
Hongyang Qu

University of Sheffield

1 December 2015

Formal Verification via
MCMAS & PRISM

Outline

• Motivation for Formal Verification

• Overview of MCMAS

• Overview of PRISM

Formal verification

It is a systematic way to check all behaviour of a system with respect
to certain specification

System

Specification

Abstraction

Mathematical model

Abstraction

Logic formula

Verification algorithm
Result

Why formal verification is important?

The Explosion of the Ariane 5

Pentium FDIV bug

$475 million loss

$500 million loss

Replacing testing with
formal verification

Logic verification of
critical subsystems

Can driverless cars run politely?

An example in robotics

Two UAVs fly towards each other at the same

altitude

Each UAV has two actions:

High altitude and low altitude

UAV 1: action A (high) or B (low)

UAV2: action C (low) and D (high)

Action C Action D

Action A

Action B
This scenario can be cast as a game

Verification framework for analysing
performance of learning algorithms

Learning
algorithm

Game

Verification framework

Mathematical
model

generation

Verification
algorithm

Performance
measurements

MCMAS: A Model Checker for Multi-Agent
Systems
• Multi-agent systems are an active research area in Artificial

Intelligence (AI).
• They can be used to solve problems that are difficult or impossible for an

individual agent or a monolithic system to solve.

• MCMAS can check complex properties, generate executions leading
to bugs and find strategies for game models.

MCMAS (http://vas.doc.ic.ac.uk/software/mcmas/)

• Symbolic model checker via OBDDs

• Input language ISPL (Interpreted Systems Programming Language)

• Support CTL + Epistemic logic + ATL

• Support (unconditional) fairness

• Efficient implementation of model checking algorithms

• Counterexample/witness generation

• Eclipse-based GUI

• Many applications

• It is actively maintained and developed.

http://vas.doc.ic.ac.uk/software/mcmas/

Ordered Binary Decision Diagram (OBDD)

a

b b

c c c c

1 1 1 1 1 0 0 0

0 1

0

0 0

0

0 0

11

1 1 1 1

Truth table of ¬𝑎⋁ 𝑎⋀¬𝑏⋀¬𝑐

a

b

c

01

1

1

1

0
0

0

OBDD of ¬𝑎⋁ 𝑎⋀¬𝑏⋀¬𝑐

Interpreted systems

• An interpreted system 𝐼𝑆 is composed of 𝑁 agents 𝐴 = 1,… , 𝑛

• Each agent 𝑖 ∈ 𝐴 has

• a finite set of local states 𝐿𝑖 = 𝑙𝑖
1, … , 𝑙𝑖

𝑛𝑙𝑖 and

• a finite set of actions 𝐴𝑐𝑡𝑖 = 𝑎𝑖
1, … , 𝑎𝑖

𝑛𝑎𝑖

• a local protocol 𝑃𝑖: 𝐿𝑖 → 2𝐴𝑐𝑡𝑖

• an evolution function 𝐸𝑣𝑖: 𝐿𝑖 × 𝐴𝑐𝑡1 ×⋯× 𝐴𝑐𝑡𝑛 → 𝐿𝑖

• A global state is 𝑠 = 𝑙1, … , 𝑙𝑛 , and the set of states is 𝑆

• A global joint action is 𝑎 = 𝑎1, … , 𝑎𝑛

Computation Tree Logic (CTL)

• 𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑
𝐸𝑋𝜑 𝐸𝐺𝜑 𝐸𝐹𝜑 𝐸 𝜑𝑈𝜑
𝐴𝑋𝜑 𝐴𝐺𝜑 𝐴𝐹𝜑 𝐴 𝜑𝑈𝜑

• Path quantifier:

𝐸 (exists) and 𝐴 (all)

• Temporal operator:

𝑋 (next), 𝐺 (globally),

𝑈 (until) and 𝐹 (future)

p

𝐸𝑋𝑝

p p

𝐴𝑋𝑝

p

p

q q

𝐸(𝑝𝑈𝑞)

p

p q

q q

𝐴(𝑝𝑈𝑞)

Computation Tree Logic (CTL)

• 𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑
𝐸𝑋𝜑 𝐸𝐺𝜑 𝐸𝐹𝜑 𝐸 𝜑𝑈𝜑
𝐴𝑋𝜑 𝐴𝐺𝜑 𝐴𝐹𝜑 𝐴 𝜑𝑈𝜑

• Path quantifier:

𝐸 (exists) and 𝐴 (all)

• Temporal operator:

𝑋 (next), 𝐺 (globally),

𝑈 (until) and 𝐹 (future)

p

p p

p p p p

𝐴𝐺𝑝

p

p p

𝐴𝐹𝑝

MCMAS screenshots (1)

MCMAS screenshots (2)

MCMAS screenshots (3)

Case study: Inconsistent reasoning

• A robot has one sensing event and two decision predicates
• 𝑎: sensing event

• 𝑏, 𝑐: predicates

• Reasoning rules:
• 𝑎 → ¬𝑏

• 𝑎 → 𝑐

• ¬𝑏 → ¬𝑐

• Initially, 𝑎 is true, 𝑏 and 𝑐 are unknown

MCMAS model (1)

Semantics = SingleAssignment;
Agent M

Vars:
a: boolean;
b: {unknown, TRUE, FALSE};
c: {unknown, TRUE, FALSE};

end Vars
Actions = {none};
Protocol:

Other: {none};
end Protocol
Evolution:

b=FALSE if a=true;
c=TRUE if a=true;

b=FALSE if c=FALSE;
end Evolution

end Agent

Evaluation
a_true if M.a=true;
a_false if M.a=false;

b_true if M.b=TRUE;
b_false if M.b=FALSE;
b_unknown if M.b=unknown;

c_true if M.c=TRUE;
c_false if M.c=FALSE;
c_unknown if M.c=unknown;

end Evaluation

InitStates
M.a=true and M.b=unknown and M.c=unknown;

end InitStates

MCMAS model (2)

Formulae

AF (((AG a_true) or (AG a_false)) and

((AG b_true) or (AG b_false) or (AG b_unknown)) and

((AG c_true) or (AG c_false) or (AG c_unknown)));

AG ((!((EX a_true) and (EX a_false))) and

(!((EX b_true) and (EX b_false))) and

(!((EX c_true) and (EX c_false))));

end Formulae

Formula 1: Eventually all variables
won’t change their value (become
stable)

Formula 2: It is always that no variable
can be assigned to different values.

PRISM (http://www.prismmodelchecker.org/)

• The most popular probabilistic model checker for verifying/analysing
systems that have probabilistic behaviour
• Support rich probabilistic models and specification languages

• Various verification engines (MTBDD, sparse, hybrid, explicit)

• State-of-the-art performance

• Intuitive GUI

• Actively maintained and developed

• Has been applied to analyse swarm robots, robot coordination, autonomous
systems, and many others.

http://www.prismmodelchecker.org/

Discrete-Time Markov Chains (DTMCs)

• A DTMC is a state-transition system with transitions labelled
probabilities
• A state is a possible configuration of the system
• Transitions between states represent evolution of the system
• From a state, the system can move to other states with certain probabilities

• Can be represented as a tuple 𝑀 = (𝑆, Steps, 𝑠) where
• 𝑆 is a finite set of states
• 𝑠 ∈ 𝑆 is the initial state
• Steps: 𝑆 → 𝐷𝑖𝑠𝑡 𝑆 is a probabilistic transition function

• A DTMC is memoryless, which means the probability distribution in a
state does not depend on the history of evolution

DTMC model for coordination between UAVs

Other porpular probabilistic models

• Markov Decision Processes (MDP)
• 𝑀 = (𝑆, Σ, Steps, 𝑠) where

• Σ is a finite set of actions

• Steps: 𝑆 × Σ → 𝐷𝑖𝑠𝑡 𝑆 is a probabilistic transition function

• Continuous-Time Markov Chains (CTMC)
• 𝑀 = (𝑆, 𝑅, 𝑠) where

• 𝑅: 𝑆 × 𝑆 → R>0 is a transition rate matrix

Probabilistic Specifications

• Reachability properties
• The probability of reaching a set of states from the initial state
• Example: A message is delivered successfully with probability 90%.

• Steady state properties
• The probability of staying in a state (Nash equilibrium) in the long run
• Example: What is the probability of the queue being 50% full in the long run?

• Reward properties
• Properties about instantaneous/cumulative rewards attached to states and/or

transitions
• Example: What is the average elapse time of delivering a message?

• Verification of probabilistic properties involves heavy matrix operations
(usually multiplications)

PRISM screenshots (1)

PRISM screenshots (2)

PRISM screenshots (3)

Case study: swarm aggregation

• The robots have to cluster in one
of the two aggregation areas

• The robots go around at random
and stop if they encounter a black
spot (aggregation area)

• According to a certain probability,
they leave the aggregation area
and restart walking randomly

DTMC model

• 𝑝𝑐𝑎 = 𝑝𝑐𝑏 =
𝑆𝑎𝑔𝑔

𝑆𝑎𝑙𝑙

• 𝑝𝑎𝑎 = 1 − 𝑝𝑎𝑐, 𝑝𝑏𝑏 = 1 − 𝑝𝑏𝑐, 𝑝𝑐𝑐 =
1 − 𝑝𝑐𝑎 − 𝑝𝑐𝑏

• 𝑝𝑎𝑐 = 𝑝𝑏𝑐 = 𝑝𝑚𝑎𝑥 × (1 −
𝑁𝑠

𝑁
)

PRISM program (1)

dtmc

const int N = 3;

const double Pca = 0.08;

const double Pcb = Pca;

const double P_max = 0.2;

formula Pac = P_max * (1 - a/N);

formula Pbc = P_max * (1 - b/N);

PRISM program (2)

module robots

a : [0..N] init 0;

b : [0..N] init 0;

c : [0..N] init N;

[] true -> c/N*Pca: (a'=min(a+1,N))&(c'=max(c-1,0)) +

c/N*Pcb: (b'=min(b+1,N))&(c'=max(c-1,0)) +

a/N*Pac: (a'=max(a-1,0))&(c'=min(c+1,N)) +

b/N*Pbc: (b'=max(b-1,0))&(c'=min(c+1,N)) +

(1-c/N*Pca-c/N*Pcb-a/N*Pac-b/N*Pbc): true;

endmodule

Probabilistic properties

• Let " areaA " = 𝑎 = 𝑁 and "areaB" = 𝑏 = 𝑁 ;
• P=? [F "areaA"|"areaB"]

What is the probability of all robots entering area A or area B?

• S=? ["areaA"]
In the long run, what is the probability of all robots staying in area A?

References

• Alessio Lomuscio, Hongyang Qu, Franco Raimondi. MCMAS: An
open-source model checker for the verification of multi-agent
systems. International Journal on Software Tools for Technology
Transfer (STTT), 2015

• Marta Kwiatkowska, Gethin Norman and David Parker. PRISM 4.0:
Verification of Probabilistic Real-time Systems. In Proc. 23rd
International Conference on Computer Aided Verification (CAV'11),
volume 6806 of LNCS, pages 585-591, 2011.

