
Hongyang Qu

University of Sheffield

1 December 2015

Formal Verification via
MCMAS & PRISM

Outline

• Motivation for Formal Verification

• Overview of MCMAS

• Overview of PRISM

Formal verification

It is a systematic way to check all behaviour of a system with respect
to certain specification

System

Specification

Abstraction

Mathematical model

Abstraction

Logic formula

Verification algorithm
Result

Why formal verification is important?

The Explosion of the Ariane 5

Pentium FDIV bug

$475 million loss

$500 million loss

Replacing testing with
formal verification

Logic verification of
critical subsystems

Can driverless cars run politely?

An example in robotics

Two UAVs fly towards each other at the same

altitude

Each UAV has two actions:

High altitude and low altitude

UAV 1: action A (high) or B (low)

UAV2: action C (low) and D (high)

Action C Action D

Action A  

Action B  
This scenario can be cast as a game

Verification framework for analysing
performance of learning algorithms

Learning
algorithm

Game

Verification framework

Mathematical
model

generation

Verification
algorithm

Performance
measurements

MCMAS: A Model Checker for Multi-Agent
Systems
• Multi-agent systems are an active research area in Artificial

Intelligence (AI).
• They can be used to solve problems that are difficult or impossible for an

individual agent or a monolithic system to solve.

• MCMAS can check complex properties, generate executions leading
to bugs and find strategies for game models.

MCMAS (http://vas.doc.ic.ac.uk/software/mcmas/)

• Symbolic model checker via OBDDs

• Input language ISPL (Interpreted Systems Programming Language)

• Support CTL + Epistemic logic + ATL

• Support (unconditional) fairness

• Efficient implementation of model checking algorithms

• Counterexample/witness generation

• Eclipse-based GUI

• Many applications

• It is actively maintained and developed.

http://vas.doc.ic.ac.uk/software/mcmas/

Ordered Binary Decision Diagram (OBDD)

a

b b

c c c c

1 1 1 1 1 0 0 0

0 1

0

0 0

0

0 0

11

1 1 1 1

Truth table of ¬𝑎⋁ 𝑎⋀¬𝑏⋀¬𝑐

a

b

c

01

1

1

1

0
0

0

OBDD of ¬𝑎⋁ 𝑎⋀¬𝑏⋀¬𝑐

Interpreted systems

• An interpreted system 𝐼𝑆 is composed of 𝑁 agents 𝐴 = 1,… , 𝑛

• Each agent 𝑖 ∈ 𝐴 has

• a finite set of local states 𝐿𝑖 = 𝑙𝑖
1, … , 𝑙𝑖

𝑛𝑙𝑖 and

• a finite set of actions 𝐴𝑐𝑡𝑖 = 𝑎𝑖
1, … , 𝑎𝑖

𝑛𝑎𝑖

• a local protocol 𝑃𝑖: 𝐿𝑖 → 2𝐴𝑐𝑡𝑖

• an evolution function 𝐸𝑣𝑖: 𝐿𝑖 × 𝐴𝑐𝑡1 ×⋯× 𝐴𝑐𝑡𝑛 → 𝐿𝑖

• A global state is 𝑠 = 𝑙1, … , 𝑙𝑛 , and the set of states is 𝑆

• A global joint action is 𝑎 = 𝑎1, … , 𝑎𝑛

Computation Tree Logic (CTL)

• 𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑
𝐸𝑋𝜑 𝐸𝐺𝜑 𝐸𝐹𝜑 𝐸 𝜑𝑈𝜑
𝐴𝑋𝜑 𝐴𝐺𝜑 𝐴𝐹𝜑 𝐴 𝜑𝑈𝜑

• Path quantifier:

𝐸 (exists) and 𝐴 (all)

• Temporal operator:

𝑋 (next), 𝐺 (globally),

𝑈 (until) and 𝐹 (future)

p

𝐸𝑋𝑝

p p

𝐴𝑋𝑝

p

p

q q

𝐸(𝑝𝑈𝑞)

p

p q

q q

𝐴(𝑝𝑈𝑞)

Computation Tree Logic (CTL)

• 𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑
𝐸𝑋𝜑 𝐸𝐺𝜑 𝐸𝐹𝜑 𝐸 𝜑𝑈𝜑
𝐴𝑋𝜑 𝐴𝐺𝜑 𝐴𝐹𝜑 𝐴 𝜑𝑈𝜑

• Path quantifier:

𝐸 (exists) and 𝐴 (all)

• Temporal operator:

𝑋 (next), 𝐺 (globally),

𝑈 (until) and 𝐹 (future)

p

p p

p p p p

𝐴𝐺𝑝

p

p p

𝐴𝐹𝑝

MCMAS screenshots (1)

MCMAS screenshots (2)

MCMAS screenshots (3)

Case study: Inconsistent reasoning

• A robot has one sensing event and two decision predicates
• 𝑎: sensing event

• 𝑏, 𝑐: predicates

• Reasoning rules:
• 𝑎 → ¬𝑏

• 𝑎 → 𝑐

• ¬𝑏 → ¬𝑐

• Initially, 𝑎 is true, 𝑏 and 𝑐 are unknown

MCMAS model (1)

Semantics = SingleAssignment;
Agent M

Vars:
a: boolean;
b: {unknown, TRUE, FALSE};
c: {unknown, TRUE, FALSE};

end Vars
Actions = {none};
Protocol:

Other: {none};
end Protocol
Evolution:

b=FALSE if a=true;
c=TRUE if a=true;

b=FALSE if c=FALSE;
end Evolution

end Agent

Evaluation
a_true if M.a=true;
a_false if M.a=false;

b_true if M.b=TRUE;
b_false if M.b=FALSE;
b_unknown if M.b=unknown;

c_true if M.c=TRUE;
c_false if M.c=FALSE;
c_unknown if M.c=unknown;

end Evaluation

InitStates
M.a=true and M.b=unknown and M.c=unknown;

end InitStates

MCMAS model (2)

Formulae

AF (((AG a_true) or (AG a_false)) and

((AG b_true) or (AG b_false) or (AG b_unknown)) and

((AG c_true) or (AG c_false) or (AG c_unknown)));

AG ((!((EX a_true) and (EX a_false))) and

(!((EX b_true) and (EX b_false))) and

(!((EX c_true) and (EX c_false))));

end Formulae

Formula 1: Eventually all variables
won’t change their value (become
stable)

Formula 2: It is always that no variable
can be assigned to different values.

PRISM (http://www.prismmodelchecker.org/)

• The most popular probabilistic model checker for verifying/analysing
systems that have probabilistic behaviour
• Support rich probabilistic models and specification languages

• Various verification engines (MTBDD, sparse, hybrid, explicit)

• State-of-the-art performance

• Intuitive GUI

• Actively maintained and developed

• Has been applied to analyse swarm robots, robot coordination, autonomous
systems, and many others.

http://www.prismmodelchecker.org/

Discrete-Time Markov Chains (DTMCs)

• A DTMC is a state-transition system with transitions labelled
probabilities
• A state is a possible configuration of the system
• Transitions between states represent evolution of the system
• From a state, the system can move to other states with certain probabilities

• Can be represented as a tuple 𝑀 = (𝑆, Steps, 𝑠) where
• 𝑆 is a finite set of states
• 𝑠 ∈ 𝑆 is the initial state
• Steps: 𝑆 → 𝐷𝑖𝑠𝑡 𝑆 is a probabilistic transition function

• A DTMC is memoryless, which means the probability distribution in a
state does not depend on the history of evolution

DTMC model for coordination between UAVs

Other porpular probabilistic models

• Markov Decision Processes (MDP)
• 𝑀 = (𝑆, Σ, Steps, 𝑠) where

• Σ is a finite set of actions

• Steps: 𝑆 × Σ → 𝐷𝑖𝑠𝑡 𝑆 is a probabilistic transition function

• Continuous-Time Markov Chains (CTMC)
• 𝑀 = (𝑆, 𝑅, 𝑠) where

• 𝑅: 𝑆 × 𝑆 → R>0 is a transition rate matrix

Probabilistic Specifications

• Reachability properties
• The probability of reaching a set of states from the initial state
• Example: A message is delivered successfully with probability 90%.

• Steady state properties
• The probability of staying in a state (Nash equilibrium) in the long run
• Example: What is the probability of the queue being 50% full in the long run?

• Reward properties
• Properties about instantaneous/cumulative rewards attached to states and/or

transitions
• Example: What is the average elapse time of delivering a message?

• Verification of probabilistic properties involves heavy matrix operations
(usually multiplications)

PRISM screenshots (1)

PRISM screenshots (2)

PRISM screenshots (3)

Case study: swarm aggregation

• The robots have to cluster in one
of the two aggregation areas

• The robots go around at random
and stop if they encounter a black
spot (aggregation area)

• According to a certain probability,
they leave the aggregation area
and restart walking randomly

DTMC model

• 𝑝𝑐𝑎 = 𝑝𝑐𝑏 =
𝑆𝑎𝑔𝑔

𝑆𝑎𝑙𝑙

• 𝑝𝑎𝑎 = 1 − 𝑝𝑎𝑐, 𝑝𝑏𝑏 = 1 − 𝑝𝑏𝑐, 𝑝𝑐𝑐 =
1 − 𝑝𝑐𝑎 − 𝑝𝑐𝑏

• 𝑝𝑎𝑐 = 𝑝𝑏𝑐 = 𝑝𝑚𝑎𝑥 × (1 −
𝑁𝑠

𝑁
)

PRISM program (1)

dtmc

const int N = 3;

const double Pca = 0.08;

const double Pcb = Pca;

const double P_max = 0.2;

formula Pac = P_max * (1 - a/N);

formula Pbc = P_max * (1 - b/N);

PRISM program (2)

module robots

a : [0..N] init 0;

b : [0..N] init 0;

c : [0..N] init N;

[] true -> c/N*Pca: (a'=min(a+1,N))&(c'=max(c-1,0)) +

c/N*Pcb: (b'=min(b+1,N))&(c'=max(c-1,0)) +

a/N*Pac: (a'=max(a-1,0))&(c'=min(c+1,N)) +

b/N*Pbc: (b'=max(b-1,0))&(c'=min(c+1,N)) +

(1-c/N*Pca-c/N*Pcb-a/N*Pac-b/N*Pbc): true;

endmodule

Probabilistic properties

• Let " areaA " = 𝑎 = 𝑁 and "areaB" = 𝑏 = 𝑁 ;
• P=? [F "areaA"|"areaB"]

What is the probability of all robots entering area A or area B?

• S=? ["areaA"]
In the long run, what is the probability of all robots staying in area A?

References

• Alessio Lomuscio, Hongyang Qu, Franco Raimondi. MCMAS: An
open-source model checker for the verification of multi-agent
systems. International Journal on Software Tools for Technology
Transfer (STTT), 2015

• Marta Kwiatkowska, Gethin Norman and David Parker. PRISM 4.0:
Verification of Probabilistic Real-time Systems. In Proc. 23rd
International Conference on Computer Aided Verification (CAV'11),
volume 6806 of LNCS, pages 585-591, 2011.

