

From robot swarms to ethical robots: the challenges of verification and validation - part 1

Swarm Engineering

Alan FT Winfield
Bristol Robotics Laboratories

http://www.brl.ac.uk

RoboCheck Winter School, University of York 1 Dec 2015

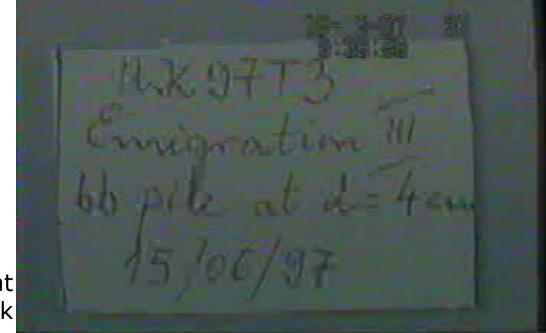
This Talk

- In three parts:
 - Short introduction to Swarm Robotics
 - potential and challenges
 - flocking
 - Case Study: Adaptive Swarm Foraging
 - the algorithm
 - mathematical modelling and optimisation
 - Case Study: Reliability and Scalability
 - emergent swarm taxis
 - a reliability model

Swarm Intelligence...

 "Any attempt to design algorithms or distributed problem-solving devices inspired by the collective behaviour of social insect colonies and other animal societies" Bonabeau, Dorigo and Theraulaz, 1999

Termite mound



Leptothorax at work

The Potential: Swarm Robotics is characterised by...

- Relatively simple, autonomous robots
- Fully distributed, de-centralised control
 - Exploitation of agent-agent and agentenvironment interaction
 - Exploitation of explicit or implicit (stigmergic) communication
 - Self-organisation and emergence
- Scalability
- Robustness

But... can we engineer solutions with swarm intelligence..?

- What are the design principles involved?
 - how do we determine the *local rules* for each individual agent, in a principled way?
- How can we validate overall behaviours that are emergent properties?
 - notwithstanding these (difficult) questions...
- A powerful new engineering paradigm for large scale distributed systems..?

From Lewton: Complexity - Life at the Edge of Chaos

Structure

Local Interaction

Designing the local rules

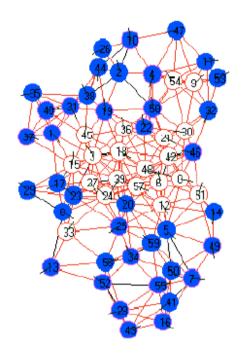
swarm = superorganism

Choose local rules by hand

Swarm test (real robots or simulation)

Desired global properties?

Ad-hoc vs. Principled approach



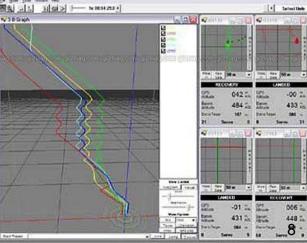
swarm = phenotype global properties = fitness function genotype determines local rules Evolutionary swarm robotics

The Real-world Potential

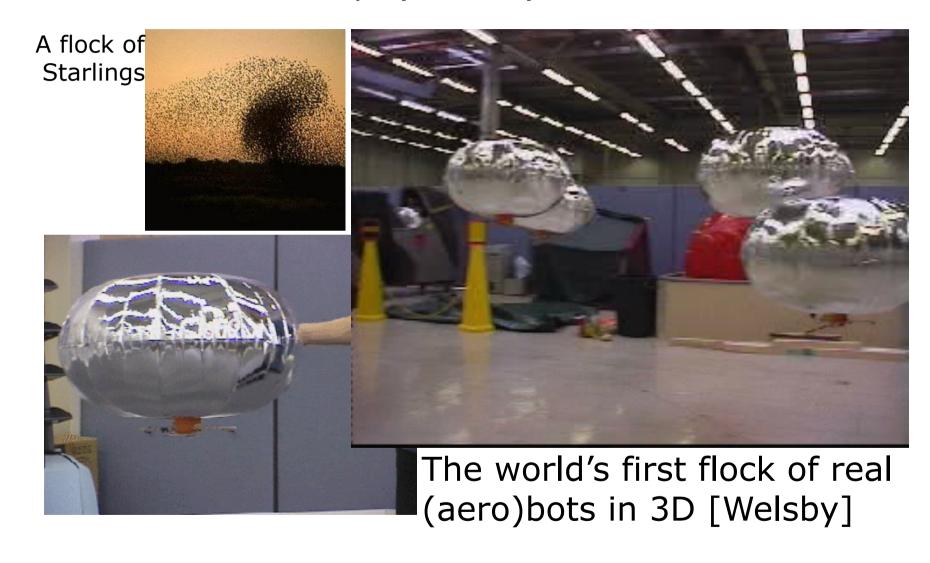
- Any application requiring multiple distributed autonomous robots...
 - unmanned exploration/mapping/ surveying/environmental monitoring
 - robot assisted search and rescue
 - robot assisted harvesting/horticulture
 - waste processing/recycling
 - domestic or industrial cleaning
 - art and entertainment

Real-world Applications

- At the time of writing there is only one known real-world application of swarm robotics
 - A swarm of autonomous parachutes for delivering supplies
 - the Onyx parachutes swarm to maintain proximity so that they will not be widely dispersed on landing
 - see http://www.gizmag.com/go/6285/



Example: the Flying Flock Project - emergent control of groups of miniature helium-filled blimps (aerobots)



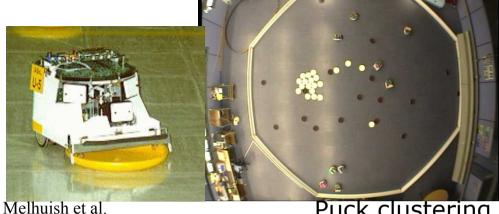
Case study: Foraging robots Roomba, iRobot



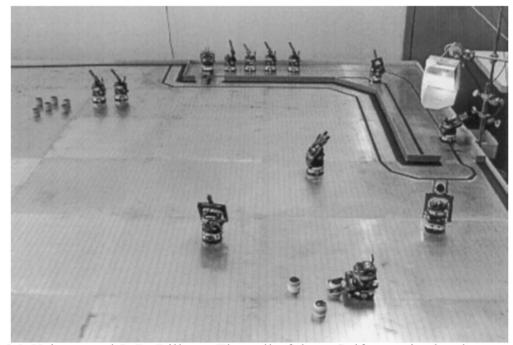
Multi-Robot Foraging

Soda can collecting

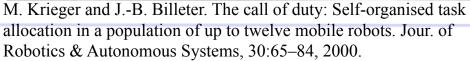
Balch et al. Io, Ganymede and Callisto: A multiligent robot trash-collecting team. AI Magazine, 16(2):39–53, 1995.



Puck clustering

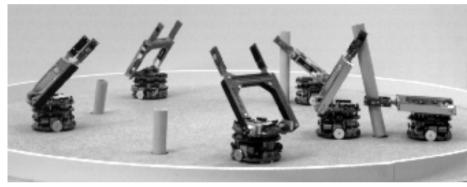


Multi-robot foraging



Multi-Robot Foraging 2

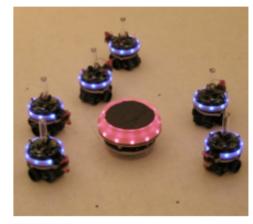
Collective manipulation

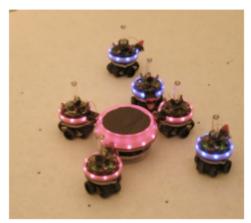


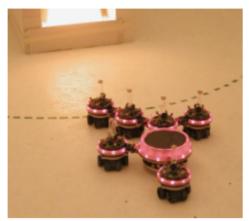
A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2):149–171, 2001.

Search and Rescue, Prof Andreas Birk, Jacobs Uni, Bremen

Collective transport

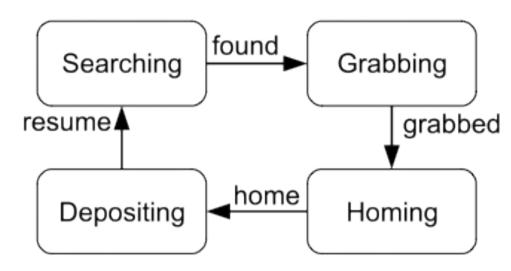




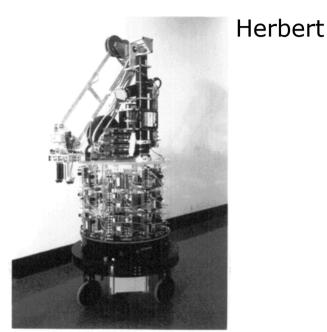


M. Dorigo, E. Tuci, T. Groß, V. Trianni, T.H. Labella, S. Nouyan, and C. Ampatzis. The SWARM-BOT pro ject. In Erol Sahin and William Spears, editors, Swarm Robotics Workshop: State-of-the-art Survey, number 3342 in Lecture Notes in Computer Science, pages 31–44, Berlin Heidelberg, 2005. Springer-Verlag

Finite State Machine for basic foraging

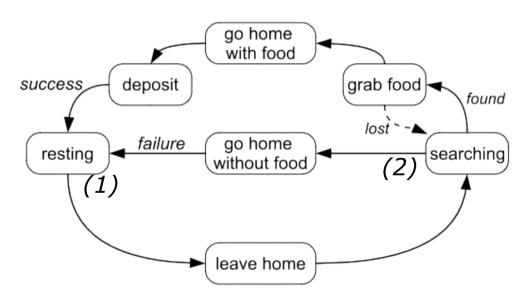


Four basic states provide an abstract model for single or multi robot foraging



J. H. Connell. Minimalist Mobile Robotics: A colony-style architecture for an artificial creature. Morgan Kaufmann, 1990.

Generalised FSM for foraging with division of labour



- Robots leave the nest (1) when some threshold condition is met
- -e.g. resting time is up or net swarm energy drops below a certain value
- Robots abandon search (2) when
- -e.g. searching time is up or robot energy falls below a certain value
- We seek an algorithm in which robots can locally adjust their thresholds so that the overall ratio of resters to foragers adapts to the amount of food in the environment

Note: 'food' is a metaphor for any objects to be collected

Energy foraging

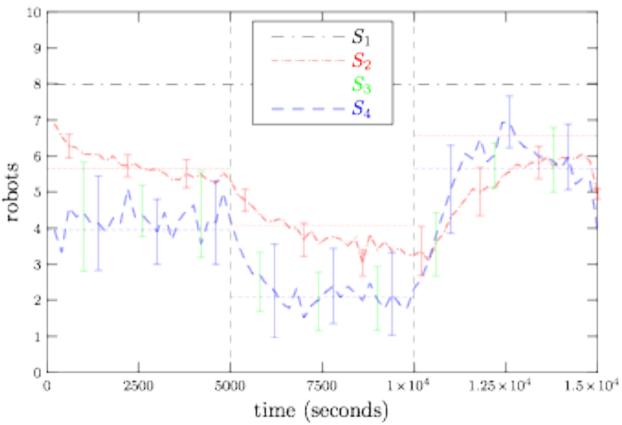
- Consider the special case of multi-robot foraging in which robots are foraging for their own energy. For an individual robot foraging costs energy, whereas resting conserves energy.
 - Each robot consumes energy at A units per second while searching or retrieving and B units per second while resting, where A > B
 - Each discrete food item collected by a robot provides C units of energy to the swarm
 - The average food item retrieval time, is a function of the number of foraging robots x, and the density of food items in the environment, ρ , thus $t = f(x, \rho)$

Strategies for cooperation

- Each robot has a search time threshold T_s and a rest time threshold T_r
 - Internal cues. If a robot successfully finds food it will reduce its T_r ; conversely if the robot fails to find food it will increase its T_r
 - Environment cues. If a robot collides with another robot while searching, it will reduce its T_s and increase its Tr times
 - Social cues. When a robot returns to the nest it will communicate its food retrieval success or failure to the other robots in the nest. A successful retrieval will cause the other robots in the nest to increase their T_s and reduce their T_r times. Conversely failure will cause the other robots in the nest to reduce their T_s and increase their T_r times

	internal cues	social cues	environment cues
S_1 (baseline)	×	×	×
S_2	\checkmark	×	×
S_3	\checkmark	✓	×
S_4	\checkmark	✓	\checkmark

Adaptive foraging with changing food density

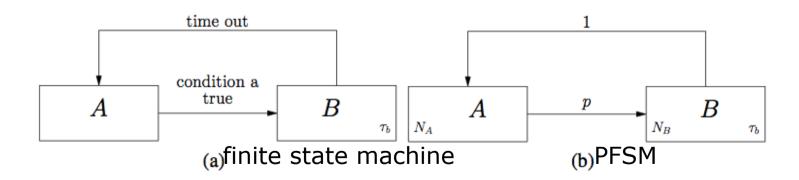


W. Liu, A. F. T. Winfield, J. Sa, J. Chen, and L. Dou. Towards energy optimisation: Emergent task allocation in a swarm of foraging robots. Adaptive Behaviour, 15(3):289–305, 2007.

Number of foraging robots *x* in a foraging swarm of N = 8 robots. S1 is the baseline (no cooperation strategy); S2, S3 and S4 are the three different cooperation strategies. Food density changes from 0.03 (medium) to 0.015 (poor) at t = 5000, then from 0.015 (poor) to 0.045 (rich) at t =10000. Each plot is the average of 10 runs.

Mathematical Modelling

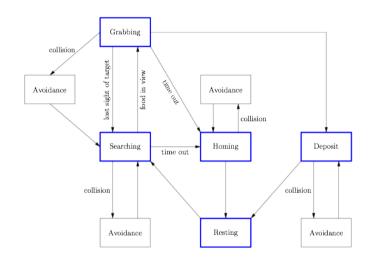
- We model apply the probabilistic approach of Martinoli et al*.
- We take the Finite State Machine (FSM)
 - express as an ensemble of probabilistic
 FSMs...which lead to a set of difference equations
 - geometrically estimate the transition probabilities
 - compare the model with experimental data

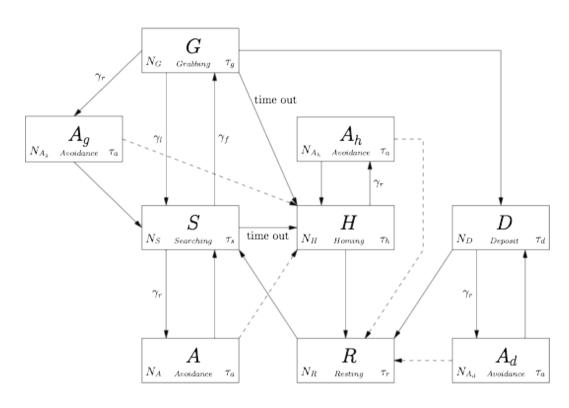


Developing a mathematical model

Finite State Machine

Probabilistic Finite State Machine (PFSM)*





PFSM parameters:

- au time in state .
- N number of robots in state . γ_f probability of finding food
 - γ_l probability of losing it
 - γ_r probability of collision

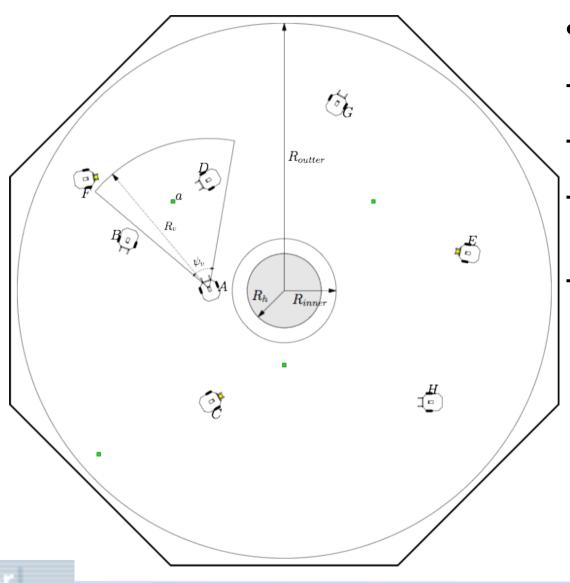
Difference equations

 For the PFSM we next develop a set of difference equations, e.g.

$$N_{S}(k+1) = N_{S}(k) + \gamma_{l}(k)N_{G}(k) + \Delta_{R}(k-T_{r}) + \left[\Delta_{A}(k-T_{a}) - \Omega_{A}(k-T_{a})\right] + \left[\Delta_{A_{g}}(k-T_{a}) - \Omega_{A_{g}}(k-T_{a})\right] - \gamma_{r}(k)N_{S}(k) - \gamma_{f}M(k)N_{S}(k) - \Gamma_{S}(k+1)$$

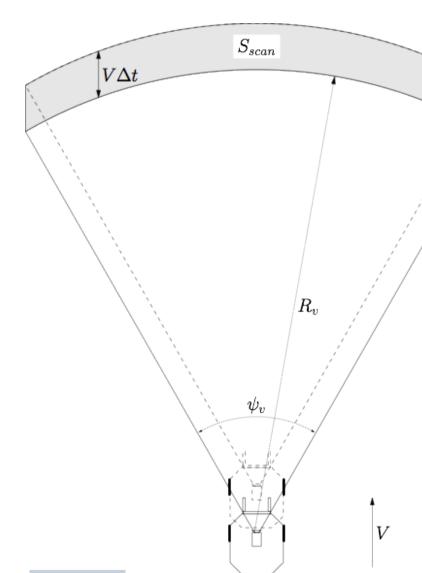
This appears complex because of multiple sampling rates and different priorities of behaviours

Geometrical estimation of state transition probabilities



- Three simplifying assumptions:
- place a circular nest at the centre of a circular arena
- food items are uniformly distributed
- robots have an equal probability of occupying any position in the arena
- -the relative heading between any two robots varies uniformly in the range 0° to 360°

probability of finding a food item: γ_f



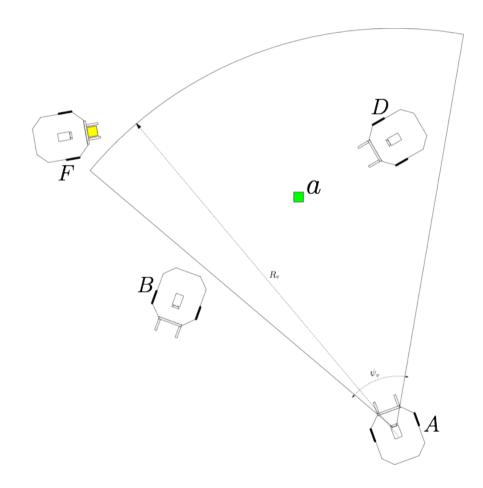
Probability to find 1 food item:

$$P_f = \frac{S_{scan}}{S_f} = \frac{\psi_v R_v V \Delta t}{\pi (R_{outer}^2 - R_{inner}^2)}$$

To find at least 1 of M(k) food items:

$$\gamma_f(k) = 1 - (1 - P_f)^{M(k)} \approx P_f M(k)$$

probability of losing a food item: γ_l

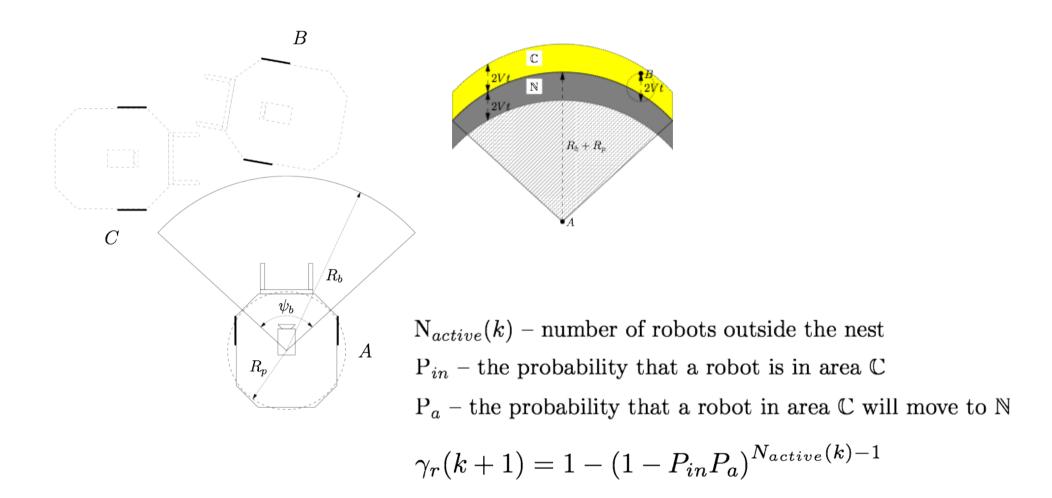


Robot A will lose food item a if: A is not the closest to a, and at least one other robot moves to a

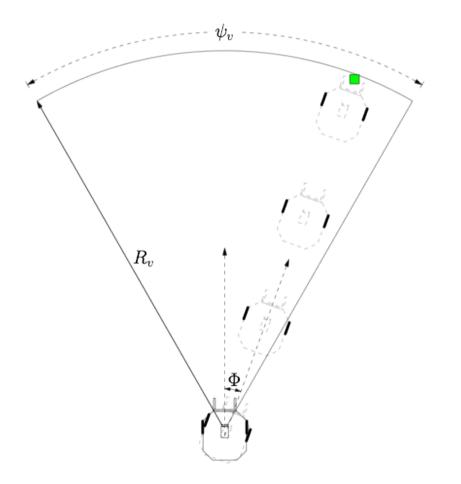
Probability of losing food item a

$$\left(1 - \frac{1}{N_{f_a}}\right) \left(1 - \left(1 - \frac{p_g}{M_{fa}}\right)^{N_{f_a} - 1}\right)$$

collision probability: γ_r



Estimation of time parameter au_g



When a food item is in view the robot needs to 1.turn to face the food 2.move forward until close enough to grab it 3.grab and lift it

Average grabbing time:

$$\tau_g = \frac{\psi_v}{2w_1} + \frac{R_v}{V} + t_l$$

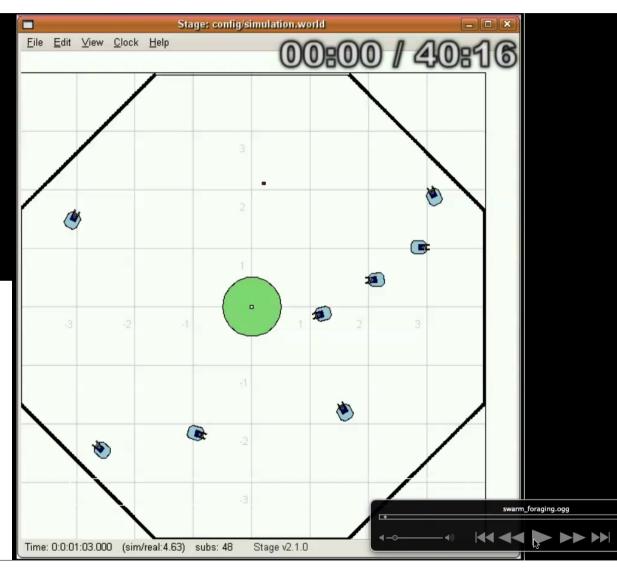
Validation of the

model

Sensor based simulation calibrated and validated by rearobot measurements Using Player/Stage.

parameters for simulation (Player/Stage)

parameters	value	parameters	value
V	0.15 <i>m/s</i>	R _{outer}	3 <i>m</i>
<i>W</i> ₁	15°/ <i>s</i>	E_r	1 <i>unit</i>
W_2	15°/ <i>s</i>	$lpha extsf{ extsf{E}}_{ extsf{ extsf{r}}}$	10 <i>units</i>
$\psi_{oldsymbol{v}}$	60°	E_c	2000 <i>units</i>
ψ_{b}	95°	Δt	0.25 <i>sec</i>
R_{v}	2 <i>m</i>	t_I	2sec
R_b	0.4 <i>m</i>	$ au_{m{a}}$	2sec
R_p	0.13 <i>m</i>	$ au_{\mathcal{S}}$	100 <i>sec</i>
R_h	0.5 <i>m</i>	$ au_{\it r}$	[0,200] <i>sec</i>
R _{inner}	0.7 <i>m</i>	p _{new}	0.04



Robot platform

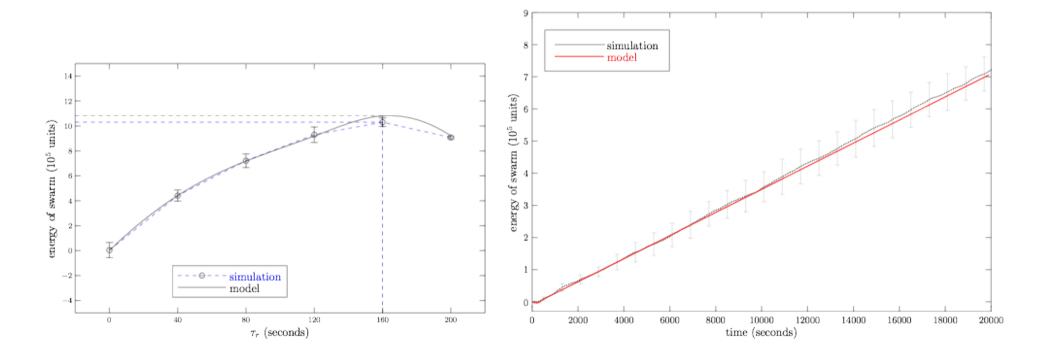
• Experimental platform: the LinuxBot*



Model calibration

validation of the model (2)

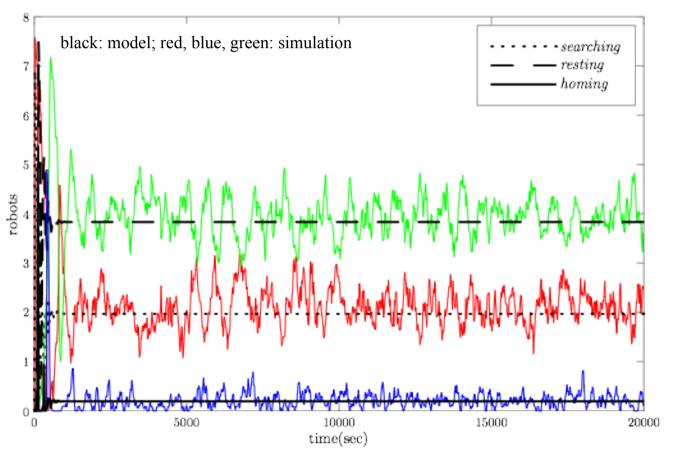
Net swarm energy, (left) varying resting time threshold $\tau_{r'}$ (right) for τ_r = 80s



$$E(k+1) = E(k) + E_c \Delta_D(k - T_d) - E_r N_R(k) - \alpha E_r (N_0 - N_R(k))$$

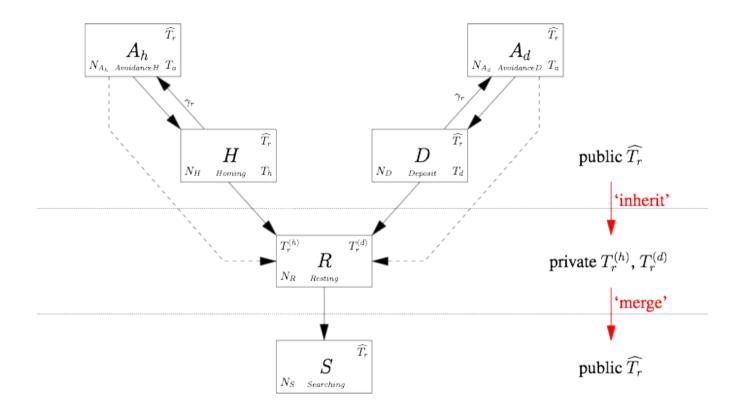
validation of the model (3)

Average number of robots in states <code>searching</code>, <code>resting</code> and <code>homing</code> for $_{T_r}$ = 80s



Liu W, Winfield AFT and Sa J, 'Modelling Swarm Robotic Systems: A Case Study in Collective Foraging', Proc. Towards Autonomous Robotic Systems (TAROS 2007), pp 25-32, Aberystwyth, 3-5 September 2007.

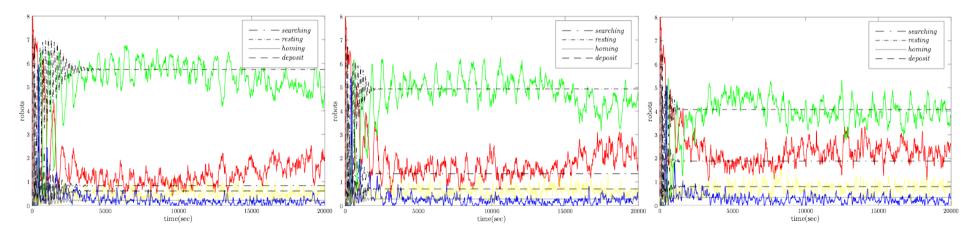
Extend the model to adaptive foraging



We introduce the concept of short time lived sub-PFSMs, with 'private' parameters

Model of adaptive foraging: validation of the model

Variable food density: 0.45, 0.4, 0.35



Liu W, and Winfield AFT, 'A Macroscopic Probabilistic Model for Collective Foraging with Adaptation', International Journal of Robotics Research, doi:10.1177/0278364910375139.

We were then able to use this model, together with a real-coded GA, to optimise the adjustment factors

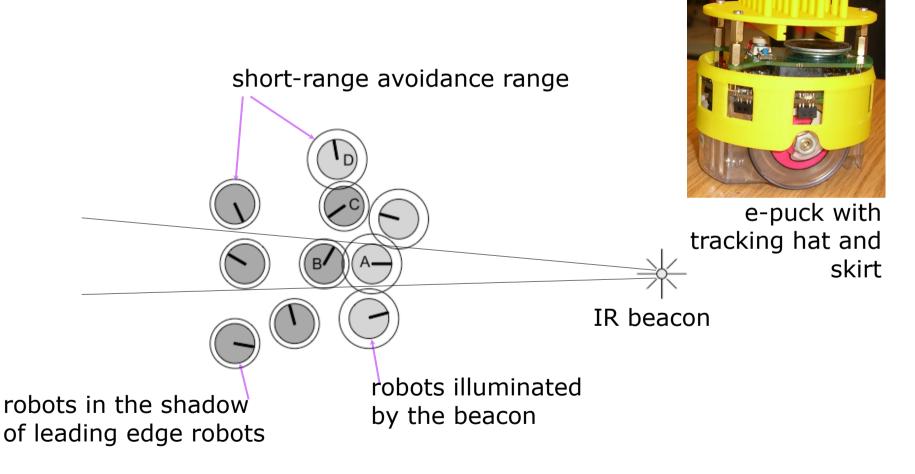
these are the precise amounts by which the time thresholds are increased or decreased by the internal, social or environmental 'cues'

Case study: emergent swarm taxis

- A minimalist approach
- aggregation:
 - short range: obstacle avoidance (repulsion)
 - longer range: maintain number of connected neighbours (attraction)
- and beacon taxis:
 - see next slide
- Note swarm behaviour requires team working

10 robots, IR beacon on the right, 25x speedup

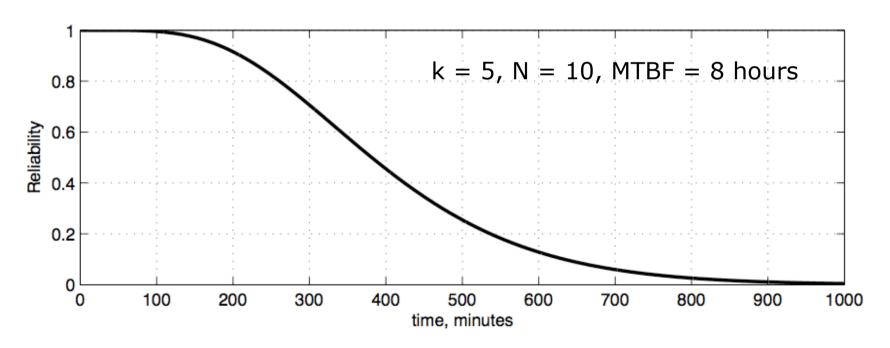
Symmetry breaking leads to swarm taxis



The k-out-of-N:G reliability model

The probability that at least k out of N robots are working at time t:

$$P(k,N,t) = \sum_{i=k}^{N} {N \choose i} (e^{-t\lambda})^i (1 - e^{-t\lambda})^{N-i} \qquad \lambda = \frac{1}{MTBF}$$



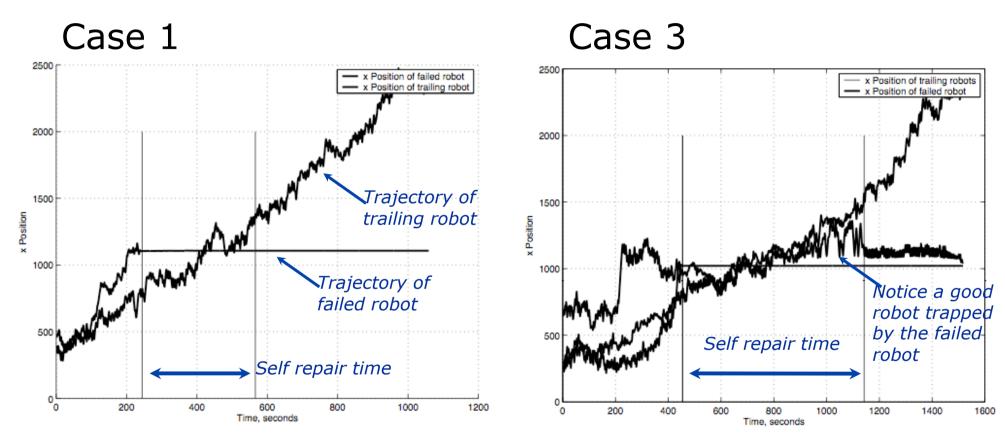
Failure modes analysis

- Case 1: complete failures of individual robots
 - failed robots become static obstacles in the environment
- Case 2: failure of a robot's IR sensors
 - failed robots leave the swarm and become dynamic obstacles in the environment
- Case 3: failure of a robot's motors only
 - failed robots have the effect of anchoring the swarm

Induce worst-case partially failed robots

2 simultaneous case 3 partial failures

Introduce the notion of swarm self-repair



Single robot complete failure

Single robot partial failure

Mean swarm self-repair times

Table 1 Mean swarm self-repair times for the case study swarm of N=10 e-puck robots. Ten runs for each case. *Here the swarm reached the beacon in only 6 of 10 runs.

Case	Mean (s)	Std. Dev. (s)
Baseline (no penalty)	328	174
One failed robot Case 1	387	132
Two failed robots Case 1	453	172
One failed robot Case 3	879	417
Two failed robots Case 3	1279	see note*

Estimate k for case 3 partial failure

- Conservatively k = 0.9N
 - in other words, we believe the swarm can tolerate 10% of case 3 failures at any one time (i.e. within the swarm self-repair time)

Estimate swarm self-repair time

Since a robot can fail anywhere in the swarm the average distance the swarm needs to move to escape the failed robot is half the diameter of the swarm, i.e. t = d/2v, $d = swarm\ diameter$, $v = swarm\ velocity$

We know

$$v(N) = CN^{-\frac{1}{2}}$$
 and $d(N) = D\sqrt{N}$

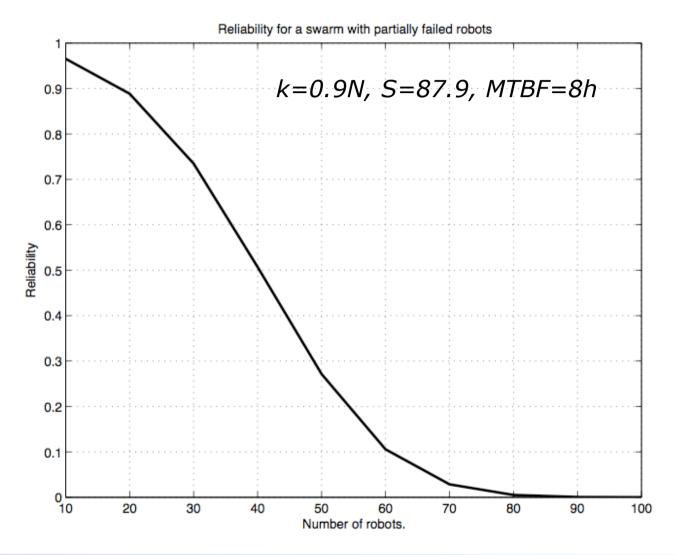
Thus

$$t(N) = \frac{D}{2C}N$$

Therefore swarm self repair time t is linear with N.

With N=10 and 1 partially failed robot mean swarm self repair time was measure as 870s, thus the constant S = D/2C = 87.9

Reliability as a function of swarm size for swarm with partial failures



Discussion

- We need to revise our assumptions of swarm robustness and scalability
 - but note that swarms do still have a high degree of fault tolerance
- This work strongly suggests that large-scale swarms (which rely on emergence or selforganising mechanisms) will require more sophisticated active internal mechanisms for dealing with worst-case partial failures:
 - i.e. an *immune system*

Thank you!

- Acknowledgements, colleagues in the BRL, but especially:
 - Dr Chris Harper, Dr Julien Nembrini, Dr Wenguo Liu, Dr Jan Dyre Bjerknes
- Further relevant publications:
 - AFT Winfield, CJ Harper, and J Nembrini. Towards dependable swarms and a new discipline of swarm engineering. In Erol Sahin and William Spears, editors, Swarm Robotics Workshop: State-of-the-art Survey, number 3342, pages 126–142, Berlin Heidelberg, 2005. Springer-Verlag.
 - Winfield AFT and Nembrini J, 'Safety in Numbers: Fault Tolerance in Robot Swarms', Int. J. Modelling Identification and Control, 1 (1), 30-37, 2006.
 - Winfield AFT, Liu W, Nembrini J and Martinoli A, 'Modelling a Wireless Connected Swarm of Mobile Robots', Swarm Intelligence, 2 (2-4), 241-266, 2008.
 - AFT Winfield, 'Foraging Robots', in Encyclopedia of Complexity and Systems Science, Editor-in-chief: Robert A Meyers, Springer, 2009.
 - AFT Winfield and F Griffiths, 'Towards the Emergence of Artificial Culture in Collective Robot Systems', in Symbiotic Multi-robot Organisms, Eds. P Levi and S Kernbach, Springer, 2010.
 - Bjerknes JD and Winfield AFT, 'On Fault-tolerance and Scalability of Swarm Robotic Systems', in Proc.
 Distributed Autonomous Robotic Systems (DARS 2010), Lausanne, November 2010.
 - Lachlan Murray, Wenguo Liu, Alan Winfield, Jon Timmis, and Andy Tyrrell, Analysing the Reliability of a Self-reconfigurable Modular Robotic System, in Proc. 2011 International ICST Conference on Bio-Inspired Models of Network, Information and Computing Systems (BIONETICS 2011), York, December 2011.
 - Dixon C, Winfield A and Fisher M (2011), Towards Temporal Verification of Emergent Behaviours in Swarm Robotic Systems, in Proc. Towards Autonomous Robotic Systems (TAROS 2011), Sheffield, September 2011.
 - Liu W and Winfield AFT, Modelling and Optimisation of Adaptive Foraging in Swarm Robotic Systems, <u>International Journal of Robotics Research</u>, 29 (14), 2010.
 - Bjerknes JD, Winfield AFT and Melhuish C, 'An Analysis of Emergent Taxis in a Wireless Connected Swarm of Mobile Robots', Proc. IEEE Swarm Intelligence