputs

=P An output variable can be used in state-machines to model the interactions from the
state-machine to its environment via a stream of data instead of explicit events. While this
feature is available in the abstract syntax of the language it is not strictly necessary because it
can be easily replaced by events that carry types. It will however become relevant as hybrid

state-machines are taken into consideration.
Variable with modifier == ’out’

Events
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An event are the main form of interaction between a state-machine and its environ-

ment, be it other state-machines, controllers or the robotic platform. Events can be
typed or untyped, where typed events carry values, and untyped events model a simple in-
teraction where no extra information can be inferred except that two parallel components
interacted. Whilst events are not explicitly divided between input and output events, their
roles are exclusive (events cannot be used as both inputs and outputs) and are determined
from the connections in the model. The connections between events (not the events them-

selves) determine if the communication takes place synchronously or asynchronously.

class Event extends NamedElement {

property type : Typel?] { composes };

Required Interfaces

A required interface specifies the assumptions a state-machine or controller makes
about the environment, the robotic platform and other controllers. It is used to declare
abstract controllers and state-machines that do not depend on specific platforms, only on
specific operations, events and variables. It is worth mentioning that required interfaces can
be used to specify assumptions about the kind of state variables are available in a robotic
plaform. This allows for instance the specification of movement operations independently
of the particular platform based solely on the assumption that a potential target platform

supports changing linear and angular speed by setting specific variables.

rInterfaces of Context

Provided Interfaces

P A provided interface specifies what assumptions can be made about a robotic platform

or controller. It is used mainly to validate the well-formedness of controllers and modules by
guaranteeing that the assumptions made (through required interfaces) are actually satisfied by

some component in the composition.

pInterfaces of Context
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2.3.2 State-Machines

A state-machine is the construct dedicated for the specification of sequential be-
haviours. It contains a number of nodes that represent steps (stable or not) of the
behaviour and transitions that describe when and how control is transferred from one node

to another.

class StateMachine extends ModuleNode;
class StateMachineDef extends NamedElement,StateMachineBody,StateMachine;
class StateMachineRef extends Node,StateMachine {
property ref : StateMachineDef[?];
+
class StateMachineBody extends Context,NodeContainer {
property clocks : Clock[*|1] { ordered composes };
¥

class Node extends NamedElement;

States

[:] A state is one of the main components of a state-machine. It describes a stable configu-
ration of the state-machine and has three distinctive phases in its life-cycle: entering, executing

and exiting. Each of these phases has an associated action: entry, during and exit actions.

States are divided between simple and composite states. Simple states can only contain the
actions mentioned above, whilst composite states can themselves contain states as well as

transitions and other nodes.

class State extends Node,NodeContainer {

property actions : Action[*|1] { ordered composes };
+
class NodeContainer {

property nodes : Node[*|1] { ordered composes };

property transitions : Transition[#|1] { ordered composes };

Initial nodes
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0 An initial node represents en entry point of a state-machine or composite state. It

indicate where the state-machine or composite state must start executing to enter its substates.

The main validation rule related to initial nodes is that any state-machine or composite state

(state with one or more subnodes) must have exactly one initial node.
class Initial extends Node;

Junction node

A junction node represents an unstable configuration of the state-machine. Unlike in
a (stable) state, the state-machine cannot rest and execute other behaviours (actions,
substates, etc) while in a junction node. At this point, all it can do it follow one of the

outgoing transitions.

In order to guarantee that execution can progress once in a junction node, two well-formedness
condition are defined. The first requires that there are event triggers in the outgoing transi-
tions, and the second requires that the outgoing transitions form a cover, that is, the conjunc-
tion of all their guards is equivalent to true. Notice that we do not require them to be disjoint

as the selection of outgoing transition may be non-deterministic.
class Junction extends Node;

Final states

A final state represents the completion of the internal behaviours of a state-machine
or composite state. While the meaning of a final state is the same in both cases, state-
machines and composite states react differently to reaching a final state. While a composite
state rests in the final state and waits for one of its transitions (or the parents transitions) to

be executed, the state-machine terminates as soon as the final state is reached.

class Final extends Node;
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Transitions

; A transition defines one possible path between to nodes in a state-machine or com-
posite state. It contains source and target nodes as well as, optionally, a trigger in the
form of an event, a boolean condition, and an action. The transition can only be executed if

the event in the trigger is available and the condition is true.

The transition action is executed after the source state (if it exists) is exited, but before the
target state (if it exists) is entered. Notice that source and target states are not necessarily

available. For example transitions between junction nodes have neither.

class Transition extends NamedElement {
property source : Node[7];
property target : Nodel[?];
property trigger : Trigger[?] { composes };
property condition : Expression[?] { composes };
property action : Statement[?] { composes };
¥
class Trigger {
property time : Variable[?];
property event : Event[7];
¥
class InputTrigger extends Trigger {
attribute parameter : String[?];
+
class OutputTrigger extends Trigger {
property value : Expression[?] { composes };
+
class SyncTrigger extends Trigger {
property value : Expression[?] { composes };
}

class SimpleTrigger extends Trigger;

2.3.3 Controllers
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g

can be used, for instance, to encapsulate specific well-defined functionalities that are imple-

A controller models a collection of potentially parallel cooperating state machines; it

mented by multiple state machines. Controllers are the elements of RoboChart that interact

directly with robotic platform.

class Controller extends ModuleNode;
class ControllerDef extends NamedElement,Context,Controller,
MachineContainer {
property connections : CtrlConnection[*|1] { ordered composes };
+
class ControllerRef extends NamedElement,Controller {

property ref : ControllerDef[7];

Controller Connection

% A controller connection is a link between events within (and on the boundary) of a

controller. These connections are used to specify the interactions between state ma-
chines in a controller as well as the interactions between the state machines and the controller
itself.

class CtrlConnection {
property from : ModuleNode[?];
property efrom : Event[?7];
property to : ModuleNode[?];
property eto : Event[7];

2.3.4 Modules

class Module {
attribute name : String[?];
property connections : ModuleConnection[*|1] { ordered composes };

property nodes : ModuleNode[#*|1] { ordered composes };
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class ModuleNode;

Module Connection

; A module connection is similar to a controller connection, except that it is contained
within a module and is used to specify the interactions between controller in a module

as well as the interactions between the controllers and the robotic platform.

class ModuleConnection {
property from : ModuleNode[?];
property efrom : Event[?7];
property to : ModuleNode[?];
property eto : Event[7];

attribute async : Boolean[?];

2.3.5 Statements

class Statement;
class OpCall extends Statement;
class Skip extends Statement;
class IfStmt extends Statement {
property expression : Expression[?] { composes };
property _’then’ : Statement[?] { composes };
property _’else’ : Statement[?] { composes };
¥
class Assignment extends Statement {
property left : Assignable[?] { composes };
property right : Expression[?] { composes };
¥
class SendEvent extends Statement {
attribute async : Boolean[?];
property event : Event[7];
property value : Expression[?] { composes };
b

class Return extends Statement {
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property expression : Expression[?] { composes };
by
class SeqStatement extends Statement {
property statements : Statement[*|1] { ordered composes };
}
class ParStmt extends Statement;
class Call extends OpCall {
attribute async : Boolean[?];
property member : Operation[?];

property args : Expression[*|1] { ordered composes };

2.3.6 Expressions

class Expression;
class ArrayExp extends Expression {
property value : Expression[?] { composes };
property parameters : Expression[*|1] { composes };
+
class Iff extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
}
class Implies extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
}
class Or extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
}
class And extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+

class Not extends Expression {
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property exp : Expression[?] { composes };
}
class Equals extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
}
class Different extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class GreaterThan extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class GreaterOrEqual extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class LessThan extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
b
class LessOrEqual extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class Plus extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
¥
class Minus extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
¥
class Modulus extends Expression {

property left : Expression[?] { composes };
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property right : Expression[?] { composes };
by
class Mult extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
by
class Div extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
by
class Cat extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
by
class Neg extends Expression {
property exp : Expression[?] { composes };
¥
class Selection extends Expression {
property receiver : Expression[?] { composes };
property member : Member[?];
+
class IntegerExp extends Expression {
attribute value : ecore::EInt[?];
}
class FloatExp extends Expression {
attribute value : ecore::EFloat[?];
by
class StringExp extends Expression {
attribute value : String[7];
¥
class BooleanExp extends Expression {
attribute value : String[?];
by
class VarExp extends Expression {

property value : Variable[?7];
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class RefExp extends Expression {
property value : NamedExpression[?];
b
class EnumExp extends Expression {
property type : Enumeration[?];
property constant : Constant[7];
¥
class ParExp extends Expression {
property exp : Expression[?] { composes };
by
class RangeExp extends Expression {
attribute linterval : String[?];
property lrange : Expression[?] { composes };
property rrange : Expression[?] { composes };
attribute rinterval : String[?];
+
class CallExp extends Expression {
attribute async : Boolean[?];
property member : Operation[?];

property args : Expression[*|1] { ordered composes };

2.3.7 Type Declaration

class TypeDecl extends NamedElement;

Primitive Types

f | ! A primitive type ...

class PrimitiveType extends TypeDecl;

Datatypes
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DV A datatype ....

class DataType extends TypeDecl {
property fields : Field[*|1] { ordered composes };

F A field ....

class Field extends Member,NamedExpression;

Enumeration

class Enumeration extends TypeDecl {
property constants : Constant[*|1] { ordered composes };
i
class NamedExpression;
class Constant extends NamedElement,NamedExpression {

property type : Enumeration[?];

2.3.8 Type Constructors

class Type;
class ProductType extends Type {
property types : Typel*|1] { ordered composes };
}
class FunctionType extends Type {
property domain : Typel[?] { composes };
property range : Typel[?] { composes };
}
class SetType extends Type {
property domain : Typel[?] { composes };
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class SeqType extends Type {

property domain : Typel[?] { composes };
b
class TypeRef extends Type {

property ref : TypeDecl[?7];

2.4 Complete Metamodel: Timed Language

Clock

@ A clock ....

class Instant {

property instant : Clock[?];
}
class Clock {

attribute type : String[?];

attribute name : Stringl[?];

Timed Statements

class Statement {
property start : Expression[?] { composes };
property stmt : Statement[?] { composes };
property end : Expression[?] { composes };

+

class Wait extends Statement {

property duration : Expression[?] { composes };

Timed Expressions

class ClockExp extends Expression {
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property instant : Clock[?];
}
class StateClockExp extends Expression {

property state : State[?7];

Timed Triggers

class Trigger {
property time : Variable[?];
property instant : Instant[*|1] { ordered composes };

property event : Event[7];

class Transition extends NamedElement {
property source : Node[?];
property target : Nodel[7?];
property start : Expression[?] { composes };
property trigger : Trigger[?] { composes };
property end : Expression[?] { composes };
property condition : Expression[?] { composes };

property action : Statement[?] { composes };

2.5 Complete Metamodel: Probabilistic Language
2.5.1 Probabilistic Junction

® A probabilistic junction ....

class ProbabilisticJunction extends Node;

2.5.2 Probabilistic Transition

class Transition extends NamedElement {
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property
property
property
property
property
property
property
property

source : Node[?7];

target : Node[7];

start : Expression[?] { composes };
trigger : Trigger([?] { composes };

end : Expression[?] { composes };
condition : Expression[?] { composes };
action : Statement[?] { composes };

probability : Expression[?] { composes };

2.6 Complete Metamodel: Hybrid Language

2.7 Tool Support
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CHAPTER 3

Well-formedness Conditions

The meta-model presented in the previous section accepts models that are not meaningful.
In order to restrict the set of meaningful models it is necessary to define a number of well-
formedness conditions. These conditions encode restrictions that are necessary for an ade-
quate semantics to be defined. For example, condition 2 for transitions establishes that there
are no interlevel transitions and this is necessary to improve the compositionality of the se-

mantics.

3.1 Core Language

3.1.1 Robotic Platforms
O

[]Eu The well-formedness conditions associated with robotic platforms involve the declara-

tion of elements of the provided interfaces.

WF_RoboticPlatform : P RoboticPlaftorm

Y rp : RoboticPlatform e rp € WF_RoboticPlatform < Y i : rp.pInterfaces o
Vv ULivariableList l.variables o v € Ul:rp.-wzriﬂbleList [.variables A
Ve : i.events e v € rp.events A

V op : i.operations e (v € rp.operations A Jopp,r : OperationDef ® opper =sig 0p)

Interfaces

[:] The only well-formedness conditionsfor interfaces requires uniqueness of names of

variables, events and operations.
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WF_Interface : P Interface

Vi : Interface o i € WF_Interface &
V%,V ¢ UL variableList L-variables | x # y ® x.name # y.name A

Vx,y : 1.0perations | x #y ® x.name # y.name A

Yx,y: i.events | x #y ® x.name # y.name

VariableList

(x)] The only well-formedness condtion for variable lists requires that the names of vari-
ables in a list are unique. This well-formedness apply equally to variables, constants, inputs

and outputs.

WFE_VariableList : P VariableList

Vx,y: Lvariables | x # y  x.name # y.name

‘ V[ : VariableList o [ € WE_VariableList <

3.1.2 State-Machines

State-machines have a number of well-formedness conditions, which are described here

separately indexed by a natural number.

WF_StateMachineDef, : P StateMachineDef

Y stm : StateMachineDef o stm € WF_StateMachineDef, <
A, n : Initial e (n € stm.nodes A

3, t : Transition | t € stm.transitions e t.source = n A t.guard A t.trigger = 0

RVariables : Context — P Variable

V¢ : Context ® RVariablesc = Uj.c yinterfuces ULi.variablerist |-variables

REwents : Context — P Events

V¢ : Context ® REventsc = U;.c.rinterfaces 1-€VeNts
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Variables : Context — P Variable

Y ¢ : Context ® Variables c = \J}.qm variableList L-variables

WF_StateMachineDef; : P StateMachineDef

Y stm : StateMachineDef o stm € WF_StateMachineDef; <

( Vx,y : Variablesstm | x # y @ x.name # y.name A )

Yx,y: i.events | x #y ® x.name # y.name

WF_StateMachineDefs : P StateMachineDef

V stm : StateMachineDef o stm € WF_StateMachineDefs <

( Y x : Variablesstm | x ¢ RVariables stm A )

WF_StateMachineDefy : P StateMachineDef

V stm : StateMachineDef o stm € WF_StateMachineDef, <

inputE (stm) N outputE(stm) = 0O

inputE : StateMachineDef — P Event

Y stm : StateMachineDef o
inputE stm = {e : Event @ At : Trigger | t € triggersstm o e = t.event}

outputE : StateMachineDef — P Event

Y stm : StateMachineDef o

outputE stm = {e : Event @ s : SendEvent | s € statementsstm o e = s.event}

triggers : NodeContainer — P Trigger

V 1 : NodeContainer o

triggersn =t : Transition | t € n.Transitions ® t.t71gger U | . nodes 1718ETS X
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statements : NodeContainer — P Statement

stms : Statement — P Statement

V¥ nc : NodeContainer o
statements nc = (if nc € State then U ,.,c actions Sts a.statement else {})
U U ne.nodes Statements n

Vs : Statement o

stmss = (if s € SeqStatement then ., qaremenss Stms x else {s})

States

C) A state has similar well-formedness conditions to State-Machines when it has substates.

WF_Statey : P State

Vs : State o s € WF_State; &
s.nodes ) =
Ay n : Initial e (n € stm.nodes N

3y ¢ : Transition | t € stm.transitions e t.source = n A t.guard A t.trigger = 0

Additionally, it has at most one of each type of action.

WF_Statey : P State

Vs : State o s € WF_Statey &
#{a : s.actions | a € EntryAction} < 1 A
#{a : s.actions | a € DuringAction} < 1 A

#la : s.actions | a € ExitAction} < 1

Initial nodes

An initial node does not have incoming transitions. Additionally, it contains at least

one outgoing transitions and the guards of the outgoing transitions form a cover.

39



WF_Initials : P Initial

Vi : Initial e i € WF_Initial,
= At : Transition | t.target =1 A

#{t : Transition | t.source = 1} > 0 A

V {t : Transition | t.source = i ® t.guard}

Junction node

A junction node must contain at least one outgoing transition, and the disjunction of

the transition’s guards is true.

WF_Junctions : P Junction

V] : Junction e j € WF_Junctiony &
#{t : Transition | t.source =j} > 0 A
#{t : Transition | t.target =7} > 0 A

V {t : Transition | t.source =] ® t.guard)

Final states

@ An final node does not have outgoing transitions.

WFE_Finals : P Final

Vf : Final o f € WF_Finaly &
= At : Transition | t.source = f A
#{t : Transition | t.target = f} > 0 A

Transitions

; Only transitions starting in a state can have triggers, and the ends of a transitions must

belong to the same container.
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WF_Transition, : P Transition

|

-

‘ Yt : Transition e t € WF_Transition|
‘ #t.trigger > 0 = t.source € State

WF_Transitions : P Transition

L

-

‘ YVt : Transition e t € WF_Transitiony <

‘ 3y nc : NodeContainer o t.sonrce € nc.nodes A t.target € nc.nodes

3.1.3 Controllers

O<g A controller has at least one state-machine.

WFE_Controller, : P Controller

‘ Y ¢ : Controller o c € WE_Controller;
‘ #c.nodes > 0

Controller Connection

; There are no well-formedness conditions associated with controller connection

yet.

3.1.4 Modules

A module has exactly one robotic platform and at least one controller.

WFE_Module, : P Module

YV m : Module @ m € WF_Module,
#{n : m.nodes | n € RoboticPlatform} =1 A
#{n : m.nodes | n € Controller} > 0

Module Connection
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; There are no well-formedness conditions associated with module connection yet.

3.1.5 Statements

There are no well-formedness conditions associated with statements yet.

3.1.6 Expressions

There are no well-formedness conditions associated with expressions yet.

3.1.7 Type Declaration

There are no well-formedness conditions associated with type declarations yet.

Primitive Types

r | ! There are no well-formedness conditions associated with primitive types yet.

Datatypes

o—o

D There are no well-formedness conditions associated with datatype yet.
L=V

There are no well-formedness conditions associated with field yet.

Enumeration

There are no well-formedness conditions associated with enumerations yet.

3.1.8 Type Constructors

There are no well-formedness conditions associated with type constructors yet.
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3.2 Timed Language

Clock

@ There are no well-formedness conditions associated with clocks yet.

Timed Statements

There are no well-formedness conditions associated with timed statements yet.

Timed Expressions

There are no well-formedness conditions associated with timed expressions yet.
Timed Triggers

There are no well-formedness conditions associated with timed triggers yet.
3.3 Probabilistic Language

3.3.1 Probabilistic Junction

There are no well-formedness conditions associated with probabilistic junctions

yet.

3.3.2 Probabilistic Transition

There are no well-formedness conditions associated with probabilistic transitions yet.
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3.4 Hybrid Language

3.5 Tool Support
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CHAPTER 4

Semantics

4.1 Behavioural semantics and verification

To support the verification of models and the generation of sound simulations, we give
RoboChart a formal semantics. In this section, we discuss the semantics of the core RoboChart
notation (Section [4.1.1)) and its use for verification (Section[4.1.2). As already mentioned, our
formalisation relies on the UTP framework, and on its expressiveness to cater for time and
probability in an integrated way. On the other hand, for the core notation, CSP provides the

ideal level of abstraction and support for validation via model checking.

4.1.1 CSP semantics

The semantics of a module is given by the parallel composition of the processes that define the
semantics of its controllers interacting according to the connections in the module. We show
below the semantics of ChemicalDetector, in terms of processes for the controllers LightC
and DetectAndFlagC.

ChemicalDetector = (Controllers
[{activate, flagged |||
Buffer(flagged, activate/in, out)) \ |{activate, flagged|)|

Controllers = LightC[lightOn, light Off | lon, [off |

f
DetectAndFlagClL, r, alarm/left, right, found)

Synchronous interactions such as the one between events lon and lightOn are modelled by
renaming the events of the controller to those of the robotic platform. On the other hand,
asynchronous interaction such as that between activate and flagged is realised via a buffer that

runs in parallel (|[..]]) with the controllers, synchronising on these events. The occurrences of
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flagged are inputs to the buffer, whose outputs are activate events. These events are hidden (\).

The visible interactions of the system are the events of the robotic platform only.

The semantics of a controller is the parallel composition of the semantics of its main state
machines, not including those that define operations, again, interacting according to their
connections. This semantics is similar to that of a module, except that the components are

the processes that model state machines.

A state machine specifies a sequential control flow hierarchically. Its semantics is the parallel
composition of a process States, which models each of the states, with a process Initial Transitions,
which describes the transition to the initial state. Below, we show the semantics of DetectAnd-
Flag.

DetectAndFlag =
(Initial Transitions || EnterExitChannels]| States) \ (X \ Events)

Initial Transitions =
enter.DetectAndFlag.Detect — entered.DetectAndFlag.Detect — SKIP

The CSP channels used to model the control flow of a state activation and deactivation are
enter, entered, exit and existed. Events using these channels model the beginning and end of
the actions of entering and exiting a state. Each of them takes two parameters: the state that
requested the action to start and the target of the request. For instance, in Initial Transitions,

the state machine itself requests the activation of the state Detect.

A process like Detect or Flag that models a state s does so in a compositional way, captur-
ing only information about s itself, irrespective of the context (parent state or state machine)
where it occurs. Such a process first offers events enter to request and then entered to acknowl-
edge entry to s, and then offers a choice of events that trigger its transitions, including those of
its substates, and any other transitions that might be available for its parents (which, if taken,
also lead to an exit of s). When any of the transition events is chosen, then the exit and exited

events to request and acknowledge exit are offered.

We note that the state is not aware of the transitions of its parents and, therefore, accepts
any of them. In the definition of the process for a parent state or for the state machine, the
available choices are further restricted. Only the transitions associated with the ancestor states

are feasible.
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At the top level, States composes in parallel restricted versions of processes for the top states;
in our example, versions DetectR and FlagR of Detect and Flag. Because there are no parent
states, the transition events enabled are those for their own transitions (that trigged by £, the
final transition, and that with condition reached for Detect, and just the silent transition for
Flag).

States =
DetectR | {lenter.x.y, entered.x.y, exit.x.y, exited.x.y | x, y : {Detect, Flag} |
FlagR
\ {lenter.x.y, exit.x.y, exited.x.y | x,y : {Detect, Flag}|}

The processes synchronise on their common activation and deactivation events. For instance,
the event enter.Detect.Flag is in the synchronisation set, indicating that Detect may request the
activation of Flag, but enter.DetectAndFlag.Flag is not in the synchronisation set, because it in-
volves the state machine and Flag, but not Detect. In other words, synchronisation establishes

the flow of activation and deactivation of the states at the same level.

In the parallelism that defines a state machine, like DetectAndFlag above, the possibility of
entering a state different from the initial state is blocked. To recall, States offers the possibility
of entering (Detect or Flag), and later exiting the states. All these events are included in the set
EnterExitChannels. So, Initial Transitions defines exactly which state is entered. The machine
terminates if it reaches a final state, but it does not require that state to exit. So, an event
like exit.SM.S, where SM is the state-machine identifier is not possible. Instead, if a machine

terminates, a special event terminated is raised.

Finally, we hide all CSP events (set X), except those in the set Events, which represent events
in the RoboChart model itself. These are the only events visible in the semantics, although,

for verification, we may hide fewer events.

The CSP semantic models just described can be automatically generated for a RoboChart

model using our RoboTool described in Section ?2. The complete model for our example can

be found in Section

4.1.2 Verification

The automatically generated semantics outlined above, can be used for analysis and verifica-

tion using the FDR model-checker. We can, for example, establish determinism, and absence
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of divergence and deadlock. In our example, the DetectAndFlag state machine is very simple.
We are encouraged, however, because, although to give a compositional semantics, we use a
lot of extra events and parallelism, the use of the compression functions diamond and sbisim
(that preserve the semantics of the processes) radically optimises the analysis reducing the

number of states from thousands to just four as expected.

A second example of the kind analysis we can perform is the verification of assumptions about
the hardware controlled by the state machine. For instance, the rover can carry a limited
amount of flags. We have modelled this mechanism as a CSP process and used a refinement
to verify whether the controller satisfies this restriction of the hardware. As probably already
observed, it does not, and must be refined. In such a verification, FDR produces a counterex-
ample that pinpoints a scenario that break this assumption. This information can be used to

guide the redesign of the state machine.

As a final example, we can perform reachability analysis using FDR. For each state s of a state
machine, we can define a process by renaming events of the form entered.x.s to hasEntered.s,
and hiding all events except hasEntered.s. We can then verify that this process contains the
trace (hasEntered.s), and so s is entered at least once. We have applied this technique to a
modified version of our example where the variable reached is not updated. In this case, the

verification correctly points out that the state Flag is unreachable.

No doubt, further evaluation is necessary to gauge the effectiveness of model checking RoboChart
semantic models. We are, however, encouraged by the results with compression, which are
related to the structure of the models, and have the possibility of exploring theorem proving
using the UTP theory for CSP.

4.1.3 Complete Semantics of DetectAndFlag

In this section, we present and explain the complete model of the state-machine DetectAndFlag
shown in Figure[2.3] As briefly described in Section4.1]this model is a denotational semantics
of RoboChart state-machines specified in CSP where parallelism is used mainly to conjoin
requirements. The behaviour of each state is specified as a CSP process, and these processes
are composed in parallel to formalise the behaviours of composite state and the state-machine

itself.

nat = {1,2,3}

nametype ID = Seq(Char)

48



FINAL = " final "
channel terminate

channel enter, entered: ID.ID
channel exit, exited: ID.ID

transparent chase
external prioritise
transparent diamond

transparent sbisim
sbdia(P) = sbisim (diamond(P))

channel not deadlocked

channel internal : ID
nametype Vector = (nat,nat)
nametype boolean = {True, False}

channel event f: ID.Vector

channel f: Vector

InterruptsBut(ids) = {| internal .x, event f.x | x <— diff(TIDS,ids) |}
Interrupts(id) = {| internal .id, event f.id |}
InterruptsOf(ids) = {| internal .x, event f.x | x <— ids |}

nametype IDS = {"DetectAndFlag", "Detect", "Searching", "Approach", "Flag"}
nametype TIDS = {"t¢1", "t2", "t3", "t4"}

tl = "¢l"
t2 = "t2"
t3 = "t3"
t4 = "t4"
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channel set position, get position: Vector

channel set reached, get reached: boolean
channel cmove, walk, drop

DropFlag = drop —> SKIP

RandomWalk = walk —> SKIP

move(x,y) = cmove —> SKIP

Flag = enter?x:diff (IDS,{" Flag"})!" Flag" —> (

(
(DropFlag; entered!x!" Flag" —> SKIP);
(STOP/\(
internal .tl —> enter!" Flag"!" Detect" —=> entered!" Flag"!" Detect" —>
[1 ([] e: InterruptsBut({tl}) @ e —> exit?x:diff (IDS,{" Flag"})!"Flag"
(exited!x!"Flag" —> SKIP))
)
)
); Flag

Searching = enter?x:diff (IDS,{" Searching"})!" Searching" —> (
(
(entered!x!" Searching" —> SKIP);
(RandomWalk ; STOP /\ (
event f.t2?position —> set_position!position —>
enter!" Searching "!" Approach" —>
entered!" Searching "!" Approach" —> SKIP
[1 ([]1 e: InterruptsBut({t2}) @ ¢ —>
exit?x: diff (IDS,{" Searching"})!" Searching" —>

(exited!x!" Searching" —> SKIP))

)

)
); Searching

Approach = enter?x:diff (IDS,{" Approach"})!" Approach" —> (
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(get_position?p —> move(p,5); entered!x!" Approach" —> SKIP);
(STOP/\(
internal _ .t3 —> set_reached!True —> Final
[1 ([] e: InterruptsBut({t3}) @ ¢ —>
exit?x: diff (IDS,{" Approach"})!" Approach" —>
(exited!x!" Approach" —> SKIP))
)

)
); Approach

Final = ([] e: InterruptsBut({t3}) @ e —>
exit?x: diff (IDS,{FINAL})!FINAL —>
(exited !x!FINAL —> SKIP))

DetectAux = enter?x: diff (IDS,{" Detect"})!" Detect" —> (

Vl'll

set_reached!False —> enter!" Detect Searching" —>

entered!" Detect "!" Searching" —> entered!x!" Detect" —> SKIP
);
(STOP/\(
internal _.t4 —=> exit!"Detect"?y:{" Searching"," Approach", FINAL} —>
exited!" Detect"!y —> enter!" Detect"!" Flag" —>
entered!" Detect "!" Flag" —> SKIP
[]
([] e: InterruptsBut({t2,t3,t4}) @ ¢ —>
exit?x: diff (IDS,{" Detect "})!" Detect" —>
exit!" Detect"?y:{" Searching"," Approach", FINAL} —>
exited!" Detect"!y —> exited!x!"Detect" —> SKIP)
)); DetectAux

SearchingR = Searching
[| diff (union(Interrupts(t2),Interrupts(t3)),{]|event f.t2]})]|]
SKIP

ApproachR = Approach
[| diff (union(Interrupts(t2),Interrupts(t3)),{| internal .t3|}|]
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SKIP

DetectSubStates = (
SearchingR
[|{|enter.x.y, entered.x.y, exit.x.y, exited.x.y |
x <— {"Searching"," Approach" ,FINAL},
y <— {"Searching"," Approach" ,FINAL}|}|]
ApproachR)
)\{| enter.x.y, exit.x.y, exited.x.y |
x <— {"Searching"," Approach"},
y <— {"Searching"," Approach"}|}

Detect =
(
DetectAux
[
union(diff (InterruptsBut ({}),{|event f.t2 ,internal .t3]|}),
{| enter.y.x, entered.y.x, exit.y.x, exited.y.x |
x <— {"Searching"," Approach" ,FINAL},
y <— diff (IDS,{" Searching"," Approach" ,FINAL})|})
]
DetectSubStates

)\{| enter." Detect".x, exit."Detect".x, exited." Detect".x
x <— {"Searching"," Approach" ,FINAL} |}

Machine = enter." DetectAndFlag"." Detect" —> entered."DetectAndFlag"." Detect"

[

{| enter.x.y,entered.x.y, exit.x.y,exited.x.y|
x<-diff (IDS,{" Detect","Flag"}),
y<—-{"Detect","Flag"}|}

| ]
MachineSubStates

DetectR = Detect
[| diff (InterruptsOf({tl,t2,t3,t4}),
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{|internal _.t4, event f.t2, internal .t3]})]|]

SKIP

FlagR = Flag
[| diff (InterruptsOf({tl,t2,t3,t4}),{|internal _.t1|})]|]
SKIP

MachineSubStates = (
DetectR
[|{|enter.x.y, entered.x.y, exit.x.y, exited.x.y |
x <— {"Detect","Flag"},
y <— {"Detect","Flag"}|}|]
FlagR
)\{| enter.x.y, exit.x.y, exited.x.y |
x <— {"Detect","Flag"}, y <- {"Detect","Flag"}|}

DetectAndFlagForReachability =

(((
Machine\{| enter.x.y, exit.x.y, exited.x.y|x<-IDS,y<—-{"Detect","Flag"}|}
[|{] get_position ,get reached,set position ,set reached ,internal .t4|}]|]
Memory ((1,1), false)

J[[event f.x <— f | x <— TIDS]])

\{| get_position ,get reached,set position,set_reached,internal .x|x<-TIDS]|})

DetectAndFlag = DetectAndFlagForReachability \{| entered .x.y|x<-IDS,y<-IDS|}

Memory( position ,reached) =

get_position!position —> Memory(position ,reached)

[]

get_reached!reached —> Memory(position ,reached)

[]

set_position?x —> Memory(x, reached)

[]

set_reached?x —> Memory(position ,x)

[]
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(reached)&internal .t4 —> Memory(position ,reached)

The properties discussed in Section can be verified using the following assertions.

The limitation of the DropFlag mechanism that only two flags can be dropped during the exe-
cution of the robots is specified by the abstract models AbstractSpecificationl and AbstractSpecification?2.
These processes model the behaviour where any events can happen any number of times, ex-
cept for the event drop that can only happen twice; the first process is used to verify the
property under the traces model, whilst the second is used for verification in the failures-

divergences model.

assert sbdia(DetectAndFlag) :[ deterministic [FD]]
assert sbdia(DetectAndFlag) :[ deadlock—free [FD]]
assert sbdia(DetectAndFlag) :[divergence—free [FD]]

Trace = walk —> {.(2,2) => cmove —> drop —> Trace

AbstractSpecificationl =

Run({|f,cmove,walk |});

drop —> Run({|f,cmove,walk |}); drop —> Run({|f,cmove, walk|})
AbstractSpecification2 =

Chaos({| f,cmove,walk | });

drop —> Chaos({|f,cmove,walk | }); drop —> Chaos({|f,cmove,walk|})

Run(events) = [] e: events @ e —> Run(events) [] SKIP
N

Chaos(events)= | e: events @ e —> Chaos(events) |~ | SKIP

assert sbdia(AbstractSpecificationl) [T= sbdia(DetectAndFlag)
assert sbdia( AbstractSpecification2) [FD= sbdia(DetectAndFlag)

channel hasEntered: IDS
DetectAndFlagReachability(s) =
(sbdia(DetectAndFlagForReachability )[[ entered.x.y<-hasEntered.y|x<-IDS,y<-IDS

\{|f,walk,cmove,drop, hasEntered.x|x<-diff (IDS,{s})|}

assert DetectAndFlagReachability ("Approach") :[ has trace]: <hasEntered." Appro
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assert DetectAndFlagReachability ("Searching") :[ has trace]: <hasEntered." Sear
assert DetectAndFlagReachability ("Detect") :[ has trace]: <hasEntered."Detect"
assert DetectAndFlagReachability ("Flag") :[ has trace]: <hasEntered." Flag">

assert DetectAndFlag :[ deterministic [FD]]

4.2 Detailed Semantics: Core Language

4.2.1 Robotic Platforms

@D At this stage, a robotic platform has not special meaning; it only contributes to the

validation of modules.

Interfaces

[:) Similarly to robotic platforms, interfaces are used to constraints the valid specifications

and guarantee definedness of variables, operations and events.

VariableList

VariableLists and Variables contribute to the declaration of channels and the construc-
tion of the memory process. This is necessary because variables can be shared between parallel
components (e.g., controllers and state-machines), but also between sequential components

modelled in parallel (e.g., states).

val variables = new LinkedList<Variable>()

val transitions = if (stm instanceof StateMachineBody)
(stm as StateMachineBody).allTransitions

else (new LinkedList<Transition>)

if (stm instanceof OperationDef)

variables.addAll (stm.parameters)
variables.addAll(stm.allVariables)

22

Memory_«stm.id»«stm.memoryParameterisationy =

«IF stm.allVariables.size == 0 && transitions.size == 0» []<«ELSE»
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(

«IF stm.allVariables.size > O»

«FOR v: stm.allVariables SEPARATOR ’\n []’»
«getter_setter(v,stm.allVariables,stm)>»
<ENDFQOR>»

«ENDIF»

«IF stm.allVariables.size > 0 && transitions.size > 0» []<ENDIF»
«FOR t: transitions SEPARATOR ’\n []’»
«t.memory_transition(stm)»

«ENDFOR>»

)

«ENDIF»

)0

4.2.2 State-Machines

The semantics of state-machines is given by the method compile on values of type
ModuleNode. Whist this method could in principle be applied to controllers as well, it
would return an empty string. The semantics of controllers is given by a method compile that

targets controllers directly.

def dispatch compile(ModuleNode node) {

val stm = if (node instanceof StateMachineBody)
(node as StateMachineBody) else null

if (stm == null) return ""

)0

channel «id(stm)»_internal__: «id(stm)»_TIDS

channel «id(stm)»_enter, «id(stm)y_entered: «id(stm)»_SIDS.«id(stm)>»_SIDS
channel «id(stm)»_exit,«id(stm)y_exited: «id(stm)»_SIDS.«id(stm)»_SIDS

«FOR v: stm.allVariables»
channel get_«v.id», set_«v.id»: «v.type.compile»

«ENDFOR>»

-- declaring identifiers of state and final states
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«id(stm)»_SIDS = {
"¢id(stm)»"«IF stm.eAllContents.
filter[olo instanceof State || o instanceof Final].size > 0»,«ENDIF»
«FOR s : stm.eAllContents.
filter[olo instanceof State || o instanceof Final].toIterable SEPARATOR ’,’»
"¢id(s)»"
<ENDFQOR>»
}

-- declaring identifiers of transitions
«id(stm)>»_TIDS = {

"__NULLTRANSITION__"«FOR s : stm.allTransitionsy,
"«id(s)»"<«ENDFOR>»

+

-- declaring state machine events

«FOR e : getEvents(node)»

:«id(stm)»_TIDS

«IF e.type != null && e.type instanceof TypeRef».«e.type.compile»«ENDIF»

channel <«id(e)»__
channel «id(e)»
«IF e.type != null && e.type instanceof TypeRef»:«e.type.compile»<«ENDIF»
«ENDFOR»

-- declaring all states

«FOR s : stm.eAllContents.filter(State).tolterabley
«IF s.eContainer instanceof NodeContainery»
«s.substatesCS(s.eContainer as NodeContainer)y
<ENDIF>»

«IF (s as NodeContainer) .nodes.size > O»

«(s as NodeContainer).internallnterrupts»

«(s as NodeContainer).internalTriggers0f»

«(s as NodeContainer).compileComposites
«ENDIF>»
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«s.triggersOf»
«s.compile»
«ENDFOR»

«FOR 1 : stm.eAllContents.filter(Initial).toIterabley
«i.compile»
<«ENDFOR»

«FOR t : stm.eAllContents.filter[t]|

t instanceof Transition && (

(t as Transition).source instanceof State ||
(t as Transition).source instanceof Initial
)

1.toIterable»

«(t as Transition).compile»

«<ENDFQOR>»

«stm.internalInterrupts»
«stm.compileCompositey»

-- mMemory process

«Stm.memory>»

-- main process
«stm.idy«node.parameterisationy = (STM_«stm.id»«node.parameterisationy
[lunion(

«get_set_channels(stm)>»,
«event_channels(stm)»

)11
Memory_«stm.id»«node.memoryInstantiation»

)« (stm as StateMachineBody) .stateMachineRenaming»\«get_set_channels(stm)»

22

b

States
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[:] The semantics of states distinguishes between simple and composite states. In the case
of composite states, additional semantic functions are used to compose the substates and the

container state.

def dispatch compile(State state)
P
«IF state.nodes.size == 0»S_<id(state)»
<ELSE»S_«id(state)>»_aux
«ENDIF»
«state.moduleNode.parameterisationy = «enterState(state)y;
(«state.duringActiony; STOP /\ (
«FOR t : state.transitionsFrom SEPARATOR °[]1’»
T_«id(t)»«state.moduleNode.parameterisations
«ENDFOR>»
«IF state.transitionsFrom.size > O»[]<ENDIF»
«id(state.moduleNode)»_internal__7x:

diff («id(state.moduleNode)»_TIDS,«getTransitionIDS(state)») ->

«exitState(state)»

«FOR e : getEvents(state.moduleNode)»
[l «id(e)»__7?x:diff(«id(state.moduleNode)»_TIDS,«getTransitionIDS(state)>)
«IF e.type != null»?x__<ENDIF» -> «exitState(state)»
«ENDFOR>»
)5
«IF state.nodes.size == 0»S_<id(state)»
«ELSE»S_«id(state)»_aux
«ENDIF»

«state.moduleNode.parameterisationy»

22

def dispatch compileComposite(State node)

9

«FOR s : node.nodes.filter(State)>

S_«id(s)»_R«s.moduleNode.parameterisationy =
S_«id(s) v«s.moduleNode.parameterisations
[ldiff(«id(node)»_int_int,«s.idy_triggers)|]
SKIP
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«ENDFOR»
S_<«id(node) y«node.moduleNode.parameterisationy =
(S_«id(node)»_aux«node.moduleNode.parameterisation»
[lunion(diff («node.moduleNode.id»_int_int, «node.id»_int_triggers),
{l«id(node.moduleNode)»_enter.x.y,
«id(node.moduleNode)»_entered.x.y,
«id(node.moduleNode)»_exit.x.y,
«id(node.moduleNode)»_exited.x.y |
x <- diff(«id(node.moduleNode)»_SIDS,«node.substatesNoFinaly),
y <- «node.substates»
13 1]
«compileSubstates(node.nodes.filter(State))>»
)\{l«id(node.moduleNode)s_enter.x.y,
«id(node.moduleNode)>»_entered.x.y,
«id(node.moduleNode)»_exit.x.y,
«id(node.moduleNode)»_exited.x.y |
x <- diff(«id(node.moduleNode)>»_SIDS,«node.substatesy),

y <- <node.substates»

By

def dispatch compileTarget(State tgt, NodeContainer origin) {

)20

«id(origin.moduleNode)»_enter!"«id(origin)»"!"«id(tgt)»" ->

«id(origin.moduleNode)»_entered!"«id(origin)»"!"«id(tgt)»" -> SKIP

22

¥

Initial nodes

a Initial nodes are part of a state or state-machine. The semantic function produces an

action which is used as part of the semantics of its container.

def dispatch compile(Initial i) {

val parent = i.eContainer
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7297 _«id (i) »«i.moduleNode.parameterisationy =

«IF i.transitionsFrom.size == 0»SKIP
«ELSE»T_«i.transitionsFrom.get(0) .id»«i.moduleNode.parameterisationy
«ENDIF»?’??

}

Junction node

Since the semantics of transitions cover the whole path from an initial node or regular

state to a final or regular state, junction nodes are only trated as targets of transitions.

def dispatch compileTarget(Junction j, NodeContainer origin) {
if (j.transitionsFrom.size == 0) {
72I8KIP? 2

} else {

val vars = new HashSet<Variable>()

for (¢t : j.transitionsFrom) {
vars.addAll(tt.condition.usedV)

¥

val choice = *??

«FOR t : j.transitionsFrom SEPARATOR ’[]’»
(«t.compileTransition(origin)s)

«ENDFOR>»

22

readState(vars, choice)
}
T

Final states

@ Final states are also only treated as targets of transitions.

def dispatch compileTarget(Final f, NodeContainer origin) {
??7¢id(origin.moduleNode) »_exit?x!"<id(£)»" ->

«id(origin.moduleNode)»_exited?x!"«id(f)»" -> SKIP’’’
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Transitions

; The semantics of transitions is given by Circus actions, which are used by the source

states (and initial nodes) and ultimately includes all the transitions in a path.

def compileTransition(Transition t, NodeContainer origin) {
val src = t.source

val tgt = t.target

if (src instanceof State) {

val e = t.trigger?.event

var trigger = ""

if (e !'= null) {

val stm

src.moduleNode
trigger = ’?’«id(e)»__
} else {

val stm = src.moduleNode

I"«id(t)»"<IF e.type != nulls»?x__<ENDIF»’’’

trigger = ?’’«id(stm)»_internal__!"<id(t)»"’??’

i

return ’’’«trigger» ->

«IF src.nodes.size > Ov«exitSubStates(src)»;«ENDIF»

«IF t.action != nully«t.action.compiley;<ENDIFs«tgt.compileTarget(src)s’’’
} else if (src instanceof Junction) {

?79«TIF t.condition != nulls(«t.condition.compiles)&«ENDIFs»
«IF t.action != nully«t.action.compiley;«ENDIF»
«tgt.compileTarget(origin)»’’’

} else if (src instanceof Initial) {

var NodeContainer parent = null

if (src.eContainer instanceof State)

parent = (src.eContainer as State)

else if (src.eContainer instanceof StateMachineDef)

parent = src.eContainer as StateMachineDef

else if (src.eContainer instanceof OperationDef)

parent = src.eContainer as OperationDef

else
throw new Exception("An initial node is not...")
Y1«¢IF t.action != null»«t.action.compile»;<«ENDIF»
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«tgt.compileTarget(parent)»’’’

4.2.3 Controllers

The semantics of a controller is the parallel composition of its state-machines with

channels appropriately synchronised and renamed according to the controller connections.

def compile(ControllerDef c)

19

-- declaring controller events

«FOR e: c.allEvents»

channel <«id(e)»

«IF e.type != null && e.type instanceof TypeRef»:«e.type.compiles><«ENDIF»
«ENDFOR>»

«c.idy = «c.composeStateMachines(c.machines,c.connections)y

22

def composeStateMachines(ControllerDef ctrl,
List<StateMachine> stms, List<CtrlConnection> connections) {

if (stms.size == 0) {

return "SKIP"

} else if (stms.size == 1) {

var stm = stms.get(0)

var s = if (stm instanceof StateMachineRef) (stm as StateMachineRef).ref.id

else stm.id

var open = false

for (c: connections) {

var ModuleNode other = null

var Event eorigin = null

var Event etarget = null

if (c.from == stm) {
other = c.to

eorigin = c.efrom
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etarget = c.eto

} else if (c.to == stm) {

other = c¢.from

eorigin = c.eto

etarget = c.efrom

b

if (other instanceof ControllerDef && eorigin != null &% etarget != null) {
if (lopen) {

s = ??27«s»[[«eorigin.idy <- <«etarget.id»’’’
open = true

by

else

s = 27«8y,

«eorigin.idy <- «etarget.id»’’’

+

+

if (open)

s = ?7«s»]]?7?

return s

} else {

val head

stms.head

val tail stms.tail

var s = if (head instanceof StateMachineRef) (head as StateMachineRef) .ref.id
else head.id

var chanset = new ArrayList<Event>()

var open = false

for (c: connections) {

var ModuleNode other = null

var Event eorigin = null

var Event etarget = null
if (c.from == head) {
other = c.to

eorigin = c.efrom

etarget = c.eto

64



} else if (c.to == head) {

other = c¢.from

eorigin = c.eto

etarget = c.efrom

¥

if (other != null && eorigin != null && etarget != null) {
if (lopen) {

if (!(other instanceof ControllerDef))
chanset.add(etarget)

s = ??27«s»[[«eorigin.idy <- <«etarget.id»’’’
open = true

+

else {

if (!(other instanceof ControllerDef))
chanset.add(etarget)

8 = ?77«¢sy,«eorigin.id» <- «etarget.id»’’’
¥

+

+

if (open) {

s = 27«s»]]’7?

¥

g = 2

(«s»
[I{I«FOR c: chansety«c.id»«ENDFOR»|}|]
«ctrl.composeStateMachines(tail.tolist,connections)») \ diff(
{|«FOR c: chanset»«c.id»«ENDFOR>|},
{|«FOR e: ctrl.allEvents SEPARATOR °’,’»«e.id»«ENDFOR»|}

return s
¥
+
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Controller Connection

; Controller connections are treated as part of the semantics of a controller. They

correspond to channel renamings.

4.2.4 Modules

def compile(Module m) {

val aux = m.nodes.filter(RoboticPlatform).get (0)

val rp = if (aux instanceof RoboticPlatformRef) aux.ref else aux as RoboticPlatformDef
19

-- declaring robotic platform events

«FOR e: rp.allEvents»

channel «id(e)»«IF e.type != null && e.type instanceof TypeRefs:«e.type.compiles<ENDIF»
«ENDFOR>»

«m.id» = «rp.composeControllers(m.nodes.filter(Controller).tolist,m.connections)»

22

¥

def composeControllers(RoboticPlatform rp, List<Controller> ctrls, List<ModuleConnection>

if (ctrls.size == 0) {

return "SKIP"

} else if (ctrls.size == 1) {

var ctrl = ctrls.get(0)

var s = if (ctrl instanceof ControllerRef) (ctrl as ControllerRef).ref.id
else ctrl.id

var open = false

for (c: connections) {

var ModuleNode other = null

var Event eorigin = null

var Event etarget = null

if (c.from == ctrl) {

other = c.to

eorigin = c.efrom

etarget = c.eto

66



} else if (c.to == ctrl) {
other = c.from

eorigin = c.eto

etarget c.efrom

by

if (other instanceof RoboticPlatform && eorigin != null && etarget != null) {
if (lopen) {

s = ??7«sy[[«eorigin.idy <- «etarget.id»’’’

open = true

¥

else

s = 72%s>,

«eorigin.idy <- «etarget.id»’’’

¥

+

if (open)

s = 7727¢s»]]??

return s
} else {
val head

val tail

ctrls.head

ctrls.tail

var s = if (head instanceof ControllerRef) (head as ControllerRef).ref.id
else head.id

var chanset = new ArrayList<Event>()

var open = false

for (c: connections) {

var ModuleNode other = null

null

var Event eorigin

var Event etarget = null
if (c.from == head) {
other = c.to

eorigin = c.efrom

etarget = c.eto

} else if (c.to == head) {
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other = c.from

eorigin = c.eto

etarget = c.efrom

b

if (other != null &% eorigin != null &% etarget != null) {
if (lopen) {

if (!(other instanceof RoboticPlatform)) {
chanset.add(etarget)

ks

s = ??27«s»[[«eorigin.idy <- <«etarget.id»’’’
open = true

+

else {

if (!(other instanceof RoboticPlatform)) {
chanset.add(etarget)

+

5 = ?2%«s»,«eorigin.id» <- «etarget.id»’’’

s

i
if (open) {
s = ”’<<S>>:|:|”’

by

val plat = (if (rp instanceof RoboticPlatformRef) rp.ref
else rp as RoboticPlatformDef)

g = 2
(«s»
[I{I«FOR c: chanset»«c.id>«ENDFOR>|3}|]
«rp.composeControllers(tail.tolist,connections)y) \ diff(
{|«FOR c: chanset»«c.id»«ENDFOR>»|},
{I«FOR e: plat.allEvents SEPARATOR ’,’s«e.id»><ENDFOR>|}
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return s
}
¥

Module Connection

; Module connections are treated as part of the semantics of a module. They correspond

to channel renamings.

4.2.5 Statements

def dispatch CharSequence compile(Statement s) {

if (s instanceof Assignment) {

val 1 = s.left

if (1 instanceof VarRef) {

val assign = ’’’set_«l.name.id»!«s.right.compile» -> SKIP’’’
val readandassign = readState(s.right.usedV,assign)

return readandassign

} else {

// Not dealing with datatypes, so no varselection, but we could
//encode datatypes in CSP using regular parameters and the name
//of the fields prefixed by the name of the variable

return "SKIP"

+

} else if (s instanceof Skip) {

return ’’’SKIP’?’

} else if (s instanceof Call) {

val op = s.member.definition

val args = s.args

var variables = new HashSet<Variable>

for (e: args) {

variables.addAll(e.usedV)

+

val call = ’’’0P_«op.id»<IF args.size > 0»(
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«FOR a:args SEPARATOR ’,’»«a.compile»«ENDFOR»
)<ENDIFy’?°
val readandcall = readState(variables,call)
return readandcall
} else if (s instanceof SeqStatement) {
var iterator = s.statements.iterator
if (iterator.hasNext) {
var ss = iterator.next.compile
while (iterator.hasNext) {
ss = ss+";"+iterator.next.compile
}
return ss
}
} else if (s instanceof SendEvent) {
val e = s.event
?7«¢e.idy -> SKIP’??
} else
72 2G8KIP???
}

4.2.6 Expressions

def dispatch CharSequence compile(Expression e) {
if (e instanceof BooleanExp) {
e.value
} else if (e instanceof IntegerExp) {
e.value.toString
} else if (e instanceof RefExp) {
var n = e.value
if (n instanceof Variable) {
n.name
} else if (n instanceof Constant) {
n.name
} else {
throw new Exception("Fields have not yet been implemented")

¥
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} else if (e instanceof GreaterThan) {
777 (¢e.left.compiley><e.right.compiles)’’’
} else if (e instanceof GreaterOrEqual) {
777 (¢e.left.compiley>=¢e.right.compiley)’?’’
} else if (e instanceof LessThan) {
777 (¢e.left.compiley<«e.right.compiles)’’’
} else if (e instanceof LessOrEqual) {
777 (¢e.left.compiley<=¢e.right.compiley)’?’’
} else if (e instanceof Equals) {
777 (¢e.left.compiley==¢e.right.compiley)’?’’
} else if (e instanceof Different) {
777 (¢e.left.compiley!=«e.right.compiley»)’?’’
} else if (e instanceof And) {
?77(¢e.left.compiley and «e.right.compiles)’’’
} else if (e instanceof Or) {
777 (¢e.left.compiley or «e.right.compiley)’?’’
} else if (e instanceof Implies) {
??7(not «e.left.compiley or «e.right.compiles)’’’
} else if (e instanceof Iff) {
777 ((not «e.left.compile» or «e.right.compiley)
and
(«e.left.compiley or not «e.right.compile»))’?’’
} else if (e instanceof Not) {
??7(not «e.exp.compiley’?’
} else if (e instanceof Plus) {
?77(«e.left.compiley + «e.right.compiley)’?’’
} else if (e instanceof Minus) {
?77(«e.left.compiley - «e.right.compiley)’’’
} else if (e instanceof Mult) {
?77(«e.left.compiley * «e.right.compiley)’’’
} else if (e instanceof Div) {
?77(«e.left.compiley / «e.right.compiley)’’’
} else if (e instanceof Modulus) {
777 («e.left.compiley % «e.right.compiles)’’’
} else if (e instanceof Neg) {

777 (-«<e.exp.compiley)’??’
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} else if (e instanceof Cat) {

~

?77 (¢e.left.compiley ~ «e.right.compiley)’’’
} else if (e instanceof ParExp) {

777 («e.exp.compiley)??’

4.2.7 Type Declaration

def dispatch compile(TypeDecl t) {
if (t.name.equals("int"))
’?'nametype int = {-<«N»..<N»}’?’
else if (t.name.equals("nat"))
’?’nametype nat = {0..<Ns}’??

else if (t.name.equals("string"))
’?’nametype string = Seq(Char)’’’
else if (t.name.equals("boolean"))
’?nametype boolean = Bool’’’

else

’?nametype «t.namey = {1}’??

b

Primitive Types

r |' The semantics of primitive types has not yet been defined

Datatypes

o—o

The semantics of datatypes has not yet been defined
D,

F The semantics of fields has not yet been defined.
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Enumeration

The semantics of enumerations has not yet been defined

4.2.8 Type Constructors

def dispatch CharSequence compile(Type t) {
if (¢t instanceof ProductType) {

var CharSequence aux = null

val iter = t.types.iterator

if (iter.hasNext) {

val type = iter.next

aux = type.compile

¥

while (iter.hasNext) {

val type = iter.next

aux = aux+’.’+type.compile

¥

return aux

} else if (t instanceof SetType) {
return ’’’Set(«t.domain.compiles)’’’
} else if (t instanceof SeqType) {
return ’’’Seq(«t.domain.compiles)’’’
} else if (t instanceof TypeRef)
t.ref.name

else

"Object"

by

4.3 Detailed Semantics: Timed Language

Clock
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@ The semantics of clocks has not yet been defined.

Timed Statements

The semantics of timed statements has not yet been defined.

Timed Expressions

The semantics of timed expressions has not yet been defined.

Timed Triggers

The semantics of timed triggers has not yet been defined.

4.4 Detailed Semantics: Probabilistic Language

4.4.1 Probabilistic Junction

® The semantics of probabilistic junctions has not yet been defined.

4.4.2 Probabilistic Transition

The semantics of probabilistic transitions has not yet been defined.

4.5 Detailed Semantics: Hybrid Language

4.6 Tool Support
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MoveBackward TurnRight

Jif -0 then vx = x; w = 0; vy = 0 else skip end fifx<0 then v.x = x; w = 0; vy = D else skip end fifz<0 then w =z; v = | else skip end

MoveLefl WoveRight
ary: real

Jify<0 then vy := y; w = 0; v = 0 else skip end AFy>0 then v.y = y;w = 0; v.x = O else skip end >0 then w =2 v =1 else skip end

W=z =] w=0;v=0

Figure 5.1: An example of API defining the movement of a robot moving in a 2D environ-
ment.

CHAPTER 5

API

In this chapter, we describe the API in more details. The purpose of the API is to provide a
library of generic operations that are useful across a variety of robotic applications and plat-
forms. Some operations are primitive, while others are composite. The composite operations
can be implemented by a set of primitive operations. The API is organized by type of robots
(e.g. wheeled robots, flying robots, and so on) and equipment (e.g. camera, infrared sensors).

The operations also accept inputs such as the speed of the robot.

For example, in the operation MoveForward, the linear speed of the robot is set if it is positive
and the angular speed will be set to 0. Other operations related with the movement of a 2D
robot are shown in Figure

Some operations such as MoveUp, MoveDown, Rol1/Pitch are included in the API of flying

robots. For humanoid robots, the specific operations include Lean, StandUp and FallDown.
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For a composite operation such as ObstacleAvoidance, the robot needs to decide how to
move depending on the position of the obstacle. ObstacleAvoidance can be realized using
different sensors such as camera or infrared sensors. Note that although we define the oper-
ations in the API in an abstract way, the implementation of a particular operation is related

with one robotic platform.

The API can be extended in the tool.
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CHAPTER 6

Simulation
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CHAPTER 7

Examples

7.1 Core Language
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ChemicalDetector

alarm  Rover

X d:Vector liah
X sreal IghtOn

o3 ref DetectAndFlagC
oref g O move(v: Vector, speed: real): void

0 LoadFlag(): void lightO
O ReleaseFlag(): void

¢ ref LightController

found

right]
[ |
flagged| |
| async

Figure 7.1: Module of the simplified chemical detector

7.1.1 Chemical Detector - Simplified

This example is a simplified version of the chemical detector presented in [?]. It abstracts
away the particular detection algorithm that is the focus of the paper and focus on the other

aspect such as architecture, locomotion, battery monitoring etc.

7.1.2 Chemical Detector - Complete

This example is an accurate model of the chemical detector presented in [?].
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ﬂagged[}

¢ DetectAndFlagC

®DF |

0 DropFlag(): void

Ddone

o /LoadFlag() . /ReleaseFlag() . /send done ®

O ref RandomWalk(): void

right

left

£2 DetectAndFlag

X position: Vector
Xreached: boolean

/reached = false

o Flag [reached]
entry DropFlag()
Detect
f7position Approach /reached = true

Searching

during RandomWalk()

entry move(position, 5)

®

Figure 7.2: Detect and Flag Controller

£2 DetectAndFlag

[Ch}

Xposition:Vector; w:time; battery:nat; reached:boolean
TChase:Vector

]

=

Flag
entry DropFlag() <{5}

[reached]

eor|_|

Detect

®

/reached = true

Approach

entry move(position, 5)

f?position @w/battery = Discharge(battery, w)
Searching

during Randomwalk()

#T

Charging

entry wait (10); battery = 1000

freached = false

[battery> PowerTo(position)] .[battery< = PowerTo(position)] .[battery< PowerTo(base)]
[since(T)> =10]/battery = Discharge(battery, 10)

[battery> = PowerTo(base)]

Error

entry send error

MovingToBase

entry move(base, 5)

Figure 7.3: Detect and Flag with time
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¢ LightController
loff loff £3Lights lon lon
| L Rescued
o Rest entry send lon
. exit send loff
activate r T
[sinceEntry(Rescued)==5]
Figure 7.4: Light controller
0 RandomWalk(): void
® RandomWalkl
X s: Scenarios
Xa: Actions ?

X M: Scenarios*Actions-> real
X1 boolean

left

right

[rl/update(s, a, true)

LookLeft

[not r]/update(s, a, false)

LookRight1

right.On/s = WB right.Off/s = WL right.On/s = WR right.Off/s = NW

LookRight2

Action

p{MIs,s]l/a = BF. r = WheelC(BF)

!

p{M[s;sli/a = BB; r = WheelC(BB)

pi{MIs,sl}/a = FF; r = WheelC(FF)

p{M[s;sl}/a = FB; r = WheelC(FB)

Figure 7.5: Random Walk Operation
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7.2 Timed Language
7.3 Probabilistic Language
7.4 Hybrid Language

7.5 Tool Support
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CHAPTER $§

Conclusions

We have presented here, RoboChart, a new notation for modelling of robots. It is based
on UML state machines, but includes the notions of robotic platform and controller, syn-
chronous and asynchronous communications, an API of operations common to autonomous
and mobile robots, a well defined action language, pre and postconditions, and time and prob-

ability primitives.

We have described a semantics for the core constructs of RoboChart. It uses CSP, but we
envisage its extension to use Circus [4]], a process algebra that combines Z [29] and CSP, and
includes time constructs [28]]. We can already reason about untimed and non-probabilistic
robotic systems [[10]. Use of Circus and its UTP foundation will enable use of theorem
proving as well as model checking. Work on probability is available in the UTP [31]], but we

will pursue an encoding of Markov decision processes in the UTP.

An approach for writing object-oriented simulations of RoboChart diagrams has also been
defined. Automatic generation of simulations is possible and part of our future work. Verifi-
cation of correctness of simulations will use the object-oriented version of Circus [5], with a

semantics given by the UTP theory in [30].

Finally, we have presented RoboTool, a user friendly tool for modelling and verification of
core RoboChart diagrams. Extensions of RoboTool will support the timed and probabilistic

primitives, and automatic generation of simulations.

RoboChart itself misses support for modelling the environment and the robotic platforms in
model detail. It is also in our plans to take inspiration from hybrid automata [[12]] to extend

the notation, and from the UTP model of continuous variables [[9] to define the semantics.
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8.1 Related work

Another graphical domain-specific language for robotics is presented in [[7]]. It also aims to sup-
port design modelling and automatic generation of platform-independent code. It was defined
as a UML profile. Model-based engineering of robotic systems is also advocated in [24], where
a component-based framework that uses UML to develop robotics software is presented. In
contrast, RoboChart is a small language, with a well defined semantics to support sound gen-
eration of formal models as well as simulations. It is a generic domain-specific language for

designing and verifying the robot controllers.

There are a multitude of models for UML state machines. Kuske ez al. [[16] gave an integrated
semantics for UML class, object, and state-machine diagrams using graph transformation.
Rasch and Wehrheim [22] presented integrated semantics in CSP for (extended) class dia-
grams and state machines. Davies and Crichton [6]] described CSP models for UML class,
object, statechart, sequence and collaboration diagrams. Broy et al. [3]] presented one of the
first foundational semantics for a subset of UML2. Similarly, our semantics gives a precise
characterisation of state machines and is close to [22]] and [6] in our use of CSP. Our state ma-
chines, however, do not include components like history junctions and inter-level transitions

to enable a compositional semantics.

UML has a simple notion of time. Its profile UML-MARTE [27] supports logical, discrete
and continuous time through the notion of clocks. Complex constraints may be specified
using CCSL (Clock Constraint Specification Language). Specification of time budgets and
deadlines is focused on particular instances of behaviour specified through sequence and time

diagrams. It is not possible to define timed constraints in terms of transitions and states.

UML-RT [26]], an extension to UML, includes the notion of capsules, which encapsulate state
machines; communication between capsules takes place through ports, whose valid commu-
nications are defined by protocols. A timing protocol can act as a timer by raising timeouts in
response to the passage of a certain amount of time. It is not obvious how timed constraints,

such as deadlines, can be specified directly on state machines beyond informal annotations.

Timed automata [2]] caters for timed models using synchronous continuous-time clocks. In-
teresting properties can be checked using the model checker UPPAAL. Modelling the execu-
tion time of operations, and more complex constraints, requires UPPAAL patterns consisting
of additional states and appropriate state invariants. Our aim is to provide a rich language

suitable for directly capturing timed aspects of interest in robotic controllers.
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Calendar automata [[8]] have been used to model time-triggered architecture systems. Support
for model-checking is available using SAL. Calendar automata adopts a strict interleaving be-
tween time evolving till the next calendar entry, and events taking place. This model, strictly
less expressive than timed automata, is not adequate for modelling scenarios where events do

not necessarily alternate with time passing, and where transitions may be nondeterministic.

In [21] a semantics is given for a subset of UML-RT in Circus without considering time. An
extension to UML-RT is considered in [[I] with semantics given in terms of CSP+T [32], an
extension of CSP that supports the timing of events. Inspired by the constructs of CSP+T,
in [1]] annotations are added for recording the occurrence time of events and constraining
the occurrence time of other subsequent events. Although timed primitives such as since
bear a resemblance, we have a richer set of primitives inspired by timed automata and Timed

CSP [25].
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APPENDIX A

Credits

Icons used in RoboTool and this report have been obtained from www.flaticon.com. Individ-

ual credits are given below.
% Icon made by Iconnice from www.flaticon.com is licensed by CC 3.0 BY
O@ Icon made by Sarfraz Shoukat from www.flaticon.com is licensed by CC 3.0 BY
&g Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
D Icon made by Dario Ferrando from www.flaticon.com is licensed by CC 3.0 BY
; Icon made by Lyolya from www.flaticon.com|is licensed by CC 3.0 BY
T Icon made by Freepik from www.flaticon.com is licensed by (CC 3.0 BY
0 Icon made by Google from www.flaticon.com is licensed by CC 3.0 BY
@ Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
. Icon made by Freepik from www.flaticon.com is licensed by (CC 3.0 BY
@ Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
o
" Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
2o . . -
#® Icon made by Freepik from www.flaticon.com|is licensed by CC 3.0 BY
Icon made by Revicon from www.flaticon.com is licensed by (CC 3.0 BY
Y y

F Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
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a Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Tc Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
E Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
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