Verifiable Autonomy

— how can you trust your robots?

Michael Fisher (and Louise Dennis)
Department of Computer Science and
Centre for Autonomous Systems Technology

University of Liverpool

Part Il: Verification and Application



Formal Verification Agent Verification Examples Closing

e formal Verification
. what do we mean by “formal verification"?
. many varieties of formal verification.

e Brief Introduction to Model Checking
... temporal logics, model-checking, Biichi Automata
model-checking programs and Java PathFinder (JPF)

e Agent Verification and AJPF

e (Case Studies
... formal verification of UAV decisions
... towards verification ethical decision-making
. etc ...



Formal Verification Agent Verification Examples Closing

What is Verification?

Verification [dictionary]:

Ad(ditional proof that something that was believed (some fact
or hypothesis or theory) is correct.

Verification [of a system]:

Establishing that the system under construction conforms to
the specified requirements.

So: we want to carry out verification of systems to show that the
system matches its requirements.

Formal Verification [of a system]:

The act of proving or disproving the correctness of a system
with respect to a certain formal specification or property,
using formal methods of mathematics.



Formal Verification Agent Verification Examples Closing

Verifying Logical Requirements

As we have seen, there is a wide range of logical dimensions with
relevance to our requirements, such as time, location, uncertainty,
context, resources, etc.

Even beyond this, there are a number of different mechanisms for
carrying out verification.

Imagine that we have a formal requirement, perhaps in the form of
a modal/temporal logic formula, R.

This is to be matched against some system we are interested in.

Logical Specification
of Requirements

Formal Verification tool
exhaustively analysing
logical specification
against all possible
decisions/choices.

o""P - -

Q

SYSTEM




Formal Verification Agent Verification Examples Closing

Verification Varieties (1)

Proof: where the behaviour of the system is described by the
logical formula, S, and verification involves proving - § = R.

Typically, this requires (automated) deductive methods able to
cope with combinations of logics.

Model-Checking: where R is checked against all possible execution
paths within the system.

All these executions are usually described using a finite state
structure, typically an automaton such as A.

Our system satisfies R so long as, for every path o through the
automaton A, then we can show that o = R.



Formal Verification Agent Verification Examples Closing

Verification Varieties (2)

Dynamic Fault Monitoring (aka Runtime Verification): where the
executions actually generated by the system are checked against R.

Given a real system execution, o, then a finite-state automaton
representing the property R is used to iteratively scan the
execution produced to check that it indeed satisfies R.

Program Model-Checking: where, instead of assessing R against a
model of the system (e.g. A above), then R is checked against all
actual executions.

This depends on being able to generate all the program executions
— typically, this requires symbolic execution.

=- we are particularly concerned with this last variety.



Formal Verification Agent Verification Examples Closing

Understanding Model-Checking

The simplest way to explain program model-checking is to start by
explaining ‘traditional’ model-checking and work from that.

In turn, the simplest way to explain model-checking is to use finite
automata.

However, the finite automata that we use accept infinite strings —
they are called Biichi Automata.

The details are not so important, the key aspects being
1. they are finite structures, and
2. they represent sets of infinite strings.

These strings will be used to represent both execution sequences
and models of logical (typically, temporal/modal logic) formulae.



Formal Verification Agent Verification Examples Closing

Automata-Theoretic Model Checking (1)

SYSTEM - Requirement
Must Satisfy
I I
| |
| |
v v
All Executions of System All Executions Satisfying Requirement

Subset Of

|
|
|
v

Automaton Representing Possible Executions Automaton Representing Satisfying Executions

(g_—> A/OQ Contained Within Cg_—‘/’C>\‘

0O



Formal Verification Agent Verification Examples Closing

Automata-Theoretic Model Checking (2)

(Negation of)
Must NOT Satisfy Requirement

SYSTEM

All Executions of System

Must NOT Intersect

Automaton Representing Possible Executions Automaton Representing BAD Executions

Must NOT Intersect

5



Formal Verification Agent Verification Examples Closing
Example Program

int x = random(1,4); /* randomly choose 1, 2, 3 or 4 */

while (x != 2)
do
if (x < 2) then x:=x+1; fi
if (x > 2) then x:=x-1; fi
od

Sample Executions:

x=1 x=]

x=2

x=4 x=3 x=2

O
O
O x=3 x=2
O




Formal Verification Agent Verification Examples Closing

Example Property

Our requirement is that

“At some moment in the future x will have the value 2"

Formal property to check: O(x =2)

Possible models satisfying this property:

o=0 0O O — -
OOt
OO OO -
OO OOt
o—O0—0O—0O—— -




Formal Verification Agent Verification Examples Closing

Automata For Example

We construct two automata:

@ y 3 xl=2

BAprogram BAD(X;éZ)

Note: negation of the {(x = 2) property is ‘Tl(x # 2)".



Formal Verification Agent Verification Examples Closing

Product of Automata

We want to check that

sequences_of (BAprogram) N sequences_(BA-,) =

So that:  no execution of the program also is a model for —p

Taking intersections is not so convenient, so we go further,
changing the above to a check that

sequences_of (BAprogram X BA-,) = 0

In other words there is no sequence accepted by the combined
automaton; thus, a key aspect of many model checkers is
constructing  BArogram X BA-,



Formal Verification Agent Verification Examples Closing

“On the fly" Product Construction

Constructing automata products such as
BS X B—\(p

can be very expensive. For example, the number of states in the
product automaton may be HUGE.

Rather than combining the two automata explicitly, the “on the
fly" approach explores all the paths through Bs and, as we do so,
simultaneously checks whether any path satisfies B-,.

g{;f@ BRYaY

Parallel

Exploration Model of "Bad" paths

Model of the System



Formal Verification Agent Verification Examples Closing
Program Model Checking

What do we need in order to be able to implement the on-the-fly
model checking approach:

1. a mechanism for extracting all possible runs of a system;

2. some way to step the monitoring automaton forwards, as each
run proceeds; and

3. a way of recognising good/bad looping situations.

Within model-checkers (such as Spin) these were achieved by (1)
an automaton representing all system executions, (2) a monitoring
process running synchronously with the main program execution,
and (3) an algorithm for recognising Biichi acceptance.

Now that we wish to tackle a high-level language such as Java we
need these again.



Formal Verification Agent Verification Examples Closing

Java Model Checking

The particular approach we consider here is implemented as the
Java PathFinder system, which is an explicit-state open source
model checker for Java programs.

The key aspects that allow Java PathFinder to achieve:
1. a mechanism for extracting all possible runs of a system;

2. some way to step the monitoring automaton forwards, as each
run proceeds; and

3. a way of recognising good/bad looping situations,
are that

a) it incorporates a modified virtual machine and that

b) listener threads are used.



Formal Verification Agent Verification Examples Closing
Modified Virtual Machine

Programs in Java are compiled to a set of bytecodes which are
then executed, when required, by a virtual machine, called the
Java Virtual Machine (JVM).

In order to allow this execution to be controlled, and indeed
backtracked if necessary, Java PathFinder provides a special,
modified JVM which explores all executions including all
non-deterministic choices, thread interleavings, etc.

Importantly, this new JVM records all the choices made and can
backtrack to explore previous choices.

Note that this modified JVM is actually implemented in Java and
so runs on top of a standard JVM.



Formal Verification Agent Verification Examples Closing

Java Listeners

A Java listener is a mechanism within the Java language allowing
the programmer to “watch” for events.

Java PathFinder uses a listener in order to provide a
representation of an automaton that is attempting to build a
model based on the program execution.

As the program proceeds, the listener recognises state changes in
the execution and checks this against its automaton
representation.

At certain times the listener may be reset, forcing the JVM to
backtrack. If the listener recognises an execution sequence, then it
reports this.

Since we define the listeners to correspond to “bad” sequences,
then the reported sequences are counter-examples.



Formal Verification Agent Verification Examples Closing

JPF: Java Verification

A general, pictorial, view of Java PathFinder is given below.

Automaton
"watching" for

acceptance
conditions

Modified Java virtual machine exploring all
possible execution branches, not only by
forward execution but by backtracking

It combines (backtracking) symbolic execution and a monitoring
automaton.



Formal Verification Agent Verification Examples Closing
Efficiency (1)

Java PathFinder is now quite well developed and is used for
many Java applications.

While extremely useful, Java PathFinder is inherently slow.

It is built upon Java itself so, for example, code that is running
executes on the modified JVM, which in turn runs on the standard
JVM.

In order to improve efficiency, Java PathFinder employs a variety
of sophisticated techniques.

As well as standard partial-order reduction used in many
model-checkers, two additional aspects are interesting.



Formal Verification Agent Verification Examples Closing

Efficiency (2)

Rather than just exploring the runs through a program in arbitrary
order, the user can specify a "“choice generator’ which will explore
branches in a specific order.

The other main enhancement involves ensuring that the listener is
only forced to move forward if important changes occur in the
Java execution.

Thus, ‘unimportant’ state changes/operations are collected
together into one ‘important’ state.

The Model Java Interface (MJI) is a feature of Java PathFinder
that effectively allows code blocks to be treated as atomic/native
methods. Consequently, since new states are not built by Java
PathFinder for calls to atomic/native methods, these code blocks
are effectively hidden from the listener.



Formal Verification Agent Verification Examples Closing

AJPF

Program model-checking allows us to directly verify the code.

The key aspects that allow Java PathFinder to achieve “on the
fly" checking are that that it incorporates a modified virtual
machine (capable of symbolic execution and backtracking) and
that listener threads are used (to monitor executions).

Program model checking is significantly slower than standard
model-checking applied to models of the program execution.

AJPF extends JPF with support for rational agent programs, and a
property specification language, based on LTL, and specialised to
rational agent programs.

AJPF can model check agent programs and multi-agent systems
for any code base which implements the MCAPL interfaces.



Formal Verification Agent Verification Examples Closing

AJPF: Anatomy of an Agent Model Checker

GOAL 2APL Orwell  -ooeeeemmeeeeeeenes Gwendolen

AIL - Logical Property

Java Code (————— AJPF (—— AIL Java

Listener

JPF ¢ . Java

Listener

AJPF is essentially JPF2 with the theory of AIL built in.

The whole verification and programming system is called MCAPL
and is freely available on Sourceforge:
sourceforge.net/projects/mcapl


sourceforge.net/projects/mcapl

Formal Verification Agent Verification Examples Closing

The Property Specification Language

The Property Specification Language is based on LTL with five
“modalities” for agent concepts.

e B(ag,f) (ag believes f)

e G(ag,f) (ag has a goal f)

e /(ag,f) (ag intends to achieve f)

e P(f) (f is perceptible in the environment)

e A(ag,f) (the last action taken was ag doing f)

We have a simple syntax for writing properties:

[1 (B(searcher, leave)
-> (B(searcher, found) || B(searcher, area_empty)))



Formal Verification Agent Verification Examples Closing

The Role of Formal Verification

While formal verification techniques have been developed for many
aspects of hybrid architectures, e.g. control systems, we choose to
instead use formal verification just on the rational agent.

Thus, we verify the system’s decision-making, not the real-world
outcome of the actions it takes.

Consequently, we verify
what the autonomous system chooses to do, given its
beliefs

rather than
what effect the autonomous system has on the world



Formal Verification Agent Verification Examples Closing

Separating Decision-Making

So, we separate out the decision-making aspect of the system.

AUTONOMOUS SYSTEM

Control System Rational Agent
[low-level control] [high-level choicesl]
Sense&Act Goal Selection
Avoidance Plan Selection
Reactive Prediction
etc.... etc....

The rational agent is typically non-deterministic, but finite.

The ‘control’ part is typically
1. deterministic, in that it has a predictable feedback interaction
with its environment, but
2. potentially infinite, as the environment can be arbitrary.



Formal Verification Agent Verification Examples Closing

Verification and Testing

So, we utilise other techniques for verification of the ‘control’ part:

could use formal verification for hybrid systems;

could use approximation techniques for differential equations;

could use analytical mathematical proof if viable; but

typically use testing because of complex environments.



Formal Verification Agent Verification Examples Closing

Verifying Autonomous Systems

So, once we have
e an autonomous system based on rational agent(s), and
e a logical requirement, for example in modal/temporal logic,

We typically use:

e testing to assess the range/correctness of the control part;

e formal verification of the rational agent, possibly with
assumptions about the control /environment interactions; and

e simulation of the whole system to give ‘confidence’ to
developers.

N.B: Large-scale testing often carried out via HPC.

N.B: Verification of same agent program as used in simulation
gives increased confidence.



Formal Verification Agent Verification Examples Closing

Verifying UAVs

What's the core difference between a UAV and a manned aircraft?

4

Obviously: one uses an “autonomous agent” instead of a pilot!

So, why can't we verify that the “agent” behaves just as a pilot
would? i.e. is the agent equivalent to the pilot??

This is clearly impossible, but......



Formal Verification Agent Verification Examples Closing

Our Approach

RULES OF
<: Certification? |:> THE AIR

"Abstraction" "Selection"

"Model Checking"

Autonomous UAS Formal Logic
Design/Model Specification



Formal Verification Agent Verification Examples Closing

BDI Agent Controlling the UAV

Our UAV agent has:
e Beliefs, for example

e waiting at runway
e turning right (e.g. during sense & avoid)
e Desires, for example
e complete the mission
e avoid near-misses
e Intentions, for example
e taxi to runway and hold position
e turn right to avoid object approaching head-on (i.e. sense &
avoid), for example



Formal Verification Agent Verification Examples Closing

Selected “Rules of the Air”

e “An aircraft shall not taxi on the apron or the manoeuvring
area of an aerodrome without [permission]”

“

e “... when two aircraft are approaching head-on, or
approximately so, and there is danger of a collision, each shall
alter its course to the right.”

e “[An aircraft in the vicinity of an aerodrome must] make all
turns to the left unless [told otherwise]”

Note both the ambiguity and the possible conflict!



Formal Verification Agent Verification Examples Closing

Verification of Basic UAV Agent

Basic UAV Agent comprises 36 plans, but is relatively
straightforward.

It taxis, holds, lines up and takes off, and once airborne it performs
simple navigation and sense/avoid actions. Finally, it lands.

Then verify simple properties, e.g “avoidance”:

BuavchangeHeading A
BuavnearAerodrome A = —Byaydirection(right)
—ByavtoldOtherwise



Formal Verification Agent Verification Examples Closing

Towards Certification

While clearly not sufficient for certifying UAVs, this form of
verification is important to show that the UAVs does whatever a
pilot should do.

Of course there is more to a pilot than just following the Rules of
the Air ...



Formal Verification Agent Verification Examples Closing

From Legality to Ethics

Autonomous systems must make decisions in unexpected situations
— here some ethical principles are invoked.

UAV has failure — unavoidable crash — but has some control

Assesses possible crash sites, but time is running out:

1. on school
2. on field full of animals
3. on a road



Formal Verification Agent Verification Examples Closing

Verifying Ethical Decision-Making

System can order options based on ethical priorities:
save humans >> save animals >> save property

Once the agent decisions take ethical concerns into account then
we can extend formal verification to also assess these.

For example, we can formally verify that

if the chosen course of action violates some
substantive ethical concern, A
then the other available choices all violated some concern
that was equal to, or more severe than, A.



Formal Verification Agent Verification Examples Closing

Road Trains: Safety

WWW.sartre-project.eu:

Underlying control system manages distances between vehicles.
Rational agent makes decisions about joining/leaving, changing
control systems, etc.

Verifying Rational Agent to ensure that convoy operates
appropriately.



Formal Verification Agent Verification Examples Closing

Verifying Ethical Decision-Making?

AUTONOMOUS SYSTEM
Control System Rational Agent
control decisions
[low-level, continuous] [high-level, discrete]
/ <\\
— e.g. manipulation, path e.g. reasoning, goal
following, reaction, selection, prediction,
obstacle avoidance, etc... cooperation, efc...
\ /

Formal verification of internal rules/plans against pre-determined
(safety, legality) criteria.

In unexpected situations, planner invoked and agent must decide
between options.

So verify the decision-making approach against the appropriate
ethical ordering.



Formal Verification Agent Verification Examples Closing

Overview

As long as your autonomous system has an appropriate hybrid
agent architecture, then we can use these techniques for verify it:

Note:
1. we have to be able to formally describe requirements
2. we cannot guarantee properties of the environment

3. however, we can guarantee properties of internal /agent
software



Formal Verification Agent Verification Examples Closing

Issues: Speed

Program model checking is significantly slower than standard
model-checking applied to models of the program execution.

It carries out symbolic execution of the program.
In addition, “random” environments provide large state spaces.

Thus, verifications in AJPF take minutes and hours, rather than
seconds with tools such as Spin or NuSMV.

Work is under way to try to improve this....



Formal Verification Agent Verification Examples Closing

Issues: Logics

e Choosing the best logics to use to describe our requirements
can be difficult.

e Have we asked all the right questions?
e Are some properties too difficult to describe?

e Specifications such as
B2750 Gassistantsell_shoes(me) = I e <5 leave_shop(me)

require quite complex combinations — we do not yet have full
verification systems for these.

-+ N.B: many requirements are logically very simple....
... do not require nested modalities!



Formal Verification Agent Verification Examples Closing
Concluding Remarks

Key new aspect in Autonomous Systems is that the system is able
to about the best course of action to take.

Rational Agent abstraction represents the core elements of this
autonomous decision making:

e (uncertain) beliefs about its environment,
e goals it wishes wish to achieve and,

e deliberation strategies for deciding between options.

Clearly, formal verification is needed.

By verifying the rational agent, we verify not what system does,
but what it tries to do and why it decided to try!



Formal Verification Agent Verification Examples Closing

Matt Webster (Virtual Engineering Centre, Daresbury)
Clare Dixon (Computer Science, Univ. Liverpool)
Rafael Bordini (UFRGS, Brazil)

Alexei Lisitsa (Computer Science, Univ. Liverpool)
Sandor Veres (Engineering, Univ. Sheffield)

Savas Konur (Computer Science, Univ. Sheffield)
Mike Jump (Engineering, Univ. Liverpool)

Owen McAree (Engineering, Univ. Sheffield)

Maryam Kamali (Computer Science, Univ. Liverpool)
Neil Cameron (Virtual Engineering Centre, Daresbury)
Nick Lincoln (Engineering, Univ. Southampton)

EPSRC, for funding many of these activities.



Formal Verification Agent Verification Examples Closing

Selected /Related References

® Bajer, Katoen. Principles of Model Checking. MIT Press, 2008.

® Clarke, Grumberg, Peled. Model Checking. MIT Press, 2000.

® Dennis, Fisher, Slavkovik, Webster. Formal Verification of Ethical Choices in Autonomous Systems. To
appear in Robotics and Autonomous Systems, 2016.

® Dennis, Fisher, Webster. Verifying Autonomous Systems. Communications of the ACM 56(9):84-93, 2013

® Dennis, Fisher, Webster. Two-stage Agent Program Verification. Journal of Logic and Computation, 2016.

® Dennis, Fisher, Webster, Bordini. Model Checking Agent Programming Languages. To appear in Journal
of Automated Software Engineering 19(1):5-63, 2012.

® Dennis, Fisher, Lincoln, Lisitsa, Veres. Practical Verification of Decision-Making in Agent-Based
Autonomous Systems. Journal of Automated Software Engineering, 2016.

® Dennis, Fisher, Winfield. Towards Verifiably Ethical Robot Behaviour. Proc. First International Workshop
on Al and Ethics. AAAI, 2015

® Fetzer. Program Verification: The Very Idea. Communications of the ACM 31(9):1048-1063, 1988.

® Fisher. An Introduction to Practical Formal Methods Using Temporal Logic. Wiley, 2011.

® Gerth, Peled, Vardi, Wolper. Simple On-the-fly Automatic Verification of Linear Temporal Logic. In Proc.
15th Workshop on Protocol Specification Testing and Verification (PSTV), pp3-18. 1995.

® Havelund, Rosu. An Overview of the Runtime Verification Tool Java PathExplorer. Formal Methods in
System Design, 24(2):189-215, 2004.

® Kamali, Dennis, McAree, Fisher, Veres. Verification of Joining and Leaving Protocols for Autonomous
Vehicle Platooning.

® Konur, Fisher, Schewe. Combined Model Checking for Temporal, Probabilistic, and Real-time Logics.
Theoretical Computer Science 503:61-88, 2013.

® Sistla, Vardi, Wolper. The Complementation Problem for Biichi Automata with Applications to Temporal
Logic. Theoretical Computer Science, 49:217-237, 1987.

® Vardi, Wolper. Reasoning About Infinite Computations. Information and Computation, 115(1):1-37, 1994.

® Visser, Havelund, Brat, Park, Lerda. Model Checking Programs. Automated Software Engineering,
10(2):203-232, 2003. See Java PathFinder: http://javapathfinder.sourceforge.net.

® \Webster, Cameron, Fisher, and Jump. Generating Certification Evidence for Autonomous Unmanned
Aircraft Using Model Checking and Simulation. J. Aerospace Information Systems 11(5):258-279, 2014.


http://javapathfinder.sourceforge.net

	Formal Verification
	Agent Verification
	Examples
	Closing

