Robust Knowledge Representation

Better half an answer in time than a full answer too late

Frank van Harmelen
AI Department
Vrije Universiteit Amsterdam
Science is a method for exploring uncertainty;
It delivers better models, not revealed truth
Science = making models

\[F = m \cdot a \]

\[F = \left(\frac{m}{1 - \frac{v^2}{c^2}}\right) \cdot a \]
KR makes models of what?

- **Representation**: Structure of knowledge
 - Symbolic representation of knowledge

- **Inference**: Patterns of reasoning
 - Deriving new information from existing
 - algorithms, implementations

- **Examples**:
 - Traditional First Order Logic: Truth
 - Modalities: Knowledge, Belief
 - Non-monotonic reasoning: reasoning with exceptions
 - etc.
KR models are based on logic

An ideal reasoner under ideal circumstances

- Reasoner makes no mistakes (sound & complete)
- Reasoner has unlimited resources
- All knowledge is available
- All knowledge is correct
KR models are based on logic

Reliance on logic is a **strength**
- Strong theoretical basis
- Well known properties
- Well known implementation techniques

Reliance on logic is a **weakness**
- **Crisp** (no approximate answers)
- **Abrupt** (no intermediate answers)
- **Inefficient** (no time/quality trade-off)
Desiderata for Robust Knowledge Representation

Reliance on logic is a weakness
- Crisp
- Abrupt
- Inefficient

Instead, we would want:
- **Approximate** answers
- **Incremental** computation
- **Anytime** cost/quality trade-off
Can this be done in logic?

- **YES!!:**
 1. Approximate deduction in diagnosis
 2. Qualitative performance profiles
 3. Empirical performance profiles

- Don’t abandon logic:
 - Neural Networks
 - Genetic Algorithms
 - Statistical models
Approximate Deduction: Intuition

- Turn the knob on the reasoning engine
 - exchange precision for cost
 - anytime reasoning = turn the knob gradually
 - characterise the effect of the approximation

Can we be precise about the imprecision?
Part I: Approximate Deduction...

| WHAT | not yes/no answers, but
| | optimise a quality measure
| | NB: not necessarily numeric
| WHY | AI problems are intractable
| | often approximate solutions suffice
| | anytime behaviour
| HOW | define reasoning method using `
| | replace ` by approximate deduction

... in diagnosis

- Dealing with
 - “no diagnosis”,
 - “too many diagnoses”

- Sometimes not interested in exact diagnosis (e.g. safe over-diagnosis)

- Prefer cheap approximation over expensive exact solution (time-pressure)

- Anytime algorithms
1,3-S (Cadoli & Schaerf)

- S = set of propositional letters
- classical inference on letters in S
- 1-S: unsound on letters outside S
- 3-S: incomplete on letters outside S

- 1-S-assignment:
 if $x \in S$ then x and $\neg x$ classical
 if $x \notin S$ then x and $\neg x$ both false
 \Rightarrow for $x \notin S$ only 1 assignment

- 3-S-assignment:
 if $x \in S$ then x and $\neg x$ classical
 if $x \notin S$ then x and $\neg x$ not both false
 \Rightarrow for $x \notin S$ 3 assignments:
 $(1,0); (0,1); (1,1)$
Intuitions for clausal form

- 1-S-assignment \equiv
 - remove parts of clause outside S
 - if $a \notin S : \{a \lor b, \neg b \lor c\}$ becomes $\{b, \neg b \lor c\}$
 - theory might become \bot.

- 3-S-assignment \equiv
 - remove entire clause if part outside S
 - if $a \notin S : \{a \lor b, \neg b \lor c\}$ becomes $\{\neg b \lor c\}$
 - theory might become \top.
Main result of Cadoli/ Schaerf

\[
\emptyset \Rightarrow S_3 \Rightarrow S'_3 \Rightarrow \vdash_2 \Rightarrow S'_1 \Rightarrow S_1 \Rightarrow \emptyset_1
\]

\[
\vdash_2 \leftrightarrow S'_1 \leftrightarrow S_1 \leftrightarrow \emptyset_1
\]

- \(S_3 \) is an incomplete approx. of \(\vdash_2 \)
- \(S_1 \) is an unsound approx. of \(\vdash_2 \), or:
 - \(S'_1 \) is an incomplete approx. of \(\vdash_2 \)

efficient incremental anytime algorithms:
- cost of iterated computation is
 - never higher than computing \(\vdash_2 \) once!

Notice: approximate, incremental, anytime
Definition of diagnosis

- Given:
 - Behaviour model BM
 - Observations O

- Find
 - Explanation E

- Such that:

 \[BM \cup E \vdash O \]
 \[BM \cup E \not\vdash \perp \]
 written \[ABD(E) \]

- Replace \` by \` \[S_{1,3} \]
Main results

\[
\emptyset = \{ ABD_1^0 \} \subseteq \{ ABD_1^S \} \preceq \{ ABD_2^S \} \preceq \{ ABD_3^S \} \preceq \{ ABD_3^\emptyset \} = \emptyset
\]

- \(ABD_1^S \) diagnoses are contained in classical diagnoses
- \(ABD_3^S \) diagnoses contain classical diagnoses

- When S grows
 - \(ABD_1^S \) no new subdiagnoses
 - \(ABD_3^S \) no new superdiagnoses

\[
0 = |\{ ABD_1^\emptyset \}| \leq |\{ ABD_1^S \}| \leq |\{ ABD_2^S \}| \\
|\{ ABD_2^\emptyset \}| \geq |\{ ABD_3^S \}| \geq |\{ ABD_3^\emptyset \}| = 0
\]
Intuition

ABD_3^S
Strategies for choosing S

- $\text{ABD}_1^S = \text{all urgent subsets of classical diagnoses}$
- $\text{ABD}_3^S = \text{all classical diagnoses that are entirely urgent}$

- Increase S with less urgent causes, interrupt when
 - No time left: only non-urgent diagnoses lost
 - First diagnosis found: most urgent diagnosis
Part II: Qualitative Performance profiles

• Output-quality is function of some varying resource
 - reasoning time,
 - inference accuracy,
 - representational precision

• This function is (ideally)
 - monotonic
 - diminishing returns
 - characterised by a performance profile
Classification by linear candidate confirmation

1. Iterate over all classes
2. Check every class with the observations; (leading to confirmation or not)
Classification by confirmation with filtering

1. Filter the classes, based on a subset of the observations
2. Iterate over all classes
3. Check every class with the observations; (leading to confirmation or not)
Hierarchical classification

1. First consider all classes as solutions
2. Descend a classification hierarchy (depth \(d \)), eliminating all classes on entire branches

![Graph showing precision over time and depth](image)
Design by Constraint clustering

Group constraints in non-interacting clusters
1. Iterate over all k clusters
2. Find an assignment per cluster
Design by Propose & Revise

- Assign successive parameters
- Test partial designs
- Re-assign earlier parameters if needed

Graph: parameters vs. time
Summarising

Many inference methods have surprisingly natural anytime behaviour.

Problem:

- Only upper/lower bound, but no quantitative measures
- Do search methods really behave like this in practice?
Part III: Quantitative Performance Profiles

- How does quality of output change as a function of:
 - quality of input?
 - quality of knowledge base?

- Measure quantitative profiles
Experimental setting

- Vegetation classification system
 - 93 plant names
 - 40 observables (max. 30 per case)
 - 7586 rules
 - 150 test cases

- Use recall and precision as quality measures

- Incomplete input

- Incomplete knowledge base

- Incorrect knowledge base
Experimental results (1)

Incomplete input:

Recall: precision:
Experimental results (2)
Incomplete input:
Recall with different input orderings:
Experimental results (3)

Incomplete knowledge base:
(with realistic removal model)
Can this be done in logic?

An ideal reasoner under ideal circumstances?

- Reasoner makes no mistakes (sound & complete)
 ➔ Cadoli & Schaerf (part I)
- Reasoner has unlimited resources
 ➔ Qualitative performance profiles (part II)
- All knowledge is available & correct
 ➔ Quantitative performance profiles (part III)
Research agenda

- Other approximate deduction relations?
- Exploit other methods:
 - Knowledge compilation (Kautz & Selman)
 - Language weakening
- Relations between these?
- New application areas:
 - Semantic Web
 (approximate Description Logics)
 - Agent communication
 (approximate terminology mappings)
 - Software retrieval
 (approximate pre/post-conditions, Web services)