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Integer programming encoding

Encoding digraphs as real vectors

I The key to the integer programming (IP) approach to BN model
selection is to view digraphs as points in Rn.

I We do this via family variables.

I This digraph: i

j

k is this point in R12:

i ← {} i ← {j} i ← {k} i ← {j , k}
0 1 0 0

j ← {} j ← {i} j ← {k} j ← {i , k}
1 0 0 0

k ← {} k ← {i} k ← {j} k ← {i , j}
0 0 0 1
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Integer programming encoding

A linear objective

Let x(G ) be the vector for digraph G , then for a decomposable score:

Score(G ,D) =

p∑
i=1

ci←PaG (i) =

p∑
i=1

∑
J:i 6∈J

ci←Jx(G )i←J

The (‘vanilla’) optimisation problem then becomes: find x̌ such that

1. x̌ = arg max cx

2. and x̌ represents an acyclic digraph.
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Integer programming encoding

The integer program

We can ensure that x represents an acyclic digraph with two classes of
linear constraints and an integrality constraint.

1. ‘convexity’ ∀i :
∑

J xi←J = 1

2. ‘cluster’ ∀C :
∑

i∈C
∑

J∩C=∅ xi←J ≥ 1

3. x is a zero-one vector

We have an integer program: max cx subject to the above constraints. It
is an IP since:

I the objective function is linear

I there are only linear and integrality constraints
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Solving the IP

Relaxation

Solving the following relaxation of the problem is very easy

1. ∀i :
∑

J xi←J = 1

2. ∀C :
∑

i∈C
∑

J∩C=∅ xi←J ≥ 1 (combinatorial relaxation)

3. x is a zero-one vector (linear relaxation)

Relaxations:

I provide an upper bound on an optimal solution,

I and we might ‘get lucky’ and find that the solution to the relaxation
satisfies all the constraints of the original problem.
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Solving the IP

Tightening the relaxation

I We tighten the relaxation by adding cutting planes

I Let x∗ be the solution to the current relaxation,

I If
∑

i∈C
∑

J∩C=∅ x∗i←J < 1 then the valid inequality∑
i∈C

∑
J∩C=∅ xi←J ≥ 1 is added to get a new relaxation,

I and so on.

I This procedure improves the upper bound (the ‘dual bound’).

I We might get lucky and find that x∗ represents an acyclic digraph, in
which case the problem is solved.

I We use the SCIP system which will find additional
non-problem-specific cutting planes as well.
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Solving the IP

The separation problem

The separation problem is:

I Given x∗ (the solution to the current LP relaxation),

I Find C such that
∑

i∈C
∑

J∩C=∅ x∗i←J < 1, or show that no such C
exists.

I This separation problem has recently been shown to be NP-hard
[CJKB15].

I In the GOBNILP system a sub-IP is used to solve it.

I Note: the vast majority of cluster inequalities are not added, since
they do not tighten the relaxation.
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Solving the IP

Getting lucky . . . eventually

Eskimo pedigree. 1614 BN variables. At most 2 parents. Simulated
genotypes. 11934 IP variables. Old version of GOBNILP.

time |frac|cuts | dualbound | primalbound | gap

1110s|120 | 661 | -3.162149e+04 |-4.616035e+04 | 45.98%

1139s|118 | 669 | -3.162175e+04 |-4.616035e+04 | 45.98%

1171s| 94 | 678 | -3.162213e+04 |-4.616035e+04 | 45.97%

1209s| 26 | 684 | -3.162220e+04 |-4.616035e+04 | 45.97%

1228s|103 | 685 | -3.162223e+04 |-4.616035e+04 | 45.97%

1264s| 0 | 692 | -3.162234e+04 |-4.616035e+04 | 45.97%

*1266s| 0 | - | -3.162234e+04 |-3.162234e+04 | 0.00%

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 1266.40
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Solving the IP

Cutting planes in two dimensions

x = 4, y = 2
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Solving the IP

Branch-and-cut

x = 4, y = 2
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Solving the IP

Branch and cut

For any node in the search tree (including the root) . . .

1. Let x* be the LP solution.

2. If x* worse than incumbent then exit.

3. If there are valid linear inequalities

not satisfied by x*

add them and go to 1.

Else if x* is integer-valued then

the node is solved

Else branch on a variable with

non-integer value in x*

to create two child nodes

(propagate if possible)
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Polyhedral theory

The convex hull

I Since each acyclic digraph is a point in Rn there is a convex hull of
acyclic digraphs.

I If our IP had all the inequalities defining this convex hull we could
drop the integrality restriction and solve the problem with a linear
program (LP).

I An LP, unlike, an IP, can be solved in polynomial time.

I For 4 BN variables, there are 543 acyclic digraphs (living in R28) and
the convex hull is defined by 135 inequalities.
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Polyhedral theory

Facets

I The inequalities defining the convex hull are called facets.

I We have shown [CJKB15, CHS15] that the cluster inequalities, first
introduced by [JSGM10], are facets.

I But there are very many other facets, for example this one for BN
variable set {a, b, c , d}:

xa←bc + xa←bd + xa←cd + 2xa←bcd

+xb←ac + xb←ad + xb←acd

+xc←ab + xc←ad + xc←abd

+xd←ab + xd←ac + xd←abc ≤ 2
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Polyhedral theory

Characteristic imsets and matroids

I An alternative approach—characteristic imsets, developed by Milan
Studený—encodes each Markov equivalence class of BNs as a
zero-one vector [CHS15].

c(S) =
∑
i∈S

∑
S\{i}⊆J

xi←J

I At this conference Studený has a paper which uses matroid theory to
derive useful results for both the c-imset and family-variable polytope
[Stu15].

I Milan’s paper generalises the proof that ‘cluster’ inequalities are
facets.

James Cussens, University of York Optimal BNSL algorithms - Part II UAI, 2015-07-12 14 / 35



Branching and Propagation

Strong branching

I Which variable to branch on?

I SCIP’s default approach aims (mainly) to improve the ‘dual bound’
on both sides of the branch.

I Strong branching tries out candidate variables before choosing which
one to branch on.

I This is expensive (lots of LP solving) so done mainly at the top of the
search tree.
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Branching and Propagation

Propagation

I Alternatively, one can aim for lots of propagation.

I If xi←{j ,k} = 1 and xk←{`} = 1 then we can set e.g. x`←{i} to 0.

I van Beek and Hoffmann [vBH15] have recently applied a constraint
programming approach to BN learning which uses auxiliary variables
and lots of propagation.
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Branching and Propagation

GOBNILP approach

In the latest version of GOBNILP . . .

I We start branching if adding cutting planes has made little progress
for 10 rounds ( separating/maxstallrounds = 10 )

I We have auxiliary variables representing both directed and undirected
edges of the DAG.

I We branch on these variables (not the family variables).

I We use SCIP’s default branching rule ( relpscost ) with some
non-default parameter values.
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Extensions

Constraint integer programming (SCIP)

I Branch-and-cut is a ‘declarative’ algorithm.

I It treats e.g. the acyclicity constraint handler as (almost) a black box.

I So we can add in additional constraints, if we have them, without
having to come up with a new algorithm.
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Extensions

Conditional independence constraints

I Recall the acyclicity constraint (cluster inequality):
∀C :

∑
i∈C

∑
J∩C=∅ xi←J ≥ 1

I Suppose for some C ′ we have
∑

i∈C ′
∑

J∩C ′=∅ xi←J = 1

I Then the BN nodes in C ′ have a common ancestor in C ′ and are thus
d-connected.

I So suppose we want j ⊥ k, then
∀C : {j , k} ⊆ C ⇒

∑
i∈C

∑
J∩C=∅ xi←J ≥ 2

I GOBNILP’s conditional independence constraint handler provides
such inequalities as cutting planes.

James Cussens, University of York Optimal BNSL algorithms - Part II UAI, 2015-07-12 19 / 35



Extensions

Other constraints

I We can add constraints to rule out immoralities to learn
decomposable models, but Kangas et al [KNK14] do better!

I Oates et al [OSMC15] learned multiple BNs (from multiple datasets)
with a penalty for structural differences.
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Scaling up?

Too many variables!

I GOBNILP generates all its IP variables before it starts the solving
process.

I With too many it will just crash, and it gets progressively slower with
more IP variables.

I It is not the parent set size limit per se which is the limiting factor,
since, by creating fake BN nodes, one can encode any BN learning
problem as one with a limit of at most two parents: replace xi←j ,k,`

with xi←j&k,`, set xj&k←{j} = xj&k←{k} = 1.
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Scaling up?

Column generation

I Column generation = variable generation

I In the column generation approach new variables are created only if
setting them to a non-zero value raises the upper (‘dual’) bound.

I This is the dual to adding cutting planes which lower the upper
bound.

I The resulting algorithm is branch-price-and-cut.
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Empirical evaluation

Empirical evaluations

I Now for some empirical evaluations . . .
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Empirical evaluation

Pedigree learning with GOBNILP

I GOBNILP’s main (funded!) target problem has been pedigree
learning.

I In a pedigree there are at most two parents: a known father and a
known mother.

I So even with very many individuals in the pedigree (= BN nodes)
there are not so many IP variables.
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Empirical evaluation

1614 node ‘Polar Eskimo Genealogy’
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Empirical evaluation

FRANz vs GOBNILP: Eskimo pedigree solving times
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Empirical evaluation

FRANz vs GOBNILP: Eskimo pedigree accuracy

GOBNILP FRANz
Precision 95.2% 94.1%
Recall 96.8% 95.4%

I See Sheehan et al [SBC14] for further details.
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Empirical evaluation

GOBNILP for general BN learning

I Plenty of empirical results on the GOBNILP webpage
https://www.cs.york.ac.uk/aig/sw/gobnilp/.

I Those results all ask SCIP to use CPLEX to solve the linear
relaxations—that makes a difference!
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Empirical evaluation

GOBNILP with no parent set restriction

Name p n IPVars ScoreTime SolveTime/Gap

Adult 14 30162 3546 4 11.2
Wine 14 178 790 1 2.8
Letter 17 20000 83961 100 0.88%
Zoo 17 101 3590 3 97.4
Voting 17 435 801 18 1.7
Statlog 19 752 4899 56 28.0
Hepatitis 20 126 972 64 2.3
Image 20 2310 13713 249 332.6
Imports 23 205 13396 694 287.2
Meta 23 527 FAIL FAIL FAIL
Mushroom.1000 23 1000 25697 1124 5.65%
Mushroom 23 8124 FAIL FAIL FAIL
Heart 23 212 631 1274 0.6
Horse.23 23 300 925 1910 2.0
Parkinsons 23 195 3699 1166 4.8
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Empirical evaluation

GOBNILP with no parent set restriction

I Datasets on the preceding slide downloaded from urlearning.org

and mostly originate from UCI.

I GOBNILP failed during scoring on all the following larger datasets:
Sensors, Autos, Horse, SteelPlates, Alarm.1000, Flag, Epigenetics,
Wdbc, Soybean, Water, Bands, Spectf and LungCancer.
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Empirical evaluation

A CP approach to exact BN learning

I van Beek and Hoffmann [vBH15] have compared their algorithm
CPBayes to GOBNILP 1.4.1 and A*.

I GOBNILP 1.6.1 does better that 1.4.1 (see GOBNILP page) but the
trend is the same.
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Empirical evaluation
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Empirical evaluation

Which algorithm?

Which is faster, GOBNILP (blue) or A* (red), on a given instance
[MKMJM14]?
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Empirical evaluation

Portfolio approach [MKMJM14]
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Empirical evaluation

Is optimal learning worth the effort?

Here are the main findings from Malone et al [MJM15] (to be presented at
this conference)

I Bigger datasets result in BNs with better predictive liklelihood.

I “[Optimal learning] guarantees consistently translate into networks
with good generalization. Algorithms with weaker guarantees produce
networks with inconsistent generalization.”
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