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talk structure

Logic Programming (LP)

Uncertainty and LP

Constraint LP

clp(pfd(Y))

clp(pfd(c))

Caesar’s coding experiments
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logic programming

Used in AI for crisp problem solving and for building
executable models and intelligent systems.

Programs are formed from logic based rules.

member( H, [H|T] ).
member( El, [H|T] ) :- member( El, T ).
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execution tree

?− member( X, [a,b,c] ).

X = a

X = b

X = c

member( H, [H|T] ).

member( El, [H|T] ) :- member( El, T ).
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uncertainty in logic programming

Most approaches use Probability Theory but there are
fundamental questions unresolved.

In general,

0.5 : member( H, [H|T] ).

0.5 : member( El, [H|T] ) :- member( El, T ).
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stochastic tree

?− member( X, [a,b,c] ).

1/4 : X = b

1/2

1/2

1/2

1/2

1/2

1/2 : X = a

1/8 : X = c

0.5 : member( H, [H|T] ).

0.5 : member( El, [H|T] ) :- member( El, T ).
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constraints in lp

Logic Programming :

execution model is inflexible, and

its relational nature discourages use of state
information.

Constraints add

specialised algorithms

state information
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constraints in lp

Logic Programming :

execution model is inflexible, and

its relational nature discourages use of state
information.

Constraints add

specialised algorithms

state information
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constraint store

X # Y

Constraint store interaction

Logic Programming engine

?−  Q.
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constraints inference

?−  Q.

X in {a,b}

X = Y = b

Y in {b,c}

  => 

+
X = Y 
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finite domain distributions

For discrete probabilistic models clp(pfd(Y)) extends the
idea of finite domains to admit distributions.

from clp(fd)

X in {a, b} (i.e. X = a or X = b)

to clp(pfd(Y))

p(X = a) + p(X = b)
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finite domain distributions

For discrete probabilistic models clp(pfd(Y)) extends the
idea of finite domains to admit distributions.

from clp(fd)

X in {a, b} (i.e. X = a or X = b)

to clp(pfd(Y))

[ p(X = a) + p(X = b) ] = 1
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constraint based integration

Execution, assembles the probabilistic model in the store
according to program and query.

Dedicated algorithms can be used for probabilistic
inference on the model present in the store.
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probability of predicates

pvars(E) - variables in predicate E,

e - vector of finite domain elements

p(ei) - probability of element ei

S - a constraint store.

E/e - E with variables replaced by e.

The probability of predicate E with respect to store S is

PS(E) =
∑

∀e
S`E/e

PS(e) =
∑

∀e
S`E/e

∏

i

p(ei)
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clp(pfd(c))

Probabilistic variable definitions

Coin ∈p finite_geometric([head, tail], 2)

Conditional constraint

Dependent π Qualifier
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labelling

In clp(fd) systems labelling instantiates a group of
variables to elements from their domains.

In clp(pfd(Y)) the probabilities can be used to guide
labelling. For instance we have implemented

label(V ars,mua, Prbs, Total)

Selector mua approximates best-first algorithm which
instantiates a group of variables to most likely
combinations.
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Caesar’s coding

Each letter is encrypted to a random letter. Words drawn
from a dictionary are encrypted. Programs try to decode
them. We compared a clp(fd) solution to clp(pfd(c)).

clp(fd) no probabilistic information, labelling in
lexicographical order.

clp(pfd(c)) distributions based on frequencies, labelling
using mua.
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proximity functions

Xi - variable for ith encoded letter

Di - dictionary letter

freq() - frequency of letter

px(Xi, Dj) =
1/ | freq(Xi) − freq(Dj) |∑
k 1/ | freq(Xi) − freq(Dk) |
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execution times
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clp(pfd(c)) and clp(fd) on SICStus 3.8.6
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bottom line

Constraint LP based techniques can be used for
frameworks that support probabilistic problem solving.

clp(pfd(Y)) can be used to take advantage of probabilistic
information at an abstract level.
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Monty Hall

Three curtains hiding a car and two goats.
Contestant chooses an initial curtain.
A close curtain opens to reveal a goat.
Contestant is asked for their final choice.

What is the best strategy ?
Stay or Switch ?
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Monty Hall solution

If probability of switching is Swt,
(Swt = 0 for strategy Stay and Swt = 1 for Switch)

then probability of win is P (γ) = 1+Swt
3

.
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Monty Hall in clp(cfd(c))

curtains( gamma, Swt, Prb ) :-
Gift ∈p uniform([a, b, c]),
First ∈p uniform([a, b, c]),
Reveal ∈p uniform([a, b, c]),
Second ∈p uniform([a, b, c]),
Reveal 6= Gift, Reveal 6= First, Second 6= Reveal,
Second Swt First ,
Prb is p(Second=Gift).
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Strategy γ Query

Querying this program
?- curtains(gamma, 1/2, Prb)
Prb = 1/2.

?- curtains(gamma, 1, Prb)
Prb = 2/3.

?- curtains(gamma, 0, Prb)
Prb = 1/3.
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Strategy γ Query

Querying this program
?- curtains(gamma, 1/2, Prb)
Prb = 1/2.

?- curtains(gamma, 1, Prb)
Prb = 2/3.

?- curtains(gamma, 0, Prb)
Prb = 1/3.
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clp(pfd(BN))

Other discrete probabilistic inference is possible. For
instance Bayesian Networks representation and inference.
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example BN

A

CB

A = y A = n
B = y 0.80 0.10

B = n 0.20 0.90

A = y A = n

C = y 0.60 0.90

C = n 0.40 0.10
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clp(pfd(BN)) program

example_bn( A, B, C ) :-
cpt(A,[],[y,n]),
cpt(B,[A],[(y,y,0.8),(y,n,0.2),

(n,y,0.1),(n,n,0.9)]),
cpt(C,[A],[(y,y,0.6),(y,n,0.4),

(n,y,0.9),(n,n,0.1)]).
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program

example_bn( A, B, C ) :-
cpt(A,[],[y,n]),
cpt(B,[A],[(y,y,0.8),(y,n,0.2),

(n,y,0.1),(n,n,0.9)]),
cpt(C,[A],[(y,y,0.6),(y,n,0.4),

(n,y,0.9),(n,n,0.1)]).

?- example_bn(X,Y,Z),
evidence(X,[(y,0.8),(n,0.2)],
Zy is p(Z = y).
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program

example_bn( A, B, C ) :-
cpt(A,[],[y,n]),
cpt(B,[A],[(y,y,0.8),(y,n,0.2),

(n,y,0.1),(n,n,0.9)]),
cpt(C,[A],[(y,y,0.6),(y,n,0.4),

(n,y,0.9),(n,n,0.1)]).

?- example_bn(X,Y,Z),
evidence(X,[(y,0.8),(n,0.2)],
Zy is p(Z = y).

Zy = 0.66
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current inference scheme

Logic engine

CLP

Constraints

Store

Probabilistic Inference

&

Learning
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bottom line

Logic engine

CLP

Inference
Probabilistic

Constraint
Propagation

&
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