From Formalised State Machines to
777% Implementations of Robotic Controllers

Wei Li', Alvaro Miyazawa?, Pedro Ribeiro?, Ana Cavalcanti?, Jim Woodcock? and Jon Timmis'

K Department of Electronics, University of York, York, UK; 2Department of Computer Science, University of York, York, UK /

Safety is a major concern for autonomous robots, and the ability to provide evidence that a robotic system is safe can be demanding. Robotic controllers can be
specified using state machines. However, these are typically developed in an ad hoc manner without formal semantics, which makes it difficult to analyse the
controller. We present a state-machine based notation, RoboChart, together with a tool to automatically create code from the state machines, establishing a
rigorous connection between specification and implementation. RoboChart has a formal semantics that allows for formal verification [1]. We demonstrate our
approach using two case studies (self-organized aggregation and swarm taxis) in swarm robotics. This paves the way for the verification of controller of individual

&obots in the swarm as well as their resulting emergent behaviours. /

2. RoboChart framework

Graphical Tool Elements of RoboChart: Automatic code generation:
i Architecture for robotics * Model-View-Controller pattern
e State machine * Direct mapping from elements to entitiesin C++
Textual Language * Interface
, e Clock RoboChart elements State machine class
code semantics
generation generation _
states attributes of enumerated type
/ \ Features of RoboChart: clocks attributes of timer class
. Graphical and textual modelling interfaces inherit interface class
simulators physical model theorem i
robots checking proving Formal semantics (CSP)
- : RoboChart elements Interface class
implementation formal verification * Automaticcode generation _
- _ Platform independent events attributes of enumerated type
The RoboChart framework for combining formalised variables attributes
state machines and implementation of roboticcontrollers operations methods

3. Case study one: Aggregation 4. Case study two: Swarm taxis

Behaviour: Robots aggregate into a single compact cluster as fast as Behaviour: Robots move towards a beacon while maintaining a coherent group

possible. Controller: three states; one event; two conditions
Controller: two states; two events —— .
warmTaxisFSM SwarmTaxislface
SwarmTaxisIface X linearSpeed: real
(O discrete T X angularSpeed: real
Aggregationlface) RotateClockwise(i: real): void)’E Lizi’i:reecﬁl?r%?rl\gDegree' el
X linearSpeed: real pre: i<0 o Suh e
X angularSpeed: real (®) Aggregationliface - Turn(): void
H : H H Avoidance Coherence CalcCoherenceHeading(): void
8 MOVEClOCkWIS.E(Ii.Feal,JI I'ea.l)I void entry CalcAvoidanceHeading(); Turn() entry CalcCoherenceHeading(); Turn() CachvoidanceHeadingg():.void
RotateClockwise(i: real): void S CheckilluminationStatus(): bool
4 - - UpdateAvoidanceRadius(): void
"j‘, :zz\év;tilot entry linearSpeed = 0; angularSpeed = i RotateClockwise(: real): void
RotateAntiClockwise(i: real): void
o‘ ->® J MoveForward(i: real): void
AggregationFSM ' ¢ anyRobotToAvoid
® - — d ggreg anyRobotToAvoid #T[reached==true] [since(T)>25] #T[reached==true] 0 Udatervordanceradivs(: vord
ggregatlon ace ®§warmTaxileace
seewall) MoveClockwise(i: real, j: real): void Forward X iluminated: bool
S1 S2 - - entry reached = false; UpdateAvoidanceRadius(); MoveForward(6.4)
D pre: i'=0/\j<0 .
entry MoveClockwise(-10.88, -0.75) entry RotateClockwise(-5.02) (®) Aggregationliface . antry luminated = CheddlominationStatos0- 7 R
seeRobot d_, °\> illuminated==true then avoidanceRadius = 0.2 else ®
A S avoidanceRadius = 0.1 end
entry linearSpeed =i; angularSpeed =j
Diagram of the swarm taxis controller modelled in RoboChart

Diagram of the aggregation controller modelled in RoboChart
Elements:
state machine: AggregationFSM; interface: Aggregationlface; state: S1, S2;
operation: MoveClockwise, RotateClockwise

/ \ / N\ / N\ /

Textual description: initial after 120s after 240s after 400s
e ronregstionT face it ton 1 =g Py g Jireat) ¢ wold { Snapshots of the swarm taxis behaviour of 20 e-puck robots in ARGoS simulation

initial I
s:ateaSI { requires AggregationIface

entry MoveClockwise(-10.88, -0.75)
} initial I .

S2 i

Stat:ntry{Ro’ca’ceﬂockwise(—5.02) :t:i: g { 5- COnCIUSIOnS and fUtu re Work
} entry linearSpeed = i; angularSpeed = j
transition T1 { }

from I to S1 Summary:
} L transition T1 { i . .
transition T2 € fron I * State-machine based roboticcontrollers can be modelled in RoboChart.

i Wall c . .

y oser seem } Controllercode can be automatically generated and integrated into
transition T3 { transition T2 { . i

from S1 to 52 fron § different robotic platforms.

trigger seeRobot to F

,) , ! * Formal CSP semantics allows for the application of formal verification
controller operation techniques|[1].
* Gap between high-level reasoning and low-level implementation of robotic
PR controlleris reduced.
o ? L o
Future work:
T * Verify individual controllersas well as their emergent swarm behaviour.
initial after 20s after 40s after 60s Y £

 Model probability and environmental stimuli.

Snapshots of the aggregation behaviour of 20 e-puck robots in Enki simulation, . Generate code for implementation in physical robots

usingthe automatically generated controller code from RoboChart

Reference:
E PS RC [1] Miyazawa et al. "RoboChart: A state-machine notation for modelling and verification of
mobile and autonomous robots”. Technical report, University of York.

Engineering and Physical Sciences
Research Council

